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Abstract—Component based software engineering supports
the rapid assembly of software systems. These systems are
highly structured yet flexible. In particular, Fractal introduces
controllers for the extension of components. Fractal controllers
intercept incoming and outgoing calls of component services
and implement the extended behavior. However, controllers may
interfere one with another. In this article, we propose two
contributions. First, we extend Fractal component model with
a support for composing controllers with reusable operators.
Second, we show how to formally model and analyze in Uppaal
such extended systems. This enables us to detect when controllers
interfere, then to check whether their composition is interference-
free. We illustrate our general approach with a running example:
a wireless internet service of an airport.

I. INTRODUCTION

Component based software engineering supports the rapid

assembly of flexible software systems. These systems are

highly structured yet flexible. In particular, Fractal [1] supports

extending components’ behaviors by means of controllers. In

Fractal, controllers are plugged into components, they inter-

cept incoming and outgoing messages, implement the extended

behavior and proceed or discard messages. However, when a

component have several controllers, there is no general way to

compose them. They have to be composed in a programmatic

way by explicitly calling a controller from another one. These

limitations make the implementation of extensions a complex

task with sometimes unexpected behavior.

In this article, we propose two contributions. First, we ex-

tend Fractal implementation with support for composable con-

trollers. Second, we show how this can be formally modeled

with Uppaal to check whether an extended system possesses

the expected behavior. In particular, we check the interference-

freeness of the added controllers. Our approach is illustrated

with a running example of an airport service providing internet

connection to customers. The example is extended with two

controllers. We show how the system and its extensions can be

formally modeled and analyzed with Uppaal. A formalization

scheme is presented for this purpose. In the example, an

interference is detected between the two added controllers and

solved with a generic operator. In the paper, only two operators

are discussed but others can be defined in a similar way. Our

approach can be used at the assembly stage, so that potential

interferences are statically detected and solved by choosing

the right composition operators. It also can be used at runtime

where the system is to be reconfigured. In this case, dynamic
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Fig. 1. Architecture of the airport internet access system

reconfigurations causing interferences are cancelled. Using

Uppaal, the system can be simulated and potential errors in

the system can be checked. When an interference is detected,

it is reported to the user with a diagnostic trace that helps to

determine the correct composition operator.

The rest of the paper is organized as follows. Section II

presents our running example and its architecture. Section III

describes the notion of composable controllers and how they

can be implemented in Fractal. The description is illustrated

with extending the example with two new functionalities.

Section IV shows how the approach can be formally modeled

in Uppaal, how interferences are detected and solved by

instantiating templates of composition operators. Section V

compares our approach to related works and section VI

concludes and gives perspectives of the approach.

II. CASE STUDY: AIRPORT INTERNET ACCESS

Our running example is a Fractal application that models an

airport service for providing a wireless internet connection1

[2], [3]. A free Internet access is granted for a limited time to

customers owning valid fly tickets. A customer can log with

his fly ticket number and use the network.

The Fractal architecture of this application is displayed

in Figure 1. The User component models a customer in

the system. The User first, requests an IP address from

the DhcpServer, then it sends a login request to the

1In this article, we present a simplified version of the system (only one kind
of customer, FlyTicketManager is a primitive component. . . ). A more
complete Fractal implementation and Uppaal formalization of the system are
available by request to the authors.



SessionManager. Once connected, it sends queries to the

AccessManager. The AccessManager forwards users’

requests to the Firewall that blocks unauthorized internet

connections. The requests of users with enabled IP addresses

are actually sent to the net Proxy. The User component

has multiple instances (one per customer) as noted with

superimposed boxes. The DhcpServer delegates IP ad-

dress requests to the IpAddressManager that provides

dynamic IP address allocation. The allocated IP addresses

are managed by the IpDbConnection component. The

SessionManager manages sessions. When it receives a

login request, its inner Arbitrator component retrieves the

authorized access time from the FlyTicketManager, then

the SessionManager instantiates a ValidityChecker.

The Arbitrator in turn orders the AccessManager to

enable communications for the user. When the authorized time

elapses the ValidityChecker asks the Arbitrator

to close the session. The Arbitrator in turn orders the

AccessManager to disable communications for the user,

and the DhcpServer to disable its IP address.

