
HAL Id: hal-00606223
https://hal.science/hal-00606223v1

Submitted on 5 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sorting by Transpositions is Difficult
Laurent Bulteau, Guillaume Fertin, Irena Rusu

To cite this version:
Laurent Bulteau, Guillaume Fertin, Irena Rusu. Sorting by Transpositions is Difficult. 38th In-
ternational Colloquium on Automata, Languages and Programming (ICALP 2011), 2011, Zürich,
Switzerland. pp.654-665. �hal-00606223�

https://hal.science/hal-00606223v1
https://hal.archives-ouvertes.fr

Sorting by Transpositions is Difficult

Laurent Bulteau, Guillaume Fertin, Irena Rusu

Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241
Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 - France

{Laurent.Bulteau, Guillaume.Fertin, Irena.Rusu}@univ-nantes.fr

Abstract. In comparative genomics, a transposition is an operation that ex-
changes two consecutive sequences of genes in a genome. The transposition
distance, that is, the minimum number of transpositions needed to transform a
genome into another, can be considered as a relevant evolutionary distance. The
problem of computing this distance when genomes are represented by permuta-
tions, called the SORTING BY TRANSPOSITIONS problem (SBT), has been in-
troduced by Bafna and Pevzner [3] in 1995. It has naturally been the focus of
a number of studies, but the computational complexity of this problem has re-
mained undetermined for 15 years.
In this paper, we answer this long-standing open question by proving that the
SORTING BY TRANSPOSITIONS problem is NP-hard. As a corollary of our re-
sult, we also prove that the following problem from [9] is NP-hard: given a per-
mutation π, is it possible to sort π using db(π)/3 permutations, where db(π) is
the number of breakpoints of π?

Introduction

Along with reversals, transpositions are one of the most elementary large-scale opera-
tions that can affect a genome. A transposition consists in swapping two consecutive
sequences of genes or, equivalently, in moving a sequence of genes from one place to
another in the genome. The transposition distance between two genomes is the min-
imum number of such operations that are needed to transform one genome into the
other. Computing this distance is a challenge in comparative genomics, since it gives a
maximum parsimony evolution scenario between the two genomes.

The SORTING BY TRANSPOSITIONS problem is the problem of computing the
transposition distance between genomes represented by permutations: see [16] for a
detailed review on this problem and its variants. Since its introduction by Bafna and
Pevzner [3,4], the complexity class of this problem has never been established. Hence a
number of studies [4,9,17,19,13,5,15] aim at designing approximation algorithms or
heuristics, the best known fixed-ratio algorithm being a 1.375-approximation [13]. Other
works [18,9,14,21,13,5] aim at computing bounds on the transposition distance of a per-
mutation. Studies have also been devoted to variants of this problem, by considering, for
example, prefix transpositions [12,22,7] (in which one of the blocks has to be a prefix
of the sequence), or distance between strings [10,11,25,24,20] (where multiple occur-
rences of each element are allowed in the sequences), possibly with weighted or prefix
transpositions [23,6,1,2,7]. Note also that sorting a permutation by block-interchanges
(i.e. exchanges of non-necessarily consecutive sequences) is a polynomial problem [8].

In this paper, we address the long-standing issue of determining the complexity
class of the SORTING BY TRANSPOSITIONS problem, by giving a polynomial-time
reduction from SAT, thus proving the NP-hardness of this problem. Our reduction is
based on the study of transpositions that remove three breakpoints. A corollary of our
result is the NP-hardness of the following problem, introduced in [9]: given a permuta-
tion π, is it possible to sort π using db(π)/3 permutations, where db(π) is the number
of breakpoints of π?

1 Preliminaries

In this paper, n denotes a positive integer. Let Ja ; bK = {x ∈ N | a ≤ x ≤ b}, and Idn
be the identity permutation over J0 ; nK. We consider only permutations of J0 ; nK such
that 0 and n are fixed-points. Given a word u1 u2 . . . ul, a subword is a subsequence
up1 up2 . . . upl′ , where 1 ≤ p1 < p2 < . . . < pl′ ≤ l. A factor is a subsequence of
contiguous elements, i.e. a subword with pk+1 = pk + 1 for every k ∈ J1 ; l′ − 1K.

Definition 1 (Transposition). Given three integers 0 < i < j < k ≤ n, the transposi-
tion τi,j,k over J0 ; nK is the following permutation:

τi,j,k =
(

0 · · · i− 1 i · · · k + i− j − 1 k + i− j · · · k − 1 k · · · n
0 · · · i− 1 j · · · k − 1 i · · · j − 1 k · · · n

)
Let π be a permutation of J0 ; nK. The transposition distance dt(π) from π to Idn is
the minimum value k for which there exist k transpositions τ1, τ2, . . . , τk such that
π ◦ τk ◦ . . . ◦ τ2 ◦ τ1 = Idn.

