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Abstract. One of the emerging topics in the analysis of biological net-
works is the inference of motifs inside a network. In the context of
metabolic network analysis, a recent approach introduced in [14], rep-
resents the network as a vertex-colored graph, while a motif M is repre-
sented as a multiset of colors. An occurrence of a motif M in a vertex-
colored graph G is a connected induced subgraph of G whose vertex set is
colored exactly as M. We investigate three different variants of the initial
problem. The first two variants, Min-Add and Min-Substitute, deal
with approximate occurrences of a motif in the graph, while the third
variant, Constrained Graph Motif (or CGM for short), constrains
the motif to contain a given set of vertices. We investigate the classical
and parameterized complexity of the three problems. We show that Min-

Add and Min-Substitute are NP-hard, even when M is a set, and the
graph is a tree of degree bounded by 4 in which each color appears at
most twice. Moreover, we show that Min-Substitute is in FPT when
parameterized by the size of M. Finally, we consider the parameterized
complexity of the CGM problem, and we give a fixed-parameter algo-
rithm for graphs of bounded treewidth, while we show that the problem
is W [2]-hard, even if the input graph has diameter 2.

1 Introduction

The problem of analyzing biological networks such as protein-protein interaction
networks and metabolic networks has become increasingly relevant in Computa-
tional Biology (see for example [5, 12, 13, 17–19]). While the classical approach is
based on graph-theoretical topology of the motif, a recent approach introduced
in [14] aims at discovering functional motifs that do not rely on the conservation
of the topology, but that are simply connected components of the network. This
approach has been formalized as a graph problem (named Graph Motif), in
which given a vertex-colored graph G = (V,E) and a multiset M of colors, the



goal is to find a subset V ′ ⊆ V which is connected and whose vertex set is colored
exactly as M.

The Graph Motif problem has been widely studied, and some variants
have been introduced. The original problem is known to be NP-complete [14],
even if the input graph is a tree with maximum degree 3 and the motif is a
set [10], and if the input graph is a bipartite graph with maximum degree 4
and the motif is built over two colors only [10]. It is easy to see that Graph

Motif admits a polynomial time algorithm when the input graph is a tree and
each color occurs at most twice in the input tree. The Graph Motif problem
is known to be in FPT, when parameterized by the size of the motif [4, 10, 11],
while it is W[1]-hard when parameterized by the number of distinct colors in the
motif, even in the case the input graph is a tree [10]. Recently, the kernelization
complexity of the problem has also been considered [1].

Different variants of the Graph Motif problem have been introduced. Such
variants either modify the requirement of connectedness [7], or look for approx-
imate occurrences of the motif, where some colors are allowed to be inserted
or deleted in an occurrence of the motif [5, 8, 11]. Following this direction, we
consider three variants of the Graph Motif problem. In the first two variants,
we relax the constraint that each color of M must appear in an occurrence of
the motif, and we allow for the adding (Min-Add) or the substitution (Min-

Substitute) of some colors. These two problems are motivated by the fact that,
due to experimental errors, there may not exist an exact occurrence of the mo-
tif M in the graph G. In the third variant, Constrained Graph Motif (or
CGM, for short), we strengthen the requirement of connectedness, constraining
some vertices of the input graph to be part of an occurrence of a motif M. This
is motivated by the fact that, due to a previous knowledge on the structure of the
network, we may require some of the vertices to be contained in any occurrence
of M.

The rest of the paper is organized as follows. In Section 2, we give some
preliminary definitions and we formally define the problems. In Section 3, we
show that Min-Substitute and Min-Add are NP-hard, even when M is a
set, the input graph is a tree T of degree bounded by 4 and each color has at
most two occurrences in T . Notice that under the same hypotheses, the Graph

Motif problem admits a polynomial time algorithm. In Section 4, we give an
FPT algorithm for Min-Substitute. In Section 5, we discuss the parameterized
complexity of the CGM problem, when the parameter is the number of colors
not belonging to mandatory vertices ; in Section 5.1, we show that CGM is
fixed-parameter tractable for graphs of bounded treewidth, while in Section 5.2
we show that CGM is W [2]-hard, even if the diameter of the input graph is
bounded by 2. Some of the proofs are omitted due to space constraints.

