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Reconstruction Algorithms as a Suitable Basis for
Mesh Connectivity Compression

Raphaélle Chaine, Pierre-Marie Gandoin and Céline Rioude

Abstract— During a highly productive period running from 1995  of science, arts or leisure. If some of these applicatioms ca
to about 2002, the research in lossless compression of suwréa tolerate a limited loss of information (provided that this$ is
meshes mainly consisted in a hard battle for the best bitra® \\a|l controlled and does not damage a certain visual rejlism

But for a few years, compression rates seem stabilized arodn the oth f tical | | . i
1.5 bit per vertex for the connectivity coding of usual triangular € others, for practical or even legal reasons, Impose @ wo

meshes, and more and more work is dedicated to remeshing, CONtinuously with exact copies of original objects. In tbése,
lossy compression, or gigantic mesh compression, where mery  the only way of optimizing the storage and the transmission

access and CPU optimizations are the new priority. Howevethe  of 3D information is to have recourse to lossless comprassio
size of 3D models keeps growing, and many application fields methods.

keep requiring lossless compression. In this paper, we prest a

new contribution for single-rate lossless connectivity ampression, A mesh is defined by a set of points (we speak of the geometry
which first brings improvement over current state of the art

bitrates, and secondly, does not constraint the coding of th of the mesh), and by a combinatorial structure describing

vertex positions, offering therefore a good complementaty with ~ the relations between these points, using geometric abgect
the best performing geometric compression methods. The itial  higher dimensions: edges, facets (we speak of the conitgctiv

observation having motivated this work is that very often, nost  or the topology of the mesh). To this fundamental infornatio
of the connectivity part of a mesh can be automatically dedued 50 sometimes added attributes allowing to improve theerend

from its geometric part using reconstruction algorithms. This has . | | text if t aside th .
already been used within the limited framework of projectabe ing: normals, colors or textures. If we put aside theselniteis

objects (essentially terrain models and GIS), but finds here (they relate only to a subset of the meshes met in practice),
its first generalization to arbitrary triangular meshes, without all the difficulty for compressing 3D objects is to efficigntl

any limitation regarding the topological genus, the numberof process both the geometry and the connectivity of a widesclas
connected components, the manifoldness or the regularityl his of meshes. However, most of the methods proposed so far

can be obtained by constraining and guiding a Delaunay-base =
reconstruction algorithm so that it outputs the initial mesh to  SU'ESS On one of these two aspects (usually the connegtivity

be coded. The resulting rates seem extremely competitive wh generally to the detriment (or at least, not to the advantage
the meshes are fully included in Delaunay, and are still good of the other one, which is constrained by a description order

compared to the state of the art in the case of scanned models. rarely optimal in terms of compression. In this article, we
propose a new single-rate connectivity coder which is ngt on

. ; > general and efficient, but also does not impose any constrain
geometric part (the vertex coordinates) and a connectivitypart h di £ th | icul L I
(the description of the triangles). In this article, we showhow ©N t € coaing o the Q_E‘Ome”y- n particular, it is totally
to reencode such surface meshes in order to obtain near zerocompatible with the position coders that currently propihee
connectivity cost for some class of surface meshes (and verybest compression rates.
good rates in the general case), while guaranteeing in the 5@
time state-of-the-art geometry encoding cost. This methodan We took it as given that very often, the main part of a
be useful in all application areas where the mesh size is a mesh connectivity can be deduced from its vertex set using
bottleneck (typically network or storage applications). The best o nsiriiction methods. This remark has already been made
results are obtained for meshes made from 3D scans (in consa. . h but th bl find frecti
to CAD meshes). The main current limitations of the method '" the p§l§t, ut t € problem was to Inc an € ective way
are the computing times (about 1 second per 1000 points partfo Of describing the difference between the initial mesh asd it
the mesh, for compression which can be done off-line) and the reconstructed version. Indeed, within the framework ofless
memory footprint. compression, it is indispensable to be able to correct these

errors in order to obtain a decoded mesh perfectly identical
' the original mesh. But rather than describe the differeatke
initial object at the end of the reconstruction phase, weeag
adapting an existing algorithm so that it can accept ocoasio
|. INTRODUCTION codes modifying its default behavior at the moments when it
would commit an "error” of reconstruction with regard to the
For several years, meshes have played a leading rolejriftial mesh.
computer graphics, and their ability to model the world #so _ . o
them in the heart of advanced applications in all the fielddaving placed our work in the historical context of 3D
compression and 3D reconstruction (Sec. Il), we will expose

Universite de Lyon, Lyon, F-69003, France ; universiteohyl, Villeur-  the general principle of the method (Sec. |||), first withiret
banne, F-69622, France, université Lyon 2, Bron, F-696#&nce, CNRS, icted f K of | h h lized
UMR 5205, LIRIS, Villeurbanne, F-69622, France restricted framework of Delaunay meshes, then generalize

FirstName.LastName@liris.cnrs.fr to arbitrary triangular meshes (independent of the genus,

