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Abstract

During a highly productive period running from 1995 to about
2002, the research in lossless compression of 3D meshes mainly
consisted in a hard battle for the best bitrates. But for a fewyears,
compression rates seem stabilized around 1.5 bit per vertex for the
connectivity coding of usual meshes, and more and more work is
dedicated to remeshing, lossy compression, or gigantic mesh com-
pression, where memory and CPU optimizations are the new prior-
ity. However, the size of 3D models keeps growing, and many ap-
plication fields keep requiring lossless compression. In this paper,
we present a new contribution for single-rate lossless connectivity
compression, which first brings improvement over current state of
the art bitrates, and secondly, does not constraint the coding of the
vertex positions, offering therefore a good complementarity with
the best performing geometric compression methods. The initial
observation having motivated this work is that very often, most of
the connectivity part of a mesh can be automatically deducedfrom
its geometric part using reconstruction algorithms. This has already
been used within the limited framework of projectable objects (es-
sentially terrain models and GIS), but finds here its first generaliza-
tion to arbitrary triangular meshes, without any limitation regard-
ing the topological genus, the number of connected components,
the manifoldness or the regularity. This can be obtained by con-
straining and guiding a Delaunay-based reconstruction algorithm
so that it outputs the initial mesh to be coded. The resultingrates
seem extremely competitive when the meshes are fully included in
Delaunay, and are still good compared to the state of the art in the
general case.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling

Keywords: Mesh, Compression, Reconstruction, Lossless, Con-
nectivity

1 Introduction

For several years, meshes have played a leading role in computer
graphics, and their ability to model the world throws them inthe
heart of advanced applications in all the fields of science, arts or
leisure. If some of these applications can tolerate a limited loss
of information (provided that this loss is well controlled and does
not damage a certain visual realism), the others, for practical or
even legal reasons, impose to work continuously with exact copies
of original objects. In this case, the only way of optimizingthe
storage and the transmission of 3D information is to have recourse
to lossless compression methods.

A mesh is defined by a set of points (we speak of the geometry
of the mesh), and by a combinatorial structure describing the re-
lations between these points, using geometric objects of higher di-
mensions : edges, facets, polyhedra (we speak of the connectivity
or the topology of the mesh). To this fundamental information are
sometimes added attributes allowing to improve the rendering : nor-
mals, colors or textures. If we put aside these attributes (they relate
only to a subset of the meshes met in practice), all the difficulty for
compressing 3D objects is to process with an equal efficiencythe
geometry and the connectivity of a wide class of meshes. However,
most of the methods proposed so far stress on one of these two as-
pects (usually the connectivity), generally to the detriment (or at
least, not to the advantage) of the other one, which is constrained
by a description order rarely optimal in terms of compression. In
this article, we propose a new single-rate connectivity coder which
is not only general and efficient, but also does not impose anycon-
straint on the coding of the geometry. In particular, it is totally
compatible with the position coders that currently proposethe best
compression rates.

We took it as given that very often, the main part of a mesh connec-
tivity can be deduced from its vertex set using reconstruction meth-
ods. This remark has already been made in the past, but the problem
was to find an effective way of describing the difference between
the initial mesh and its reconstructed version. Indeed, within the
framework of lossless compression, it is indispensable to be able
to correct these errors in order to obtain a decoded mesh perfectly
identical to the original mesh. But rather than describe thediffer-
ence to the initial object at the end of the reconstruction phase, we
suggest adapting an existing algorithm so that it can acceptocca-
sional codes modifying its default behavior at the moments when it
would commit an ”error” of reconstruction with regard to theinitial
mesh.

Having placed our work in the historical context of 3D compres-
sion and 3D reconstruction (Section 2), we will expose the gen-
eral principle of the method (Section 3), first within a restricted
framework, then generalized to arbitrary triangular meshes (regard-
ing the genus, the number of connected components, the regularity
and the manifoldness). Then we will detail the coding techniques
and optimization steps leading to better compression rates(Section
4), before presenting some comparative results and comments on
the method performances (Section 5).