2 Preliminaries

In this section, we recall basic notations used in the rest of the paper. Given a
graph G = (V,E) and V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced



by V ′, that is G[V ′] = (V ′, E′) and {u, v} ∈ E′ iff u, v ∈ V ′ and {u, v} ∈ E.
Given a vertex v ∈ V , we denote by N(v) the set of vertices in G adjacent to v.
We recall that a graph is cubic when each vertex has degree 3.

Let G be a connected graph, where every vertex u ∈ V (G) is assigned a color
c(u) from a set C of colors. For any subset V ′ of V , let C(V ′) be the multiset
of colors assigned to the vertices in V ′. Let M be a multiset of colors, whose
colors are taken from the set C. Given a colored graph G and a subset of vertices
V ′ ⊆ V (G), C(V ′) is said to match a multiset of colors M if C(V ′) is equal
to M. In this case, by abuse of notation, we say that V ′ matches M. Given a
subset of vertices V ′ ⊆ V (G) such that V ′ matches M and G[V ′] is connected,
then V ′ is called an occurrence of M in G. A motif M is said colorful when M
is a set of colors (rather than a multiset).

In this paper, we consider three variants of the Graph Motif problem. For
two of them, Min-Add and Min-Substitute, we look for a vertex set V ′ of
G = (V,E), such that G[V ′] is connected and C(V ′) is not necessarily equal
to M. Furthermore, we consider a constrained variant of the Graph Motif

problem, CGM, where the input consists of a vertex colored graph and a set of
mandatory vertices that must belong to any occurrence of motif M.

Let us introduce the first two variants of Graph Motif problem.

Min-Add (decision version)
Input : A multiset of colors M, a vertex-colored graph G = (V,E), an integer p.
Question : Is there a subset V ′ ⊆ V , such that G[V ′] is connected, C(V ′) ⊇ M
and |C(V ′) \M| ≤ p ?

Min-Substitute (decision version)
Input : A multiset of colors M, a vertex-colored graph G = (V,E), an integer p.
Question : Is there a subset V ′ ⊆ V , such that G[V ′] is connected and C(V ′)
can be obtained with at most p substitutions from M?

Notice that, in case p = 0, both Min-Add and Min-Substitute are equiv-
alent to the Graph Motif problem. As a consequence, Min-Add and Min-

Substitute are both NP-hard when the motif is colorful, the input graph
consists of a tree T and each color has at most 3 occurrences in T [10]. Fur-
thermore, Min-Add (resp. Min-Substitute) cannot be approximated within
any approximation factor, and does not admit any fixed-parameter tractable al-
gorithm, when the parameter is the number of added colors (resp. the number
of substitutions). Notice that Min-Add is in FPT, when parameterized by |M|.
Indeed, in [11], a variant of Graph Motif, called Multiset Graph Motif With
Gaps (MGMG), is considered: given an input graph G and a motif M, we look
for an occurrence of M that is allowed to contain gaps. Note that this is precisely
Min-Add, where the gaps represent colors to be added to M. As in [11] it is
shown that MGMG is in FPT when parameterized by |M|, we can conclude that



the Min-Add problem is in FPT. Furthermore, in case the motif is colorful, a
fixed-parameter algorithm for Min-Add has been given in [5].

Let us now consider a different variant of the Graph Motif problem, called
Constrained Graph Motif (CGM).

Constrained Graph Motif (CGM)
Input : A multiset of colors M, a vertex-colored graph G = (V,E), a set of
mandatory vertices VM ⊆ V .
Question : Is there a subset V ′ ⊆ V , such that G[V ′] is connected, C(V ′) = M
and VM ⊆ V ′?

Given an instance of CGM, define the optional occurrences Co as Co = M \
C(VM ).

The CGM problem is NP-complete, since the Graph Motif problem is
NP-complete [10, 14]. It is easy to see that CGM is fixed-parameter tractable,
when the parameter is the size of the motif. Indeed, recall that Graph Motif

is fixed-parameter tractable. By recoloring the graph, assigning a unique color
to each vertex in VM , and by modifying accordingly M, we can conclude that
each occurrence of M in G must include all the vertices in VM .