Note to Practitioners—A 3D triangle mesh is composed of a

Index Terms— Mesh, Compression, Reconstruction, Lossless
Connectivity



the number of connected components, the regularity and thescribe a progressive and lossless compression method,
manifoldness). Then we will detail the coding techniqued arentered on the geometry, which interests us particularly
optimization steps leading to better compression rates. (Swithin the framework of this article. Indeed, this method
IV), before presenting some comparative results and cortsnewas originally designed to code an unstructured point ¢loud
on the method performances (Sec. V). with the underlying idea that in many cases, the connegtivit
information could be deduced from the geometry thanks to
reconstruction algorithms. So, the first version of this et
[36] proposed a multiresolution compression algorithménor
A. Mesh Compression unstructured point cloud, guaranteeing a theoretical mmahi
gain ofn(logzn—2.4) (wheren denotes the number of points),
As mentioned above, a mesh is composed of both a geomedniel very competitive practical performances, even congpare
part (the vertex positions), and a topological part (theeser to the best single-rate algorithms. The method was then
connectivity). Now, by looking at the whole scientific pradu extended to deal with the connectivity compression, while
tion in mesh compression since 1995 until now, we notigemaining centered on the geometry [37]. Indeed, the kel-tre
clearly that the connectivity coding has motivated mosthef t decomposition scheme involved in the heart of the geometric
proposed methods. The usual scheme consists in desciiileingaoder, is enriched with a connectivity coder that uses some
combinatorial structure by enumerating its vertices inecjze of the classical mesh simplification operations introdubgd
order, designed to minimize the size of the code: each vertdgppeet al. [39], [40]). Eventually, the method has recently
is coupled with a variable size symbol defining the way it ibeen resumed by Peng and Kuo [38] who improve its perfor-
connected to the rest of the mesh. Consequently, the gdomemances by imposing a priority on the cell subdivision order
coder has to work with this predefined order of the vertices) the octree, and by proposing a more effective prediction
but it can exploit the connectivity to predict their locatidfrhe model for the point distribution in the sub-cells generagd
position of the currently transmitted vertex is estimataghf a subdivision.
its neighbors, and the prediction error is the sole inforometio
be coded. But the order imposed by the connectivity codin
is not necessarily favorable to this prediction, as shown

the results obtained on usual meshes by classical algaithm ) ) )
the best of them reduce the connectivity information to ledd'€ idea to entrust a reconstruction algorithm with the task

than 1 or 2 bits per vertex, while for the geometric part, tHgf computing the connectivity of a mesh from its vertices
rates rarely go down under 90% of the initial size (excep@S @lready been used in the context of mesh compression.
for very low quantizations). Among the works that followghi Within the framework of terrain models, Kiret al. [41]
principle, we focus here in single-rate methods, which cogs/99est transmitting only a fraction of the edges composing
and decode the mesh in one pass and do not allow progres§ife Object, and using constrained Delaunay triangulation —
visualization [1], [2], [3], [4], [5], [6], [7], 8], [9], [10], [11], M 2D, since the terrain models are projectable — to find the
[12], [13], [14], [15], [16], [17], [18], [19]. To understah Whole connectivity. Devillers and Gandoin [36] also mentio
how these methods compare, the reader can also refer to f}fe COmpression of GIS as an application of their geometric
following surveys [20], [21], [22]. It is worth to mention he coc_zler, and de_velop an edge coder well suited for this context
that the relative stability in compression rates observese Which results in compression rates as low &@sliits per vertex
days can be explained by the new interest of the communif}f the complete connectivity. Besides, Devillesal. show

for gigantic meshes: in this framework, the challenge is {hat the minimal set to be transmitted to guarantee the exact
improve the efficiency of the compression in terms of Cp[fconstru_ction of the_ initial model by constrained Delauna
and memory requirements rather than in terms of bitratels [2§1angulation is constituted by the edges that are non hpcal
[24], [25]. Delaunay [42].

Unfortunately, the generalization from 2.5D to 3D meshes is
not straightforward: since the mesh is not projectable any
more, the use of the constrained Delaunay triangulation is
After this first wave of works, in the knowledge that thémpossible. Of course, it is possible to recourse to local
geometry of a mesh weighs generally much more than Rgojections of the mesh [43], but we are left with the problem
connectivity, the researchers began to propose methoitgygiiand the overcost) of joining the different parts together.
the priority to geometric compression. Some of them deviatevertheless, the idea to use a reconstruction methodrdrive
from the lossless framework by proposing algorithms th&Yy a partial description of the connectivity remains extegm

often impose a complete remeshing of the object before domising in terms of compression results. Provided that it
plying spectral decomposition tools like wavelets, sutsitin  could be possible to find a method both powerful and capable
schemes, or classic geometric methods of compression [28]taking advantage of partial connectivity data to guagant

[27], [28], [29], [30], [31], [32], [33], [34], [35]. an exact reconstruction whatever the initial model may be.

Il. CONTEXT AND PREVIOUS WORKS

Compression and Reconstruction

B. Prioritizing the Geometric Coding

On the other hand, the works introduced by Gandoin amrd first attempt to use a reconstruction algorithm to encode
Devillers and improved by Peng and Kuo [36], [37], [38konnectivity information has been proposed by Lewiekal.



