
HAL Id: hal-00606167
https://hal.science/hal-00606167

Submitted on 5 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tractability and Approximability of Maximal Strip
Recovery

Laurent Bulteau, Guillaume Fertin, Minghui Jiang, Irena Rusu

To cite this version:
Laurent Bulteau, Guillaume Fertin, Minghui Jiang, Irena Rusu. Tractability and Approximability of
Maximal Strip Recovery. 22nd Annual Symposium on Combinatorial Pattern Matching (CPM 2011),
2011, Palermo, Italy. pp.336-349. �hal-00606167�

https://hal.science/hal-00606167
https://hal.archives-ouvertes.fr

Tractability and Approximability

of Maximal Strip Recovery

Laurent Bulteau1, Guillaume Fertin1, Minghui Jiang2, and Irena Rusu1

1 Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241
Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
{Laurent.Bulteau,Guillaume.Fertin,Irena.Rusu}@univ-nantes.fr

2 Department of Computer Science, Utah State University, Logan, UT 84322, USA
mjiang@cc.usu.edu

Abstract. An essential task in comparative genomics is usually to de-
compose two or more genomes into synteny blocks, that is, segments of
chromosomes with similar contents. In this paper, we study the Maxi-

mal Strip Recovery problem (MSR) [Zheng et al. 07], which aims at
finding an optimal decomposition of a set of genomes into synteny blocks,
amidst possible noise and ambiguities. We present a panel of new or im-
proved FPT and approximation algorithms for the MSR problem and its
variants. Our main results include the first FPT algorithm for the vari-
ant δ-gap-MSR-d, an FPT algorithm for CMSR-d and δ-gap-CMSR-d
running in time O(2.360kpoly(nd)), where k is the number of markers or
genes considered as erroneous, and a (d + 1.5)-approximation algorithm
for CMSR-d and δ-gap-CMSR-d.

1 Introduction

An essential task in comparative genomics is usually to decompose two or more
genomes into synteny blocks, that is, segments of chromosomes with similar
contents. This task is non-trivial when the genomic maps contain noise and
ambiguities, which need to be removed before we can give a precise synteny
block decomposition. This is the objective of the Maximal Strip Recovery

problem (MSR) [10]: to delete a set of markers (genes) from the genomic maps
until the remaining markers can be partitioned into a set of strips (synteny
blocks) of maximum total length.

We review some definitions. A genome consists of one or more chromosomes;
each chromosome is a sequence of genes. Correspondingly, a genomic map con-
sists of one or more sequences of gene markers. Each marker is a signed integer
representing a gene: the absolute value of the integer represents the family of the
gene; the sign of the integer represents the orientation. A marker has duplicates
if it is contained more than once in some genomic map, possibly in different ori-
entations. A strip of d ≥ 2 genomic maps is a sequence of at least two markers
appearing consecutively in each map, such that the order of the markers and
the orientation of each marker are either both preserved or both reversed. The
reversed opposite of a sequence s = 〈x1, . . . , xh〉 is −s = 〈−xh, . . . ,−x1〉. The

MSR problem on d input maps is the following maximization problem MSR-d [2,
10]:

Problem MSR-d
Input: d genomic maps G1, . . . , Gd each containing n markers without dupli-
cates.
Solution: d subsequences G′

1, . . . , G
′

d of G1, . . . , Gd respectively, each contain-
ing the same ℓ markers, such that all the markers in G′

1, . . . , G
′

d can be parti-
tioned into strips.
Parameter: the number ℓ of selected markers.

The maximization problem MSR-d that maximizes the parameter ℓ, the
number of selected markers, has a complement minimization problem called
CMSR-d [9, 8] that minimizes the parameter k = n − ℓ, the number of deleted
markers. For genomic maps of close species with few errors, k can be much
smaller than ℓ, thus approximation and FPT algorithms are sometimes more
relevant for CMSR than for MSR. We refer to Figure 1 for an example.

Given d subsequences G′

1, . . . , G
′

d of d genomic maps G1, . . . , Gd, respectively,
the gap between two consecutive markers a and b of G′

i is the number of markers
appearing between a and b in Gi, a and b excluded. The gap of a strip s is the
maximum gap between any two consecutive markers of s in any map G′

i. The
deleted markers between markers of a strip correspond to noise and ambiguities,
which occur infrequently. A synteny block is a segment of chromosomes that
remain undisrupted by genome rearrangements during evolution. Consecutive
elements of a synteny block can only be separated in a dataset due to noise
and ambiguities. Thus a strip having a large gap is unlikely to correspond to
a synteny block; see [3] for an empirical analysis. This leads to the following
gap-constrained variant of MSR-d [1]:

Problem δ-gap-MSR-d
Input: d genomic maps G1, . . . , Gd each containing n markers without dupli-
cates.
Solution: d subsequences G′

1, . . . , G
′

d of G1, . . . , Gd respectively, each contain-
ing the same ℓ markers, such that all the markers in G′

1, . . . , G
′

d can be parti-
tioned into strips, and such that each strip has gap at most δ.
Parameter: the number ℓ of selected markers.