III. COMPONENT EXTENSION IN FRACTAL

Fractal [1] is a hierarchical component model developed

by the OW2 consortium. Fractal supports a set of interesting

features such as: component sharing and component behaviors

extension through component controllers. Each component in

Fractal has a content and a membrane. The content encap-

sulates the business logic, while the membrane exposes the

provided and required interfaces and a set of controllers. Com-

ponents are connected to each other via bindings. A binding

connects a required interface of a component to a provided

interface on the assumption that the provided interface type

is a sub-type of the required interface type. Fractal provides

an architectural description language called Fractal-ADL to

describe the architecture of systems in a declarative style.

In Fractal, component behaviors are extended by means

of controllers. Extensions can either be installed on: (1)

a single component by adding a controller to a primitive

component, (2) several components by adding a controller to a

composite that encapsulates all the components to be extended.

Component sharing enables the application of controllers

to components belonging to different composites. A regular

Fractal controller intercepts messages sent and received by a

component and it can alter them, redirect or even discard them

by calling or not a method invoke(). However, without an

explicit discard call event, the composition of controllers has

to be made in a programmatic and non-modular way by calling

one controller from another. Here, we propose to extend

Fractal with controllers that make discarding explicit. We call

such controllers composable controllers and we provide a set

of generic operators to compose them.

A. Composable Controller in Fractal

We define a composable controller as a pair

(Dispatcher, Act). The Dispatcher is a regular

Fractal controller used to intercept service calls, reify them

1 enum Cmd {Proceed , Skip}
2 i n t e r f a c e I C C o n t r o l l e r {
3 Cmd match ( MessageContex t c ) ;

4 }

Listing 1. ICController interface

into message objects and pass them to the Act object. An Act

object is a regular object implementing the ICController

interface (see Listing 1). It implements the behavior of the

extension in a match(MessageContext) method. The

match method inspects or modifies messages, executes

extra codes and finally decides whether the message should

actually be proceeded by returning the command Proceed or

discarded by returning Skip. The Dispatcher controller

calls its method invoke() to proceed the service call only

if the Act object returns a Proceed command.

Like regular controllers, composable controllers can be

plugged into components that have to be altered by the

controller behavior. When the controller needs to be applied to

several components that are scattered over the architecture, the

system is reconfigured as follows: a new composite is created

and the required components are added to that composite as

shared components. This way, the controller is plugged into

the new composite and the original configuration is preserved.

In the following, we show how composable controllers can

be used to extend the airport service example with (1) adding

a bonus time to customers and (2) alert customers five minutes

before the end of their sessions.

B. Extension 1: Add a Bonus

Let us suppose that the airport decides to offer a bonus

time to first class customers. Such an extension can be done

by adding a composable controller with an ICController,

named Bonus, to the ValidityChecker.

The Dispatcher controller intercepts service calls to

the ITimerCallback interface that defines a timeout

service. This service is called by the Timer to inform

the ValidityChecker of the end of the session. The

Dispatcher intercepts the call, reifies it into a message

object and sends it to Bonus by calling its match method.

The match method of Bonus behaves as follows: when it

receives the first occurrence of timeout (i.e. the customer

session should be closed), it checks if the customer has a first

class ticket. If it is the case, it resets the timer for 10 more

minutes (by calling the setTimeout(10) service on the

ITimer interface of the corresponding Timer component),

and informs the Dispatcher controller that it wants to skip

the call by returning a Skip command. That means that

the timeout, in this case, is not actually proceeded and

the session continues. If it receives a second occurrence of

timeout, the match method returns a Proceed command

to Dispatcher. This causes the Dispatcher to call its

invoke() method which proceeds the call and ends the

current session of the user.

In our scenario, the composable controller with the Bonus
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Fig. 2. The airport system extended with Bonus

ICController is attached to each ValidityChecker in-

stance. This enables the interception of required services

(i.e. timeout of the ITimerCallback interface) and the

use of its provided services (i.e. setTimeout of the ITimer

interface). Figure 2 shows the architecture of the airport system

after the integration of Bonus.