[44]. The geometry is coded independently, through a kdeplaced by an evolving curve, and the Delaunay tetrahedra
tree based algorithm derived from [37] and [45] and thare replaced by Delaunay triangles). During the convection
connectivity is coded through an advancing front triangoia  process, thin parts can appear (see Fig. 1, ¢ and d), on which
inspired of the ball-pivoting strategy [46]. This algornth a surface embedded 2D version of the convection is run. A
requires a code for each edge of an active border thatdseper explanation of this algorithm will be presented in.Se
initialized to a triangle. If the geometry of the mesh meet$l while revisiting it for compression purposes.

good sampling conditions, the entropy of each code will be

extremely low. In Sec. V, we compare this method to ours
regarding the compression rates.

D. Reconstruction by Convection

The problem of reconstructing a surface from a set of pointsy ;
has received considerable attention during the last decade
[47]. Interesting and outstanding algorithms have beeameds
both in computer graphics and computational geometry, but @ (0)
we have decided to focus on the algorithms of the second
category, since their combinatorial concerns are more suit .
able for lossless compression purposes. Most of computa- S
tional geometry algorithms exploit the geometric propeerti
of structures such as the Delaunay triangulation, the \@ron
diagram or the power diagram of the input point set, assuming
auspicious properties on the way they were sampled on th
surface €-sample [48]). A consistent set of facets can then
be extracted from the geometric structure, sometimes using © «d)
global heuristics or local analysis to solve ambiguitiebeT

existing algorithms are numerous and an attempt to classjfg- 1. Geometric convection on a 2D point set : (a) the eng\iurveC
is-Initialized to the convex hull, (bT locally evolves at the level of an edge

and diStinngh them has _recently been proposed in the_ Sqﬂﬁe half-circle associated to this edge is not empty, ésuit of the initial
of the art by Cazals and Giesen [49]. Most of these algorithmsvection process, (d) the convection process is localharced to hollow

produce triangular meshes, which makes them good candidat@ocket out.
to use for compression purposes.

An interesting property of the convection algorithm is titat
The convection algorithm we use in our method is based ongagriven locally, in the Delaunay triangulation of the pisin
similar notion of flow as it was developed in the Wrap algagithout involving a global heuristic. The topology of the
rithm by Edelsbrunner [S0], and the flow complex algorithrayolving surface may change during the convection process,
by Giesen and John [51]. Indeed, this reconstruction &lyori sq that it can handle surfaces with boundaries and surfdces o
has been inspired from a surface convection process dedcriRigh genus. A drawback of the convection process is that it
by Zhaoet al. [52]. They use it to initialize their surface can |ocally be stuck in presence of pockets [54] hiding facet

before running an energy minimization process in the levglt a simple and local point density analysis permits todvoll
set framework. Given an evolving surfaBenclosing an input them out [53].

point setP, the convection process makes each poir8 mfove

inwards, along the direction of its normal, towards its ekts

point in P. However, the numerical scheme they propose Ill. PRINCIPLE OF THECOMPRESSIONALGORITHM
can be translated in the discrete setting of a 3D Delaunay ) )
triangulation, to make it depend on the geometry of the inpfit Introduction of the Convection Abilities

data set only, and not on t_he precision of some grid arourllgle benefit of using a 3D reconstruction method for compres-
the surface. A demonstration of this result is presented b

Chaine [53] together with a subsequent convection algmrithsxm purposes 1s double: first, th's. 9”0\'\/5. to obtain very low
; . . " . costs for the coding of the connectivity — ideally, a null tibs
A Delaunay triangulation ofP is a partition of space into

tetrahedra so that the ball circumscribed to each tetra)lmethe reconstruction algorithm is able to find the exact st

: ) : ~of the original mesh by itself —, and secondly, unlike the

does not contain any point d®. The convection process is . . . .

. . . : . previous methods of topological compression, no congtigin
run directly in the 3D Delaunay triangulation & with an . ;

. . . imposed on the order of the vertices to the geometric coder,
evolving surfaces composed of oriented Delaunay facedss which constitutes an important efficiency token
initialized to the convex hull oP. An oriented facet o6 that P y '
does not meet the oriented Gabriel propertyi.e-the inwards The main difficulty consists in being able to help the recon-
half of its enclosing sphere is not empty — is attracted tolwarstruction algorithm at a reasonable cost: indeed, it is lgigh
the 3 other facets of the incident Delaunay inner tetrah@sh@ improbable to design an algorithm capable of finding the
Fig. 1, for an illustration in 2D where the evolving surfase icomplete connectivity of a mesh from its vertex set. It issthu



necessary to be able to alter the course of the reconstnuctmost likely need occasional assistance to guarantee tifiecper
process, by occasionally changing the default behaviohef treconstruction of any mesh.
algorithm to drive it in a sure way to a result known in

advance: the structure of the initial mesh.
. B. Compliant Meshes
Among the plethora of available methods, the reconstractio

by convection is distinguishable from others by two impotta Definition: A mesh is said to beompliantif all its facets are
assets: its qualities in terms of reconstruction — pratticim the 3D Delaunay triangulation of its vertex set, and ifsit i
accuracy and faithfulness to the original model, handlifig @ manifold (that is to say without borders nor thin parts).