G1 = 1 5 −3 2 6 4 8 7 G′

1 = 1 5 −3 6 8

G2 = 1 5 −3 −8 7 −6 2 4 G′

2 = 1 5 −3 −8 −6

G3 = −8 2 7 −6 −4 3 −5 −1 G′

3 = −8 −6 3 −5 −1

Fig. 1. Three genomic maps G1, G2, G3, and an optimal solution G′

1, G′

2, G′

3 for
MSR-3. The markers 2, 4, 7 are deleted; the markers 1, 3, 5, 6, 8 are selected in two
strips 〈1, 5,−3〉 and 〈6, 8〉 of G′

1, G′

2, G′

3. The gap of the strip 〈1, 5,−3〉 is 0; the gap
of the strip 〈6, 8〉 is 2, since there are 2 markers between −8 and −6 in G3.

No doubt that MSR-d is a more elegant problem from a theoretical perspec-
tive, but δ-gap-MSR-d could be more relevant in biological applications. The
gap-constrained variant of CMSR-d, denoted δ-gap-CMSR-d, can be similarly
defined. Similarly to MSR-d and CMSR-d, the parameter for δ-gap-MSR-d is ℓ,
and the parameter for δ-gap-CMSR-d is k. In most cases, δ and d are assumed
to be constants, although our FPT algorithm in Theorem 3 does not depend on
this assumption and can take δ and d as parameters besides ℓ. There is no known
direct reduction from δ-gap-MSR-d to MSR-d or vice versa. Although the gap
constraint appears to be an additional burden that the algorithm has to take
care of, it also limits the set of candidate strips and their intersection pattern,
especially when δ is small, which may make the problem easier to handle.

For the four variants of the maximal strip recovery problem, MSR-d, CMSR-
d, δ-gap-MSR-d, and δ-gap-CMSR-d, several hardness results have been ob-
tained [2, 9, 6, 1, 7, 8], and a variety of algorithms have been developed, including
heuristics [10], approximation algorithms [2, 1, 5], and FPT algorithms [9, 5]. For
example, it is known that MSR-d admits a 2d-approximation algorithm for any
d ≥ 2 [2, 8], and that δ-gap-MSR-d admits a 2d-approximation algorithm for any
d ≥ 2 and δ ≥ 1 and a 1.8-approximation algorithm for d = 2 and δ = 1 [1]. Refer
also to [11, 5] for some very recent development on the CMSR problem parallel
to our work. The following two theorems summarize some basic hardness results
regarding these problems:

Theorem 1. [6, 1, 8] MSR-d, CMSR-d, δ-gap-MSR-d, and δ-gap-CMSR-d are
APX-hard for any d ≥ 2 and δ ≥ 2, even if all markers appear in positive
orientation in all genomic maps; 1-gap-MSR-d and 1-gap-CMSR-d are NP-hard
for any d ≥ 2.

Theorem 2. [7] MSR-d is W[1]-hard for any d ≥ 4, even if all markers appear
in positive orientation in all genomic maps.

In this paper, we present a panel of new or improved FPT and approximation
algorithms. Our positive results, together with some previous results, are summa-
rized in Table 1. Due to space constraints, we present only three main results in
this extended abstract. These results are (i) an FPT algorithm for δ-gap-MSR-d
running in time 2O(dδℓ)n, (ii) an FPT algorithm for CMSR-d and δ-gap-CMSR-d,
running in time O(2.360kpoly(nd)), and (iii) a (d+1.5)-approximation algorithm
for CMSR-d and δ-gap-CMSR-d.

Preliminaries. Given a set of genomic maps (either the set of d original maps
given as input or some set of reduced maps during the execution of a recursive
algorithm), if a maximal sequence of markers form a strip in these maps, then
these markers are either all selected or all deleted in any optimal solution. This
is because any solution that includes only a subset of the markers in a strip can
be extended to a better solution that includes all markers in that strip. Hence,
these markers can be treated as an atomic unit, and called a super-marker, whose
size is the number of markers it contains. Note that the size of a super-marker is

Problem Best FPT algorithm (running time)

δ-gap-MSR-d O(2ttdδ2 + ndδ) [Theorem 3, Section 2]
with t = ℓ(1 + 3

2
dδ)

CMSR-d O(2.360kpoly(nd)) [Theorem 4, Section 3]

δ-gap-CMSR-d (δ ≥ 2) O(2.360kpoly(nd)) [Theorem 4, Section 3]

1-gap-CMSR-d O(2kpoly(nd)) [See full version]

Problem Best approximation ratio

MSR-d 2d [2, 8]
δ-gap-MSR-d (δ ≥ 4) 2d [1]
1-gap-MSR-d (d ≥ 3) 0.75d + 0.75 + ǫ [See full version]
1-gap-MSR-2 1.8 [1]
2-gap-MSR-d 1.5d + ǫ [See full version]
3-gap-MSR-d 1.5d + 0.75 + ǫ [See full version]

CMSR-d (d ≥ 3) d + 1.5 [Theorem 5, Section 4]
CMSR-2 3 [5]

δ-gap-CMSR-d d + 1.5 [Theorem 5, Section 4]
1-gap-CMSR-2 2.778 [See full version]

Table 1. Positive results for variants of MSR.

always at least 2. A marker that does not belong to any super-marker is a single-
marker. We use the term single-super-marker to refer to either a single-marker
or a super-marker. A common step of our algorithms is to partition the markers
into single-super-markers. If a set of genomic maps contains only super-markers,
then we have a straightforward decomposition into strips, without deleting any
marker.