C. Extension 2: End Session Alert

Now, suppose that the airport decides to add a service

that alerts users five minutes before their authorized time

connection expires. In this case, a session timer is initialized

with five minutes less than the authorized time. When the

time expires and a timeout is generated, an alert is sent

to the user and the timer is reset for five more minutes.

Here, we propose to integrate a composable controller with

an ICController Alert that behaves as follows: when the

setTimeout service call is intercepted on the ITimer

interface of the ValidityChecker component, the Alert

changes the parameter value of the call (e.g., 60 minutes)

by subtracting a time alert (5 minutes), and proceeds the call.

Thus, the ValidityChecker will receive a timeout 5

minutes before the end of the session. When the timeout is

intercepted, the Alert sends an alert message to the user (by

calling the show("you have only 5 min left") on

the IMessager interface required by the Arbitrator), re-

sets the Timer for 5 minutes by calling setTimeout(5)2,

and skips the currently intercepted timeout. The Alert

proceeds the next intercepted timeout to end the session.

Note that the controller, in this case, is plugged into the

SessionManager composite that encapsulates several in-

stances of ValidityChecker(s). Thus, the Alert needs to

store the identity of the Timer triggering the first timeout

call, so that it can proceed the second triggered timeout and

ends the right user session. Figure 3 shows the airport system

after being extended with Alert.

D. Controllers Interferences and Compositions

Extending components with several controllers may give

rise to interferences. For better understanding of controller

interferences, let us consider the original airport system, its

bonus and alert extensions. Let us also assume that the original

session duration is 60 minutes, the bonus adds 10 minutes and

the alert warns the user 5 minutes before the end of the session.

2A controller intercepts only services of the component it controls
(e.g., alert does not intercept its own call to setTimeout(5)).
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When both controllers are plugged into the system, we wish

users to get a bonus time and be alerted exactly 5 minutes

before the actual end of their sessions (i.e. alert at 65 minutes,

end of session at 70 minutes).

In our approach, when two controllers intercept common

services, the default composition is made using a Seq op-

erator. When the Seq operator is used and a service call is

intercepted, the match method of both controllers are called

sequentially and the service call is proceeded only if at least

one of its underlying ICControllers returns Proceed,

otherwise, Seq returns Skip to the Dispatcher. However,

in Section III-B, we plugged an instance of Bonus into

each instance of ValidityChecker, while in Section III-C

we introduced a single instance of Alert for all the in-

stances of ValidityChecker and we plugged it into the

SessionManager component. In our approach, two con-

trollers can be composed only if they are plugged into the same

component which is not the case for Bonus and Alert. To

tackle such a problem, we define an operator DemuxFactory

that is both a factory of ICController(s) and a demultiplexer

responsible for “routing” the intercepted messages to the right

instances. In our example, the DemuxFactory is responsible

for the instantiation of Bonus for each ValidityChecker

instance, and when a timeout message is intercepted for

a Timer instance, the DemuxFactory redirects the call to

the correspondent Bonus instance (i.e. the one plugged into

the ValidityChecker bound to the Timer making the

call). Figure 4 shows the composition of the above controllers

where the white boxes refer to composition operators and

gray boxes refer to ICController(s). Note that the composition

operators in our proposal also implement the ICController

interface. This enables our controllers to be composed

in a composite pattern way with a single Dispatcher.
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Figure 5 sketches the Seq(DemuxFactory(Bonus),

Alert) scenario. At time 0, a user logs in for 60 minutes

provided by his fly ticket. The message setTimeout(60)

sent from a ValidityChecker to its Timer is inter-

cepted by the Dispatcher controller. The Dispatcher

invokes the match method of the Seq operator. The Seq

then calls the DemuxFactory(Bonus) that instantiates a

Bonus and calls its match method that proceeds the call

(setTimeout(60) is not of interest to Bonus). The call

is then sent to Alert that subtracts 5 minutes from 60 and

proceeds the call with the new parameter value (55). As a re-

sult, the Dispatcher calls setTimeout(55). At time 55,

a timeout is intercepted. The Dispatcher invokes again

the match method of the Seq. The Seq sends the message to

the DemuxFactory(Bonus) first, that routs the message to

the corresponding Bonus instance which resets the timer for

10 minutes and skips the message. Then, the message is sent

to Alert that warns the user, resets the timer for 5 minutes

and skips the message. This violates the expected behavior:

the alert is sent too early (at time 55 instead of the expected

65). Moreover, the Timer has been set twice with different

values and hence it is inconsistent whatever happens next.

