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CHAPTER 1

COMPUTING GENOMIC DISTANCES : AN
ALGORITHMIC VIEWPOINT

by Guillaume FERTIN and Irena RUSU

1.1 INTRODUCTION

What this Chapter is About. Comparative genomics is a field of bioinformatics
in which the goal is to compare several species by comparing their genomes,
in order to understand how the different species under study have evolved
in time. This study leads for instance to reconstructing putative ancestral
genomes, building phylogenetic trees, or inferring the functionality of genes
or sets of genes.

One of the main activities in comparative genomics consists in comparing
pairs of genomes, in order to identify their common features, and thus also to
determine what differentiate them. In that case, genomes are usually modeled
as sequences of genes, where a gene is identified by a (possibly signed) label.
The sign + or -, if present, indicates on which DNA strand the gene lies.
In that context, the order of the genes in the studied genomes is the main
information we are given. Note that the way this order was obtained is out
of our scope here: only the order itself is taken into account.

It should also be noted that genomes may contain several occurrences of the
same gene (possibly carrying different signs, if signs are present). In that case,
we say that a genome contains duplicates. Indeed, genes may be duplicated
during evolution, and duplicate genes actually occur frequently in all living
species.

Please enter \offprintinfo{(Title, Edition)}{(Author)}

at the beginning of your document.
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2 COMPUTING GENOMIC DISTANCES

Comparing pairs of genomes on that basis can roughly be done in two
different ways:

1. Compare the structure of the two genomes under study by computing a
measure that represents the (dis)similarity between the genomes.

2. Infer the evolution process from one genome to another. For this, one
needs to consider one or several operations (called rearrangement(s))
that can occur in a genome during evolution, e.g. inversions or translo-
cations ; and the goal is to determine the most parsimonious (i.e., less
costly) rearrangement scenario that leads from one genome to the other.

In this chapter, we only focus on option 1. above. This static viewpoint
has the advantage to allow us to identify conserved regions between genomes,
which is not the case with option 2. Note also that, although the term distance
is very often used for option 1. (as is done in the title of this chapter), this
only refers to evolutionary distance, i.e. the amount of changes that occurred
during the evolution process. Indeed, the so-called “distances” that have
been defined in the literature are rarely mathematical distances: they are
measures that evaluate the differences and similarities resulting from evolution
between the two genomes, either by directly counting the number of changes
or, in a complementary way, by counting the conserved regions. Hence, in the
following, we use the term measure rather than distance.

The purpose of this chapter is to present some algorithmic aspects of pair-
wise genome comparisons, when those comparisons aim at finding a (dis)si-
milarity measure. More precisely, we present several algorithms that were
proposed recently for solving (exactly or approximately) several variants of
the problem. Our goal is not to survey exhaustively all the existing results on
that topic, but rather to give a sample of different algorithmic ideas and tech-
niques that have been used to answer some of the problems. Besides the fact
that it presents original and non trivial concepts that we think are of interest
for the reader, it also gives a flavor of the inventiveness and the richness of
recent research on the subject.

Definitions and Notations. Genomes under consideration in this chapter are
represented as sequences of (possibly signed) integers, built from the alphabet
Σ = {1, 2, 3 . . . , n}, where n is as large as necessary. When unsigned (resp.
signed) genomes are considered, then their representation is a sequence of
unsigned (resp. signed) integers. When a sequence contains distinct integers
(that is, the corresponding genome has no duplicates), the sequence is called
a permutation, while in the contrary case it is called a string. For instance,
P = (2−3 8−4−5 1 7−6) is a signed permutation, while Q = (3−4−3 2 1 2 2)
is a signed string.

For any genome P , its length is denoted as mP . Moreover, for any 1 ≤
i ≤ j ≤ mP , P [i] denotes the i-th element of P , |P [i]| is P [i] whose sign has
been removed, and P [i, j] = (P [i], P [i + 1], . . . , P [j]) denotes the portion of
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P whose extremities are given by indices i and j, both being included. For
instance, if P = (2 − 3 8 − 4 − 5 1 7 − 6), then P [2] = −3, |P [2]| = 3, and
P [2, 4] = (−3 8 − 4).