The transposition τi,j,k is the operation that, when it is composed with a permuta-
tion, exchanges factors with indices i, . . . , j − 1 and j, . . . , k − 1, see Figure 1a. The
inverse function of τi,j,k is also a transposition: τ−1

i,j,k = τi,k+i−j,k. See Figure 1b for
an example of the computation of the transposition distance.

We consider the following problem:

SORTING BY TRANSPOSITIONS PROBLEM [3]
INPUT: A permutation π, an integer k.
QUESTION: Is dt(π) ≤ k?

Computing the transposition distance has often been linked to studying the break-
points of a permutation. A breakpoint of π is a pair (x − 1, x), x ∈ J1 ; nK, such that
π(x) 6= π(x− 1) + 1. A transposition can decrease the number of breakpoints of a per-
mutation, db(π), by at most 3. In this paper we in fact focus on the “simpler” problem
of determining whether dt(π) = db(π)/3 for a given permutation π.

2 3-Deletion and Transposition Operations

In this section, we introduce 3DT-instances, which are the cornerstone of our reduction
from SAT to the SORTING BY TRANSPOSITIONS problem, since they are used as an
intermediate between instances of the two problems.

π =(π0π1 . . . πi−1πi . . . πj−1 πj . . . πk−1πk . . . πn)

π ◦ τi,j,k =(π0π1 . . . πi−1πj . . . πk−1 πi . . . πj−1πk . . . πn)

(a)

π =(0 2 4 3 1 5)
π◦τ1,3,5 =(0 3 1 2 4 5)
π◦τ1,3,5◦τ1,2,4=(0 1 2 3 4 5)

(b)

Fig. 1: (a) Representation of a transposition τi,j,k for 0 < i < j < k ≤ n on a
general permutation. (b) The transposition distance from π = (0 2 4 3 1 5) to Id5 is
2: it is at most 2 since π ◦ τ1,3,5 ◦ τ1,2,4 = Id5, and it cannot be less than 2 since
dt(π) ≥ db(π)/3 = 5/3 > 1.

I = a1 c2 b1 b2 c1 a2 with T = {(a1, b1, c1), (a2, b2, c2)}
I ′ = � b2 � c2 � a2 with T ′ = {(a2, b2, c2)}

Fig. 2: Two examples of 3DT-instances of span 6. We write I = 〈Σ,T, ψ〉 and I ′ =
〈Σ′, T ′, ψ′〉. I has an alphabet of size 6, Σ = {a1, b1, c1, a2, b2, c2}, hence ψ is a
bijection (ψ(a1) = 1, ψ(c2) = 2, ψ(b1) = 3, etc). I ′ has an alphabet of size 3, Σ′ =
{a2, b2, c2}, with ψ′(b2) = 2, ψ′(c2) = 4, ψ′(a2) = 6.

Definition 2 (3DT-instance). A 3DT-instance I = 〈Σ,T, ψ〉 of span n is composed of
the following elements:

– Σ: an alphabet of at most n elements;
– T = {(ai, bi, ci) | 1 ≤ i ≤ |T |}: a set of (ordered) triples of elements of Σ,

partitioning Σ (i.e. all elements are pairwise distinct, and
⋃|T |
i=1{ai, bi, ci} = Σ);

– ψ : Σ → J1 ; nK, an injection.

The domain of I is the image of ψ, that is the set L = {ψ(σ) | σ ∈ Σ}. The word
representation of I is the n-letter word u1 u2 . . . un over Σ ∪ {�} (where � /∈ Σ), such
that for all i ∈ L, ψ(ui) = i, and for i ∈ J1 ; nK− L, ui = �. For σ1, σ2 ∈ Σ, we write
σ1 ≺ σ2 if ψ(σ1) < ψ(σ2), and σ1 / σ2 if σ1 ≺ σ2 and @x ∈ Σ, σ1 ≺ x ≺ σ2.

Two examples of 3DT-instances are given in Figure 2. Note that such instances can
be defined by their word representation and by their set of triples T . The empty 3DT-
instance, in which Σ = ∅, can be written with a sequence of n dots, or with the empty
word ε.

Using the triples in T , we can define a successor function over the domain L:

Definition 3. Let I = 〈Σ,T, ψ〉 be a 3DT-instance with domain L. We write succI :
L → L the function such that, for all (a, b, c) ∈ T , ψ(a) 7→ ψ(b), ψ(b) 7→ ψ(c), and
ψ(c) 7→ ψ(a).

Function succI is a bijection, with no fixed-points, and such that succI ◦ succI ◦
succI is the identity over L.

In the example of Figure 2, succI =
(

1 2 3 4 5 6
3 6 5 2 1 4

)
and succI′ =

(
2 4 6
4 6 2

)
.