For two markers or two single-super-markers u and v, denote by gap(u, v)
the set of markers that appear between u and v in at least one of the maps;
clearly gap(u, v) = gap(v, u). We call v a candidate successor (resp. candidate
predecessor) of u, and write v ≻ u (resp. v ≺ u), if the following two conditions
are satisfied: (1) 〈u, v〉 (resp. 〈v, u〉) is a strip (satisfying the δ-gap constraint, if
necessary) in the reduced maps with all markers in gap(u, v) deleted, (2) 〈u, x, v〉
(resp. 〈v, x, u〉) cannot be a strip for any x ∈ gap(u, v). The relation ≺ always
refers to two markers of the original map, even if we temporarily work with
reduced maps. Note that v is a candidate successor of u if and only if u is a
candidate predecessor of v. In the example of Figure 1, we have 6 ≺ 8, and
gap(6, 8) = {2, 4, 7}. The following lemma gives some basic properties of the
function gap:

Lemma 1. (a) Let u, v, w be three markers or single-super-markers. If u and
v are two candidate successors of w with u 6= v, then u ∈ gap(w, v) and v ∈
gap(w, u). (b) Let u and v be two single-super-markers. If u ≺ v or u ≻ v, then
gap(u, v) 6= ∅.

2 An FPT Algorithm for δ-gap-MSR-d

In this section, we present the first FPT algorithm for δ-gap-MSR-d with the
parameter ℓ. Recall that without the gap constraint, MSR-d with the parameter
ℓ is W[1]-hard for any d ≥ 4. In sharp contrast to the W[1]-hardness of MSR-d,
we obtain a somewhat surprising result that δ-gap-MSR-d is in FPT, where ℓ
is the parameter, and δ and d are constants. In fact, our FPT algorithm for
δ-gap-MSR-d works even if d and δ are not constants: δ-gap-MSR-d is in FPT
even with three combined parameters d, δ and ℓ.

Theorem 3. Algorithm 1 finds an optimal solution for δ-gap-MSR-d for any
d ≥ 2 and δ ≥ 1, in time O(2ttdδ2 + ndδ), where t = ℓ(1 + 3

2dδ).

Algorithm 1 FPT algorithm for δ-gap-MSR-d

1: Gather all pairs of markers (u, v) such that u ≺ v. Such pairs are called candidate
pairs.

2: For each marker u, create a boolean variable xu.
3: For each candidate pair (u, v), create a conjunctive boolean formula fu,v = xu ∧

xv ∧ ¬xg1
∧ . . . ∧ ¬xgs

, where g1, . . . , gs are the markers in gap(u, v).
4: Delete the variables that do not appear in any formula or appear only in negative

form in the formulas.
5: Enumerate all possible assignments to the remaining variables to find an optimal

assignment that maximizes the number of variables appearing in positive form in
at least one satisfied formula. Delete all markers whose variables are not assigned
true values.

6: Return the resulting genomic maps.

Our algorithm is based on a simple idea: create a boolean variable for each
marker (where true means the marker is selected in a solution, false that it
is unselected), then test all possible assignments to find an optimal solution.
To reduce the time complexity of this brute-force approach, we add a pruning
step (line 4) to delete certain variables whose markers cannot appear in any
optimal solution. The remaining variables form a “kernel” on which we can find
an optimal solution in FPT time.

Given an optimal solution, which selects ℓ markers, we call a marker active
if it appears within distance at most δ from a selected marker in some map.
Then each map contains at most ℓδ + ℓ

2δ unselected active markers: at most δ
after each selected marker, and at most δ before the first marker of each strip
(note that the number of strips of this optimal solution is at most ℓ/2). The
total number of active markers is at most ℓ+ d(ℓδ + ℓ

2δ) = ℓ(1 + 3
2dδ).

The pruning step in line 4 depends on the crucial observation that a non-
active marker can never appear in positive form. Suppose for contradiction that
a non-active marker u appears in a candidate pair with some marker v. Then u
is at distance at most δ+1 from v in each map. Since u, as a non-active marker,

must be at distance at least δ + 1 from the selected markers in all maps, no
selected markers can appear between u and v in any map, thus we can extend
the optimal solution by selecting both u and v, a contradtiction.