A duo in a genome P is a set of two consecutive elements of P . For
any 1 ≤ i ≤ mP − 1, the duo di represents P [i]P [i + 1], and is denoted as
follows: di = (P [i], P [i + 1]). Two duos d = (a, b) and d′ = (a′, b′) of a signed
genome are said to be identical if (i) a = a′ and b = b′ or (ii) a = −b′ and
b = −a′. If the genome is unsigned, then two such duos are identical whenever
a = a′ and b = b′ only. Given two permutations P and Q built on the same
alphabet, an adjacency in P is a duo d for which there exists a duo d′ in Q
such that d and d′ are identical. Whenever d is not an adjacency in P , then
it is a breakpoint. We note that these two notions are symmetric: that is,
given two permutations P and Q built on the same alphabet, the number of
adjacencies (resp. breakpoints) in P is equal to the number of adjacencies
(resp. breakpoints) in Q.

Organization of the Chapter. This chapter is organized as follows: in Sec-
tion 1.2, we are interested in comparing pairs of genomes by finding their
common or conserved intervals. In this context, three algorithms are pre-
sented. Section 1.3 is devoted to two algorithms to determine the minimum
number of breakpoints between pairs of genomes containing duplicates. Sec-
tion 1.4 is the conclusion.

1.2 INTERVAL-BASED CRITERIA

1.2.1 Brief introduction

Breakpoints and adjacencies are easy to compute in permutations, but do
not give much insight on the genome organization in terms of genes that are
close to each other in both genomes. However, these groups of genes are
particularly interesting, since they show a similarity in their content between
genomes, similarity which has been preserved in spite of the past evolutionary
events.

Looking to intervals rather than to duos allows us to model such regions
with identical content but different gene order. In this context, the location
of the genes changes from one genome to the other, some genes may even get
duplicated, but the new locations and the possibly duplicates still form an
interval in the second genome.

Going further, that is, speaking about substrings with (almost) identical
content but whose genes are not consecutive, is possible, but in this case
measuring the similarity or dissimilarity between genomes becomes difficult
(the ‘missing’ genes allow us to have strictly overlapping regions as well as
long gaps). These regions are more successfully seen like clusters of genes
sharing a potential common function. Their importance is undeniable, but
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is not the point of this chapter. This is why we limit our study to measures
based on intervals.

1.2.2 The context and the problems

Let P be a signed string of integers over the finite alphabet Σ, representing a
linear genome.

Definition 1 [13] The character set of the interval P [i, j] of P , with 1 ≤
i ≤ j ≤ mP , is defined by

CS(P [i, j]) = {|P [h]| : i ≤ h ≤ j}

The character set of an interval stores the content of the interval, regardless
of the order of genes within it, their signs or their number of occurrences.
When the same character set is defined by two intervals of two strings, then
a strong local similarity is identified between the two strings.

Definition 2 [13] Let C ⊆ Σ be a set of integers and P, Q be two signed
strings over Σ. Set C is a common interval of P and Q if there exist
positions a, b, i, j, with a ≤ b and i ≤ j, such that

CS(P [a, b]) = CS(Q[i, j]) = C.

This definition allows several variants:

(1) common intervals of two permutations, defined in [16], when P
and Q are permutations on {1, 2, . . . , n}.

(2) conserved intervals of two permutations, defined in [4], when P
and Q are signed permutations on {1, 2, . . . , n} and the common interval
is required to satisfy either P [a] = Q[i] and P [b] = Q[j], or P [a] = −Q[j]
and P [b] = −Q[i].

(3) common intervals of two strings, defined in [13], when P and Q are
unsigned strings with elements in Σ.

Each variant defines a criterion to measure the similarity between strings
P and Q as the number of common/conserved intervals of P and Q.
In the case of common intervals and of conserved intervals in permutations,
a mathematically rigorous notion of distance (satisfying the three properties
of a metric) may be defined as follows. Note that the number of common
intervals between a permutation P and itself is the number of intervals of P ,
that is n(n + 1)/2. The same holds for conserved intervals.

Definition 3 Let Common(P, Q), Conserved(P, Q) be respectively the num-
ber of common and conserved intervals of two permutations P and Q. The
common intervals distance between P and Q is defined as
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distanceCommon(P, Q) = n(n + 1) − 2Common(P, Q).