2 Context and Previous Works

2.1 Mesh Compression

As mentioned above, a mesh is composed of both a geometric part
(the vertex positions), and a topological part (the vertex connectiv-
ity). Now, by looking at the whole scientific production in mesh
compression since 1995 until now, we notice clearly that thecon-
nectivity coding has motivated most of the proposed methods. The
usual scheme consists in describing the combinatorial structure by
enumerating its vertices in a precise order, designed to minimize
the size of the code : each vertex is coupled with a variable size
symbol defining the way it is connected to the rest of the mesh.
Consequently, the geometric coder has to work with this predefined



order of the vertices, but it can exploit the connectivity topredict
their location. The position of the currently transmitted vertex is
estimated from its neighbors, and the prediction error is the sole in-
formation to be coded. But the order imposed by the connectivity
coding is not necessarily favorable to this prediction, as shown by
the results obtained on usual meshes by classical algorithms : the
best of them reduce the connectivity information to less than 1 or
2 bits per vertex, while for the geometric part, the rates rarely go
down under 90% of the initial size (except for very low quantiza-
tions). Among the works that follow this principle, we focushere in
single-rate methods, which code and decode the mesh in one pass
and do not allow progressive visualization [Deering 1995; Evans
et al. 1996; Taubin and Rossignac 1998; Gumhold and Strasser
1998; Touma and Gotsman 1998; Li and Kuo 1998; Bajaj et al.
1999a; Bajaj et al. 1999b; Gumhold et al. 1999; Rossignac 1999;
Rossignac and Szymczak 1999; King and Rossignac 1999; Isen-
burg and Snoeyink 1999; Isenburg 2000; Alliez and Desbrun 2001;
Lee et al. 2002; Coors and Rossignac 2004; Kaelberer et al. 2005;
Jong et al. 2005]. To understand how these methods compare, the
reader can also refer to the following surveys [Alliez and Gotsman
2004; Gotsman et al. 2002; Peng et al. 2005]. It is worth to men-
tion here that the relative stability in compression rates observed
these days can be explained by the new interest of the community
for gigantic meshes : in this framework, the challenge is to improve
the efficiency of the compression in terms of CPU and memory re-
quirements rather than in terms of bitrates [Isenburg and Gumhold
2003; Isenburg and Lindstrom 2005; Isenburg et al. 2005].

2.2 Prioritizing the Geometric Coding

After this first wave of works, in the knowledge that the geometry
of a mesh weighs generally much more than its connectivity, the re-
searchers began to propose methods giving the priority to geometric
compression. Some of them deviate from the lossless framework by
proposing algorithms that often impose a complete remeshing of the
object before applying spectral decomposition tools like wavelets,
subdivision schemes, or classic geometric methods of compression
[Gross et al. 1996; Certain et al. 1996; Lounsbery et al. 1997; Staadt
et al. 1998; Guskov et al. 2000; Khodakovsky et al. 2000; Kho-
dakovsky and Guskov 2000; Karni and Gotsman 2000; Szymczak
et al. 2002; Attene et al. 2003].

On the other hand, the works introduced by Gandoin and Devillers
and improved by Peng and Kuo [Devillers and Gandoin 2000; Gan-
doin and Devillers 2002; Peng and Kuo 2005] describe a progres-
sive and lossless compression method, centered on the geometry,
which interests us particularly within the framework of this arti-
cle. Indeed, this method was originally designed to code an un-
structured point cloud, with the underlying idea that in many cases,
the connectivity information could be deduced from the geometry
thanks to reconstruction algorithms. So, the first version of this
method [Devillers and Gandoin 2000] proposed a multiresolution
compression algorithm for an unstructured point cloud, guarantee-
ing a theoretical minimal gain ofn(log2n−2.4) (wheren denotes
the number of points), and very competitive practical performances,
even compared to the best single-rate algorithms. The method was
then extended to deal with the connectivity compression, while re-
maining centered on the geometry [Gandoin and Devillers 2002].
Indeed, the kd-tree decomposition scheme involved in the heart of
the geometric coder, is enriched with a connectivity coder that uses
some of the classical mesh simplification operations introduced by
Hoppeet al. [Hoppe 1996; Popović and Hoppe 1997]). Eventually,
the method has recently been resumed by Peng and Kuo [Peng and
Kuo 2005] who improve its performances by imposing a priority
on the cell subdivision order in the octree, and by proposinga more
effective prediction model for the point distribution in the sub-cells
generated by a subdivision.

2.3 Compression and Reconstruction

The idea to entrust a reconstruction algorithm with the taskof com-
puting the connectivity of a mesh from its vertices has already been
used in the context of mesh compression. Within the framework of
terrain models, Kimet al. [Kim et al. 1999] suggest transmitting
only a fraction of the edges composing the object, and using con-
strained Delaunay triangulation — in 2D, since the terrain models
are projectable — to find the whole connectivity. Devillers and
Gandoin [Devillers and Gandoin 2000] also mention the compres-
sion of GIS as an application of their geometric coder, and develop
an edge coder well suited for this context, which results in compres-
sion rates as low as 0.2 bits per vertex for the complete connectivity.
Besides, Devillerset al. show that the minimal set to be transmitted
to guarantee the exact reconstruction of the initial model by con-
strained Delaunay triangulation is constituted by the edges that are
non locally Delaunay [Devillers et al. 2003].

