Laurent Bulteau
email: laurent.bulteau@univ-nantes.fr

Guillaume Fertin
email: guillaume.fertin@univ-nantes.fr

Irena Rusu
email: irena.rusu@univ-nantes.fr

Sorting by Transpositions is Difficult

In comparative genomics, a transposition is an operation that exchanges two consecutive sequences of genes in a genome. The transposition distance, that is, the minimum number of transpositions needed to transform a genome into another, can be considered as a relevant evolutionary distance. The problem of computing this distance when genomes are represented by permutations, called the SORTING BY TRANSPOSITIONS problem (SBT), has been introduced by Bafna and Pevzner [3] in 1995. It has naturally been the focus of a number of studies, but the computational complexity of this problem has remained undetermined for 15 years. In this paper, we answer this long-standing open question by proving that the SORTING BY TRANSPOSITIONS problem is NP-hard. As a corollary of our result, we also prove that the following problem from [9] is NP-hard: given a permutation π, is it possible to sort π using d b (π)/3 permutations, where d b (π) is the number of breakpoints of π?

Introduction

Along with reversals, transpositions are one of the most elementary large-scale operations that can affect a genome. A transposition consists in swapping two consecutive sequences of genes or, equivalently, in moving a sequence of genes from one place to another in the genome. The transposition distance between two genomes is the minimum number of such operations that are needed to transform one genome into the other. Computing this distance is a challenge in comparative genomics, since it gives a maximum parsimony evolution scenario between the two genomes.

The SORTING BY TRANSPOSITIONS problem is the problem of computing the transposition distance between genomes represented by permutations: see [START_REF] Fertin | Combinatorics of genome rearrangements[END_REF] for a detailed review on this problem and its variants. Since its introduction by Bafna and Pevzner [START_REF] Bafna | Sorting permutations by transpositions[END_REF][START_REF] Bafna | Sorting by transpositions[END_REF], the complexity class of this problem has never been established. Hence a number of studies [START_REF] Bafna | Sorting by transpositions[END_REF][START_REF] Christie | Genome Rearrangement Problems[END_REF][START_REF] Gu | Sorting permutations and its applications in genome analysis[END_REF][START_REF] Hartman | A simpler and faster 1.5-approximation algorithm for sorting by transpositions[END_REF][START_REF] Elias | A 1.375-approximation algorithm for sorting by transpositions[END_REF][START_REF] Benoît-Gagné | A new and faster method of sorting by transpositions[END_REF][START_REF] Feng | Faster algorithms for sorting by transpositions and sorting by block interchanges[END_REF] aim at designing approximation algorithms or heuristics, the best known fixed-ratio algorithm being a 1.375-approximation [START_REF] Elias | A 1.375-approximation algorithm for sorting by transpositions[END_REF]. Other works [START_REF] Guyer | Subsequence and run heuristics for sorting by transpositions[END_REF][START_REF] Christie | Genome Rearrangement Problems[END_REF][START_REF] Eriksson | Sorting a bridge hand[END_REF][START_REF] Labarre | New bounds and tractable instances for the transposition distance[END_REF][START_REF] Elias | A 1.375-approximation algorithm for sorting by transpositions[END_REF][START_REF] Benoît-Gagné | A new and faster method of sorting by transpositions[END_REF] aim at computing bounds on the transposition distance of a permutation. Studies have also been devoted to variants of this problem, by considering, for example, prefix transpositions [START_REF] Dias | Sorting by prefix transpositions[END_REF][START_REF] Labarre | Edit distances and factorisations of even permutations[END_REF][START_REF] Chitturi | Bounding prefix transposition distance for strings and permutations[END_REF] (in which one of the blocks has to be a prefix of the sequence), or distance between strings [START_REF] Christie | Sorting strings by reversals and by transpositions[END_REF][START_REF] Cormode | The string edit distance matching problem with moves[END_REF][START_REF] Shapira | Edit distance with move operations[END_REF][START_REF] Radcliffe | Reversals and transpositions over finite alphabets[END_REF][START_REF] Kolman | Reversal distance for strings with duplicates: Linear time approximation using hitting set[END_REF] (where multiple occurrences of each element are allowed in the sequences), possibly with weighted or prefix transpositions [START_REF] Qi | Combinatorial Algorithms of Genome Rearrangements in Bioinformatics[END_REF][START_REF] Bongartz | Algorithmic Aspects of Some Combinatorial Problems in Bioinformatics[END_REF][START_REF] Amir | Pattern matching with address errors: Rearrangement distances[END_REF][START_REF] Amir | Efficient computations of 1 and ∞ rearrangement distances[END_REF][START_REF] Chitturi | Bounding prefix transposition distance for strings and permutations[END_REF]. Note also that sorting a permutation by block-interchanges (i.e. exchanges of non-necessarily consecutive sequences) is a polynomial problem [START_REF] Christie | Sorting permutations by block-interchanges[END_REF].