The conserved intervals distance between P and Q (assumed signed) is
defined as

distanceConserved(P, Q) = n(n + 1) − 2Conserved(P, Q).

This notion of distance was introduced in [4] for conserved intervals, and
in the more general case where each of P and Q is replaced by a set of
permutations. The extension of the definitions and methods used in this
section to more than two strings is briefly discussed in Section 1.2.6. In the
case of common intervals in strings, the possible difference between the lengths
of P and Q as well as the possibly different number of locations of each interval
in each string make a neat definition much more difficult to find.

In the next three sections, we present algorithms to compute the number
of common intervals between P and Q according to each of the three variants
above. These three algorithms allow us to see and discuss three different ways
to reach a similar goal. The reader will note that in the case of common in-
tervals, both in permutations and in strings, the algorithms given here really
compute each of the searched intervals. The number of intervals is then im-
plicitly computed. In the case of conserved intervals, it is possible to compute
directly the number of intervals, without displaying them all.

To understand the differences between the three approaches, let us start
with a slightly deeper analysis of the problem. In the following, a pair (x, i)
indicates the element x of Σ situated at position i in Q. Looking for a common
interval of P and Q is looking for two positions i and j on Q such that the
elements in the interval Q[i, j] have neighboring localizations on P .

Definition 4 Given a position i, a Max zone of (Q[i], i) is any maximal in-
terval of P whose character set is (regardless of signs) included in CS(Q[i, mQ]).
A Min zone of (Q[i], i) is any maximal interval of P whose character set is
(regardless of signs) included in CS(Q[1, i]).

Recalling that the elements in the interval Q[i, j] are both in CS(Q[i, mQ])
and in CS(Q[1, j]), the following lemma is then easy to deduce:

Lemma 1 The set C defined by C = CS(Q[i, j]), with 1 ≤ i ≤ j ≤ mQ, is a
common interval of P and Q if and only if there exist a Max zone of (Q[i], i)
and a Min zone of (Q[j], j) whose intersection is C.

Figure 1.1 illustrates this lemma. Note that, when P and Q are permu-
tations (with or without signs), there is exactly one Max zone and one Min
zone for every element in Q. The three approaches are summarized below.

Commuting Generators. The algorithm for common intervals in permutations,
presented in Section 1.2.3 and introduced in [3], identifies for every element
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P =   3   1   4   2   6   5   8   4   2   1   5   2   7 

Q =   6   7   2   1   5   4   4   2   3   4   8 

i=3               j=7

Figure 1.1 Max zones (grey boxes) of (2, 3) and Min zones (white boxes) of (4, 7)
when Q = (6 7 2 1 5 4 4 2 3 4 8) and P = (3 1 4 2 6 5 8 4 2 1 5 2 7). Sets {1, 2, 4}, {5} and
{1, 2, 4, 5} may all be obtained as the intersection of a Max zone of (2, 3) with a Min
zone of (4, 7), but only {1, 2, 4, 5} is CS(Q[3, 7]) and is thus a common interval of P

and Q.

(Q[i], i) in Q (renumbered such that Q is the identity permutation) a subzone
of the Max zone and a subzone of the Min zone containing consecutive ele-
ments (including i) with respect to the order in Q. These subzones are called
generators. A common interval is then defined by any pair i, j such that j is in
the Max subzone of i and i is in the Min subzone of j. Once the subzones are
computed, obtaining all the common intervals is an easy task. The resulting
algorithm is in O(n + N), where n = mP = mQ = Card(Σ) is the common
length of P and Q, and N is the number of common intervals between P and
Q.

Bound-and-Drop. The algorithm for conserved intervals in (signed) permu-
tations, presented in Section 1.2.4 and introduced in [4], considers for each
j in Q (renumbered such that Q is the identity permutation) the candidates
i < j in Q such that Q[i] is in the Min zone of (Q[j], j) in P , Q[j] is in
the Max zone of (Q[i], i) in P , and the number of elements in the interval
of P with endpoints Q[i] and Q[j] is j − i + 1. The bad candidates i are
dropped, whereas the firstly found suitable one is validated. The result is a
set of special conserved intervals CS([i, j]), called irreducible intervals, which
allows to quickly compute, in O(n), the total number of conserved intervals.
An algorithm to find all the conserved intervals in O(n + N) time is then
easily obtained (where n = mP = mQ = Card(Σ)).