This is called an interference since the desired behavior is not

ensured by the default sequential composition of controllers.

To solve this interference, another composition strategy is

needed: the first occurrence of timeout should only be

managed by Bonus and the second occurrence should only

be managed by Alert. This strategy can be abstracted with

the Alt (alternate) composition operator. This binary operator

aggregates two ICController(s) and a set of intercepted

services common to both controllers. When a service common

to both controllers is intercepted, its occurrences are passed

alternately to the left and the right hand side controllers. When

a service is not common to both controllers, the Alt operator

passes the call to both controllers sequentially and the call is

proceeded when both controllers returns Proceed, otherwise,

the message is skipped. This works since the ICControllers are
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Fig. 6. Alt(DemuxFactory(Bonus),Alert) scenario

designed to return Proceed for irrelevant calls.

Figure 6 sketches the Alt(DemuxFactory(Bonus),

Alert, {"timeout"}) scenario. At time 0, a user logs

in for 60 minutes provided by his fly ticket. The message

setTimeout(60) sent from a ValidityChecker to

its Timer is intercepted by the Dispatcher and sent

to Alt. The setTimeout is not a common intercepted

message, so Alt sends it first to DemuxFactory(Bonus)

that instantiates a Bonus and calls its match method that

proceeds the call. Second, Alt calls the match method of

Alert that subtracts 5 minutes from 60 and proceeds the

call. Since both controllers want to proceed the call, Alt

returns Proceed which causes the Dispatcher to call

setTimeout(55). At time 55, a timeout is intercepted

which is a common intercepted message by both controllers.

Here, Alt sends it only to DemuxFactory(Bonus) (first

occurrence) that routs it to the corresponding Bonus instance

which resets the timer for 10 minutes and skips the mes-

sage. Thus, the Dispatcher ignores this timeout call.

At time 65, a second timeout is intercepted. Alt sends

it only to Alert (second occurrence) that warns the user,

resets the timer for 5 minutes and skips the message (the

Dispatcher ignores again the timeout call). At time 70,

a third timeout is intercepted. Alt this time, sends it only

to DemuxFactory(Bonus) (third occurrence) that returns

Proceed. As a result, the Dispatcher calls timeout and

the session is ended which is the desired behavior.

IV. FORMAL VERIFICATION IN UPPAAL

Uppaal [4] is a model checker used to design, simulate

and verify systems that can be modeled as networks of timed

automata. Each timed automaton models a part of the system

(e.g., component). A timed automaton is a finite state-machine

extended with local variables, data types and clock variables.

A clock variable is modeled by float values and all clocks

of the same system progress synchronously. An automaton

specification is called template and its instantiation is called



process. Besides its time support, other interesting features

are also provided by Uppaal. For example, it enables passing

data between processes, automatic and multiple instantiation

of templates, declaring a set of C functions with loops to

be used as transitions guards or state variables assignments.

A system in Uppaal is modeled as a parallel composition

of timed automata. In Uppaal, properties to be verified are

specified in a subset of CTL (computational tree logic). When

the verification of a particular property fails, a diagnostic

trace is automatically reported by Uppaal. The use of timed

automata is important to model the Timer component and

the timing constraints of our case study. In the following we

describe the general modeling process of Fractal components

with composable controllers in Uppaal.

A. Formalization of Primitive Components

Each primitive component is modeled as a Uppaal process.

Here, we assume that each primitive component comes with

its specification in Uppaal with the following notations:

1) each transition label is a concatenation of the com-

ponent, interface and service identifiers. For example

user_iLogin_login denotes the login service of

the ILogin interface of the User component.