complex topologies, computation times —, and above all, i
ability to be effectively driven by means of simple instiioats.
The first asset guarantees that the algorithm will not ne%
to be guided too often (small number of codes), the seco
guarantees that this can be done at lower cost (compactness
of the codes). 1

In return, as many algorithms in computational geometry, th
convection algorithm is based on a Delaunay triangulatod,

it may be difficult to force it out of this structure. This imges

a condition over the initial mesh: all its facets have to hglo
to the 3D Delaunay triangulation of its vertex set. It is quat
strong property that is not verified by all the 3D objects met
in practice. We will see in second stage (Sec. 1lI-D) how to
break it.

Intuitively, the reconstruction by convection consistembed-
ding the vertex set in a block of marble that will be sculpted
gradually, facet after facet, tetrahedron after tetratveduntil

it takes on the shape of the object. The algorithm begins by
preparing the sculpting material: an enclosing block whih
nothing but the convex hull of the point cloud, as well as the
network of galleries through which it is going to dig until
the final shape is reached. This network is composed of the
tetrahedra of the 3D Delaunay triangulation, and everyestag
towards the object shape consists in examining a new facet of
the current surface and deciding if it is necessary or not to
open it and excavate the inside of its associated tetrahedro
When a facet is opened, it is removed from the current surface
of the 3D object under construction, and replaced by theethre
other facets of the excavated tetrahedron.

As mentioned above, the criterion that decides on this ayeni
is purely local: it consists of observing whether the Gdbrie
half-sphere associated to the current oriented facet itEnta
not the fourth vertex of the tetrahedron. If it is the case, th
oriented facet is opened and replaced in the current subface
the 3 other facets of the associated tetrahedron. (If thes on
is already excavated, the surface locally vanishes thraligh
current facet.) Otherwise, it is maintained on the surface.

Note that if all the facets of the initial object are in its 3D
Delaunay triangulation, they are reachable by this scudptu
process from the convex hull. The problem is to make sure
that the algorithm will not dig a facet belonging to the iaiti
mesh, or that, conversely, it will not be retained beforeimgyv
reached such a facet. Hence the need for additional codes
allowing to modify the behavior of the convection algorithm
and to drive it towards the object to be coded. Even if the
convection algorithm was designed to compute the structure
of a sufficiently dense mesh with a good accuracy, it will

ﬁ% present our method in a progressive way, we focus in this
Sction on compliant meshes only. Given such a miésh
gre is the general principle of the compression algorithm:

Build the 3D Delaunay triangulatiob of the point set

P,

Mark the facets oD belonging to the initial mesM,
Initialize the current surfac8 with the convex hull ofP
(included inD),

Launch the convection process @& every oriented
facet f in S is examined in turn, and depending on
whether its Gabriel half-sphere is empty or nbtis, by
default, maintained or® or replaced by its 3 neighbors

in D. To modify this default behavior of the convection
reconstruction, it is necessary to locate the oriented$ace
of Sfor which the algorithm has to act differently. It is
thus indispensable to define a completely deterministic
traversal of the facets ir§, so that then" oriented
facet met during the compression would also be the
n" oriented facet met during the decompression. More
generally, it is necessary to ensure the synchronization of
the algorithms of compression and decompression so that
the n" action of the coder matches i€ action of the
decoder. Thanks to these reference marks, the behavior
of the convection process can be safely altered in the
following two circumstances:

a) when the convection asks for the opening of a facet
f that belongs taVl, the coder forbids this opening,
and codes the index df (more exactly, the moment
when f is met in the algorithm) to warn the decoder
that at this precise moment of the reconstruction, it
has to break the rules of the convection algorithm.
We will call this a RDG event (Retain Despite the
Geometry),

at the end of this first step, it is possible that
some oriented facets & — those whose Gabriel
half-spheres are empty and thus the convection did
not decide to dig —, do not belong M. Therefore,

it is necessary to specify to the decompression
algorithm that these oriented facets must be forced,
against the convection rules: for each remaining
oriented facet ofS not belonging toM, the coder
transmits its index ife. the moment when it is
met) and locally relaunches the convection process
by forcing its opening. We call this a ODG event
(Open Despite the Geometry). Note that by thus
delaying the enforced opening of facets in a second
step, rather than opening them the first time they

b)



are met, some facets that were due to be forced cstep 4 of our algorithm amounts to the following:
disappear by autointersection 8f in some cases, : .