Element Plotting. The algorithm for common intervals in strings, presented
in Section 1.2.5 and introduced in [13], deals with multiple Max zones and
Min zones for any fixed (Q[i], i) by considering in a left to right order all the
positions j > i and plotting on P the elements found in Q[i, j]. The Max
zones of (Q[i], i) and the Min zones of (Q[j], j) are in this way computed si-
multaneously but uncontiguously and incompletely (only the useful elements,
those in Q[i, j], are plotted). When an interval of plotted elements in P has
the same number of distinct elements as CS(Q[i, j]), a common interval is
displayed. This is equivalent to saying that the intersection of a Max zone of
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(Q[i], i) and a Min zone of (Q[j], j) is an interval which contains exactly the
elements in CS(Q[i, j]). The algorithm presented here runs in θ(m2) (where
m = max{mP , mQ}), but may be improved to O(m2) as shown in [13].

1.2.3 Common Intervals in Permutations and the Commuting

Generators Strategy

Common intervals of two permutations were introduced in [16], together with
a first (and quite complex) algorithm in O(n + N) to compute them.

The algorithm we present in this section was proposed in [3]. The genomes
P and Q are represented as permutations on Σ = {1, 2, . . . , n}. Moreover, in
order to simplify the presentation, we assume without loss of generality that
Q is the identity permutation, denoted Id, and P is an arbitrary permutation.
This can be easily achieved given two arbitrary permutations, by renumbering
Q to obtain Id and renumbering P accordingly. As a consequence, given
i ∈ {1, 2, . . . , n} we have that Q[i] = Id[i] = i, and that the Max zone and
Min zone of (i, i) may be redefined as follows :

Definition 5 Given i ∈ {1, 2, . . . , n}, define on P the following intervals:

IMax[i]: the largest interval containing i and elements greater than i,
IMin[i]: the largest interval containing i and elements smaller that i.

Let (i..j) be a shorter notation for CS(Id[i, j]), that assumes 1 ≤ i ≤ j ≤ n.
According to Lemma 1, a set (i..j) is a common interval of P and Id if, and
only if, the equality CS(IMax[i]) ∩ CS(IMin[j]) = (i..j) holds. With the
supplementary notation

Sup[i]: the largest integer such that (i..Sup[i]) ⊆ CS(IMax[i]), and
Inf [i]: the smallest integer such that (Inf [i]..i) ⊆ CS(IMin[i]),

the latter equality holds if and only if j ≤ Sup[i] and Inf [j] ≤ i. Equivalently,
we have that (i..j) is a common interval of P and Id if and only if

(i..j) = (i..Sup[i]) ∩ (Inf [j]..j)

.
The vectors Sup and Inf , both of size n, are thus sufficient to generate

all the common intervals (i..j) (and only the common intervals) using the
preceding formula. But this pair of vectors is not necessarily unique. A
general definition may be given:

Definition 6 A pair (R, L) of vectors of size n is a generator for the common
intervals of P and Id if the following properties hold:

(i) R[i] ≥ i and L[i] ≤ i, for all 1 ≤ i ≤ n, and
(ii) (i..j) is a common interval of P and Id if and only if

(i..j) = (i..R[i]) ∩ (L[j]..j).
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The pair (Sup, Inf) allows us to affirmatively answer the question whether
a generator exists for every P and Id. Paper [3] deeply analyzes generators
for two or more permutations, and for other families of intervals. We focus
here on computing the common intervals of two permutations, which is done
with Algorithm 1.1.

Algorithm 1.1 Algorithm Common Intervals In Permutations [3]
Step 1. For all i ∈ {1, 2, . . . , n} do compute IMax[i] and IMin[i] Endfor;

Step 2. Compute (Sup, Inf);
Step 3. Compute common intervals.

Consider Steps 1 to 3 one by one.