Note that in line 4 the variables appearing at least once in positive form are
never deleted, hence no formula becomes empty after deleting the variables that
appear only in negative form. After line 4, the number of remaining variables is
at most the number of active markers, which is at most t = ℓ(1 + 3

2dδ). Corres-
pondingly, the number of formulas is at most t(δ+1), because any candidate pair
consists of an active marker and one of the δ+ 1 markers immediately following
it in the first map. Each formula contains at most dδ + 2 variables.

The time complexity of line 1 is O(ndδ). In lines 2 and 3, the variables can
be created in time O(n), and the formulas can be created in time O(t(δ+1)(dδ+
2)) = O(tdδ2). Similarly, line 4 can be executed in time O(n + tdδ2). Finally,
line 5 can be executed in time O(2tt(δ + 1)(dδ + 2)) = O(2ttdδ2), so the overall
time complexity is O(2ttdδ2 + ndδ).

3 An FPT Algorithm for CMSR-d and δ-gap-CMSR-d

In this section, we design an FPT algorithm for CMSR-d and δ-gap-CMSR-d,
where the parameter is k, the number of deleted markers in the optimal solution.

Since super-markers are already strips in the input genomic maps, one may
naturally be tempted to come up with the following algorithm. First, find all
super-markers, and add them to the solution. Then, delete a subset of single-
markers until all markers in the resulting maps can be partitioned into strips.
The correctness of this algorithm on finding an exact solution, however, depends
on the assumption that in some optimal solution no super-marker needs to be
deleted, which is false as can be seen in the following counter-example:

G1 = 4 1 2 3 5 6 7
G2 = 6 −3 −2 −1 7 4 5

Here 〈1, 2, 3〉 forms a super-marker, but the optimal solution deletes 〈1, 2, 3〉 and
selects 〈4, 5〉 and 〈6, 7〉 instead. An easy generalization of this counter-example
shows that any super-marker of size strictly less than 2d is not guaranteed to be
always selected in some optimal solution.

We observe that an FPT algorithm for CMSR-d and δ-gap-CMSR-d can be
easily obtained using the bounded search tree method. In any feasible solution
for the two problems, a single-marker x must be either deleted or selected. If
x is selected, then at least one of its neighbors must be deleted. Since x has
at most 2d neighbors (at most two in each map), this leads to a very simple
algorithm running in time O((2d + 1)kpoly(nd)). Parallel to our work, Jiang et
al. [5] presented an FPT algorithm running in time O(3kpoly(nd)). We next
describe a carefully tuned FPT algorithm running in time O(2.360kpoly(nd)).
For convenience, we consider the decision problem associated with CMSR-d and
δ-gap-CMSR-d, for which the parameter k is part of the input.

Theorem 4. Algorithm 2 finds an exact solution for the decision problems as-
sociated with CMSR-d and δ-gap-CMSR-d, for any δ ≥ 1 and d ≥ 2, in time
O(ckpoly(nd)), where c < 2.360 is the unique real root of the equation 2c−1 +
2c−3 = 1.

It is interesting to note that although the two problems MSR-d and δ-gap-
MSR-d have very different complexities when parameterized by ℓ, their comple-
ments CMSR-d and δ-gap-CMSR-d are both tractable when parameterized by
k.

Algorithm 2 FPT algorithm for δ-gap-CMSR-d and CMSR-d

Input: d genomic maps G1, . . . , Gd each containing n markers without duplicates, and
two parameters k ∈ N, δ ∈ N ∪ {∞}

1: return recurse(G1, . . . , Gd, k, δ, false)

Function recurse(G1, . . . , Gd, k, δ, skip step 2b): boolean

1: if k < 0 then

2: return false
3: Partition the markers into single-super-markers.
4: if there exists at least one single-marker in G1 then

5: x← the left-most single-marker in G1

6: else

7: return true
8: s← the first single-super-marker following x in G1

9: // 1: Assume x is deleted in the optimal solution
10: Create G′

1, . . . , G
′

d by removing x from G1, . . . , Gd.
11: if recurse(G′

1, . . . , G
′

d, k − 1, δ, false) then

12: return true
13: // 2: Assume x is part of a strip in the optimal solution
14: Y ← { single-super-marker y | x ≺ y} // the set of candidate successors
15: Z ← { super-marker z | z ≺ x} // the set of candidate predecessors
16: if ∃w0 ∈ Y ∪ Z a super-marker s.t. (x, w0) satisfies the conditions of Lemma 2

then

17: Create G′

1, . . . , G
′

d by removing all markers in gap(x, w0) from G1, . . . , Gd.
18: return recurse(G′

1, . . . , G
′

d, k − 1, δ, false)
19: if ∃s0 a single-marker s.t. (x, s0) satisfies the conditions of Lemma 3 then

20: Create G′

1, . . . , G
′

d by removing s0 from G1, . . . , Gd.
21: return recurse(G′

1, . . . , G
′

d, k − 1, δ, false)
22: // 2.a: Assume x is not at the end of its strip
23: if Y 6= ∅ then