Unfortunately, the generalization from 2.5D to 3D meshes isnot
straightforward : since the mesh is not projectable any more, the
use of the constrained Delaunay triangulation is impossible. Nev-
ertheless, the idea to use a reconstruction method driven bya par-
tial description of the connectivity remains extremely promising in
terms of compression results. Provided that it could be possible to
find a method both powerful and capable of taking advantage ofpar-
tial connectivity data to guarantee an exact reconstruction whatever
the initial model may be.

A first attempt to use a reconstruction algorithm to encode connec-
tivity information has been proposed by Lewineret al. [Lewiner
et al. 2005]. The geometry is coded independently, through akd-
tree based algorithm derived from [Gandoin and Devillers 2002]
and [Botsch et al. 2002] and the connectivity is coded through an
advancing front triangulation inspired of the ball-pivoting strategy
[Bernardini et al. 1999]. This algorithm requires a code foreach
edge of an active border that is initialized to a triangle. Ifthe ge-
ometry of the mesh meets good sampling conditions, the entropy
of each code will be extremely low. In Section 5, we compare this
method to ours regarding the compression rates.

2.4 Reconstruction by Convection

The problem of reconstructing a surface from a set of points has
received considerable attention during the last decade [Mencl and
Müller 1998]. Interesting and outstanding algorithms have been is-
sued both in computer graphics and computational geometry,but
we have decided to focus on the algorithms of the second category,
since their combinatorial concerns are more suitable for lossless
compression purposes. Most of computational geometry algorithms
exploit the geometric properties of structures such as the Delaunay
triangulation, the Voronoi diagram or the power diagram of the in-
put point set, assuming auspicious properties on the way they were
sampled on the surface (ε-sample [Amenta and Bern 1999]). A con-
sistent set of facets can then be extracted from the geometric struc-
ture, sometimes using global heuristics or local analysis to solve
ambiguities. The existing algorithms are numerous and an attempt
to classify and distinguish them has recently been proposedin the
state of the art by Cazals and Giesen [Cazals and Giesen 2002].
Most of these algorithms produce triangular meshes, which makes
them good candidates to use for compression purposes.

The convection algorithm we use in our method is based on a sim-
ilar notion of flow as it was developped in the Wrap algorithm by
Edelsbrunner [Edelsbrunner 2002], and the flow complex algorithm
by Giesen and John [Giesen and John 2002]. Indeed, this recon-
struction algorithm has been inspired from a convection process
described by Zhaoet al. [H.K.Zhao et al. 2001]. They use it to ini-



tialize their surface before running an energy minimization process
in the level set framework. Given an evolving surfaceSenclosing
an input point setP, the convection process makes each point ofS
move inwards, along the direction of its normal, towards itsclosest
point in P. However, the numerical scheme they propose can be
translated in Delaunay, to make it depend on the geometry of the
input data set only, and not on the precision of some grid around
the surface. A demonstration of this result is presented by Chaine
[Chaine 2003] together with a subsequent convection algorithm. A
Delaunay triangulation ofP is a partition of space into tetrahedra
so that the ball circumscribed to each tetrahedron does not contain
any point ofP. The convection process is run directly in the 3D
Delaunay triangulation ofP, with an evolving surfaceScomposed
of oriented Delaunay facets.S is initialized to the convex hull of
P. An oriented facet ofS that does not meet the oriented Gabriel
property —i.e. its inwards diametral half-sphere is not empty — is
attracted towards the 3 inner facets in the incident Delaunay inner
tetrahedra (see Fig. 1, for an illustration in 2D where the evolving
surface is replaced by an evolving curve, and the Delaunay tetra-
hedra are replaced by Delaunay triangles). During the convection
process, thin parts can appear (see Fig. 1, c and d), on which a2D
surface based version of the convection is run. A deeper explana-
tion of this algorithm will be presented in Section 3 while revisiting
it for compression purposes.

(a) (b)

(c) (d)

Figure 1: Geometric convection on a 2D point set : (a) the evolving
curveC is initialized to the convex hull, (b)C locally evolves at
the level of an edge iff the half-circle associated to this edge is not
empty, (c) result of the initial convection process, (d) theconvection
process is locally enhanced to hollow a pocket out.