the convection process reaches and automatica'IY] in function:

opens the opposite side (or half-facet) of a facet S« convex hull ofP _ _
previously encountered but not opened then. This Sborder — 0 {set of facets creating a thin part

permits to save some ODG codes. Stinal — O {set of facets that are i}
Semp<— 0 {set of facets candidates to be Nh}

time—0
Fig. 2 is a step by step illustration of the algorithm in 2Dttie ~ ConvectionS)
case where the deterministic traversal of the facets iscadu While Semp# 0 do
by a breadth-first traversal of the Delaunay triangulation, f < pop first oriented facet iGemp
starting from the convex hull. To be more illustrative, time  if f such thatfasso€ Semp then
has been incremented at each step of the algorithm, but in ~ remove fasso from Semp
practice, it is enough to increase it each time the convectio push{f, fassq at the end ofSyorder
is willing to open a facet or each time a retained facet istbst else
for confirmation. if f €M then

. o ) pushf at the end ofStjna
A detailed description of step 4 can thus be given through a time — time+ 1

recursive functionConvectionapplied to the current surface else {ODG even}

S An other difference with the step by step example is also outputtime

that the facets are yet visited through a depth first tratersa time— 0

of the Delaunay triangulation. For each oriented fatetet S {fy, o, f3)

fasso denote the oriented facet associatedf fahat is to say ConvectiorS)

the oriented facet constructed on the same verticef, &sit end if

with the opposite orientation. Wheh and fasso are both in end if

the surfaceS, that means they belong to a thin part &f end while

Besides, letf;, f, and f3 denote the 3 neighbors df in the

3D Delaunay triangulatioD, i.e. the 3 other facets of the At the end of the compression algorithm, the convection has
tetrahedron that is removed whenis opened. Finally, we been driven towards the initial mesh, and the correcting data
would like to draw the reader’s attention to the fact that theave been stored for the decompression algorithm. Howaver,
reference marks transmitted to the decoder are not exadtygt stage remains that consists in cleaning thin partshdpss
absolute moments of events in the compression process, ¢emerated by the convection. Indeed, since we first assumed
rather intervals between two such moments (which explaitisat the initial mesh was a manifold, it suffices to delete all
the presence of the instructionsime«— 0” in the detailed these thin parts, that is to say each faceSofhose associated
algorithms). This well-known technique of differentialding facet is also or8. In the algorithm described above, the thin
allows to reduce the size of the transmitted codes. parts exactly match the s&qrger-

FunctionConvectioiiS: Surface:

while S# 0 do
f «— pop first oriented facet i1

C. Non Manifold Meshes

if Gabriel half-sphere of is emptythen
pushf at the end ofSemp
else
if f €M then {RDG even}
outputtime
time— 0
pushf at the end ofSsjnq
else
if f such thatfasso€ S (resp.Semp then
remove fasso from S (resp.Semp)
else
push{fy, fo, f3} at the end ofS
end if
time«—time+1
end if
end if

end while

In this section, we are going to extend the previous algarith
to non manifold, thin parts meshes. It suffices to modify the
final stage regarding the treatment of thin parts createdéy t
algorithm. This stage is replaced by a new convection psyces
but this time in its 2D version, and on thin parts only. In this
framework, the convection updates a cufeconstituted by

the edges composing the boundaries of the thin parts. The
oriented edges o€ are examined in turn: an oriented edge
whose Gabriel half-circle is empty will be kept @) whereas

an oriented edge in the opposite case will be removed and
replaced inC by the two other oriented edges of its incident
triangle €1 ande; in the algorithm detailed below).

The general principle remains the same as in the 3D version
of the algorithm, and each edge that is opened against the
convection rules (ODG event) launches a new 2D convection
process. Note that there is no &gt,qer Similar to the previous
Sorder Here is a detailed version of the portion of the

With this recursive definition of th€onvectionfunction, the compression algorithm dedicated to the processing of time th



parts. It adds to the steps 1 to 4 described in the previdiasets of the initial mesh in the same time as its vertices,

section:

5 Processing of thin parts
FunctionConvection2D(C: Curve):
while C#£ 0 do
e« pop first oriented edge i€
if Gabriel half-circle ofe is emptythen
pushe at the end 0Cemp
else
if ee M then {RDG event
outputtime
time—0
pushe at the end oCsjna
else
if e such thateassoc C (resp.Ciemp then
removeessso from C (resp.Ciemp)
else
push{e;, e} at the end ofC
end if
time«—time+1
end if
end if
end while
Main 2D function:

C «— boundaries 05,order
Cfinal — m;ctemp<— 0;time«—0
Convection2D(C)
while Gemp# 0 do
e« pop first oriented edge iGtemp
if e such thateasso€ Ciemp then
removeeasso from CGemp
else
if ee M then
pushe at the end oC¢jnq
time«—time+1
else{ODG event
outputtime
time—0
C—{e1,e}
Convection2D(C)
end if
end if
end while