2) a synchronous communication is modeled with a pair

of transitions (and the asynchronous communication by

a single transition). For example, the synchronous login

message is decomposed into user_iLogin_login

(for call) and E_user_iLogin_login (for return).

3) arrays on transition labels are used for passing data

between processes. For example, a customer uses his fly

ticket number to login and passes it to other processes.

This is denoted as: user_iLogin_login[id].

4) parametrized templates are used for automatic instan-

tiation of processes. For example, the User template

is parametrized with int[0, FLYTICKET_ID_NB]

id where FLYTICKET_ID_NB is a constant that de-

fines the number of users to be instantiated.

For instance, Figure 7 shows a simplified Uppaal template

modeling the User component3. The template can be read

clockwise from the initial location. The initial location S0
labeled Disconnected is distinguished with a double circle.

A user first sends its mac address to the DHCP server to re-

quest an IP address (requestIpAddress[mac]!). When

it receives an IP address (requestIpAddress[ip]?), it

stores it in a local variable ips, then it requests to lo-

gin with his fly ticket id (login[id]!). When he suc-

ceeds to login, he requests connections to web addresses

(connect[ips][wips]!), that can succeed or fail. When

it receives a timeout[id]?, it returns to the initial location.

B. Formalization of Composite Components

A composite is modeled as a set of Uppaal processes, one

for each bound interface. Each template of these processes has

3This template has more locations and transitions that are not shown here.

S0
user_iDhcpListener_requsetIpAddress[mac]!

user_iLogin_login[id]!

E_user_ILogin_login[id]?

E_user_iDhcpListener_requsetIpAddress[ip]?

ips:=ip

wip:WEB_IP

user_iQuery_connect[ips][wip]!

E_user_iQuery_connected[ips][wip]?

E_user_iQuery_failed[ips][wip]?

user_iMessager_timeout[id]?

CONNECTED

DISCONNECTED

user_iMessager_timeout[id]?

Fig. 7. Formal Model for the User Component

a central initial location and a set of directed cycles from and to

that location. Each cycle describes one service. Asynchronous

services are represented by cycles of two transitions (receives

a message, then forwards it). Synchronous services are rep-

resented by cycles with four transitions (receives a message,

forwards it, waits for the reply, and forwards the reply).

C. Formalization of Bindings

We model component bindings with renaming. The binding

of a required interface i of a component c1 to a provided

interface j of a component c2 is modeled by replacing each

transition label occurrence c1_i_s in the template of c1 by

c2_j_s, for each service name s.

D. Formalization of component systems

A component system B is a tuple (Ab,Pb, Invb) where:

1) Ab: is the parallel composition of processes modeling

primitive and composite components after applying the

binding (see Section IV-C).

2) Pb: is a set of CTL formulas describing the behavior of

the system.

3) Invb: is a subset of Pb that should always be satisfied

even if the system has been extended.

The complete airport system is modeled by 20 templates (9

for primitive components and 11 for composite components’

interfaces). The system is designed to satisfy different (live-

ness, safety, and reachability) properties. These are given at

the top of Table I (Pairport). In particular, a user can not stay

connected forever (Live 1), the system is deadlock free (Safe

1), a user cannot stay connected more than the validity time

indicated in his fly ticket (Safe 2), all users can be connected

at the same time (Reach 1). The formulas rely on different

constants, variables and auxiliary functions: IDS denotes the

range for user identifiers, Connected and Disconnected

are identifiers denoting particular locations of the user process,

the validity(id) is a global function that returns the

authorized connection time of a user id, and cl is a local

clock associated to the user process.