In Section 5, we investigate the parameterized complexity of the CGM prob-
lem, when the parameter is the number of optional occurrences. Notice that the
Minimum (Unweighted) Steiner Tree problem is a restriction of the CGM prob-
lem, where the non mandatory vertices in the Steiner Tree problem correspond
to optional occurrences in CGM. As the Minimum (Unweighted) Steiner Tree
problem is W[2]-hard when parameterized by the number of non mandatory ver-
tices [6], it follows that the CGM problem is W[2]-hard when parameterized by
the number of optional occurrences.

In Section 5.1, we will consider the case where the input graph has bounded
treewidth and we will use a tree decomposition of the graph. Let us recall the
definition of tree decomposition of a graph [9, 15]. Given a graph G = (V,E), a
tree decomposition of G is a pair 〈{Xi : i ∈ I}, T 〉, such that each Xi is called a
bag, and T is a tree having as vertices the elements of I and such that:

1. ∪i∈IXi = V ;
2. for each edge {u, v} ∈ E, there is a bag Xi with u, v ∈ Xi;
3. for each i, j, k in V , if j is on the path from i to k in G, then Xi ∩Xk ⊆ Xj .

The width of 〈{Xi : i ∈ I}, T 〉 is equal to max{|Xi| : i ∈ I} − 1 and the
treewidth of a graph G is equal to the minimum δ such that G has a tree
decomposition of width δ. A tree decomposition 〈{Xi, i ∈ {1, . . . , p}}, T 〉 of a
graph G is nice (see [15]) when, given a vertex i of the tree decomposition, i has
at most two children and the following conditions hold:

1. if i has two children j and k, then Xi = Xj = Xk;
2. if i has exactly one child j, then one of the following conditions holds:

(a) |Xi| = |Xj | + 1, and then Xj ⊂ Xi; or



(b) |Xi| = |Xj | − 1, and then Xj ⊃ Xi.

In the rest of the paper, in order to extend some results from the case when
M is colorful to the general case, we use the recoloring technique introduced
in [4], based on the color-coding technique [3]. The recoloring technique starts
from a general motif M and computes a colorful motif C, recoloring accordingly
the vertices of the input graph G. Let V ′ be an occurrence of M in the graph
G, then V ′ achieves a colorful recoloring if C(V ′) is colorful after the recoloring
of M and G. In [4], the following result was shown:

Lemma 1 (Betzler et al. [4]). Given a motif M, the number of trials to
achieve a colorful recoloring of M with an error probability of ε is | ln(ε)| ·
O(e|M|).

3 NP-hardness of Min-Substitute and Min-Add

In this section, we show that Min-Substitute and Min-Add are NP-hard,
even if the input graph is a tree, the motif is colorful and each color has at most
two occurrences in the input tree. Recall that, under the same hypotheses, the
Graph Motif problem admits a polynomial time algorithm.

Theorem 1. The Min-Substitute problem is NP-hard, even when the input
graph is a tree of maximum degree 4, each color occurs at most twice in the input
graph and the motif is colorful.

Proof. We give a reduction from the Minimum Vertex-Cover on Cubic
Graphs problem (Min-VCC). Let G = (V,E) be a cubic graph with
V = {v1, v2, . . . , vn}, the Min-VCC problem asks for a subset V ′ ⊆ V of size at
most p, such that for each {vi, vj} ∈ E at least one of vi, vj is in V ′. Min-VCC

is known to be NP-hard [2]. Starting from G, we construct an instance of the
Min-Substitute problem which consists of a tree T and a set of colors M. For
any vertex vi ∈ V , let ei,j , 1 ≤ j ≤ 3, be its 3 incident edges, ordered arbitrarily.
The tree T = (VT , ET ) is defined as follows (see Figure 1):

– VT = {li, ai,1, ai,2 : 1 ≤ i ≤ n}∪{si : 1 ≤ i ≤ p}∪{ti : 1 ≤ i ≤ n+1}∪{ei,j :
1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3};

– ET = {{li, li+1} : 1 ≤ i < n} ∪ {{si, si+1} : 1 ≤ i < p} ∪ {{ti, ti+1} :
1 ≤ i < n + 1} ∪ {{ln, t1}} ∪ {{tn+1, s1}} ∪ {{li, ai,1}, {ai,1, ai,2} : 1 ≤ i ≤
n} ∪ {{ai,2, ei,j} : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3}.