Definition 4. Let I = 〈Σ,T, ψ〉 be a 3DT-instance, and (a, b, c) be a triple of T . Write
i = min{ψ(a), ψ(b), ψ(c)}, j = succI(i), and k = succI(j). The triple (a, b, c) ∈

T is well-ordered if we have i < j < k. In such a case, we write τ [a, b, c, ψ] the
transposition τi,j,k.

An equivalent definition is that (a, b, c) ∈ T is well-ordered iff one of abc, bca, cab
is a subword of the word representation of I . In the example of Figure 2, (a1, b1, c1) is
well-ordered in I: indeed, we have i = ψ(a1), j = ψ(b1) and k = ψ(c1), so i < j < k.
The triple (a2, b2, c2) is also well-ordered in I ′ (i = ψ′(b2) < j = ψ′(c2) < k =
ψ′(a2)), but not in I: i = ψ(c2) < k = ψ(b2) < j = ψ(a2). In this example, we have
τ [a1, b1, c1, ψ] = τ1,3,5 and τ [a2, b2, c2, ψ

′] = τ2,4,6.

Definition 5 (3DT-step). Let I = 〈Σ,T, ψ〉 be a 3DT-instance with (a, b, c) ∈ T a
well-ordered triple. The 3DT-step of parameter (a, b, c) is the operation written (a, b, c)

−−−−−→,
transforming I into the 3DT-instance I ′ = 〈Σ′, T ′, ψ′〉 such that, with τ = τ [a, b, c, ψ]:

Σ′ = Σ − {a, b, c}; T ′ = T − {(a, b, c)}; ψ′ :
Σ′ → J1 ; nK
σ 7→ τ−1(ψ(σ)) .

If the word representation of I isW aX bY cZ, then, after the 3DT-step I (a, b, c)
−−−−−→I ′,

the word representation of I ′ is W �Y �X �Z. Note that a triple that is not well-ordered
in I can become well-ordered in I ′, or vice-versa. In the example of Figure 2, I ′ can be
obtained from I via a 3DT-step: I (a1, b1, c1)

−−−−−−−−→I ′. Moreover, I ′ (a2, b2, c2)
−−−−−−−−→ε.

Definition 6 (3DT-collapsibility). A 3DT-instance I = 〈Σ,T, ψ〉 is 3DT-collapsible if
there exists a sequence of 3DT-instances Ik, Ik−1, . . . , I0 such that Ik = I , I0 = ε, and
∀i ∈ J1 ; kK , ∃(a, b, c) ∈ T, Ii (a, b, c)

−−−−−→Ii−1.

In Figure 2, I and I ′ are 3DT-collapsible, since we have I (a1, b1, c1)
−−−−−−−−→I ′

(a2, b2, c2)
−−−−−−−−→ε.

3 3DT-collapsibility is NP-Hard to Decide
In this section, we define, for any boolean formula φ, a corresponding 3DT-instance Iφ.
We also prove that Iφ is 3DT-collapsible iff φ is satisfiable (see Theorem 1).

3.1 Block Structure
The construction of the 3DT-instance Iφ uses a decomposition into blocks, defined be-
low. Some triples will be included in a block, in order to define its behavior, while others
will be shared between two blocks, in order to pass information. The former are uncon-
strained, so that we can design blocks with the behavior we need (for example, blocks
mimicking usual boolean functions), while the latter need to follow several rules, so
that the blocks can easily be arranged together.

Definition 7 (l-block-decomposition). An l-block-decomposition B of a 3DT-instance
I of span n is an l-tuple (s1, . . . , sl) such that s1 = 0, for all h ∈ J1 ; l − 1K, sh < sh+1

and sl < n. We write th = sh+1 for h ∈ J1 ; l − 1K, and tl = n.
Let I = 〈Σ,T, ψ〉 and u1 u2 . . . un be the word representation of I . For h ∈ J1 ; lK,

the subword ush+1 ush+2 . . . uth where every occurrence of � is deleted is called the
block Bh. For σ ∈ Σ, we write blockI,B(σ) = h if ψ(σ) ∈ Jsh + 1 ; thK (equivalently,
if σ appears in the word Bh). A triple (a, b, c) ∈ T is said to be internal if blockI,B(a) =
blockI,B(b) = blockI,B(c), external otherwise.

Given a 3DT-step I (a, b, c)
−−−−−→I ′, the arrow notation can be extended to an l-block-

decomposition B of I , provided at least one of the following equalities is satisfied:
blockI,B(a) = blockI,B(b), blockI,B(b) = blockI,B(c) or blockI,B(c) = blockI,B(a).
In this case, with τ = τ [a, b, c, ψ], the l-tuple B′ = (τ−1(s1), . . . , τ−1(sl)) is an l-
block-decomposition of I ′, and we write (I,B) (a, b, c)

−−−−−→(I ′,B′).