In this paper, we address the long-standing issue of determining the complexity class of the SORTING BY TRANSPOSITIONS problem, by giving a polynomial-time reduction from SAT, thus proving the NP-hardness of this problem. Our reduction is based on the study of transpositions that remove three breakpoints. A corollary of our result is the NP-hardness of the following problem, introduced in [START_REF] Christie | Genome Rearrangement Problems[END_REF]: given a permutation π, is it possible to sort π using d b (π)/3 permutations, where d b (π) is the number of breakpoints of π?

Preliminaries

In this paper, n denotes a positive integer. Let a ; b = {x ∈ N | a ≤ x ≤ b}, and Id n be the identity permutation over 0 ; n . We consider only permutations of 0 ; n such that 0 and n are fixed-points. Given a word u 1 u 2 . . . u l , a subword is a subsequence u p1 u p2 . . . u p l , where 1 ≤ p 1 < p 2 < . . . < p l ≤ l. A factor is a subsequence of contiguous elements, i.e. a subword with p k+1 = p k + 1 for every k ∈ 1 ; l -1 .

Definition 1 (Transposition). Given three integers 0 < i < j < k ≤ n, the transposition τ i,j,k over 0 ; n is the following permutation:

τ i,j,k = 0 • • • i -1 i • • • k + i -j -1 k + i -j • • • k -1 k • • • n 0 • • • i -1 j • • • k -1 i • • • j -1 k • • • n
Let π be a permutation of 0 ; n . The transposition distance d t (π) from π to Id n is the minimum value k for which there exist

k transpositions τ 1 , τ 2 , . . . , τ k such that π • τ k • . . . • τ 2 • τ 1 = Id n .
The transposition τ i,j,k is the operation that, when it is composed with a permutation, exchanges factors with indices i, . . . , j -1 and j, . . . , k -1, see Figure 1a. The inverse function of τ i,j,k is also a transposition: τ -1 i,j,k = τ i,k+i-j,k . See Figure 1b for an example of the computation of the transposition distance.

We consider the following problem:

SORTING BY TRANSPOSITIONS PROBLEM [START_REF] Bafna | Sorting permutations by transpositions[END_REF] INPUT: A permutation π, an integer k. QUESTION: Is d t (π) ≤ k?

Computing the transposition distance has often been linked to studying the breakpoints of a permutation. A breakpoint of π is a pair (x -1, x), x ∈ 1 ; n , such that π(x) = π(x -1) + 1. A transposition can decrease the number of breakpoints of a permutation, d b (π), by at most 3. In this paper we in fact focus on the "simpler" problem of determining whether d t (π) = d b (π)/3 for a given permutation π.

3-Deletion and Transposition Operations

In this section, we introduce 3DT-instances, which are the cornerstone of our reduction from SAT to the SORTING BY TRANSPOSITIONS problem, since they are used as an intermediate between instances of the two problems.

Σ = {a 1 , b 1 , c 1 , a 2 , b 2 , c 2 }, hence ψ is a bijection (ψ(a 1) = 1, ψ(c 2) = 2, ψ(b 1) = 3, etc). I has an alphabet of size 3, Σ = {a 2 , b 2 , c 2 }, with ψ (b 2) = 2, ψ (c 2) = 4, ψ (a 2) = 6.
Definition 2 (3DT-instance). A 3DT-instance I = Σ, T, ψ of span n is composed of the following elements:

-Σ: an alphabet of at most n elements;

-T = {(a i , b i , c i) | 1 ≤ i ≤ |T |}:
a set of (ordered) triples of elements of Σ, partitioning Σ (i.e. all elements are pairwise distinct, and

|T | i=1 {a i , b i , c i } = Σ); -ψ : Σ → 1 ; n , an injection.
The domain of I is the image of ψ, that is the set L = {ψ(σ) | σ ∈ Σ}. The word representation of I is the n-letter word u 1 u 2 . . . u n over Σ ∪ { } (where / ∈ Σ), such that for all i ∈ L, ψ(u i) = i, and for i ∈ 1 ; n -L, u i = . For σ 1 , σ 2 ∈ Σ, we write