Clearly, this construction gives us a tree of maximum degree 4. Let us describe
the colors assigned to each vertex of V (G). Each vertex li, 1 ≤ i ≤ n, is assigned
a unique color c(li), each vertex si, 1 ≤ i ≤ p, is assigned a unique color c(si),
and each each vertex ti, 1 ≤ i ≤ n + 1, is assigned a unique color c(ti). The
two vertices ai,1, ai,2, 1 ≤ i ≤ n, are assigned the same color c(vi). Finally, each
vertex ei,x in VT , 1 ≤ i ≤ n and 1 ≤ x ≤ 3, associated to an edge ei,j = {vi, vj}
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Fig. 1. Illustration of the reduction from Min-VCC to Min-Substitute.

in E, is assigned color c(ei,j). Each color occurs at most twice in T , as each color
c(ei,j) is associated to two vertices of T , while each color c(vi) is associated to
vertices ai,1, ai,2. M is a set of colors defined as follows: M = {c(li) : 1 ≤ i ≤
n}∪ {c(si) : 1 ≤ i ≤ p}∪ {c(vi) : 1 ≤ i ≤ n}∪ {c(ei,j) : ei,j ∈ E}. Notice that no
occurrence of a color c(ti), 1 ≤ i ≤ n + 1, belongs to M.

Starting from a vertex cover V ′ ⊆ V of G of size at most p, a solution VT ′

of Min-Substitute, that substitutes p colors from M, is obtained as follows.
Given an edge ei,j = {vi, vj}, define emin

i,j = min{i, j}. The vertex set VT ′ defined
as follows:
VT ′ = {li, ai,1 : 1 ≤ i ≤ n} ∪ {ti : 1 ≤ i ≤ p − |V ′|} ∪ {ai,2 : vi ∈ V ′} ∪ {ei,x :
c(ei,x) = c(ei,j) ∧ i = emin

i,j }.

By construction and since V ′ is a vertex cover, VT ′ induces a subtree of T .
It is easy to see that, given C(VT ′) = M′, M′ can be obtained from M by p
substitutions.

Let us consider now a solution VT ′ of Min-Substitute, where C(VT ′) = M′,
|M′| = |M|, and M′ can be obtained from M with at most p substitutions. First,
we show that VT ′ does not contain a vertex of the set {si : 1 ≤ i ≤ p}. Indeed,
assume that a vertex si is part of VT ′ ; by construction the set of vertices {tj :
1 ≤ j ≤ n + 1} must belong to VT ′ , and since M does not contain occurrences
of any color c(tj), 1 ≤ j ≤ n + 1, it follows that M′ requires at least n + 1
substitutions. Notice that n + 1 > p, as each vertex cover V ′ of G has size at
most n. Hence, we can assume that VT ′ does not contain any vertex in the set
{si : 1 ≤ i ≤ p}. It follows that all the colors c(si), 1 ≤ i ≤ p, in M must be
substituted, and, since by hypothesis M′ can be obtained from M with at most
p substitutions, it follows that only the colors c(si), 1 ≤ i ≤ p, are substituted.
Hence {li, ai,1 : 1 ≤ i ≤ n} ⊆ VT ′ and M′ ⊇ {c(ei,j) : ei,j ∈ E}. Since T [VT ′ ]
must be connected, it follows that each vertex colored c(ei,j) must be connected
to some vertex ai,2 ∈ VT ′ colored by c(vi). Define V ′ = {vi : ai,2 ∈ VT ′} ; then
V ′ is a cover of G of size at most p, which completes the proof. ⊓⊔

Theorem 2. The Min-Add problem is NP-hard, even when the input graph is
a tree of maximum degree 4, each color occurs at most twice in the input graph
and the motif is colorful.



Proof. (Sketch) The result follows from a reduction from Min-VCC similar to
that of Theorem 1. Given an instance of Min-VCC, an instance (T,M) of Min-

Add is constructed as follows. T = (VT , ET ) is defined as follows (see Fig. 2):

– VT = {li, ai,1, ai,2 : 1 ≤ i ≤ n} ∪ {ei,j : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3};
– ET = {{li, li+1} : 1 ≤ i < n} ∪ {{li, ai,1}, {ai,1, ai,2} : 1 ≤ i ≤

n} ∪ {{ai,2, ei,j} : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3}.
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Fig. 2. Illustration of the reduction from Min-VCC to Min-Add.