Definition 8 (Variable). A variable A of a 3DT-instance I = 〈Σ,T, ψ〉 is a pair of
triples A = [(a, b, c), (x, y, z)] of T . It is valid in an l-block-decomposition B if
(i) ∃h0 ∈ J1 ; lK such that blockI,B(b) = blockI,B(x) = blockI,B(y) = h0

(ii) ∃h1 ∈ J1 ; lK, h1 6= h0, such that blockI,B(a) = blockI,B(c) = blockI,B(z) = h1

(iii) if x ≺ y, then we have x / b / y
(iv) a ≺ z ≺ c

For such a valid variable A, the block Bh0 containing {b, x, y} is called the source
of A, and the block Bh1 containing {a, c, z} is called the target of A. For h ∈ J1 ; lK,
the variables of which Bh is the source (resp. the target) are called the output (resp.
the input) of Bh. The 3DT-step I (x, y, z)

−−−−−−→I ′ is called the activation of A (it requires that
(x, y, z) is well-ordered).

Note that, for any valid variable A = [(a, b, c), (x, y, z)] in (I,B), we have, ac-
cording to condition (i), blockI,B(x) = blockI,B(y), thus its activation can be written
(I,B) (x, y, z)

−−−−−−→(I ′,B′).

Property 1. Let (I,B) be a 3DT-instance with an l-block-decomposition, and A be a
variable of I that is valid in B, A = [(a, b, c), (x, y, z)]. Then (x, y, z) is well-ordered
iff x ≺ y; and (a, b, c) is not well-ordered.

Definition 9 (Valid context). A 3DT-instance with an l-block-decomposition (I,B) is
a valid context if the set of external triples of I can be partitioned into valid variables.

Let B be a block in a valid context (I,B) (in which B = Bh, for some h ∈ J1 ; lK),
and (I,B) (d, e, f)

−−−−−−→(I ′,B′) be a 3DT-step such that, writing B′ = B′h, we have B′ 6= B.
Then, depending on the triple (d, e, f), we are in one of the following three cases:

– (d, e, f) is an internal triple of B. We write: B B′(d, e, f)

– (d, e, f) = (x, y, z) for some output A = [(a, b, c), (x, y, z)] of B. We write:
B B′A

– (d, e, f) = (x, y, z) for some input A = [(a, b, c), (x, y, z)] of B. We write:
B B′A

The graph obtained from a block B by following exhaustively the possible arcs as
defined above (always assuming this block is in a valid context) is called the behavior
graph of B. Figure 3 illustrates the activation of a valid variable A.

3.2 Basic Blocks
We now define four basic blocks: copy, and, or, and var. They are studied independently
in this section, before being assembled in Section 3.3. Each of these blocks is defined by

· · ·

· · ·

· · ·

source. R x b y S

.. R S

.. R S

. · · ·

· · ·

· · ·

target. T a U z V c W

.. T a U b V c W

.. T V U W

. · · ·

· · ·

· · ·

AA

(a, b, c)

(x, y, z)

(a, b, c)

Fig. 3: Activation of a valid variable A = [(a, b, c), (x, y, z)]. It can be followed by the 3DT-
step (a, b, c)

−−−−−→, impacting only the target block of A. Dot symbols (�) are omitted. We denote by
R,S, T, U, V,W some factors of the source and target blocks ofA: the consequence of activating
A is to allow U and V to be swapped in the target of A.

a word and a set of triples. We distinguish internal triples, for which all three elements
appear in a single block, from external triples, which are part of an input/output variable,
and for which only one or two elements appear in the block. Note that each external
triple is part of an input (resp. output) variable, which itself must be an output (resp.
input) of another block, the other block containing the remaining elements of the triple.

We then compute the behavior graph of each of these blocks (it is given here for the
block copy, see Figure 4, and in the full version for the other blocks): in each case, we
assume that the block is in a valid context, and follow exhaustively the 3DT-steps that
can be applied to it. It must be kept in mind that for any variable, it is the state of the
source block which determines whether it can be activated, whereas the activation itself
affects mostly the target block. It can be verified that each output (resp. input) variable
of these blocks satisfy the constraints (i) and (iii) (resp. (ii) and (iv)) of Definition 8.

The block copy This block aims at duplicating a variable: any of the two output vari-
ables can only be activated after the input variable has been activated. See Figure 4 for
the behavior graph of this block.
Input variable: A = [(a, b, c), (x, y, z)].
Output variables: A1 = [(a1, b1, c1), (x1, y1, z1)] and A2 = [(a2, b2, c2), (x2, y2, z2)].
Internal triple: (d, e, f).
Definition:

[A1, A2] = copy(A) = a y1 e z d y2 x1 b1 c x2 b2 f

Property 2. In a block [A1, A2] = copy(A) in a valid context, the possible orders in
which A, A1 and A2 can be activated are (A,A1, A2) and (A,A2, A1).