σ 1 ≺ σ 2 if ψ(σ 1) < ψ(σ 2), and σ 1 σ 2 if σ 1 ≺ σ 2 and x ∈ Σ, σ 1 ≺ x ≺ σ 2 .
Two examples of 3DT-instances are given in Figure 2. Note that such instances can be defined by their word representation and by their set of triples T . The empty 3DTinstance, in which Σ = ∅, can be written with a sequence of n dots, or with the empty word ε.

Using the triples in T , we can define a successor function over the domain L: Function succ I is a bijection, with no fixed-points, and such that succ I • succ I • succ I is the identity over L.

In the example of Figure 2,succ T is well-ordered if we have i < j < k. In such a case, we write τ [a, b, c, ψ] the transposition τ i,j,k .

An equivalent definition is that (a, b, c) ∈ T is well-ordered iff one of abc, bca, cab is a subword of the word representation of I. In the example of Figure 2,(a

1 , b 1 , c 1) is well-ordered in I: indeed, we have i = ψ(a 1), j = ψ(b 1) and k = ψ(c 1), so i < j < k. The triple (a 2 , b 2 , c 2) is also well-ordered in I (i = ψ (b 2) < j = ψ (c 2) < k = ψ (a 2)), but not in I: i = ψ(c 2) < k = ψ(b 2) < j = ψ(a 2). In this example, we have τ [a 1 , b 1 , c 1 , ψ] = τ 1,3,5 and τ [a 2 , b 2 , c 2 , ψ] = τ 2,4,6 .
Definition 5 (3DT-step). Let I = Σ, T, ψ be a 3DT-instance with (a, b, c) ∈ T a well-ordered triple. The 3DT-step of parameter (a, b, c) is the operation written

(a, b, c) -----→, transforming I into the 3DT-instance I = Σ , T , ψ such that, with τ = τ [a, b, c, ψ]: Σ = Σ -{a, b, c}; T = T -{(a, b, c)}; ψ : Σ → 1 ; n σ → τ -1 (ψ(σ))
.

If the word representation of I is W a X b Y c Z, then, after the 3DT-step I (a, b, c) -----→I , the word representation of I is W Y X Z. Note that a triple that is not well-ordered in I can become well-ordered in I , or vice-versa. In the example of Figure 2, I can be obtained from I via a 3DT-step:

I (a1, b1, c1) --------→I . Moreover, I (a2, b2, c2) --------→ε. Definition 6 (3DT-collapsibility). A 3DT-instance I = Σ, T, ψ is 3DT-collapsible if there exists a sequence of 3DT-instances I k , I k-1 , . . . , I 0 such that I k = I, I 0 = ε, and ∀i ∈ 1 ; k , ∃(a, b, c) ∈ T, I i (a, b, c) -----→Ii-1.
In Figure 2, I and I are 3DT-collapsible, since we have

I (a1, b1, c1) --------→I (a2, b2, c2) --------→ε.

3DT-collapsibility is NP-Hard to Decide

In this section, we define, for any boolean formula φ, a corresponding 3DT-instance I φ . We also prove that I φ is 3DT-collapsible iff φ is satisfiable (see Theorem 1).

Block Structure

The construction of the 3DT-instance I φ uses a decomposition into blocks, defined below. Some triples will be included in a block, in order to define its behavior, while others will be shared between two blocks, in order to pass information. The former are unconstrained, so that we can design blocks with the behavior we need (for example, blocks mimicking usual boolean functions), while the latter need to follow several rules, so that the blocks can easily be arranged together.