Each vertex li, 1 ≤ i ≤ n, is assigned a unique color c(li), 1 ≤ i ≤ n. The
two vertices ai,1, ai,2, 1 ≤ i ≤ n, are assigned the same color c(vi). Finally,
each vertex ei,x in VT , 1 ≤ i ≤ n and 1 ≤ x ≤ 3, associated to an edge
ei,j = {vi, vj} in E, is assigned color c(ei,j). M is a set of colors defined as
follows: M = {c(li) : 1 ≤ i ≤ n} ∪ {c(vi) : 1 ≤ i ≤ n} ∪ {c(ei,j) : ei,j ∈ E}.

It can be proved that starting from a vertex cover V ′ ⊆ V of G, we can
compute in polynomial time a solution VT ′ of Min-Add such that C(VT ′) ⊇ M
and |C(VT ′)| ≤ |M|+ |V ′|. Conversely, starting from a solution VT ′ of Min-Add

such that C(VT ′) ⊇ M and |C(VT ′)| ≤ |M| + p, we can compute a vertex cover
V ′ of G such that |V ′| ≤ p. ⊓⊔

4 Parameterized Complexity of Min-Substitute

In this section, we discuss the parameterized complexity of Min-Substitute,
when parameterized by |M|. We recall that Min-Substitute is not in FPT, as
discussed in Section 2, when parameterized by the the size of the solution (i.e.,
the number of substituted colors).

Let us first consider the case where the motif M is colorful (i.e., M is a set).
The algorithm is based on dynamic programming. Let (G = (V,E),M) be an
instance of Min-Substitute. Instead of computing directly a solution for Min-

Substitute, we compute a solution for a slightly different problem, where we
visit the vertices of a connected component of G, allowing to visit some vertices



more than once. Let v be a vertex of the input graph G, let C ⊆ M be a subset
of colors, let k be the number of vertices of the solution of Min-Substitute we
are looking for, and define S[v, C, k] as the minimum value z required by a visit
of a connected set VT of vertices of G such that:

1. v ∈ VT ;
2. exactly k visits of vertices in VT are done;
3. C(VT ) matches q colors of C, where z = k − q.

Notice that a vertex of VT may be visited more than once, while the overall num-
ber of visits must be k. Now, let us define the dynamic programming recurrence
to compute S[v, C, k].

S[v, C, k] = min
C′⊆C,u∈N(v),k1+k2=k

{

S[v, C ′, k1] + S[u, C \ C ′, k2]
}

. (1)

For the base cases: S[u, C ′, 1] = 0, when c(u) ∈ C ′, for each C ′ ⊆ C and
u ∈ V , and S[u, C ′, 1] = 1 when c(u) /∈ C ′. Now, let us prove the correctness of
Recurrence (1).

Lemma 2. Let (G,M) be an instance of Min-Substitute, let v be a vertex of
G, and let C be a subset of M. There is a visit of a connected vertex set VT of
G, such that v ∈ VT , the vertices of VT are visited k times, and C(VT ) matches
q colors of C, iff there exists an entry S[v, C, k] = z, where z = k − q.

An optimal solution for the Min-Substitute problem can be found as fol-
lows. We look for the minimal value z in the entries S[v,M, |M|], with v ∈ V .
Notice that this value may be associated to a visit of a connected vertex set VT ,
where some of the vertices may be visited repeatedly. Each repeated visit of a
vertex represents a color to be substituted, since M is colorful. It follows that
we can compute a feasible solution for Min-Substitute by replacing these re-
peated visits by some connected components adjacent to VT without increasing
the number of substitutions.

The time complexity of the algorithm is O∗(3|M|), as we have to consider all
possible subsets C ⊆ M and for each subset C we have to consider all possibile
bipartitions of C. Indeed, there are O(3|M|) possible bipartitions of all possible
subsets C of M. In order to extend the results to a multiset, we apply the
recoloring technique described in [4]. Combining Lemma 2 with Lemma 1, and
we get that Min-Substitute, parameterized by |M|, can be solved in time
O∗((3e)O(|M|)).