An interesting property of the convection algorithm is thatit is
driven locally, in the Delaunay triangulation of the points, without
involving a global heuristic. The topology of the evolving surface
may change during the convection process, so that it can handle
surfaces with boundaries and surfaces of high genus. A drawback
of the convection process is that it can locally be stuck in presence
of pockets [Edelsbrunner et al. 1998] hiding facets, but a simple
and local point density analysis permits to hollow them out [Chaine
2003].

3 Principle of the Compression Algorithm

3.1 Compliant Meshes

The benefit of using a 3D reconstruction method for compression
purposes is double : first, this allows to obtain very low costs for the
coding of the connectivity — ideally, a null cost if the reconstruc-
tion algorithm is able to find the exact structure of the original mesh
by itself —, and secondly, unlike the previous methods of topologic
compression, no constraint is imposed on the order of the vertices
to the geometric coder, which constitutes an important efficiency
token.

The main difficulty consists in being able to help the reconstruction
algorithm at a reasonable cost : indeed, it is highly improbable to
design an algorithm capable of finding the complete connectivity of
a mesh from its vertex set. It is thus necessary to be able to alter the
course of the reconstruction process, by occasionally changing the
default behavior of the algorithm to drive it in a sure way to aresult
known in advance : the structure of the initial mesh.

Among the plethora of available methods, the reconstruction by
convection is distinguishable from others by two importantassets :
its qualities in terms of reconstruction — practical accuracy and
faithfulness to the original model, handling of complex topologies,
computation times —, and above all, its ability to be effectively
driven by means of simple instructions. The first asset guarantees
that the algorithm will not need to be guided too often (smallnum-
ber of codes), the second guarantees that this can be done at lower
cost (compactness of the codes).

In return, as many algorithms in computational geometry, the con-
vection algorithm is based on a Delaunay triangulation, andit may
be difficult to force it out of this structure. This imposes a condition
over the initial mesh : all its facets have to belong to the 3D Delau-
nay triangulation of its vertex set. It is quite a strong property that
is not verified by all the 3D objects met in practice. We will see in
second stage (Section 3.3) how to break it.

Intuitively, the reconstruction by convection consists inembedding
the vertex set in a block of marble that will be sculpted gradually,
facet after facet, tetrahedron after tetrahedron, until ittakes on the
exact shape of the initial object. The algorithm begins by prepar-
ing the sculpting material : an enclosing block which is nothing
else than the convex hull of the point cloud, as well as the network
of galleries through which it is going to dig until the initial shape
is reached. This network is composed of the tetrahedra of the3D
Delaunay triangulation, and every stage towards the objectshape
consists in examining a new facet of the current surface and decid-
ing if it is necessary or not to open it and excavate the insideof
its associated tetrahedron. When a facet is opened, it is removed
from the current surface of the 3D object under construction, and
replaced by the three other facets of the excavated tetrahedron.

As mentioned above, the criterion that decides on this opening is
purely local : it consists in observing whether the Gabriel half-
sphere associated to the current oriented facet contains ornot the
fourth vertex of the tetrahedron. If it is the case, the oriented facet
is opened and replaced in the current surface by the 3 other facets
of the associated tetrahedron. (If this one is already excavated, the
surface locally vanishes through the current facet.) Otherwise, it is
maintained on the surface.

Note that if all the facets of the initial object are in its 3D Delaunay
triangulation, they are reachable by this sculpture process from the
convex hull. The problem is to make sure that the algorithm will
not dig a facet belonging to the initial mesh, or that, conversely,
it will not be retained before having reached such a facet. Hence
the need for additional codes allowing to modify the behavior of



the convection algorithm, and to drive it towards the objectto be
coded. Even if the convection algorithm was designed to compute
with a good accuracy the structure of a mesh sufficiently dense, it
will most likely need occasional assistance to guarantee the perfect
reconstruction of any mesh.

To present our method in a progressive way, we focus in this sec-
tion on a meshM verifying the following two assumptions : all its
facets are in the 3D Delaunay triangulation of its vertex set, and it
is manifold, that is to say without borders nor thin parts. (This is
what we call a ”compliant” mesh.)