Definition 7 (l-block-decomposition). An l-block-decomposition B of a 3DT-instance I of span n is an l-tuple (s 1 , . . . , s l) such that s 1 = 0, for all h ∈ 1 ; l -1 , s h < s h+1 and s l < n. We write t h = s h+1 for h ∈ 1 ; l -1 , and t l = n. Let I = Σ, T, ψ and u 1 u 2 . . . u n be the word representation of I. For h ∈ 1 ; l , the subword u s h +1 u s h +2 . . . u t h where every occurrence of is deleted is called the block B h . For σ ∈ Σ, we write block

I,B (σ) = h if ψ(σ) ∈ s h + 1 ; t h (equivalently, if σ appears in the word B h). A triple (a, b, c) ∈ T is said to be internal if block I,B (a) = block I,B (b) = block I,B (c), external otherwise.
Given a 3DT-step I (a, b, c) -----→I , the arrow notation can be extended to an l-blockdecomposition B of I, provided at least one of the following equalities is satisfied: In this case, with τ = τ [a, b, c, ψ], the l-tuple B = (τ -1 (s 1), . . . , τ -1 (s l)) is an lblock-decomposition of I , and we write (I, B) (a, b, c) -----→(I , B).

Definition 8 (Variable). A variable A of a 3DT-instance I = Σ, T, ψ is a pair of triples A = [(a, b, c), (x, y, z)] of T . It is valid in an l-block-decomposition B if (i) ∃h 0 ∈ 1 ; l such that block I,B (b) = block I,B (x) = block I,B (y) = h 0 (ii) ∃h 1 ∈ 1 ; l , h 1 = h 0 , such that block I,B (a) = block I,B (c) = block I,B (z) = h 1 (iii) if x ≺ y, then we have x b y (iv) a ≺ z ≺ c
For such a valid variable A, the block B h0 containing {b, x, y} is called the source of A, and the block B h1 containing {a, c, z} is called the target of A. For h ∈ 1 ; l , the variables of which B h is the source (resp. the target) are called the output (resp. the input) of B h . The 3DT-step I (x, y, z)

------→I is called the activation of A (it requires that (x, y, z) is well-ordered).

Note that, for any valid variable A = [(a, b, c), (x, y, z)] in (I, B), we have, according to condition (i), block I,B (x) = block I,B (y), thus its activation can be written (I, B) The graph obtained from a block B by following exhaustively the possible arcs as defined above (always assuming this block is in a valid context) is called the behavior graph of B. Figure 3 illustrates the activation of a valid variable A.

(x, y, z) ------→(I , B).

Basic Blocks

We now define four basic blocks: copy, and, or, and var. They are studied independently in this section, before being assembled in Section 3.3. Each of these blocks is defined by -----→ , impacting only the target block of A. Dot symbols () are omitted. We denote by R, S, T, U, V, W some factors of the source and target blocks of A: the consequence of activating A is to allow U and V to be swapped in the target of A.

• • • • • • • • • source º R x b y S º º R S º º R S º • • • • • • • • • target º T a U z V c W º º T a U b V c W º º T V U W º • • • • • • • • • A A (a, b, c) (x, y, z) (a, b, c)
a word and a set of triples. We distinguish internal triples, for which all three elements appear in a single block, from external triples, which are part of an input/output variable, and for which only one or two elements appear in the block. Note that each external triple is part of an input (resp. output) variable, which itself must be an output (resp. input) of block, the other block containing the remaining elements of the triple.

We then compute the behavior graph of each of these blocks (it is given here for the block copy, see Figure 4, and in the full version for the other blocks): in each case, we assume that the block is in a valid context, and follow exhaustively the 3DT-steps that can be applied to it. It must be kept in mind that for any variable, it is the state of the source block which determines whether it can be activated, whereas the activation itself affects mostly the target block. It can be verified that each output (resp. input) variable of these blocks satisfy the constraints (i) and (iii) (resp. (ii) and (iv)) of Definition 8.

The block copy This block aims at duplicating a variable: any of the two output variables can only be activated after the input variable has been activated. See Figure 4 The block and This block aims at simulating a conjunction: the output variable can only be activated after both input variables have been activated. Input variables: (d, e, f)

A 1 = [(a 1 , b 1 , c 1), (x 1 , y 1 , z 1)] and A 2 = [(a 2 , b 2 , c 2), (x 2 , y 2 , z 2)]. Output variable: A = [(
A 2 A 1 A 1 A 1 Fig. 4: Behavior graph of the block [A 1 , A 2] = copy(A).
The block or This block aims at simulating a disjunction: the output variable can be activated as soon as any of the two input variables is activated. Input variables:

A 1 = [(a 1 , b 1 , c 1), (x 1 , y 1 , z 1)] and A 2 = [(a 2 , b 2 , c 2), (x 2 , y 2 , z 2)]. Output variable: A = [(a, b, c), (x, y, z)].
Internal triples: (a , b , c) and (d, e, f). Definition:

A = or(A 1 , A 2) = a 1 b z 1 a 2 d y a x b f z 2 c 1 e c c 2
Property 4. In a block A = or(A 1 , A 2) in a valid context, the possible orders in which A, A 1 and A 2 can be activated are

(A 1 , A, A 2), (A 2 , A, A 1), (A 1 , A 2 , A) and (A 2 , A 1 , A).
The block var This block aims at simulating a boolean variable: in a first stage, only one of the two output variables can be activated. The other needs the activation of the input variable to be activated. Input variable: A = [(a, b, c), (x, y, z)].