24: if recurse 2a(Y, x, G1, . . . , Gd, k, δ) then

25: return true
26: // 2.b: Assume x is at the end of its strip
27: if Z 6= ∅ and skip step 2b=false then

28: if recurse 2b(Z, x, s, G1, . . . , Gd, k, δ) then

29: return true
30: return false

Algorithm 2 (continued)
Function recurse 2a(Y, x, G1, . . . , Gd, k, δ): boolean

1: if ∃y0 ∈ Y s.t. y0 satisfies the conditions of Lemma 4 then

2: if δ ∈ N and y0 is a single-marker then

3: Replace y0 by the unspecified marker [y0 | Y].
4: Y0 ← {y0}
5: else

6: Y0 ← Y
7: for all y ∈ Y0 do

8: Create G′

1, . . . , G
′

d by removing all markers in gap(x, y) from G1, . . . , Gd.
9: if recurse(G′

1, . . . , G
′

d, k − |gap(x, y)|, δ, false) then

10: return true
11: return false

Function recurse 2b(Z, x, s, G1, . . . , Gd, k, δ): boolean

1: if ∃z0 ∈ Z s.t. z0 satisfies the conditions of Lemma 5 then

2: Z0 ← {z0}
3: else

4: Z0 ← Z
5: for all z ∈ Z0 do

6: if z ends with an unspecified marker [y0 | Y] and ∃y1 ∈ Y s.t. y1 ≺ x then

7: Replace the unspecified marker [y0 | Y] by y1.
8: Create G′

1, . . . , G
′

d by removing all markers in gap(x, z) from G1, . . . , Gd.
9: skip next step 2b ← s exists and s is a single-marker and s /∈ gap(x, z)

10: if recurse(G′

1, . . . , G
′

d, k − |gap(x, z)|, δ, skip next step 2b) then

11: return true
12: return false

The efficiency of Algorithm 2 is made possible by several optimizations jus-
tified by the following lemmas. These lemmas are all based on very simple ob-
servations. Note that although we consider the decision problem for simplicity,
Algorithm 2 can be adapted to directly return the actual solution, instead of
“true”, when the input instance indeed has a solution of size k. Recall that the
relation ≺ in lines 14-15 is defined for markers in the original maps — it remains
unchanged through recursive calls, and can be precomputed.

Lemma 2. Let x be a single-marker and w a super-marker. If x is selected in an
optimal solution, and w is a candidate successor or predecessor of x with exactly
one marker in gap(x,w), then there is an optimal solution where the marker in
gap(x,w) is deleted.

Lemma 3. Let x be a single-marker and s a single-super-marker. If s appears
in gap(x,w) for each w that is a candidate successor or predecessor of x, then
s itself cannot be a candidate successor or predecessor of x, and any solution
selecting x deletes s.

Lemma 4. (In this lemma we assume there is no gap constraint.) Let x be a
single-marker and y a candidate successor of x such that all markers in gap(x, y)

are single-markers and candidate successors of x. If x is part of some strip in
an optimal solution, but not at the end of this strip, then there is an optimal
solution where 〈x, y〉 is part of some strip.

Lemma 5. Let x be the first single-marker in G′

1. Let z be a candidate pre-
decessor of x such that all markers in gap(x, z) are size-2 super-markers and
candidate predecessors of x. If x appears at the end of a strip in an optimal
solution, then there is an optimal solution where 〈z, x〉 is at the end of some
strip.

In addition to these four optimizations, we also use a “delayed commitment”
optimization which is the equivalent of Lemma 4 when we need to observe a gap
constraint. We consider the case where x is part, but not at the end, of some
strip in the optimal solution, and where y is a single-marker and a candidate
successor of x such that all markers in gap(x, y) are single-markers and candidate
successors of x. In this case we delete all markers in gap(x, y) to make 〈x, y〉 a
strip, but keep the possibility of replacing y by any marker y1 ∈ gap(x, y), should
necessity arise. We denote this unspecified marker by [y | gap(x, y)].

To prove the correctness of Algorithm 2, we need the following easy lemma
from [10]:

Lemma 6. [10, Proposition 2] We can decompose the strips of any optimal solu-
tion in such a way that (1) each strip contains at most 3 single-super-markers and
(2) each strip containing 3 single-super-markers starts and ends with a single-
marker.

Let OPT be any optimal solution, and let us decompose the strips of OPT

as in the above lemma. We show by induction that the solution found by Algo-
rithm 2 has the same size as OPT. Let x be the left-most single-marker in G1,
then exactly one of the following three cases is true:

1: x is deleted in OPT,
2.a: There exists a single-super-marker y such that 〈x, y〉 is part of a strip in

OPT,
2.b: There exists a super-marker z such that 〈z, x〉 is a strip in OPT.

Note that in case 2.b, z cannot be a single-marker since it is to the left of x
in G1. By our choice of x, case 2.a can be split into the following two subcases:

2.a.i: There exists a single-super-marker y such that 〈x, y〉 is a strip in OPT,
2.a.ii: There exists a single-super-marker y and a single-marker y′ such that

〈x, y, y′〉 is a strip in OPT.