Under these assumptions, here is the general principle of our
compression algorithm :

1 Build the 3D Delaunay triangulationD of the point setP,

2 Mark the facets ofD belonging to the initial meshM,

3 Initialize the current surfaceSwith the convex hull ofP (in-
cluded inD),

4 Launch the convection process onS: every oriented facetf in
S is examined in turn, and depending on whether its Gabriel
half-sphere is empty or not,f is, by default, maintained onS
or replaced by its 3 neighbors inD. To modify this default
behavior of the convection reconstruction, it is necessaryto
locate the oriented facets ofS for which the algorithm has to
act differently. It is thus indispensable to define a completely
deterministic traversal of the facets inS, so that thenth ori-
ented facet met during the compression would also be thenth

oriented facet met during the decompression. More generally,
it is necessary to ensure the synchronization of the algorithms
of compression and decompression so that thenth action of
the coder matches thenth action of the decoder. Thanks to
these reference marks, the behavior of the convection process
can be safely altered in the following two circumstances :

a) when the convection asks for the opening of a facetf
that belongs toM, the coder forbids this opening, and
codes the index off (more exactly, the moment whenf
is met in the algorithm) to warn the decoder that at this
precise moment of the reconstruction, it has to break
the rules of the convection algorithm. We will call this
a RDG event (Retain Despite the Geometry),

b) at the end of this first step, it is possible that some ori-
ented facets ofS — those whose Gabriel half-spheres
are empty and thus the convection did not decide to
dig —, do not belong toM. Therefore, it is necessary
to specify to the decompression algorithm that these
oriented facets must be forced, against the convection
rules : for each remaining oriented facet ofS not
belonging to M, the coder transmits its index (i.e.
the moment when it has been met) and relaunch the
convection process by forcing its opening. We will call
this a ODG event (Open Despite the Geometry). Note
that by relaunching the convection process locally,
some facets that were due to be forced can disappear
by autointersection ofS.

A detailed description of step 4 can be given through a recursive
functionConvectionapplied to the current surfaceS. For each ori-
ented facetf , let fassodenote the oriented facet associated tof , that
is to say the oriented facet constructed on the same verticesas f , but
with the opposite orientation. Whenf and fassoare both in the sur-
faceS, that means they belong to a thin part ofS. Besides, letf1, f2
and f3 denote the 3 neighbors off in the 3D Delaunay triangulation

D, i.e. the 3 other facets of the tetrahedron that is removed when
f is opened. Finally, we would like to draw the reader’s attention
to the fact that the reference marks transmitted to the decoder are
not exactly absolute moments of events in the compression process,
but rather intervals between two such moments (which explains the
presence of the instructions ”time← 0” in the detailed algorithms).
This well-known technique of differential coding allows toreduce
the size of the transmitted codes.

FunctionConvection(S : Sur f ace) :
while S 6= /0 do

f ← pop first oriented facet inS
if Gabriel half-sphere off is emptythen

push f at the end ofStemp
else

if f ∈M then {RDG event}
outputtime
time← 0
push f at the end ofSf inal

else
if f such thatfasso∈ S(resp.Stemp) then

removefassofrom S(resp.Stemp)
else

push{ f1, f2, f3} at the end ofS
end if
time← time+1

end if
end if

end while

With this recursive definition of theConvectionfunction, the step 4
of our algorithm amounts to the following :

Main function :
S← convex hull ofP
Sborder← /0 {set of facets creating a thin part}
Sf inal ← /0 {set of facets that are inM}
Stemp← /0 {set of facets candidates to be inM}
time← 0
Convection(S)
while Stemp 6= /0 do

f ← pop first oriented facet inStemp
if f such thatfasso∈ Stempthen

removefassofrom Stemp
push{ f , fasso} at the end ofSborder

else
if f ∈M then

push f at the end ofSf inal
time← time+1

else {ODG event}
outputtime
time← 0
S←{ f1, f2, f3}
Convection(S)

end if
end if

end while

At the end of the compression algorithm, the convection has been
driven towards the initial meshM, and the correcting data have been
stored for the decompression algorithm. However, a last stage re-
mains that consists in cleaning thin parts possibly generated by the
convection. Indeed, since we first assumed that the initial mesh was
manifold, it suffices to delete all these thin parts, that is to say each
facet of S whose associated facet is also onS. In the algorithm
described above, the thin parts exactly match the setSborder.



3.2 Non Manifold Meshes

In this section, we are going to adapt the previous algorithmto non
manifold, thin parts meshes. It suffices to modify the final stage :
it is no longer possible to delete the thin parts created by the algo-
rithm, because facets belonging to the initial mesh could belost.
This stage is thus replaced by a new convection process, but this
time in its 2D version, and on the thin parts only. In this frame-
work, the convection updates a curveC constituted by the edges
composing the boundaries of the thin parts. The oriented edges of
C are examined in turn : an oriented edge whose Gabriel half-circle
is empty will be kept onC, whereas an oriented edge in the opposite
case will be removed and replaced inC by the two other oriented
edges of its incident triangle (e1 ande2 in the algorithm detailed
below).