Output variables:

A 1 = [(a 1 , b 1 , c 1), (x 1 , y 1 , z 1)], A 2 = [(a 2 , b 2 , c 2), (x 2 , y 2 , z 2)].
Internal triples: (d 1 , e 1 , f 1), (d 2 , e 2 , f 2) and (a , b , c). Definition:

[A 1 , A 2] = var(A) = d 1 y 1 a d 2 y 2 e 1 a e 2 x 1 b 1 f 1 c z b c x 2 b 2 f 2 Property 5. In a block [A 1 , A 2] = var(A)
in a valid context, the possible orders in which A, A 1 and A 2 can be activated are

(A 1 , A, A 2), (A 2 , A, A 1), (A, A 1 , A 2) and (A, A 2 , A 1).
With such a block, if A is not activated first, one needs to make a choice between activating A 1 or A 2 . Once A is activated, however, all remaining output variables are activable.

Assembling the blocks copy, and, or, var.

Definition 10 (Assembling of basic blocks). An assembling of basic blocks (I, B) is composed of a 3DT-instance I and an l-block-decomposition B obtained by the following process. Create a set of variables A. Define I = Σ, T, ψ by its word representation, as a concatenation of l factors B 1 B 2 . . . B l and a set of triples T , where each

B h is one of the blocks [A 1 , A 2] = copy(A), A = and(A 1 , A 2), A = or(A 1 , A 2) or [A 1 , A 2] = var(A), with A 1 , A 2 , A ∈ A (such
that each X ∈ A appears in the input of exactly one block, and in the output of exactly one other block); and where T is the union of the set of internal triples needed in each block, and the set of external triples defined by the variables of A.

Lemma 1. Let I be a 3DT-instance with an l-block-decomposition B , such that (I , B) is obtained from an assembling of basic blocks (I, B) after any number of 3DT-steps. Then (I , B) is a valid context. Moreover, if the set of variables of (I , B) is empty, then I is 3DT-collapsible.

The above lemma justifies the assumption that each block is in a valid context to derive Properties 2 to 5. An assembling of basic blocks is 3DT-collapsible iff there exists a total order, satisfying these properties, in which all its variables can be activated.

Construction of I φ

Let φ be a boolean formula, over the boolean variables x 1 , . . . , x m , given in conjunctive normal form:

φ = C 1 ∧ C 2 ∧ . . . ∧ C γ . Each clause C c (c ∈ 1 ; γ) is
the disjunction of a number of literals, x i or ¬x i , i ∈ 1 ; m . We write q i (resp. qi) for the number of occurrences of the literal x i (resp. ¬x i) in φ, i ∈ 1 ; m . We also write k(C c) for the number of literals appearing in the clause C c , c ∈ 1 ; γ . We can assume that γ ≥ 2, that for each c ∈ 1 ; γ , we have k(C c) ≥ 2, and that for each i ∈ 1 ; m , q i ≥ 2 and qi ≥ 2 (otherwise, we can always add clauses of the form (x i ∨ ¬x i) to φ, or duplicate the literals appearing in the clauses C c such that k(C c) = 1). In order to distinguish variables of an l-block-decomposition from x 1 , . . . , x m , we always use the term boolean variable for the latter.

The 3DT-instance I φ is defined as an assembling of basic blocks: we first define a set of variables, then we list the blocks of which the word representation of I φ is the concatenation. It is necessary that each variable is part of the input (resp. the output) of exactly one block. Note that the relative order of the blocks is of no importance. We simply try, for readability reasons, to ensure that the source of a variable appears before its target, whenever possible. We say that a variable represents a term, i.e. a literal, clause or formula, if it can be activated only if this term is true (for some fixed assignment of the boolean variables), or if φ is satisfied by this assignment. We also say that a block defines a variable if it is its source block.