Refer to Algorithm 2. In case 1, a solution is found in lines 9–12 of the
function recurse. In case 2, i.e. in the case where x is part of an optimal solution,
if either Lemma 2 or Lemma 3 can be applied, then again a solution is found.
Otherwise, we are in case 2.a or 2.b.

Suppose we are in case 2.a. If y ∈ Y0, then the function recurse 2a tests a
branch in which 〈x, y〉 becomes part of some strip. Otherwise, there exists some

Algorithm 3 (d+ 1.5)-approximation for δ-gap-CMSR-d and CMSR-d

1: X ← { triples of markers (z, x, y) | z ≺ y and gap(z, y) = {x} }
2: Partition the markers into single-super-markers.
3: for all (z, x, y) ∈ X do

4: if x, y and z are not deleted and y or z is a single-marker then

5: Delete x.
6: Re-create all super-markers.
7: Delete all remaining single-markers.
8: Return the resulting genomic maps.

y0 ∈ Y satisfying the conditions of Lemma 4. If there is no gap constraint, y is
replaced by y0, which does not change the size of the solution. If there is a gap
constraint, y is replaced by the unspecified marker u = [y0 | Y], and we look
further in case 2.a.i or 2.a.ii.

In case 2.a.i, we can replace y by y0 since gap(x, y0) has no more markers than
gap(x, y). In case 2.a.ii, we can replace y by any y1 such that x ≺ y1 ≺ y′, since
gap(x, y)∪{y}∪ gap(y, y′) is the same set as gap(x, y1)∪{y1}∪ gap(y1, y

′). This
is what happens in case 2.b of a subsequent recursive call in which y′ becomes
the left-most single-marker in G1.

Suppose we are in case 2.b. If z ∈ Z0, then the function recurse 2b tests
a branch in which 〈z, x〉 becomes a strip. Otherwise, Lemma 5 can be applied,
which leaves the size of the optimal solution unchanged. In line 9 of recurse 2b, if
s becomes the left-most single-marker in G1 in the next recursive call of recurse,
it cannot be at the end of a strip because x is already at the end of a strip.

This completes the correctness proof. An anonymous reviewer of an earlier
version of this paper commented that perhaps some further properties of the
optimal solution, besides those already described in our lemmas, might be used
to improve the time complexity further. This may be true, but we believe that
such improvement would require significantly different ideas.

4 An Approximation Algorithm for CMSR-d and

δ-gap-CMSR-d

In this section, we present a (d+ 1.5)-approximation algorithm for the two min-
imization problems CMSR-d and δ-gap-CMSR-d. Recall that 2d-approximation
algorithms [2, 8, 1] were known for the two maximization problems MSR-d and
δ-gap-MSR-d.

Theorem 5. Algorithm 3 finds a (d + 1.5)-approximation for CMSR-d and δ-
gap-CMSR-d for any d ≥ 2 and δ ≥ 1.

Let k be the number of deleted markers in an optimal solution. Then the
number of single-markers in the input maps is at most (2d + 1)k because each
single-marker is either deleted or adjacent to a deleted marker. This immediately
yields a (2d+ 1)-approximation algorithm: simply delete all single-markers.

G1 = zdyd · · · z3y3 z2y2 z1 x y1

G2 = z1y1 z2 x y2 z3y3 · · · zdyd

G3 = z1y1 z2y2 z3 x y3 · · · zdyd

· · · · · · · · · · · · · · · · · ·
Gd = z1y1 z2y2 z3y3 · · · zd x yd

Fig. 2. A tight example for the (2d+1)-approximation algorithm. The optimal solution
deletes one single-marker x instead of all 2d + 1 single-markers.

We refer to Figure 2 for a tight example for the (2d + 1)-approximation
algorithm. Observe that after one single-marker is deleted, many other single-
markers may be merged into strips. Algorithm 3 first identifies (line 1) all triples
of markers (z, x, y) such that z and y can be merged into a strip 〈z, y〉 after
x is deleted, then successively deletes (lines 2–6) “cost-efficient” single-markers
x that can reduce at least one other single-marker y or z, and finally removes
(line 7) the remaining single-markers.

Lemma 7. For each triple (z, x, y) in the set X in Algorithm 3, at least one of
the three markers x, y, z must be deleted in any feasible solution.

Proof. We prove the lemma by contradiction. Suppose that all three markers
x, y, z are selected in a solution. Assume wlog that the sequence 〈z, x, y〉 appears
in some map. Then x must be in the same strip as z or y. Assume wlog that
〈z, x〉 is part of some strip. Then z ≺ x. Recall that z ≺ y. Thus x and y are
both candidate successors of z. By Lemma 1a, we have y ∈ gap(z, x), thus y
must be deleted: a contradiction. ⊓⊔

We next prove the approximation ratio of Algorithm 3. Let O be the set of
deleted markers in an optimal solution; |O| = k. For each marker x /∈ O, we
define two sets Γsucc(x) and Γpred(x) as follows. If x is followed by a marker y
in a strip of O, Γsucc(x) = gap(x, y); otherwise x is the last marker of its strip,
Γsucc(x) = ∅. If x is preceded by a marker z in a strip of O, Γpred(x) = gap(z, x);
otherwise x is the first marker of its strip, Γpred(x) = ∅. Then, for each marker
x /∈ O, define γ(x) = |Γsucc(x)| + |Γpred(x)|, and for each marker x ∈ O, define
γ(x) = 0.