The block and This block aims at simulating a conjunction: the output variable can
only be activated after both input variables have been activated.
Input variables: A1 = [(a1, b1, c1), (x1, y1, z1)] and A2 = [(a2, b2, c2), (x2, y2, z2)].
Output variable: A = [(a, b, c), (x, y, z)].
Internal triple: (d, e, f).
Definition:

A = and(A1, A2) = a1 e z1 a2 c1 z2 d y c2 x b f

Property 3. In a blockA = and(A1, A2) in a valid context, the possible orders in which
A, A1 and A2 can be activated are (A1, A2, A) and (A2, A1, A).

. a y1 e z d y2 x1 b1 c x2 b2 f

.. a y1 e b d y2 x1 b1 c x2 b2 f

.. d y2 x1 b1 y1 e x2 b2 f

.. x2 b2 y2 x1 b1 y1

. . d y2 e x2 b2 f

.. x1 b1 y1

. . x2 b2 y2

.. ε

.
A

(a, b, c)

(d, e, f)

A2

(d, e, f)

A2

A1

A1

A1

Fig. 4: Behavior graph of the block [A1, A2] = copy(A).

The block or This block aims at simulating a disjunction: the output variable can be
activated as soon as any of the two input variables is activated.
Input variables: A1 = [(a1, b1, c1), (x1, y1, z1)] and A2 = [(a2, b2, c2), (x2, y2, z2)].
Output variable: A = [(a, b, c), (x, y, z)].
Internal triples: (a′, b′, c′) and (d, e, f).
Definition:

A = or(A1, A2) = a1 b
′ z1 a2 d y a

′ x b f z2 c1 e c
′ c2

Property 4. In a block A = or(A1, A2) in a valid context, the possible orders in
which A, A1 and A2 can be activated are (A1, A,A2), (A2, A,A1), (A1, A2, A) and
(A2, A1, A).

The block var This block aims at simulating a boolean variable: in a first stage, only
one of the two output variables can be activated. The other needs the activation of the
input variable to be activated.
Input variable: A = [(a, b, c), (x, y, z)].
Output variables: A1 = [(a1, b1, c1), (x1, y1, z1)], A2 = [(a2, b2, c2), (x2, y2, z2)].
Internal triples: (d1, e1, f1), (d2, e2, f2) and (a′, b′, c′).
Definition:

[A1, A2] = var(A) = d1 y1 a d2 y2 e1 a
′ e2 x1 b1 f1 c

′ z b′ c x2 b2 f2

Property 5. In a block [A1, A2] = var(A) in a valid context, the possible orders in
which A, A1 and A2 can be activated are (A1, A,A2), (A2, A,A1), (A,A1, A2) and
(A,A2, A1).

With such a block, if A is not activated first, one needs to make a choice between
activating A1 or A2. Once A is activated, however, all remaining output variables are
activable.

Assembling the blocks copy, and, or, var.

Definition 10 (Assembling of basic blocks). An assembling of basic blocks (I,B) is
composed of a 3DT-instance I and an l-block-decomposition B obtained by the follow-
ing process. Create a set of variables A. Define I = 〈Σ,T, ψ〉 by its word representa-
tion, as a concatenation of l factors B1 B2 . . . Bl and a set of triples T , where each
Bh is one of the blocks [A1, A2] = copy(A), A = and(A1, A2), A = or(A1, A2) or
[A1, A2] = var(A), with A1, A2, A ∈ A (such that each X ∈ A appears in the input
of exactly one block, and in the output of exactly one other block); and where T is the
union of the set of internal triples needed in each block, and the set of external triples
defined by the variables of A.

Lemma 1. Let I ′ be a 3DT-instance with an l-block-decompositionB′, such that (I ′,B′)
is obtained from an assembling of basic blocks (I,B) after any number of 3DT-steps.
Then (I ′,B′) is a valid context. Moreover, if the set of variables of (I ′,B′) is empty,
then I ′ is 3DT-collapsible.

The above lemma justifies the assumption that each block is in a valid context to
derive Properties 2 to 5. An assembling of basic blocks is 3DT-collapsible iff there exists
a total order, satisfying these properties, in which all its variables can be activated.