The construction of I φ is done as follows (see Figure 5 for an example): Create a set of variables:

-For each i ∈ 1 ; m , create q i + 1 variables representing x i : X i and X j i , j ∈ 1 ; q i , and qi + 1 variables representing ¬x i : Xi and Xj i , j ∈ 1 ; qi . -For each c ∈ 1 ; γ , create a variable Γ c representing the clause C c .

-Create m + 1 variables, A φ and A i φ , i ∈ 1 ; m , representing the formula φ.

Ú Ö ÓÔÝ X 1 X 1 1 X 2 1 ÓÔÝ X1 X1 1 X2 1 Ú Ö ÓÔÝ X 2 X 1 2 X 2 2 ÓÔÝ X2 X1 2 X2 2 Ú Ö ÓÔÝ X 3 X 1 3 X 2 3 ÓÔÝ X3 X1 3 X2 3 Ú Ö ÓÔÝ X 4 X 1 4 X 2 4 ÓÔÝ X4 X1 4 X2 4 ÓÖ ÓÖ V 2 1 ÓÖ ÓÖ ÓÖ V 2 3 ÓÖ ÓÖ V 2 4 ÓÖ ÓÖ ÓÖ V 2 6 Ò Γ 1 Γ 2 Ò W 2 Γ 3 Ò W 3 Γ 4 Ò W 4 Γ 5 Ò W 5 Γ 6 ÓÔÝ A φ ÓÔÝ Y 2 ÓÔÝ Y 3 A 1 φ A 2 φ A 3 φ A 4 φ Fig. 5: Schematic diagram of the blocks defining I φ for φ = (x 1 ∨ x 2 ∨ ¬x 3) ∧ (x 1 ∨ ¬x 2) ∧ (¬x 1 ∨ x 2 ∨ ¬x 4) ∧ (¬x 1 ∨ x 3 ∨ x 4) ∧ (x 3 ∨ ¬x 4) ∧ (¬x 2 ∨ ¬x 3 ∨ x 4).
For each variable, we draw an arc between its source and target block. Note that φ is satisfiable (e.g. with the assignment x 1 = x 3 = true and x 2 = x 4 = f alse). A set of variables that can be activated before A φ is in bold, they correspond to the terms being true in φ for the assignment x 1 = x 3 = true and x 2 = x 4 = f alse.

-We also use a number of intermediate variables, with names U j i , Ū j i , V p c , W c and Y i . Start with an empty 3DT-instance ε, and add blocks successively:

-For each i ∈ 1 ; m , add the following q i + qi -1 blocks defining the variables X i , X j i (j ∈ 1 ; q i), and Xi , Xj i (j ∈ 1 ; qi):

[X i , Xi] = var(A i φ); [X 1 i , U 2 i]=copy(X i); [X 2 i , U 3 i]=copy(U 2 i); . . . [X qi-2 i , U qi-1 i]=copy(U qi-2 i); [X qi-1 i , X qi i]=copy(U qi-1 i); [X1 i , Ū 2 i]=copy(Xi); [X2 i , Ū 3 i]=copy(Ū 2 i); . . . [X qi-2 i , Ū qi-1 i]=copy(Ū qi-2 i); [X qi-1 i , X qi i]=copy(Ū qi-1 i
).

-

For each c ∈ 1 ; γ , let C c = λ 1 ∨ λ 2 ∨ . . . ∨ λ k , with k = k(C c).
Let each λ p , p ∈ 1 ; k , be the j-th occurrence of a literal x i or ¬x i , for some i ∈ 1 ; m and j ∈ 1 ; q i (resp. j ∈ 1 ; qi). We respectively write L p = X j i or L p = Xj i . Add the following k -1 blocks defining Γ c :

V 2 c = or(L 1 , L 2); V 3 c = or(V 2 c , L 3); . . . V k-1 c = or(V k-2 c , L k-1); Γ c = or(V k-1 c , L k). -Since φ = C 1 ∧ C 2 ∧ . . . ∧ C l , add the following l -1 blocks: W 2 =and(Γ 1 , Γ 2); W 3 =and(W 2 , Γ 3); . . . W l-1 =and(W l-2 , Γ l-1); A φ =and(W l-1 , Γ l).
-The m copies A 1 φ , . . . , A m φ of A φ are defined with the following m -1 blocks:

[A 1 φ , Y 2] = copy(A φ); [A 2 φ , Y 3] = copy(Y 2); . . . [A m-2 φ , Y m-1] = copy(Y m-2); [A m-1 φ , A m φ] = copy(Y m-1
). Theorem 1. Let φ be a boolean formula, and I φ the 3DT-instance defined above. The construction of I φ is polynomial in the size of φ, and φ is satisfiable iff I φ is 3DTcollapsible.