D. Non Delaunay Meshes

As previously described, the method can only be applied to
meshes whose facets belong to the 3D Delaunay triangulation
of their vertex set. Indeed, we saw that this structure dtonss

using the method of Gandoin and Devillers [37] (which we
will note GD in the following), or any other method efficient
at coding sparse facets. More precisely, non Delaunaydacet
constitute patches on the surface of the mesh. Before laumch
the convection process, the connectivity of these patches i
transmitted to the GD coder. Then, the algorithm previously
described is applied to the mesh minus the non Delaunay
facets. Consequently, even if the initial mesh is a manjfold
the convection process is going to perform on a mesh with
boundaries. As shown in the previous section, our method can
handle this case, but the presence of boundaries induces a
significant increase in the number of driving codes: indeed,
each facet of the mesh will be reached twice, first through a
facet oriented outwards, then through the associatedteden
facet lying on the internal side of the object surface. We pro
pose several heuristics in order to limit this phenomendwe T
intuitive idea is to block the convection surface tempdyari
when it is about to cross a patch — a facet opening is delayed
if the tetrahedron behind it intersects the mesh —, so as to
favor the discovery of the initial mesh facets from outsisieg(
Fig. 4). Thus, transmitting the total number of mesh facets t
the decoder will allow to stop the convection process as soon
as they are all discovered, which will drastically reduce th
number of corrective codes.
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the support of the convection algorithm, and that it is thus

impossible for the current surface to reach a non Delaungig. 3. Fandisk: complete (12946 facets), then showing tire Delaunay
facet. Nevertheless, most of the meshes met in practicaigonfacets only (1104 facets representing% of the set)

a fraction of non Delaunay facets (see the unfavorable chse o

Fig. 3). So, to make the method widely usable, it is necessdrythe decoding stage, the vertex set is first obtained from
to manage the coding of such facets. A simple and efficiethte GD decoder, as well as the non Delaunay patches con-
way to do this is to code explicitly all the non Delaunayectivity. Then the mesh without the patches is reconstdict



by the algorithm of driven convection. At last, the patchehe value of the previously transmitted integer, and so oa. W
connectivity is merged into the reconstructed leaky mesh. Wave finally opted for an adaptive order-1 model specifically
thus see that our method improves the results of the methidekigned to take advantage of the particular structure ef th
of Gandoin and Devillers only for meshes whose facets argeger sequence. For instance, this model handles lorg run
mainly Delaunay. In the limit case where all the mesh facetd null integer frequently occurring in the sequence.

would be non Delaunay, we would come across the GD coder
compression rates. As a matter of fact, these runs often correspond to large

patches of facets that have to be forced (ODG events) because
the Gabriel criterion is too restrictive compared to thealoc
density of the mesh. Statistics illustrate that the conwact
process is rarely wrong when it decides to open a facet; on the
contrary, at the end of the convection, a lot of facets haembe
retained but do not belong to the initial mesh. To encourage
the convection algorithm to open more facets, we have rdlaxe
the Gabriel criterion under some conditions. Intuitivelfacet

will be opened when its size is "big” with regard to the vertex
density in its neighborhood [53]. By setting this ratio toean
optimal value, the improvements can be drastic, partibular
in the case of poorly sampled meshes where the number of
driving codes can be lowered by about 50%.

Fig. 4. 2D Example: the original curve to be coded is in rectkhi V. EXPERIMENTAL RESULTS

line, including non Delaunay patches (parts in solid lin€he Delaunay
triangulation is in black thin line. The current evolving nsection curve,
in orange thick line, is temporarily blocked (parts in solide) to avoid
intersecting the patches. The remaining hidden Delaunggsedf the original
curve will thus be discovered later, when the convectioncgss will be
relaunched to intersect the patches.

The table | shows the results of the method applied to some
usual meshes (the rates are in bits per vertex). The objects
fandisk blob, andhorseare there essentially for comparison
purposes, since they have been used for example by Touma
and Gotsman [5]. The Stanfoliinnyis also a very classical
mesh, widely used in 3D compression for about ten years.
However, these models are not very representative of today

We saw in Sec. Ill that the codes resulting from the confl€Shes, whose number of vertices is much higher. The last
pression algorithm are a sequence of positive or null imgemeshes are more typical of what can be found nowadays. The

representing the number of facets met between two speé'iélnd (see Fig. 5) andnaxplanck (see Fig. 5) can be found

interventions of the algorithm, that is to say between twid"! http://shapes.aim-at-shape.netile thetriple_hecate(see

facets for which the algorithm does not follow the rules of'd- ©) comes fromie Louvre C2RMF lab

IV. CODING AND OPTIMIZATION

the reconstruction by convection (ODG and RDG events).
To minimize the output size, we have chosen to transmit