Step 1. As IMax[i] and IMin[i] are intervals of P , computing them just
requires to compute their left and right endpoints. In order to ensure a linear
complexity, all the endpoints of a given type are obtained during a single
search along P . To obtain, for instance, the left endpoints LMin[i] of IMin[i]
(1 ≤ i ≤ n), Algorithm 1.2 is proposed, which uses a stack S to store in a
convenient order the current candidates. The linear running time of this
algorithm is obvious.

Algorithm 1.2 Algorithm Step 1 (LMin version) [3]

{S is a (initially empty) stack of positions in P}

Stack 0 on S; P [0]← n + 1;
For h = 1 to n do

While P [top(S)] < P [h] do Unstack top(S) Endwhile;

LMin[P [h]]← top(S) + 1;
Stack h on S;

Endfor.

Step 2. Computing (Sup, Inf) when the endpoints of IMax[i] and IMin[i]
are known is based on the following property.

Lemma 2 Let P be a permutation. If (i..k) ⊆ CS(IMax[i]), then Sup[i] ≥
Sup[k]. If (k..i) ⊆ CS(IMin[i]) then Inf [i] ≤ Inf [k].

The proof of this lemma is easily done by noting that we have (k..Sup[k]) ⊆
CS(IMax[k]), and that IMax[k] is included in IMax[i]. Then both (i..k) and
(k..Sup[k]) are subsets of CS(IMax[i]) and so is their union. The conclusion
follows from the definition of Sup[i]. A similar reasoning is valid for the second
part of the lemma.

Lemma 2 allows to compute Sup[i] in the decreasing order of i. Assuming
Sup[i + 1], . . . , Sup[n] are already known, one obtains Sup[i] by initializing
it with i and successively updating it to Sup[kh] as long as the element kh
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defined by k1 = i + 1, kh+1 = Sup[kh] + 1 (h ≥ 1) is found in IMax[i].
Algorithm 1.3 is based on this idea and runs in O(n) since the total number
of updates over all i is n − 1.

Algorithm 1.3 Algorithm Step 2 [3]

{W, w are two vectors of size n}

Inf [1]← 1; Sup[n]← n;

For i = 1 to n do W [i]← i; w[i]← i Endfor;

For i = n− 1 downto 1 do

While W [i] + 1 is in IMax[i] do W [i]←W [W [i] + 1] Endwhile;

Sup[i]←W [i]
Endfor;

For i = 2 to n do

While w[i]− 1 is in IMin[i] do w[i]← w[w[i]− 1] Endwhile;

Inf [i]← w[i]
Endfor.

Step 3. To compute common intervals, a commuting generator is needed in
order to ensure a minimum running time for the algorithm.

Definition 7 A generator (R, L) is commuting if each of the collections of
sets {(i..R[i]) : 1 ≤ i ≤ n} and {(L[i]..i) : 1 ≤ i ≤ n} has the property
that any two distinct sets of the collection are either disjoint or one of them
contains the other one.

Fortunately, the generator (Sup, Inf) computed in Step 2 is commut-
ing (easily deduced either using the definition or Algorithm 1.3); but Al-
gorithm 1.4 works as well for an arbitrary commuting generator. It first com-
putes for every element (and position) i > 1 in Id a value Support[i] which
gives the rightmost position h < i such that Id[h, R[h]] contains Id[i, R[i]].
Then, for each j in decreasing order, it successively identifies the positions
i = Supportq[j] (q ≥ 0, with the convention that Support0[j] = j, and
Supportr[j] = Support[Supportr−1[j]]) such that L[j] ≤ i, that is, (L[j]..j)
contains i. This is sufficient to ensure that (i..j) is a common interval, since
we also have, by the definition of the vector Support, that R[i] ≥ j and thus
(i..j) = (i..R[i]) ∩ (L[j]..j).

The second while loop of this algorithm is executed proportionally to the
number of common intervals it outputs, so that the running time of the algo-
rithm is in O(n + N).