The general principle remains the same as in the 3D version ofthe
algorithm, and each edge that is opened against the convection rules
(ODG event) launches a new 2D convection process. Note that
there is no setCborder similar to the previousSborder. Here is a
detailed version of the portion of the compression algorithm dedi-
cated to the processing of the thin parts. It adds to the steps1 to 4
described in the previous section :

5 Processing of thin parts

FunctionConvection2D(C : Curve) :
while C 6= /0 do

e← pop first oriented edge inC
if Gabriel half-circle ofe is emptythen

pushe at the end ofCtemp
else

if e∈M then {RDG event}
outputtime
time← 0
pushe at the end ofCf inal

else
if e such thateasso∈C (resp.Ctemp) then

removeeassofrom C (resp.Ctemp)
else

push{e1,e2} at the end ofC
end if
time← time+1

end if
end if

end while

Main 2D function :
C← boundaries ofSborder
Cf inal ← /0;Ctemp← /0;time← 0

Convection2D(C)
while Ctemp 6= /0 do

e← pop first oriented edge inCtemp
if e such thateasso∈Ctempthen

removeeassofrom Ctemp
else

if e∈M then
pushe at the end ofCf inal
time← time+1

else {ODG event}
outputtime
time← 0
C← {e1,e2}
Convection2D(C)

end if
end if

end while

3.3 Non Delaunay Meshes

As previously described, the method can only be applied to meshes
whose facets all belong to the 3D Delaunay triangulation of their
vertex set. Indeed, we saw that this structure constituted the sup-
port of the convection algorithm, and that it was thus impossible
for the current surface to reach a non Delaunay facet. Nevertheless,
most of the meshes met in practice contain a fraction of non De-
launay facets (see the unfavorable case of Fig. 2). So, to make the
method widely usable, it is necessary to manage the coding ofsuch
facets. A simple and efficient way to do this is to code explicitely all
the non Delaunay facets of the initial mesh in the same time asits
vertices, using the method of Gandoin and Devillers [Gandoin and
Devillers 2002], which we will note GD in the following. Morepre-
cisely, non Delaunay facets constitute patches on the surface of the
mesh. Before launching the convection process, the connectivity of
these patches is transmitted to the GD coder. Then, the algorithm
previously described is applied to the mesh minus the non Delau-
nay facets. Consequently, even if the initial mesh is manifold, the
convection process is going to perform on a mesh with boundaries.
As shown in the previous section, it is no theoretical problem, but
risks though to result in a significant increase of the numberof driv-
ing codes. Indeed, each facet of the mesh will be reached twice,
first through a facet oriented outwards, then through the associated
oriented facet lying on the internal side of the object surface. We
propose several heuristics in order to limit this phenomenon. The
intuitive idea is to block temporarily the convection surface when it
is about to cross a patch — a facet opening is delayed if the tetrahe-
dron behind it intersects the mesh —, so as to favor the discovery of
the initial mesh facets from outside (see Fig. 3). Thus, transmitting
the total number of mesh facets to the decoder will allow to stop the
convection process as soon as they are all discovered, whichwill
drastically reduce the number of corrective codes.

Figure 2: Fandisk : complete (12946 facets), then showing the non
Delaunay facets only (1104 facets representing 8.5% of the set)



In the decoding stage, the vertex set is first obtained from the GD
decoder, as well as the patches connectivity. Then the mesh without
the patches is reconstructed by the algorithm of driven convection.
At last, the patches connectivity is merged into the reconstructed
leaky mesh. We thus see that our method improves the results of the
method of Gandoin and Devillers only for meshes whose facetsare
mainly Delaunay. In the limit case where all the mesh facets would
be non Delaunay, we would come across the GD coder compression
rates.

Figure 3: 2D Example : the original curve to be coded is in red
thick line, including non Delaunay patches (parts in solid line). The
Delaunay triangulation is in black thin line. The current evolving
convection curve, in orange thick line, is temporarily blocked (parts
in solid line) to avoid intersecting the patches. The hiddenDelaunay
edges of the original curve will thus be discovered later, when the
convection process will be relaunched to intersect the patches.