TABLE |
EXPERIMENTAL RESULTS ON USUAL MESHES

these numbers to an arithmetic coder, which is able to code _ N
f bols i | timal . model number of | connectivity | computing time
a Sequ_e.nce or symbols _m a nearly optima Way'_9|ven a (number facets: rate in bpv in seconds:
probability model. Thus, ifp(s) denotes the probability of of total / (Del. + non | compression /
appearance of the symbslthe arithmetic coder will encode vertices) non Del. | Del. facets) | decompression
i i ; i fandisk 12 946 2.08 14
s on logz(1/p(s)) + €. In particular, this entropic coder is (6 475) 85% | (122+0.86) 14
capable of coding a symbol on a fractional number of bits. biob 16 068 568 17
L S - . 8 036 5.2 % 1.98 + 0.70 15
The main difficulty consists in defining a good probability (horse) 39 69?8 ( 2.50 ) 56
model for the integers to be coded. The first solution cossist (19 851) 3.8 % (1.48 + 0.52) 22
in computing statistical data for each mesh and transmittin bunny 71 890 0.08 18
the probability table in the header of the compressed fil¢. Bu (35 947) 0.0% (0.08 + 0.00) 14
h p Yy B p " triple_hecate 151 462 0.04 46
ideally, to save the transmission of such a table, we woldtd li (75 729) 0.0 % (0.04 + 0.00) 37
to model the behavior of the sequence to be coded for a wide ford 188 0024 8.43 40
class of meshes, or alternatively, to design an adaptiveemod m(e?)Zp?ng():k Ssgéoofs (3'4% g05'00) 22091
recomputing the probability of a symbol each time it occurs. (199 169) 1.7 % (0.69.+ 0.21) 157
Several kinds of model can be used, according to the size ajax 547 117 0.14 154
of the context from which the probability is estimated. For (27hi r?§3) G%f ;/906 (0'1‘(‘) 190'00) ég
the order-0 mode_zl, each intege_r has an absolute probability (327 290) 0.7 % (0.11 + 0.08) 288
for the whole coding sequence, independent from the cantexf UNC powerplant| 12 748 510 > 2.16 16316
For the order-1 model, the probability of an integer depents (11 070 509) 48.9 % (2.16 + ) 15538




The first remark is that the rates obtained for the modaisation. The memory cost of this structure is 30 bytes per
fandisk blob, horse ford, UNC powerplantare not especially vertex (geometry: 12, OFF file production: 8, Delaunay tetra
competitive with regard to the best current methods (for ekedralization: 4, vertex density information: 4 + 2 boolgan
ample, [18], whose algorithm yields 0.74 bpv for ttamdisk and 35 bytes per tetrahedron (Delaunay tetrahedralization
and 0.96 bpv for thdorse. The main reason is that the vertex32, surface and compression information: 3), given that for
set of these meshes are clearly mesample and therefore, meshes meeting good sampling conditioies iheshes whose
not favorable to the convection algorithm (but note that dcal density of vertices is proportional to the distancehe
these meshes, we gain on the geometry coding by using #keleton), the number of tetrahedra is nearly proportitmtide

GD coder, as shown in [37]). On the contrary, th@ndand number of vertices [56]. Practically, this limits our methim
maxplanckare correctly sampled and give a quite good ideaeshes containing about 10 millions of triangles. Nevéet®

of what the method can achieve when the point densitieat-of-core or even streaming adaptations are conceivable
are reasonable. Thieiple_hecateand ajax models are highly since it has been shown that the convection algorithm coelld b
compliant meshes, not only because their facets are fully applied to a data stream organized in successive layerslfb7]
Delaunay, but also because they were constructed from a tbet same way, the GD method used in this article to compress
of points, using some reconstruction algorithm similartte t the non Delaunay facets is limited for now to meshes under
convection process. However, this kind of mesh is more aafiout 1 million of vertices, but an out-of-core adaptatien i
more widespread since a large class of objects are obtaimedrently studied. Therefore we cannot give the compressio
from scanning and reconstruction. ratio of the non Delaunay submesh for ti&lC powerplant

Besides, we can notice that the rates associated to thegeoflinTab. | contains numerical information about 4 models gen-
non Delaunay facets are quite bad facing their small numberated by CAD softwares:fandisk horse ford and UNC
and heavy penalize the global rates. Indeed, the GD codep@werplant As said above, our method is clearly not appro-
not optimal for sparse connectivity, and it should be pdssibpriate for this kind of model. IndeedCAD meshes are often
to find a better way to code this small set of facets. characterized by large triangles whose size is absolutety n

: . _related to the distance to the skeleton (see Figapand
The last column of the tabl?.ShOWS the cqmputmg user t'm. S)) Moreover, many of these triangles do not belong to the
in seconds for the connectivity compression / decomprassi D Delaunay 'Lriangulation even it in numerous models. a

of the meshes on a Pentium IV 3.0 Ghz 2 Go RAM comput%rl.n le flip into cocircular quadruplets or a slight pertuiba
Globally, these times probably higher compared to claksica 9 P q P gnt p

. - . over vertex coordinates would drastically reduce the rafio
methods that explicitly encode the whole connectivityngsi T . .
. non Delaunay facets. This situation particularly occudaige
some surface-based traversal of the mesh vertices. One