Definition IV.1 A component system B = (Ab,Pb, Invb) is

well defined if its modeling process satisfies all its desired

properties:

W(B)
def
= Ab |= Pb



TABLE I
PROPERTIES OF THE AIRPORT SYSTEM

Properties for the Airport Base System (Pairport)

Live 1 User(id).Connected --> User(id).Disconnected

Safe 1 A[] not deadlock

Safe 2 A[] forall(id:IDS) User(id).Connected imply User(id).cl<=validity(id)

Reach 1 E<> User(0).Connected and (forall(id:IDS) id!=0 imply User(id).Connected)

Properties for the Bonus controller (Pbonus)

Safe 2’ A[] forall(id:IDS) User(id).Connected imply User(id).cl<=validity(id) + BonusTime

Properties for the Alert controller (Palert)

Live 2 Use(id).Connected --> User(id).Disconnected and User(id).isAlerted

Safe 3 A[] forall(id:IDS) User(id).Alerted imply User.cl== validity(id) - AlertTime

S0 S1

validityChecker_iTimerCallback_timeout[id]?

sessionManager_iTimerCallback_endSession[id]!

S0

S1
validityChecker_iTimerCallback_timeout[id]?

sessionManager_iTimerCallback_endSession[id]!

bonus_iTimerCallback_timeout[id]!

proceed_bonus_iTimerCallback_timeout[id]?

skip_bonus_iTimerCallback_timeout[id]?

(a)

(b)

Fig. 8. ValidityChecker template adaptation (a) original, (b) adapted

E. Formalization of controllers

Each composable controller of the form (Dispatcher,

ICController) is modeled in two steps. First, a Up-

paal template is generated to model the behavior of the

ICController. Compared with primitive component tem-

plates (see Section IV-A), proceed_e and skip_e are used

as transition labels to denote proceeding and skipping a service

call e, respectively. Second, the generic Dispatcher is

modeled by adapting the templates of the components to be

affected by the controller. This enables the synchronization of

ICController process with the controlled components on

the services that have to be intercepted. For instance, when a

bonus is applied to the ValidityChecker, its correspond-

ing template must be adapted as detailed in Figure 8. Part

(a) shows an excerpt of the original ValidityChecker

template and part (b) shows the same excerpt adapted. As

a result, when timeout is received, it is forwarded to the

bonus controller process. The ValidityChecker waits for

either skip to return to the original location, or proceed to

forward the timeout to the SessionManager component.

In addition to the above specification, a set of intrinsic prop-

erties the controller ensures when it is applied to the system

should be given. The properties for the bonus (Pbonus) and the

alert (Palert) controllers are shown in the middle and bottom

part of Table I, respectively. The bonus controller ensures that

the user can stay connected a bonus time (BonusTime) after

its authorized time expires (Safe 2’). While the alert ensures

that the user is always alerted before it is disconnected (Live

2) and the alert is intercepted exactly before a TimeAlert

of its expiration time (Safe 3). In the formulas, Alerted

is an identifier denoting a particular location in the user

process, isAlerted is a local boolean variable of the user

indicating whether a user reached the Alerted location, and

BonusTime and AlertTime are constants denoting the

bonus and the alert time, respectively.

Definition IV.2 Given a component system B =
(Ab,Pb, Invb) and a composable controller CC = (Acc,Pcc)
where, Acc is the process modeling the controller behavior,

and Pcc is the set of its intrinsic properties. A composable

controller is said to be correct with respect to a component

system B if the following condition holds:

A′
b‖Acc |= Invb ∧ Pcc

Where ‖ denotes the parallel composition of processes and

A′
b is the parallel composition of the B processes after adapting

the templates modeling the components affected by CC.

For our case study, when the bonus is applied to the airport

system, the invariant is defined by all the Pairport properties

except (Safe 2), since bonus allows the user to connect for

more than the time indicated in his fly ticket (see Safe 2’).

While in the case of alert the invariant is simply Pairport.

F. Formalization of Composition Operators

A composition operator is defined as a template to be

instantiated. For instance, Figure 9 details the template for

the alternate operator Alt. In the figure, when a service

call is intercepted (e?), the function swap() is executed.

This latter maintains a boolean isLeft to indicate which

controller should be applied. If it is the left-hand side con-

troller turn (isLeft), e is forwarded to this controller

(cc1_e!), otherwise, e is forwarded to the right-hand side

controller (cc2_e!). In both cases, the operator waits for

either proceed_cci_e or skip_cci_e and forwards the

intercepted command to the caller (proceed_e or skip_e).