5 Parameterized Complexity of CGM

In this section, we consider the parameterized complexity of CGM, where the
parameter is the number k of optional occurrences Co, that is k = |Co|, where
Co = M\ C(VM ). First, in Section 5.1, we show that CGM is fixed-parameter
tractable, when the input graph is of bounded treewidth ; then, in Section 5.2,
we prove that CGM is W[2]-hard, even when the input graph is of diameter 2.



5.1 An FPT Algorithm for Graphs of Bounded Treewidth

Here, we describe a fixed-parameter algorithm for CGM for graphs of bounded
treewidth. Let (G = (V,E),M, VM ) be an instance of CGM, and let us first
consider the case where the motif M is colorful.

Denote by k the number of optional occurrences and by δ the treewidth of
graph G. The algorithm is based on a nice tree decomposition of G (see Section 2
for the definition of nice tree decomposition of a graph). We also consider a
slightly more general problem, where instead of requiring that an occurrence of
a motif consists of a single connected component, we may have an occurrence
consisting of at most δ +1 connected components, where the different connected
components are induced by a partition of a bag Xi of the nice tree decomposition.
Given a vertex i of the tree decomposition of G, denote by T [i] the subtree of
the nice tree decomposition rooted at i and let V (T [i]) = {u ∈ Xj : j ∈ T [i]}.

Now, consider a set Xi, 1 ≤ i ≤ p, of the nice tree decomposition 〈{Xi, i ∈
{1, . . . , p}}, T 〉. From the definition of treewidth, it follows that |Xi| ≤ δ + 1.
Now, let us define a mapping function fi associated to the vertices of Xi, as
follows.

Definition 1. Let Xi be a bag of the nice tree decomposition of G. A mapping
function fi from Xi to {0, 1, . . . , δ + 1} is feasible when

1. fi(v) 6= 0 for each mandatory vertex v in Xi;
2. for each pair of vertices u, v ∈ Xi such that c(u) = c(v), then fi(u) = 0 or

fi(v) = 0;
3. define X l

i = {v ∈ Xi : f(vi) = l}, l ∈ {1, . . . , δ + 1}, and X ′
i = ∪lX

l
i , then

X l
i is a maximal connected component of G[X ′

i].

A feasible mapping fi represents a partition of a subset X ′
i ⊆ Xi in at most

δ + 1 connected components, where fi(v) = p 6= 0 implies that v belongs to the
p-th connected component, while fi(v) = 0 implies that v does not belong to
X ′

i.

Definition 2. Let W be a set of vertices of V (T [i]), consisting of the connected
components W1, W2, . . . ,Wz. Let fi be a feasible mapping of Xi in {0, 1, . . . δ+1},
then W is mapped (or partitioned) according to fi if:

1. for each p, 1 ≤ p ≤ z, Wp ∩ Xi 6= ∅, and there exists exactly one l, 1 ≤ l ≤
δ + 1, such that Wp ∩ Xi = X l

i

2. for each l, 1 ≤ l ≤ δ + 1, such that X l
i 6= ∅, there exists exactly one p,

1 ≤ p ≤ z, such that X l
i = Wp ∩ Xi.

Notice that by Definition 2, if a vertex u of W is not in Xi, then there exists
a vertex v in W ∩ Xi such that v and u are in the same connected component
Wx of W , v is assigned some label l 6= 0, and all the vertices of Wx ∩ Xi are
assigned the same label l.

Given two sets Xi and Xj of a nice tree decomposition, and two feasible
mappings fi : Xi → {0, . . . , δ + 1} and fj : Xj → {0, . . . , δ + 1}, then fi and fj

are consistent if, for each v ∈ Xi ∩ Xj , fi(v) = fj(v).



Let i be a vertex of the nice tree decomposition, with exactly one child j,
such that |Xi| = |Xj | + 1 and Xj ⊂ Xi, with v ∈ Xi \ Xj . Then, a feasible
mapping fi is an extension of a feasible mapping fj , when either:

1. fi(v) = 0; or
2. fi(v) = l, l ∈ {1, . . . , δ + 1}, fi(u) 6= l for each u ∈ Xi ∩ Xj , and fi, fj are

consistent; or
3. there exists a value l ∈ {1, . . . , δ + 1} such that

(a) fi(v) = l;
(b) if fj(z) = 0, then fi(z) = 0, for z ∈ Xi ∩ Xj ;
(c) if fi(z) 6= fj(z), for z ∈ Xi and fj(z) 6= 0, then fi(z) = l.