3.3 Construction of Iφ
Let φ be a boolean formula, over the boolean variables x1, . . . , xm, given in conjunctive
normal form: φ = C1 ∧ C2 ∧ . . . ∧ Cγ . Each clause Cc (c ∈ J1 ; γK) is the disjunction
of a number of literals, xi or ¬xi, i ∈ J1 ; mK. We write qi (resp. q̄i) for the number
of occurrences of the literal xi (resp. ¬xi) in φ, i ∈ J1 ; mK. We also write k(Cc) for
the number of literals appearing in the clause Cc, c ∈ J1 ; γK. We can assume that
γ ≥ 2, that for each c ∈ J1 ; γK, we have k(Cc) ≥ 2, and that for each i ∈ J1 ; mK,
qi ≥ 2 and q̄i ≥ 2 (otherwise, we can always add clauses of the form (xi ∨ ¬xi) to φ,
or duplicate the literals appearing in the clauses Cc such that k(Cc) = 1). In order to
distinguish variables of an l-block-decomposition from x1, . . . , xm, we always use the
term boolean variable for the latter.

The 3DT-instance Iφ is defined as an assembling of basic blocks: we first define a
set of variables, then we list the blocks of which the word representation of Iφ is the
concatenation. It is necessary that each variable is part of the input (resp. the output)
of exactly one block. Note that the relative order of the blocks is of no importance.
We simply try, for readability reasons, to ensure that the source of a variable appears
before its target, whenever possible. We say that a variable represents a term, i.e. a
literal, clause or formula, if it can be activated only if this term is true (for some fixed
assignment of the boolean variables), or if φ is satisfied by this assignment. We also say
that a block defines a variable if it is its source block.

The construction of Iφ is done as follows (see Figure 5 for an example):
Create a set of variables:

– For each i ∈ J1 ; mK, create qi + 1 variables representing xi: Xi and Xj
i , j ∈

J1 ; qiK, and q̄i + 1 variables representing ¬xi: X̄i and X̄j
i , j ∈ J1 ; q̄iK.

– For each c ∈ J1 ; γK, create a variable Γc representing the clause Cc.
– Create m+ 1 variables, Aφ and Aiφ, i ∈ J1 ; mK, representing the formula φ.

varopyX1

X1
1 X2

1

opyX̄1

X̄1
1 X̄2

1

varopyX2

X1
2 X2

2

opyX̄2

X̄1
2 X̄2

2

varopyX3

X1
3 X2

3

opyX̄3

X̄1
3 X̄2

3

varopyX4

X1
4 X2

4

opyX̄4

X̄1
4 X̄2

4

or orV 2
1 or or orV 2

3

or orV 2
4 or or orV 2

6

andΓ1 Γ2 andW2

Γ3 andW3

Γ4 andW4

Γ5 andW5

Γ6

opy AφopyY2 opyY3

A1
φ

A2
φ

A3
φ

A4
φ

Fig. 5: Schematic diagram of the blocks defining Iφ for φ = (x1 ∨ x2 ∨ ¬x3) ∧
(x1 ∨ ¬x2)∧ (¬x1 ∨ x2 ∨ ¬x4)∧ (¬x1 ∨ x3 ∨ x4)∧ (x3 ∨ ¬x4)∧ (¬x2 ∨ ¬x3 ∨ x4).
For each variable, we draw an arc between its source and target block. Note that φ is
satisfiable (e.g. with the assignment x1 = x3 = true and x2 = x4 = false). A set of
variables that can be activated before Aφ is in bold, they correspond to the terms being
true in φ for the assignment x1 = x3 = true and x2 = x4 = false.

– We also use a number of intermediate variables, with namesU ji , Ū ji , V pc ,Wc and Yi.

Start with an empty 3DT-instance ε, and add blocks successively:
– For each i ∈ J1 ; mK, add the following qi + q̄i − 1 blocks defining the variables
Xi, X

j
i (j ∈ J1 ; qiK), and X̄i, X̄

j
i (j ∈ J1 ; q̄iK):

[Xi, X̄i] = var(Aiφ);

[X1
i , U

2
i]=copy(Xi); [X2

i , U
3
i]=copy(U2

i);

. . . [Xqi−2
i , Uqi−1

i]=copy(Uqi−2
i); [Xqi−1

i , Xqi
i]=copy(Uqi−1

i);

[X̄1
i , Ū

2
i]=copy(X̄i); [X̄2

i , Ū
3
i]=copy(Ū2

i);

. . . [X̄ q̄i−2
i , Ū q̄i−1

i]=copy(Ū q̄i−2
i); [X̄ q̄i−1

i , X̄ q̄i
i]=copy(Ū q̄i−1

i).

– For each c ∈ J1 ; γK, let Cc = λ1 ∨ λ2 ∨ . . . ∨ λk, with k = k(Cc). Let each λp,
p ∈ J1 ; kK, be the j-th occurrence of a literal xi or ¬xi, for some i ∈ J1 ; mK and
j ∈ J1 ; qiK (resp. j ∈ J1 ; q̄iK). We respectively write Lp = Xj

i or Lp = X̄j
i . Add

the following k − 1 blocks defining Γc:

V 2
c = or(L1, L2); V 3

c = or(V 2
c , L3);

. . . V k−1
c = or(V k−2

c , Lk−1); Γc = or(V k−1
c , Lk).