4 Coding and Optimization

We saw in section 3 that the codes resulting from the compression
algorithm are a sequence of positive or null integers, representing
the number of facets met between two special interventions of the
algorithm, that is to say between two facets for which the algorithm
does not follow the rules of the reconstruction by convection (ODG
and RDG events). To minimize the output size, we have chosen to
transmit these numbers to an arithmetic coder, which is ableto code
a sequence of symbols in a nearly optimal way, given a probability
model. Thus, ifp(s) denotes the probability of appearance of the
symbols, the arithmetic coder will encodes on log2(1/p(s))+ ε.
In particular, this entropic coder is capable of coding a symbol on a
fractional number of bits.

The main difficulty consists in defining a good probability model
for the integers to be coded. The first solution consists in computing
statistical data for each mesh and transmitting the probability table
in the header of the compressed file. But ideally, to save the trans-
mission of such a table, we would like to model for a wide classof
meshes the behavior of the sequence to be coded, or alternatively, to
design an adaptive model recomputing the probability of a symbol
each time it occurs. Several kinds of model can be used, according
to the size of the context from which the probability is estimated.
For the order-0 model, each integer has an absolute probability for
the whole coding sequence, independent from the context. For the
order-1 model, the probability of an integer depends on the value
of the previously transmitted integer, and so on. We have finally
opted for an adaptive order-1 model specifically designed totake
advantage of the particular structure of the integer sequence. For
instance, this model handles the long runs of null integer frequently
occuring in the sequence.

As a matter of fact, these runs often correspond to large patches of
facets that have to be forced (ODG events) because the Gabriel cri-
terion is too restrictive compared to the local density of the mesh.
Statistics show that the convection process is rarely wrongwhen
it decides to open a facet; on the contrary, at the end of the con-
vection, a lot of facets have been retained but do not belong to the
initial mesh. To encourage the convection algorithm to openmore
facets, we have relaxed the Gabriel criterion under some conditions.
Intuitively, a facet will be opened when its size is ”big” with regard
to the vertex density in its neighborhood [Chaine 2003]. By setting
this ratio to a near optimal value, the improvements can be drastic,
particularly in the case of poorly sampled meshes where the number
of driving codes can be lowered by about 50%.

5 Experimental Results

The table 1 shows the results of the method applied to some usual
meshes (the rates are in bits per vertex). The objectsfandisk, blob,
andhorseare there essentially for comparison purposes, since they
have been used for example by Touma and Gotsman [Touma and
Gotsman 1998]. The Stanfordbunnyis also a very classical mesh,
widely used in 3D compression for about ten years. However, these
models are not very representative of today meshes, whose num-
ber of vertices is much higher. The last three meshes are more
typical of what can be found nowadays. Thehand (see Fig. 6)
and maxplanck (see Fig. 5) can be found onhttp://shapes.aim-
at-shape.net, while the triple hecate(see Fig. 4) comes fromLe
Louvre C2RMF lab.

model number of connectivity computing time
(number Delaunay rate in bpv in seconds

of (non Del.) (Del. + non (compression /
vertices) facets Del. facets) decompression)
fandisk 11842 2.08 14.45s /
(6475) (1104) (1.22 + 0.86) 14.48s
blob 15226 2.68 16.69s /

(8036) (842) (1.98 + 0.70) 14.64s
horse 38173 2.00 26.38s /

(19851) (1525) (1.48 + 0.52) 22.01s
bunny 71890 0.08 17.60s /

(35947) (0) (0.08 + 0.00) 13.66
triple hecate 151462 0.04 46.30s /

(75729) (0) (0.04 + 0.00) 37.15s
max planck 391181 0.90 200.87s /
(199169) (6862) (0.69 + 0.21) 156.75s

hand 649922 0.19 341.52s /
(327290) (4674) (0.11 + 0.08) 287.57s

ajax 547117 0.14 153.63s /
(273383) (0) (0.14 + 0.00) 117.13s

Table 1: Experimental results on usual meshes

The first remark is that the rates obtained for the first three models
are not especially competitive with regard to the best current meth-
ods (for example, [Kaelberer et al. 2005], whose algorithm yields
0.74 bpv for thefandisk, and 0.96 bpv for thehorse). The main rea-
son is that the vertex set of these meshes are clearly notε-sample
and therefore, not favorable to the convection algorithm (but note
that on these meshes, we gain on the geometry coding by using
the GD coder, as shown in [Gandoin and Devillers 2002]). On the
contrary, thehandandmaxplanckare correctly sampled and give a
quite good idea of what the method can achieve when the point den-
sities are reasonable. Thetriple hecateandajax models are highly
compliant meshes, not only because their facets are fully inDelau-
nay, but also because they were constructed from a set of points,



using some reconstruction algorithm similar to the convection pro-
cess. However, this kind of mesh is more and more widespread
since a large class of objects are obtained from scanning andrecon-
struction.