Given a feasible mapping fi of Xi in {0, 1, . . . δ + 1}, define c(Xi, fi) = {c ∈
Co : ∃v ∈ Xi, c(v) = c ∧ fi(v) 6= 0}.

Let us define the value S[i, fi, C
′], where i is a vertex of the nice tree decom-

position of G, fi is a feasible mapping function of the set Xi in {0, 1, . . . δ + 1}
and C ′ ⊆ Co be a subset of the set of optional occurrences. S[i, fi, C

′] = 1
when there exists a set W of vertices in the nice tree decomposition rooted at i,
such that the vertices of W can be partitioned according to fi, each mandatory
vertex of T [i] is in W , and the set of optional occurrences of c(W ) is C ′ ; else
S[i, fi, C

′] = 0. Next, we describe how to compute S[i, fi, C
′] by dynamic pro-

gramming, depending on the three different cases of a nice tree decomposition.

Case 1) Assume that vertex i has two children j and k (recall that Xi = Xj =
Xk), then

S[i, fi, C
′] =

∨

fj ,fk,Cj ,Ck

S[j, fj , Cj ] ∧ S[k, fk, Ck],

where fi, fj , fk are all feasible and consistent, C ′ = (Cj ∪ Ck) and
c(Xi, fi) = Cj ∩ Ck.

Case 2) Assume that i has exactly one child j, such that Xi = Xj ∪ {v}, then

S[i, fi, C
′] =

∨

fj ,Cj

S[j, fj , Cj ],

where fi and fj are feasible, fi is an extension of fj , C ′ = Cj ∪ {c(v)} and
c(v) /∈ Cj , when fi(v) 6= 0 and v /∈ VM , and C ′ = Cj when fi(v) = 0 or
v ∈ VM .

Case 3) Assume that Xi has exactly one child Xj , such that Xi = Xj \ {v},
then

S[i, fi, C
′] =

∨

fj

S[j, fj , C
′],

where fi and fj are feasible and consistent, and there is a vertex z ∈ Xi∩Xj ,
such that fj(z) = fj(v), with v ∈ Xj \ Xi, when fj(v) 6= 0.



For the base cases (when Xi is a leaf of the nice tree decomposition), define
S[i, fi, C

′] = 1 when there is a partition of the vertices of Xi according to the
feasible function fi, and c(Xi, fi) = C ′ ; else S[i, fi, C

′] = 0.
First, we prove the correctness of the above recurrences, then we discuss the

time complexity of the algorithm.

Lemma 3. Let fi be a feasible mapping function of Xi, and let W be a set of
vertices in V (T [i]), such that W contains all the mandatory vertices in V (T [i]),
W can be mapped according to fi and C ′ is the set of optional occurrences in
c(W ). Then S[i, fi, C

′] = 1.

Lemma 4. Let S[i, fi, C
′] = 1 for a feasible mapping function fi of Xi in

{0, 1, . . . , δ+1}, then there exists a set W of vertices in V (T [i]) such that the set
of optional occurrences in c(W ) is C ′, W contains all the mandatory vertices in
V (T [i]) and the vertices of W can be mapped according to fi.

Theorem 3 shows how the values S[i, fi, C
′] are used to compute the existence

of a feasible solution for CGM.

Theorem 3. Let (G = (V,E),M, VM ) be an instance of the CGM problem.
Then there is a solution W of CGM over instance of (G,M, VM ) iff there is a
vertex i of the nice tree decomposition and a feasible function fi that maps Xi in
{0, x}, with x ∈ {1, . . . , δ +1}, such that S[i, fi, Co] = 1 and such VM ⊆ V (T [i]).