– Since φ = C1 ∧ C2 ∧ . . . ∧ Cl, add the following l − 1 blocks:
W2=and(Γ1, Γ2); W3=and(W2, Γ3);

. . . Wl−1=and(Wl−2, Γl−1); Aφ=and(Wl−1, Γl).

– The m copies A1
φ, . . . , A

m
φ of Aφ are defined with the following m− 1 blocks:

[A1
φ, Y2] = copy(Aφ); [A2

φ, Y3] = copy(Y2);

. . . [Am−2
φ , Ym−1] = copy(Ym−2); [Am−1

φ , Amφ] = copy(Ym−1).

Theorem 1. Let φ be a boolean formula, and Iφ the 3DT-instance defined above. The
construction of Iφ is polynomial in the size of φ, and φ is satisfiable iff Iφ is 3DT-
collapsible.

4 Sorting by Transpositions is NP-Hard
In order to transfer our result from 3DT-collapsibility to SORTING BY TRANSPOSI-
TIONS, we need a notion of equivalence between 3DT-instances and permutations,
which is introduced here.

Definition 11. Let I = 〈Σ,T, ψ〉 be a 3DT-instance of span n with domain L, and π
be a permutation of J0 ; nK. We say that I and π are equivalent, and we write I ∼ π, if:

π(0) = 0,
∀v ∈ J1 ; nK− L, π(v) = π(v − 1) + 1,
∀v ∈ L, π(v) = π(succ−1

I (v)− 1) + 1.

There is no guarantee that any 3DT-instance I has an equivalent permutation π (for
example, no permutation is equivalent to I = a1 a2 b1 b2 c1 c2). However, coming
back to our example in Figure 2, we have I ∼ π = (0 5 2 1 4 3 6), and I ′ ∼ π′ =
(0 1 4 5 2 3 6). More generally, with the following theorem, we show that such a permu-
tation can always be found in the special case of assemblings of basic blocks, which is
the case we are interested in.

Theorem 2. Let I be a 3DT-instance of span n with B an l-block-decomposition such
that (I,B) is an assembling of basic blocks. Then there exists a permutation πI , com-
putable in polynomial time in n, such that I ∼ πI .

With an equivalence I ∼ π, each breakpoint of π can be associated to an element of
Σ via ψ, and the triples of breakpoints that may be resolved by a single transposition
correspond to the well-ordered triples of T . Moreover, applying such a transposition
on π corresponds to operating a 3DT-step on I . These properties, which lead to the
following theorem, can be seen on the previous example as summarized below:

I (a1, b1, c1)
−−−−−−−−→ I ′ (a2, b2, c2)

−−−−−−−−→ ε
π ◦ τ1,3,5−−−−−→ π′ ◦ τ2,4,6−−−−−→ Id6

db(π) = 6 db(π′) = 3 db(Id6) = 0

Theorem 3. Let I = 〈Σ,T, ψ〉 be a 3DT-instance of span n with domain L, and π be
a permutation of J0 ; nK, such that I ∼ π. Then I is 3DT-collapsible iff dt(π) = |T | =
db(π)/3.

With the previous theorem, we now have all the necessary ingredients to prove the
main result of this paper.

Theorem 4. The SORTING BY TRANSPOSITIONS problem is NP-hard.

Proof. The reduction from SAT is as follows: given any instance φ of SAT, create a
3DT-instance Iφ, being an assembling of basic blocks, which is 3DT-collapsible iff φ is
satisfiable (Theorem 1). Then create a permutation πIφ equivalent to Iφ (Theorem 2).
The above two steps can be achieved in polynomial time.

Finally, set k = db(πIφ)/3 = n/3: φ is satisfiable iff dt(πIφ) = k (Theorem 3).

Corollary 1. The following decision problem from [9] is also NP-complete: given a
permutation π of J0 ; nK, is the equality dt(π) = db(π)/3 satisfied?

Conclusion
In this paper we have proved that the SORTING BY TRANSPOSITIONS problem is NP-
hard, thus answering a long-standing question. However, a number of questions remain
open. For instance, does this problem admit a polynomial-time approximation scheme?
We note that the reduction we have provided does not answer this question, since it is
not a linear reduction. Indeed, by our reduction, if a formula φ is not satisfiable, it can
be seen that we have dt(πIφ) = db(πIφ)/3 + 1.

Also, do there exist some relevant parameters for which the problem is fixed pa-
rameter tractable? A parameter that comes to mind when dealing with the transposition
distance is the size of the factors exchanged (e.g., the value max{j − i, k − j} for a
transposition τi,j,k). Does the problem become tractable if we bound this parameter? In
fact, the answer to this question is no if we bound only the size of the smallest factor,
min{j − i, k − j}: in our reduction, this parameter is upper bounded by 6 for every
transposition needed to sort πIφ , independently of the formula φ.