The template is instantiated by substituting e with the ser-

vice to be intercepted (e.g., ITimerCallback_timeout),

cc1 with the identity of the first controller (e.g., bonus), and

cc2 with the identity of the second controller (e.g., alert).

These substitutions synchronize the composition operator pro-

cess with its underlying controllers.



S0

e?

swap()

isLeft(e)

a1_e!

!isLeft(e)

a2_e!

proceed_a1_e?

proceed_a2_e?

proceed_e!

proceed_e!

skip_a1_e?

skip_a2_e?

skip_e!

skip_e!

Fig. 9. The Alt template

G. Interference detection and resolution

For interferences detection, two composable controllers are

interference-free with respect to a base program, if: (1) each

composable controller is correct with respect to the base

program, (2) when both composable controllers are added to

the system, the result process satisfies all the properties of the

underlying controllers and the system invariant. Formally:

Definition IV.3 Given a base system B = (Ab,Pb, Invb)
and two composable controllers CC1 = (Acc1

,Pcc1
), CC2 =

(Acc2
,Pcc2

), CC1 and CC2 are interference-free if the follow-

ing conditions hold:

1) W(B) : the base system is well defined

2) A′
b‖Acc1

|= Invb ∧ Pcc1
: CC1 is correct w.r.t B

3) A′′
b ‖Acc2

|= Invb ∧ Pcc2
: CC2 is correct w.r.t B

4) A′′′
b ‖Acc1

‖Acc2
|= Invb∧Pcc1

∧Pcc2
: the composition

is correct w.r.t B

Where A′
b, A′′

b and A′′′
b , denote the parallel composition of B

processes after adapting the templates affected by CC1, CC2,

and CC1 and CC2, respectively.

In our case study, when both bonus and alert are added

to the system and composed with the default composition

operator Seq (by instantiating its correspondent template),

Safe 3 property is violated which reports an interference with a

diagnostic trace. After analyzing the reported trace, we decided

to use the Alt operator that solved the problem. In general,

a composition operator solves an interference if when it is

instantiated for two controllers and composed to the system,

the interference disappears. Formally:

Definition IV.4 Given a base system B = (Ab,Pb, Invb)
and two interfering controllers CC1 = (Acc1

,Pcc1
), CC2 =

(Acc2
,Pcc2

), a composition operator Op solves an interfer-

ences if the following condition hold:

A′
b‖Op(CC1, CC2) |= Invb ∧ Pcc1

∧ Pcc2

where Op(CC1, CC2) denotes the parallel composition of the

processes of CC1 and CC2 and the instantiated template Op

for CC1 and CC2 as described in Section IV-F.

We should mention here that our example is a large case

study. It is instantiated with three users for the base system

and two users for the extended version. The instantiation of the

system with more users leads to state explosion in UPPAAL.

However, in our example, merely one user is enough to detect

the interference of Bonus and Alert.

V. RELATED WORK

Our work can be compared with two categories of works:

extending components with aspect-orientation and aspect and

feature interactions.

Extending Components with Aspects There are several

aspect oriented extensions to Fractal. FAC [5], Fractal-AOP

[6], and Safran [7] extend Fractal with aspects. In FAC

an aspect is not a controller but several components. The

application of an aspect to several components is achieved by

creating a so called aspect domain. This latter, encapsulates

all the components to be managed by the aspect and the

components modeling the aspect itself. Fractal-AOP is quite

similar to FAC but it provides an explicit controller interface

Proceed to execute the original services. Safran focuses on

adaptation: it proposes to insert a component to intercept

service calls instead of their original targets, it executes the

adaptation strategy and it possibly proceeds the calls. The

main drawback of these approaches is that the extensions

(i.e. aspects) are composed in a programmatic way (there are

no predefined operators and skip is implicit). In addition, no

interference detection support is provided.

Other component models have also been extended with as-

pects. The PRISMA framework [8] comes with an architecture

language PRISMA AOADL to define where the extensions

should be applied to the system. Aspects are defined as

separate architectural elements. However, users are responsible

to detect potential interferences among aspects and when one

is detected the only composition strategy provided by the

model is sequential ordering. LEDA is another component

framework and AspectLEDA [9] is its extension with aspects.