Proof. Assume that there is a vertex i of the nice tree decomposition and a
feasible function fi that maps Xi in {0, x}, with x ∈ {1, . . . , δ + 1}, such that
S[i, fi, Co] = 1 and all the mandatory vertices of G are in T [i]. By Lemma 4, it
follows that there is a set of vertices W in V (T [i]) that contains all the mandatory
vertices of G, such that the set of optional occurrences in c(W ) is Co and such
that the vertices of W can be mapped according to fi. Furthermore, notice that
W consists of a single connected component. Hence W is a solution of CGM.

Consider the case where there is a solution W of CGM over instance (G =
(V,E),M, VM ). Consider a vertex i of the tree decomposition of G such that
all the vertices of W are contained in V (T [i]). By Lemma 3, it follows that
S[i, fi, Co] = 1 for some feasible function fi that maps Xi in {0, x}, with x ∈
{1, . . . , δ + 1}. ⊓⊔

Now, we discuss the time complexity of the above algorithm. Denote by
n the size of V . Given a vertex i and the associated set Xi of the nice tree
decomposition, the number of possible mapping functions of Xi into {0, . . . , δ+1}
is O(δδ). The number of possible subsets C ′ is O(2k). Since the number of vertices
of a nice tree decomposition is O(n), it follows that we have O(δδn2k) entries
S[i, fi, C]. Given a mapping function fi of Xi into {0, . . . , δ + 1}, computing an
entry S[i, fi, C], given the entries of the children (or the child) of i, requires time
at most O(δ2δ22k) (notice that the worst case occurs when i has two children).
Hence the total time complexity is O(δ3δn23k).

When a motif is a multiset of colors, we apply the recoloring technique pre-
sented in Lemma 1. As a consequence, CGM can be solved with error probability
ε in time O(| ln(ε)|δ3δn24.4427k), for graphs of treewidth δ.



5.2 Hardness of Parameterization

The CGM problem parameterized by the number of optional occurrences is
W [2]-hard, as stated in Section 2. Here we strengthen the result, showing that
the problem is W [2]-hard even when the input graph is of diameter 2.

Theorem 4. The CGM problem, parameterized by the number of optional oc-
currences, is W [2]-hard, even when the input graph is of diameter 2.

Proof. (Sketch) We give a parameterized preserving reduction from Minimum
Set Cover (Min-SC). Given a universe U = {u1, . . . , un} and a collection of sets
S = {S1, . . . , Sm} over U , CGM asks for a collection S ′ of at most k sets of S,
such that

⋃

S′

i
∈S′ S′

i = U . Min-SC is known to be W [2]-hard [16]. Let (U,S) be

T
r r

′

vS,1 vS,i vS,m

vu,1 vu,j vu,n

Fig. 3. Illustration of the reduction from Min-SC to CGM ; notice that element uj ∈

Si.

an instance of Min-SC, we define a corresponding instance (G = (V,E),M, VM )
of the CGM problem (see Fig. 3). The graph G of diameter 2 is defined as follows:

– V = {r} ∪ {r′} ∪ {vS,i : 1 ≤ i ≤ m} ∪ {vu,j : 1 ≤ j ≤ n};

– E = {{r, r′}} ∪ {{r, vS,i} : 1 ≤ i ≤ m} ∪ {{r′, vS,i} : 1 ≤ i ≤ m} ∪
{{vS,i, vu,j} : 1 ≤ i ≤ m ∧ uj ∈ Si} ∪ {{r′, vu,j} : 1 ≤ j ≤ n}.

Vertex r and vertex r′ are both colored by c(r), vertex vS,i is colored by c(S),
1 ≤ i ≤ m, and vertex vu,j is colored by c(uj), 1 ≤ j ≤ n. The motif M
is a multiset containing one occurrence of color c(r), one occurrence of each
color c(uj), 1 ≤ j ≤ n, and k occurrences of color c(S). Finally, VM = V \
({vS,i : 1 ≤ i ≤ m} ∪ {r′}).

Then, it is possible to show that, given a solution of Min-SC of size at
most k, we can compute in polynomial time a solution of CGM over instance
(G = (V,E),M, VM ). Similarly, it is possible to show that given an occurrence



VT of motif M in G, we can compute in polynomial time a solution of Min-

SC of size at most k. By construction, a solution of CGM over instance (G =
(V,E),M, VM ) contains exactly k optional occurrences. Hence the reduction is
parameter preserving, thus implying that CGM is W [2]-hard. ⊓⊔
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