References
1. A. Amir, Y. Aumann, G. Benson, A. Levy, O. Lipsky, E. Porat, S. Skiena, and U. Vishne. Pat-

tern matching with address errors: Rearrangement distances. J. Comput. Syst. Sci. 75(6):359-
370 (2009)

2. A. Amir, Y. Aumann, P. Indyk, A. Levy, and E. Porat. Efficient computations of `1 and
`∞ rearrangement distances. In Nivio Ziviani and Ricardo A. Baeza-Yates, editors, SPIRE,
volume 4726 of Lecture Notes in Computer Science, pages 39–49. Springer, 2007.

3. V. Bafna and P. A. Pevzner. Sorting permutations by transpositions. In SODA, pages 614–
623, 1995.

4. V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM J. Discrete Math., 11(2):224–
240, 1998.

5. M. Benoı̂t-Gagné and S. Hamel. A new and faster method of sorting by transpositions. In
B. Ma and K. Zhang, editors, CPM, volume 4580 of Lecture Notes in Computer Science,
pages 131–141. Springer, 2007.

6. D. Bongartz. Algorithmic Aspects of Some Combinatorial Problems in Bioinformatics. PhD
thesis, RWTH Aachen University, Germany, 2006.

7. B. Chitturi and I. H. Sudborough. Bounding prefix transposition distance for strings and
permutations. In HICSS, page 468. IEEE Computer Society, 2008.

8. D. A. Christie. Sorting permutations by block-interchanges. Inf. Process. Lett., 60(4):165–
169, 1996.

9. D. A. Christie. Genome Rearrangement Problems. PhD thesis, University of Glasgow,
Scotland, 1998.

10. D. A. Christie and R. W. Irving. Sorting strings by reversals and by transpositions. SIAM J.
Discrete Math., 14(2):193–206, 2001.

11. G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves.
In SODA, pages 667–676, 2002.

12. Z. Dias and J. Meidanis. Sorting by prefix transpositions. In A. H. F. Laender and A. L.
Oliveira, editors, SPIRE, volume 2476 of Lecture Notes in Computer Science, pages 65–76.
Springer, 2002.

13. I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by transpositions.
IEEE/ACM Trans. Comput. Biology Bioinform., 3(4):369–379, 2006.

14. H. Eriksson, K. Eriksson, J. Karlander, L. J. Svensson, and J. Wästlund. Sorting a bridge
hand. Discrete Mathematics, 241(1-3):289–300, 2001.

15. J. Feng and D. Zhu. Faster algorithms for sorting by transpositions and sorting by block
interchanges. ACM Transactions on Algorithms, 3(3), 2007.

16. G. Fertin, A. Labarre, I. Rusu, É. Tannier, and S. Vialette. Combinatorics of genome rear-
rangements. The MIT Press, 2009.

17. Q.-P. Gu, S. Peng, and Q. M. Chen. Sorting permutations and its applications in genome
analysis. Lectures on Mathematics in the Life Science, 26:191–201, 1999.

18. S. A. Guyer, L. S. Heath, and J. P. Vergara. Subsequence and run heuristics for sorting by
transpositions. Technical report, Virginia State University, 1997.

19. T. Hartman and R. Shamir. A simpler and faster 1.5-approximation algorithm for sorting by
transpositions. Inf. Comput., 204(2):275–290, 2006.

20. P. Kolman and T. Waleń. Reversal distance for strings with duplicates: Linear time approxi-
mation using hitting set. In T. Erlebach and C. Kaklamanis, editors, WAOA, volume 4368 of
Lecture Notes in Computer Science, pages 279–289. Springer, 2006.

21. A. Labarre. New bounds and tractable instances for the transposition distance. IEEE/ACM
Trans. Comput. Biology Bioinform., 3(4):380–394, 2006.

22. A. Labarre. Edit distances and factorisations of even permutations. In D. Halperin and
K. Mehlhorn, editors, ESA, volume 5193 of Lecture Notes in Computer Science, pages 635–
646. Springer, 2008.

23. X.-Q. Qi. Combinatorial Algorithms of Genome Rearrangements in Bioinformatics. PhD
thesis, University of Shandong, China, 2006.

24. A. J. Radcliffe, A. D. Scott, and A. L. Wilmer. Reversals and transpositions over finite
alphabets. SIAM J. Discret. Math., 19:224–244, May 2005.

25. D. Shapira and J. A. Storer. Edit distance with move operations. In A. Apostolico and
M. Takeda, editors, CPM, volume 2373 of Lecture Notes in Computer Science, pages 85–98.
Springer, 2002.