can . i
incriminate the precomputation and the 3D traversal of t e%mar regions contalmng_a k.)t of coplanar quadrupletszss
. : . : e seen on Fig. 3. For this kind of model, some other lossless
Delaunay triangulation required by the convection process : .
: . ) . .~ compression methods should give better results [5], [B],[
This constraint particularly intends our method to applica : : :
. . although none of them has been specially designed for this
tions where storage space or network bandwidth are mare
- . class of meshes.
limited resources than processing power. However, a secon
version of the algorithm could be developed where Delaunay
computation Is not epr|C|t any more. The current version VI. CONCLUSION AND FUTURE WORK
also encounters timings limitations when the mesh is not
entirely included in Delaunay. This is due to intersectiowle have presented a new method of lossless single-rate
determinations between the Delaunay triangulation and namonnectivity compression based on a semiautomatic recon-
Delaunay mesh facets. struction process able to deduce most of the mesh conrtgctivi
. from its sole vertex set, and occasionally guided through
We can compare our algorithm to the only other compressian . X
) . compact codes that alter its default behavior when neggssar
method using reconstruction through the 3 meshes we have . . .
: ) : is method is originally suitable for Delaunay embedded
in common: the method [44] obtains 1.19 bpv for the horse ) 7 .
: ., meshes. We have also described a generalization removing
2.63 bpv for the fandisk, and 1.18 bpv for the bunny, which is . o : . :
. . . is constraint inherent to the convection algorithm, gsin
globally slightly higher than the rates of the table |. Reljag .
. separated coding of non Delaunay patches, as well as
the methods [15], [16], [18], derived from the Touma an Ay P 7 .
, . A . euristics minimizing the number of driving codes during th
Gotsman’s coding principle [5], they obtain rates arourtal 1. . . . 4
) . nvection process. So the final algorithm is able to congpres
bpv for usual meshes, and can achieve very low rates forhigh

regular meshes where vertex degrees are almost constant e kind of 3D mesh, including non manifold ones, without

don’t have any result of these algorithms for meshes fulfél/ny constraint on the topological genus or the number of

) . . . onnected components. After a probabilistic modelling and
included in Delaunay, but there is no particular reason wh : . .

) . tropic coding of the output, the numerical results show a
their rates would be better in such cases.

substantial improvement above the current state of thevih,
Another limitation of the algorithm is related to the memoryan average rate of 1 bit per vertex, reaching belowtpv for
footprint. Indeed, in its current implementation (using thwell sampled meshes. In addition, the algorithm can be used
CGAL library [55]), the method needs to store the entirim parallel with currently most performing geometric corapr
Delaunay tetrahedralization enriched with additionaloinf sion methods, which results in very competitive overaksat



The main limitations of the method might be its computinge]
times, relatively high compared to some of the state-of-the
art algorithms, and its memory footprint, which exclude for
now the compression of gigantic meshes on standard 324
bit personal computers. As a result, the optimization of the
compression, and above all, of the decompression algorlth{n]

remains a primary perspective for this work.

The compression rates could probably be improved through
more accurate probability models for the entropic coded, an®]
even more, through a better coding of the non Delaunay

facets. Similarly, it could be possible to keep improving th

behavior of the convection algorithm, by opening the facety]
more accurately, according to some smarter criterion than t

local vertex distribution. However, we are currently waori
on the generalization of this work to multiresolution, whic

[11]

is surely the most important perspective of this paper. This
will be made possible by progressive insertion of vertiaes '[12]

the convection surface [58], under the constraints impdsed

a kd-tree type progressive geometric coder. About the GD

coder, a last significant perspective consists in integgait

[13]

to the convection process, in order to improve the geometric

prediction by using connectivity information.

[14]

Finally, we would like to add that the impressive results
obtained with the most favorable models illustrate the-relE®

vance of the research fields focused on Delaunay meshes, in

particular the methods that aim at producing such modets frdtel

point clouds or from non Delaunay meshes [59], [60].
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Fig. 5. (a) triplehecate (detail): 75729 vertices and 151462 triangles coded
with 0.04 bits per vertex, (b) maglanck: 199169 vertices and 398043
triangles, 090 bits per vertex, (c) ajax: 273383 vertices and 54711 7dtes,
0.14 bits per vertex, (d) hand: 327290 vertices and 654596dies, 019 bits

per vertex. These models resulting from scans are usuadisacterized by a
small number of non Delaunay triangles. The vertex densitglly reflects the
distance to the skeleton and these meshes are probablycerbby Delaunay
based reconstruction algorithms.

Fig. 6. CAD meshes are essentially unfavorable to our mettadand (b)
© non Delaunay triangles of thiord model, (¢) UNC powerplant: 11070509
vertices and 12748510 triangles coded with more thd® Dits per vertex.
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(k)

Fig. 2. a) MeshM to be coded b) Delaunay triangulation Mf vertices and initialization o8 c) The first visited facet has been opened (t=1) d) The second
facet has been retained (t=2) e) The tenth visited facet bas bpened (t=10) f) Production of a RDG event at t=11, ag#iesconvection rules g) RDG
event at t=12 h) Two kinds of facets B at stabilization of the convection process : red facets fbictv RDG events have occurred, and blue facets that
have been retained (whereas some of them are not presdfi} inEach retained facet (in blue) is considered in turn. An®Bvent is produced for the
27th facet of that kind at time t=249 (previously examinecefa are green colored) j) The convection process is localjunched at the level of the opened
facet k) The local convection process is stabilized 1) OD@nésy combined with local convection processes are pursotdthe initial mesh is reachedg;
andtg; denote time steps when further ODG and RDG events occur.