Algorithm Common Intervals In Permutations first collects the necessary
information, and then builds at once all the common intervals, in contrast
with the next algorithms, which use sequentially collected information to se-
quentially display the common intervals.
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Algorithm 1.4 Algorithm Step 3 [3]

{S is a (initially empty) stack of positions in Id}
{R, L are two vectors of size n, representing the given generator}

Stack 1 on S

For i = 2 to n do

While R[top(S)] < i do Unstack top(S) Endwhile;

Support[i]← top[S];
Stack i on S

Endfor;

For j = n downto 1 do

i← j;

While i ≥ L[j] do

Output the common interval (i..j);
i← Support[i]

Endwhile

Endfor.

1.2.4 Conserved Intervals in Permutations and the Bound-and-Drop

Strategy

In [4], conserved intervals were introduced as a family of common intervals
that should not be broken by rearrangement operations on the genome. An
O(n) algorithm to compute the number of conserved intervals between two
(and even more, see Section 1.2.6) permutations is given in the paper, and we
present it below. Displaying all the conserved interval in O(n + N), where
N is the total number of conserved intervals, is an easy task using Lemma 3
below and the algorithm.

In this section, genomes are signed permutations on {1, 2, . . . , n}. With-
out loss of generality, we assume once again that one of the permutations
is the identity permutation Id, and the other permutation P is an arbitrary
signed permutation. Moreover, since singletons are known conserved inter-
vals, they are omitted from the presentation below. All the conserved inter-
vals considered in the remaining of this section are therefore, by definition,
non-singletons.

Definition 8 Le P be a signed permutation. A conserved interval C of Id
and P is reducible if there exist smaller intervals C1, C2, . . . , Ch (h ≥ 2)
such that C is the union of C1, C2, . . . , Ch. In the contrary case, C is called
irreducible.

Note that irreducible conserved intervals are not necessarily minimal with
respect to inclusion. Moreover, it is easy to prove that irreducible conserved
intervals are either disjoint, or included in each other (and with different
endpoints on each permutation), or overlapping on exactly one element, so
that they form chains:

Definition 9 Let P be a signed permutation. A collection C1, C2, . . . , Cl

(l ≥ 1) of irreducible conserved intervals of P and Id is a chain if Cx and
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Cx+1 have exactly one element in common, for all x, 1 ≤ x ≤ l − 1. A
chain C1, C2, . . . , Cl (l ≥ 1) is maximal if no irreducible conserved interval
C0 exists such that C0, C1, C2, . . . , Cl or C1, C2, . . . , Cl, C0 is a chain.

Maximal chains partition the collection of irreducible conserved intervals.
Moreover, a conserved interval is always a chain (not necessarily maximal),
so that estimating the number of conserved intervals and displaying each of
them when irreducible conserved intervals are known may be done using the
following result:

Lemma 3 Let P be a signed permutation. A maximal chain C1, C2, . . . , Cl

(l ≥ 1) of irreducible conserved intervals of P and Id generates exactly l(l +
1)/2 conserved intervals.

It remains to give the algorithm for finding the irreducible conserved inter-
vals. Note that the conserved intervals with endpoints i, j, 1 ≤ i ≤ j ≤ n on
Id have either positive endpoints i, j (in this order from left to right) or neg-
ative endpoints −j,−i (in this order from left to right) on P . The algorithm
given below shows how to identify the irreducible conserved intervals with
positive endpoints (called positive irreducible intervals). The same algorithm,
applied to Id and to the result P of a complete signed reversal on P (that
is, P = (−P [n] − P [n − 1] . . . − P [1])) identifies the irreducible conserved
intervals with negative endpoints (called negative irreducible intervals).

In the algorithm, P ∗ is the permutation (0 P [1] . . . P [n] n + 1). Moreover,
LMin[i] is the left endpoint of the interval IMin[i] defined as in Definition 5,
but for P ∗

+, the unsigned permutation obtained from P ∗ by removing the
signs.

Algorithm 1.5 Algorithm Positive Irreducible Intervals [4]
{S is a (initially empty) stack of indices in P ∗}
{B is a vector of size n + 2}

Stack 0 on S; B[0]← n + 1;
Compute LMin[i], i = 0, . . . , n + 1, using Algorithm Step 1 (LMin version);
For j = 1 to n + 1 do

If LMin[j] > 1 then B[j]← |P ∗[LMin[j]− 1]| else B[j]← n + 1 Endif;

While |P ∗[j]| < P ∗[top(S)] or |P ∗[j]| > B[top(S)] do

Unstack top(S)
Endwhile;

If j − top(S) = P ∗[j]− P ∗[top(S)] and B[j] = B[top(S)] then

Output the positive irreducible interval (P ∗[top(S)]..P ∗[j])
Endif;

If P ∗[j] > 0 then Stack j on S Endif;

Endfor.