Refer to Algorithm 3. Let D be the set of markers deleted in line 5, let S
be the set of single-markers that are merged into super-markers in line 6, and
let R be the set of markers deleted in line 7. Let R1 = {r ∈ R | γ(r) = 1} and
R2 = {r ∈ R | γ(r) ≥ 2}. Note that if x is a single-marker at the beginning of
the algorithm, then γ(x) = 0 if and only if x ∈ O. Thus we have a partition
R = (R ∩ O) ∪ R1 ∪ R2. Also note that each marker x ∈ O is counted by γ at
most twice in each map: at most once in some Γpred(y), and at most once in
some Γsucc(z). Thus we have the following inequality:

∑

x single-marker

γ(x) ≤ 2dk. (1)

Each marker x ∈ D has a corresponding triple (z, x, y) ∈ X, where z or y is
a single-marker. After x is deleted in line 5, z and y are merged into the same
super-marker in line 6. Thus we have the following inequality:

|D| ≤ |S|. (2)

For each marker x ∈ D − O, let φ(x) be an arbitrary marker in the non-
empty set {z, x, y} ∩O (see Lemma 7). Obviously φ(x) 6= x, thus φ(x) ∈ O−D.
We show that at most two markers in D − O can have the same image by φ.
Suppose that φ(x1) = φ(x2) = φ for two different markers x1, x2 ∈ D − O,
where x1 is deleted before x2 in Algorithm 3. Then the marker φ is merged into
a super-marker after x1 is deleted, and again merged into a larger super-marker
after x2 is deleted. Since a marker has at most two neighbors in a super-marker,
φ is necessarily a single-marker before x1 is deleted, so it belongs to S, indeed
S ∩O. Moreover, after x2 is deleted and φ is merged into a larger super-marker,
φ cannot be adjacent to any other single-marker, say x3. Therefore

|D −O| ≤ |O −D| + |S ∩O|. (3)

Let u be a marker such that γ(u) = 1. Then u belongs to some strip in the
optimal solution, and it has a neighbor v = ψ(u) in the same strip such that
gap(u, v) contains only one marker, say x. Note that u, v /∈ O and x ∈ O. We
claim that if u is a single-marker at the beginning of the algorithm, then either
u ∈ D∪S or v ∈ D. This claim is clearly true if u or v is deleted by the algorithm
in line 5. Otherwise, with (v, x, u) ∈ X or (u, x, v) ∈ X, either x is not deleted
because u is merged into a super-marker, or x is deleted: in both cases u ∈ S.
This proves the claim. So for each u ∈ R1, we have v ∈ D, indeed v ∈ D − O.
Note that there can be at most two markers u1 and u2 with the same image v
by ψ: the two neighbors of v in some strip in the optimal solution. Thus we have
|R1| ≤ 2|D − O|. Moreover, if there are two markers u1 and u2 with the same
image v, then γ(v) ≥ 2. Therefore

|R1| ≤
∑

v∈D−O

γ(v). (4)

Combining inequalities (1), (2), (3), and (4), the calculation in the following
shows that the number of deleted markers, |D| + |R|, is at most (d + 1.5)k.
Thus Algorithm 3 indeed finds a (d+1.5)-approximation for δ-gap-CMSR-d and
CMSR-d.

2dk ≥
∑

x single-marker

γ(x) by (1)

=
∑

x∈D−O

γ(x) +
∑

x∈S−O

γ(x) +
∑

x∈R1

γ(x) +
∑

x∈R2

γ(x)

≥
∑

x∈D−O

γ(x) + |S −O| + |R1| + 2|R2|

≥ |S −O| + 2|R1| + 2|R2| by (4).

|D| + |R| = |D| + |R1| + |R2| + |R ∩O|

≤ |D| + dk − 1
2 |S −O| + |R ∩O|

= |D| + dk − 1
2 (|S| − |S ∩O|) + |R ∩O|

≤ |D| + dk − 1
2 |D| + 1

2 |S ∩O| + |R ∩O| by (2)

= 1
2 (|D| + |S ∩O|) + |R ∩O| + dk

= 1
2 (|D ∩O| + |D −O| + |S ∩O|) + |R ∩O| + dk

≤ 1
2 (|D ∩O| + (|O −D| + |S ∩O|) + |S ∩O|) + |R ∩O| + dk by (3)

= 1
2 |O| + (|S ∩O| + |R ∩O|) + dk

≤ 1
2k + k + dk

=
(

d+ 3
2

)

k.