Besides, we can notice that the rates associated to the coding of non
Delaunay facets are quite bad facing their small number, andheavy
penalize the global rates. Indeed, the GD coder is not optimal for
sparse connectivity, and it should be possible to find a better way to
code this small set of facets.

The last column of the table shows the computing user times in
seconds for the connectivity compression / decompression of the
meshes on a Pentium IV 3.0 Ghz 2 Go RAM computer. Globally,
these times are rather high compared to classical methods that ex-
plicitly encode the whole connectivity, using some traversal through
the mesh vertices. One can incriminate the precomputation and the
traversal of the Delaunay tetrahedrization required by theconvec-
tion process. This constraint particularly intends our method to ap-
plications where storage space or network bandwidth are more lim-
ited resources than processing power. However, a second version
of the algorithm could be developped where Delaunay computation
is not explicit any more. The current version also encounters tim-
ings limitations when the mesh is not entirely included in Delaunay.
This is due to intersection determinations between the Delaunay
tetrahedrization and non-Delaunay mesh facets.

We can compare our algorithm to the only other compression
method using reconstruction through the 3 meshes we have in com-
mon : the method [Lewiner et al. 2005] obtains 1.19 bpv for the
horse, 2.63 bpv for the fandisk, and 1.18 bpv for the bunny, which
is globally slightly higher than the rates of the table 1. Regarding
the methods [Alliez and Desbrun 2001; Lee et al. 2002; Kaelberer
et al. 2005], derived from the Touma and Gotsman’s coding princi-
ple [Touma and Gotsman 1998], they obtain rates around 1.5 bpv
for usual meshes, and can achieve very low rates for highly regular
meshes where vertex degrees are almost constant. We don’t have
any result of these algorithms for meshes fully included in Delau-
nay, but there is no particular reason why their rates would be better
in such cases.

Another limitation of the algorithm concerns the memory footprint.
This footprint is that of a Delaunay triangulation enrichedwith
mesh information. The compression algorithm is implemented in
CGAL [CGAL ] and the Delaunay tetrahedrization size is propor-
tional to the number of Delaunay cells and the number of Delaunay
vertices. Note that the Delaunay tetrahedrization of a surface based
point set meeting good sampling conditions is nearly linearin the
number of points.

6 Conclusion and Future Work

We have presented a new method of lossless single-rate connectiv-
ity compression based on a semiautomatic reconstruction process
able to deduce most of the mesh connectivity from its sole vertex
set, and occasionally guided through compact codes that alter its
default behavior when necessary. This method is originallysuitable
for Delaunay embedded meshes. We have also described a gener-
alization removing this constraint inherent to the convection algo-
rithm, using a separated coding of non Delaunay patches, as well
as heuristics minimizing the number of driving codes duringthe
convection process. So the final algorithm is able to compress any
kind of 3D mesh, including non manifold ones, without any con-
straint on the topological genus or the number of connected com-
ponents. After a probabilistic modelization and an entropic coding
of the output, the numerical results show a substancial improve-
ment above the current state of the art, with an average rate of 1
bit per vertex, reaching below 0.1 bpv for well sampled meshes. In

addition, the algorithm can be used in parallel with currently most
performing geometric compression methods, which results in very
competitive overall rates. The main limitations of the method are
its computing times, relatively high compared to some of thestate-
of-the-art algorithms, and its memory footprint, which exclude for
now the compression of gigantic meshes on standard 32-bit ma-
chines. As a result, the optimization of the compression, and above
all, of the decompression algorithm remains a primary perspective
for this work.

The compression rates could probably be improved through more
accurate probability models for the entropic coder, and even more,
through a better coding of the non Delaunay facets. Similarily, it
could be possible to keep improving the behavior of the convec-
tion algorithm, by opening the facets more accurately, according
to some smarter criterion than the local vertex distribution. How-
ever, we are currently working on the generalization of thiswork to
multiresolution, which is surely the most important perspective of
this paper. This will be made possible by progressive insertion of
vertices in the convection surface [Allègre et al. 2005], under the
constraints imposed by a kd-tree type progressive geometric coder.
About the GD coder, a last significant perspective consists in inte-
grating it to the convection process, in order to improve thegeo-
metric prediction by using connectivity information.
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Figure 5: maxplanck : 199169 vertices and 398043 facets coded
with 0.90 bits per vertex
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