Aspect behaviors are represented by regular LEDA compo-

nents. Aspect execution is ordered following a predefined

priority order. In particular, JAsCo [10] is not a hierarchical

component model and it provides an API to compose aspects

in a programmatic way. But no interference detection support

is provided.

Interference detection and resolution Interference de-

tection and resolution is still a challenge for features [11]

and aspects [12]. Current works on features are focussing

on domain specific interferences. For example, Gouya et

al. [13] propose an algorithm for feature interactions in IP

multimedia subsystem (IMS). The algorithm uses a predefined

interference rules based upon traces on service calls. Some

of these interferences with their solutions are defined in a

database, if the interference is not in the database, it is

reported to the user. Goldman et al. [14] is the closest related

work with respect to our formal verification approach. They

model the base program, the aspects, and the woven system

with state machines in order to formally check properties.

Their weaving process is implemented by inlining the aspect

state machine directly in the base system. Moreover, they

focus on LTL and use two kinds of properties. First, they

check if the base system satisfies aspect assumptions that

enable their weaving. Second, they check if the woven system

guarantees the expected behavior of the aspect. They weave



an aspect at a time. When an interference is detected (i.e. a

property is not satisfied) the programmer is responsible to

fix it: they do not provide composition operators. Note that

they only consider weakly invasive aspects. Krishnamurthi et

al. [15] also use state machines to model both aspects and

base systems. However, the proposed approach defines a state

machine for each advice. Moreover, the work is limited to treat

aspects that do not modify data variables of base systems.

Temporal logic as previously been used by Katz et al. [16]

to describe the expected behavior of aspects. In this work,

a semi-automatic interactive process is proposed to define

the assume-guarantee properties of aspects in LTL formulas.

Aspect interferences are checked independently of any base

system by checking their guaranties properties. At the weaving

stage, another check should be performed to show if the

base system satisfies the assumptions of all the aspects to be

woven. In [17] advices are annotated with assumptions about

their composition. Interferences are detected by matching the

assumptions of an advice and all the other advices. However,

these approaches focus only on interference detection at shared

joinpoints. Our experience shows that controllers may interfere

even if they are not applied to common components [18]. Our

current proposal is a byproduct of our previous work on aspect

interference detection and resolution [19] and formalization of

aspects in a concurrent context [20]. The first work focuses on

interferences at shared joinpoints and introduces composition

operators. The second models the woven system as FSP

processes and checks properties with LTSA.

VI. CONCLUSION AND FUTURE WORK

In this article we have shown how to extend Fractal with

composable controllers. Our controllers with explicit actions

(proceed and skip) are easily combined with composition oper-

ators. Composition is not restricted to ordering controllers and

it is not restricted to controllers intercepting common services

(e.g., Alert intercepts setTimeout but Bonus does not).

In fact, two controllers with no common intercepted services

can be composed together. For instance, an ICController CC1

(that maintains a predicate) and an ICController CC2 could

be composed with a Cond operator that calls the match

method of CC2 only if the condition holds. In particular, the

composition Cond(Overload,Bonus) would add bonus

times only when the server is not overloaded. Note that, other

operators can also be developed in a similar way. Take for

example, the operator And that calls the second ICController

only when the first one proceeds the call, or the Xor that calls

the second only when the first skips the call. We have also

shown how Fractal components and composable controllers

can be formally modeled in Uppaal. This way, the properties

of the extended system can be checked and traces violating

properties help to select the right composition operator.

Our proposal is currently partly supported by tools. The

introduction of controllers is fully automated: our tool parses

VIL expressions [18] that define the components to be con-

trolled and the services to be intercepted in a declarative style.

Then, it transforms accordingly the Fractal ADL definition

by introducing controllers and new composites of shared

components if the required ones are scattered in the original

architecture. The Dispatcher and different composition

operators are also implemented. In this article we have identi-

fied the transformation scheme required to produce a Uppaal

model of the complete extended system. We believe that some

parts of the scheme can be automated such as the generation

of composites and bindings from Fractal-ADL. We plan to

develop such an Uppaal transformer.
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