After our initial submission of this paper for publication, we learned from
an anonymous reviewer that Jiang et al. [5] have very recently designed a 3-
approximation algorithm for CMSR-2 based on a similar greedy approach. Their
algorithm does not work for the gap-constrained variant, although it seems that
the algorithm might be extended to a (d+ 1)-approximation for CMSR-d for all
d ≥ 2. Our solution gives uniform results on both variants.

G1 = zdyd · · · z3y3 z2y2 z1 vu y1

G2 = z1y1 z2 uv y2 z3y3 · · · zdyd

G3 = z1y1 z2y2 z3 uv y3 · · · zdyd

· · · · · · · · · · · · · · · · · ·
Gd = z1y1 z2y2 z3y3 · · · zd uv yd

G1 = zdyd · · · z3y3 z2y2 z1−v−u y1

G2 = z1y1 z2 uv y2 z3y3 · · · zdyd

G3 = z1y1 z2y2 z3 uv y3 · · · zdyd

· · · · · · · · · · · · · · · · · ·
Gd = z1y1 z2y2 z3y3 · · · zd uv yd

Fig. 3. Upper: an almost-tight example for the (d+1.5)-approximation algorithm show-
ing that its approximation ratio cannot be better than d+1; the optimal solution deletes
the two single-markers u and v instead of all 2d +2 single-markers. Lower: an example
showing that no algorithm deleting only single-markers can achieve an approximation
ratio better than d; the optimal solution deletes one super-marker 〈u, v〉 instead of 2d
single-markers zi and yi, 1 ≤ i ≤ d.

We refer to Figure 3 for two examples: the first example gives a lower bound
of d+ 1 on the approximation ratio of Algorithm 3; the second example gives a
lower bound of d on the approximation ratio of any algorithm for δ-gap-CMSR-d
and CMSR-d that deletes only single-markers. Note that both our Algorithm 3
and the algorithm in [5] delete only single-markers.

Compared to the approximation upper bound of 2d [2, 1, 8] for the two max-
imization problems MSR-d and δ-gap-MSR-d, which almost matches (at least

asymptotically) the current best lower bound of Ω(d/ log d) [8], our upper bound
of d+1.5 for the two minimization problems CMSR-d and δ-gap-CMSR-d is still
far away from the constant lower bound in [8]. It is an intriguing question whether
CMSR-d and δ-gap-CMSR-d admit approximation algorithms with constant ra-
tios independent of d.

References

1. L. Bulteau, G. Fertin, and I. Rusu. Maximal strip recovery problem with gaps:
hardness and approximation algorithms. In Proceedings of the 20th International
Symposium on Algorithms and Computation (ISAAC’09), LNCS 5878, pages 710–
719, 2009.

2. Z. Chen, B. Fu, M. Jiang, and B. Zhu. On recovering syntenic blocks from com-
parative maps. Journal of Combinatorial Optimization, 18:307–318, 2009.

3. V. Choi, C. Zheng, Q. Zhu, and D. Sankoff. Algorithms for the extraction of syn-
theny blocks from comparative maps. In Proceedings of the 7th International Work-
shop on Algorithms in Bioinformatics (WABI’07), LNCS 4645, pages 277–288,
2007.

4. M. M. Halldórsson. Approximating discrete collections via local improvements.
In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’95), pages 160–169, 1995.

5. H. Jiang, Z. Li, G. Lin, L. Wang, and B. Zhu. Exact and approximation algorithms
for the complementary maximal strip recovery problem. Journal of Combinatorial
Optimization, doi:10.1007/s10878-010-9366-y, to appear.

6. M. Jiang. Inapproximability of maximal strip recovery. In Proceedings of the
20th International Symposium on Algorithms and Computation (ISAAC’09),
LNCS 5878, pages 616–625, 2009.

7. M. Jiang. On the parameterized complexity of some optimization problems re-
lated to multiple-interval graphs. Theoretical Computer Science, to appear. A pre-
liminary version in Proceedings of the 21st Annual Symposium on Combinatorial
Pattern Matching (CPM’10), LNCS 6129, pages 125–137, 2010.

8. M. Jiang. Inapproximability of maximal strip recovery: II. In Proceedings of the
4th International Frontiers of Algorithmics Workshop (FAW’10), LNCS 6213,
pages 53–64, 2010.

9. L. Wang and B. Zhu. On the tractability of maximal strip recovery. In Proceedings
of the 6th Annual Conference on Theory and Applications of Models of Computa-
tion (TAMC’09), LNCS 5532, pages 400–409, 2009.

10. C. Zheng, Q. Zhu, and D. Sankoff. Removing noise and ambiguities from compara-
tive maps in rearrangement analysis. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 4:515–522, 2007.

11. B. Zhu. Efficient exact and approximate algorithms for the complement of maximal
strip recovery. In Proceedings of the 6th International Conference on Algorithmic
Aspects in Information and Management (AAIM’10), LNCS 6124, pages 325-333,
2010.