Sorting by Transpositions is NP-Hard

In order to transfer our result from 3DT-collapsibility to SORTING BY TRANSPOSI-TIONS, we need a notion of equivalence between 3DT-instances and permutations, which is introduced here. Definition 11. Let I = Σ, T, ψ be a 3DT-instance of span n with domain L, and π be a permutation of 0 ; n . We say that I and π are equivalent, and we write I ∼ π, if:

π(0) = 0, ∀v ∈ 1 ; n -L, π(v) = π(v -1) + 1, ∀v ∈ L, π(v) = π(succ -1 I (v) -1) + 1.
There is no guarantee that any 3DT-instance I has an equivalent permutation π (for example, no permutation is equivalent to I = a 1 a 2 b 1 b 2 c 1 c 2). However, coming back to our example in Figure 2, we have I ∼ π = (0 5 2 1 4 3 6), and I ∼ π = (0 1 4 5 2 3 6). More generally, with the following theorem, we show that such a permutation can always be found in the special case of assemblings of basic blocks, which is the case we are interested in. Theorem 2. Let I be a 3DT-instance of span n with B an l-block-decomposition such that (I, B) is an assembling of basic blocks. Then there exists a permutation π I , computable in polynomial time in n, such that I ∼ π I .

With an equivalence I ∼ π, each breakpoint of π can be associated to an element of Σ via ψ, and the triples of breakpoints that may be resolved by a single transposition correspond to the well-ordered triples of T . Moreover, applying such a transposition on π corresponds to operating a 3DT-step on I. These properties, which lead to the following theorem, can be seen on the previous example as summarized below: With the previous theorem, we now have all the necessary ingredients to prove the main result of this paper. Proof. The reduction from SAT is as follows: given any instance φ of SAT, create a 3DT-instance I φ , being an assembling of basic blocks, which is 3DT-collapsible iff φ is satisfiable (Theorem 1). Then create a permutation π I φ equivalent to I φ (Theorem 2). The above two steps can be achieved in polynomial time.

Finally, set k = d b (π I φ)/3 = n/3: φ is satisfiable iff d t (π I φ) = k (Theorem 3).

Corollary 1. The following decision problem from [START_REF] Christie | Genome Rearrangement Problems[END_REF] is also NP-complete: given a permutation π of 0 ; n , is the equality d t (π) = d b (π)/3 satisfied?

Conclusion

In this paper we have proved that the SORTING BY TRANSPOSITIONS problem is NPhard, thus answering a long-standing question. However, a number of questions remain open. For instance, does this problem admit a polynomial-time approximation scheme?

We note that the reduction we have provided does not answer this question, since it is not a linear reduction. Indeed, by our reduction, if a formula φ is not satisfiable, it can be seen that we have d t (π I φ) = d b (π I φ)/3 + 1. Also, do there exist some relevant parameters for which the problem is fixed parameter tractable? A parameter that comes to mind when dealing with the transposition distance is the size of the factors exchanged (e.g., the value max{ji, k -j} for a transposition τ i,j,k). Does the problem become tractable if we bound this parameter? In fact, the answer to this question is no if we bound only the size of the smallest factor, min{ji, k -j}: in our reduction, this parameter is upper bounded by 6 for every transposition needed to sort π I φ , independently of the formula φ.

π=Fig. 1 :Fig. 2 :

 12 Fig. 1: (a) Representation of a transposition τ i,j,k for 0 < i < j < k ≤ n on a general permutation. (b) The transposition distance from π = (0 2 4 3 1 5) to Id 5 is 2: it is at most 2 since π • τ 1,3,5 • τ 1,2,4 = Id 5 , and it cannot be less than 2 since d t (π) ≥ d b (π)/3 = 5/3 > 1. I = a1 c2 b1 b2 c1 a2 with T = {(a1, b1, c1), (a2, b2, c2)} I = b2 c2 a2 with T = {(a2, b2, c2)} Fig. 2: Two examples of 3DT-instances of span 6. We write I = Σ, T, ψ and I = Σ , T , ψ . I has an alphabet of size 6, Σ = {a 1 , b 1 , c 1 , a 2 , b 2 , c 2 }, hence ψ is a bijection (ψ(a 1) = 1, ψ(c 2) = 2, ψ(b 1) = 3, etc). I has an alphabet of size 3, Σ = {a 2 , b 2 , c 2 }, with ψ (b 2) = 2, ψ (c 2) = 4, ψ (a 2) = 6.