It is important to note that each index j in P can be the right endpoint
of at most one positive irreducible interval. Then, each j is considered, in
increasing order, and the corresponding left endpoint of the possible interval
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is searched for on the stack S, which contains the positions of the candidates
(both the positions and their corresponding elements in P ∗ are in increasing
order). To this end, a value B[i] is computed for each i, that upper bounds
the values |P ∗[j]| obtained at a possible right end j of a conserved interval
(i..j). Obviously bad candidates top(S) (too large or whose bound B[top(S)] is
exceeded by |P ∗[j]|) are dropped, and the next candidate either is the suitable
one (the number of elements in the interval is correct, and these elements are
all smaller than P ∗[j]), or is dropped.

The running time of this algorithm is in O(n), since the While loop will
globally unstack at most n elements (each index is stacked exactly once on
S).

1.2.5 Common Intervals in Strings and the Element Plotting Strategy

In this section, P and Q are unsigned strings over {1, 2, . . . , n}, of respective
lengths mP and mQ, which implies that every element in the alphabet may
have zero, one or several occurrences in each string. Without loss of generality,
it is assumed that n ≤ mP + mQ (otherwise a renumbering of the elements
in the alphabet may be performed to achieve this), and that strings P and
Q are extended at their left and right extremities with a new element (not in
Σ), say n + 1. To simplify explanations, the resulting strings are still noted
P and Q with lengths mP and mQ (which only differ by 2 from the initial
lengths, thus not affecting the complexity order of the algorithm below).

The algorithm presented in this section was proposed in [13] and uses a
very different strategy to display all common intervals, compared to the ones
in Sections 1.2.3 and 1.2.4. To start with, note that we may limit the searches
to maximal locations of common intervals:

Definition 10 Let Q be an unsigned string on the alphabet Σ = {1, 2, . . . , n}
and C ⊆ {1, 2, . . . , n}. Interval Q[i, j] is a location of C in S if CS(Q[i, j]) = C.
The location Q[i, j] is left-maximal if i = 1 or Q[i− 1] 6∈ C, right-maximal
if j = mQ or Q[j + 1] 6∈ C, and maximal if it is both left-maximal and
right-maximal.

Algorithm 1.6 uses a vector POS and a matrix NUM to store respectively
the positions in P of every element c ∈ {1, 2, . . . , n}, and the number of
distinct elements in each interval P [a, b], with a, b ∈ CS(P ). For each pair of
indices i, j with 1 ≤ i ≤ j ≤ mQ, such that Q[i, j] is a maximal location of
CS(Q[i, j]) (set stored as a vector OCC in the algorithm), the nOCC elements
of CS(Q[i, j]) are plotted (or marked) on P . Intervals of plotted elements on
P are then tested to see if they have all the desired elements (that is, nOCC

elements) and if they are maximal. In the positive case, they are maximal
common intervals and are thus output by the algorithm.

It is easy to imagine examples on which this algorithm will display twice
(or more) the same common interval C, with two different locations either on
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Algorithm 1.6 Algorithm Common Intervals In Strings [13]

{OCC[c] = 1 if and only if c belongs to the current interval Q[i, j]}

Compute data structures POS and NUM for P;

For i = 1 to mQ do

For c = 1 to n do OCC[c]← 0 Endfor;

nOCC ← 0; j ← i;

While j ≤ mQ and Q[i, j] is left-maximal do

c← Q[j];
OCC[c]← 1; nOCC ← nOCC + 1;

While Q[i, j] is not right-maximal do j ← j + 1 Endwhile;

For all p in POS[c] do

Mark element c at position p in P;

P [a, b]← the largest interval of marked characters with a ≤ p ≤ b;

If NUM [a, b] = nOCC and P [a, b] is maximal then

Output C = CS(Q[i, j]) and the pair (P [a, b], Q[i, j])
Endif

Endfor;

j ← j + 1
Endwhile

EndFor.