Definition 3 .

 3 Let I = Σ, T, ψ be a 3DT-instance with domain L. We write succ I : L → L the function such that, for all (a, b, c) ∈ T , ψ(a) → ψ(b), ψ(b) → ψ(c), and ψ(c) → ψ(a).

Definition 4 .

 4 Let I = Σ, T, ψ be a 3DT-instance, and (a, b, c) be a triple of T . Write i = min{ψ(a), ψ(b), ψ(c)}, j = succ I (i), and k = succ I (j). The triple (a, b, c) ∈

 block I,B (a) = block I,B (b), block I,B (b) = block I,B (c) or block I,B (c) = block I,B (a).

Property 1 .

 1 Let (I, B) be a 3DT-instance with an l-block-decomposition, and A be a variable of I that is valid in B, A = [(a, b, c), (x, y, z)]. Then (x, y, z) is well-ordered iff x ≺ y; and (a, b, c) is not well-ordered. Definition 9 (Valid context). A 3DT-instance with an l-block-decomposition (I, B) is a valid context if the set of external triples of I can be partitioned into valid variables. Let B be a block in a valid context (I, B) (in which B = B h , for some h ∈ 1 ; l), and (I, B) (d, e, f) ------→(I , B) be a 3DT-step such that, writing B = B h , we have B = B. Then, depending on the triple (d, e, f), we are in one of the following three cases: -(d, e, f) is an internal triple of B. We write: B B ′ (d, e, f) -(d, e, f) = y, z) for some output A = [(a, b, c), (x, y, z)] of B. We write: B B ′ A -(d, e, f) = (x, y, z) for some input A = [(a, b, c), (x, y, z)] of B. We write:

Fig. 3 :

 3 Fig. 3: Activation of a valid variable A = [(a, b, c), (x, y, z)]. It can be followed by the 3DTstep (a, b, c)-----→ , impacting only the target block of A. Dot symbols () are omitted. We denote by R, S, T, U, V, W some factors of the source and target blocks of A: the consequence of activating A is to allow U and V to be swapped in the target of A.

a y 1 e z d y 2 x 1 b 1 c x 2 b 2 f 2 .

 22 for the behavior graph of this block. Input variable: A = [(a, b, c), (x, y, z)]. Output variables: A 1 = [(a 1 , b 1 , c 1), (x 1 , y 1 , z 1)] and A 2 = [(a 2 , b 2 , c 2), (x 2 , y 2 , z 2)]. Internal triple: (d, e, f). Definition: [A 1 , A 2] = copy(A) = Property In a block [A 1 , A 2] = copy(A) in a valid context, the possible orders in which A, A 1 and A 2 can be activated are (A, A 1 , A 2) and (A, A 2 , A 1).

a 1 e z 1 a 2 c 1 z 2 d y c 2 x b f Property 3 .

 3 a, b, c), (x, y, z)]. Internal triple: (d, e, f). Definition: A = and(A 1 , A 2) = In a block A = and(A 1 , A 2) in a valid context, the possible orders in which A, A 1 and A 2 can be activated are (A 1 , A 2 , A) and (A 2 , A 1 , A).

º a y 1 e z d y 2 x 1 b 1 c x 2 b 2 f º º a y 1 e b d y 2 x 1 b 1 c x 2 b 2 f º º d y 2 x 1 b 1 y 1 e x 2 b 2 f º º x 2 b 2 y 2 x 1 b 1 y 1 º º d y 2 e x 2 b 2 f º º x 1 b 1 y 1 º º x 2 b 2 y 2

 2

Theorem 3 .

 3 Let I = Σ, T, ψ be a 3DT-instance of span n with domain L, and π be a permutation of 0 ; n , such thatI ∼ π. Then I is 3DT-collapsible iff d t (π) = |T | = d b (π)/3.

Theorem 4 .

 4 The SORTING BY TRANSPOSITIONS problem is NP-hard.