P or on Q. The algorithm may be modified to avoid redundant output, as
shown in [13].

This algorithm runs in Θ(m2), where m = max{mP , mQ}, but a variant of
it exists to run in O(m2) [13].

1.2.6 Variants

The notions and algorithms presented so far are either directly devised for
or easily extended to an arbitrary number K ≥ 2 of genomes (see [3, 4,
13]). In this case, the complexity becomes O(Kn + N) to output all common
or all conserved intervals in (signed) permutations, O(Kn) to compute the
number of conserved intervals in signed permutations, and O(Kn2) to output
all common intervals in strings.

The case of genomes with duplicates, represented by (signed or unsigned)
strings, was approached in Section 1.2.5 under the double hypothesis that (1)
no distinction can be made among duplicates in P and in Q, and that (2) the
locations of a common interval of P and Q may contain an arbitrary number
of copies of each gene. This approach passes up the underlining biological
hypothesis that the copies of a gene are obtained during speciation and dupli-
cation processes, that imply relationships between duplicates. Several ways
to express this biological hypothesis exist (see [7] for detailed explanations)
resulting in different hard problems to solve, for which different approaches
were proposed.

In our next section, we present some of them.
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1.3 CHARACTER-BASED CRITERIA

1.3.1 Introduction and Definition of the Problems

As mentioned in the previous section, computing the number of breakpoints
between two genomes that do not contain duplicates is an easy task. On
the contrary, when duplicates occur in genomes, an intuitive way of dealing
with them is to get back to permutations, that is genomes without duplicates.
For this, the goal is to establish a one-to-one correspondence between genes
of both genomes, that is a matching, say M. Once M is found, we remove
from both genomes the genes which are not matched by M (this happens, for
instance, when the number of duplicates of a given gene differs between both
genomes), and, after a renaming of the genes, we obtain a permutation, on
which all classical measures can be computed.

The tricky part of the process is to find an appropriate matching. Usu-
ally, the matching M that we look for is one that optimizes the studied
measure, thus following the parsimony hypothesis, which states that nature
always chooses the “shortest path” to go from one species (i.e., one genome)
to another.

In that case, the problem of computing a measure between two genomes,
which was just a computation problem in permutations (we are just asked to
provide a number), becomes an optimization problem in strings, in which one
wants to find the matching that optimizes the studied measure.

In the following, we are interested in genomes that contain duplicates.
We first look at the particular case in which the pairs of genomes that we
compare contain, for each gene g, exactly the same number of copies of g. In
that case, we say that genomes are balanced. This restriction could seem quite
strong, but genes are DNA fragments, and no two genes are constituted of
the exact same DNA sequence; thus, duplicate genes are actually genes that
are pairwise similar, i.e. their DNA sequence are sufficiently close. Hence, it
is always possible to build gene clusters such that there are as many copies
in the first genome as in the second (e.g., by removing from a given cluster
those genes that are less similar to the others).

Suppose that the two input genomes are balanced. It thus seems natural
to ask for a one-to-one correspondence of the genes (i.e., a matching) that
contains all the genes of both genomes. Such a matching is referred to in the
following as a full matching.

Now, if the two input genomes are unbalanced, we need to define more
precisely the matching that we look for. First, for any gene g, we denote by
occ(g,P ) (resp. occ(g,Q)) the number of (positive and negative) occurrences of
g in P (resp. Q). The required matching M thus needs to satisfy the following
rule: for any gene g in P (resp. Q), M must contain min{occ(g, P ), occ(g, Q)}
one-to-one correspondences involving g. In that sense, M remains a full
matching, because it contains the maximum possible number of one-to-one
correspondences between genes. The difficulty here is the following: since
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genomes are not balanced, some genes will remain unmatched by M. In that
case, we prune the genomes, i.e. we remove those unmatched genes, in order
to obtain two genomes P ′ and Q′ where each gene is covered by M. We
then compute the number of breakpoints between P ′ and Q′, thanks to the
permutation induced by M.

We note, for sake of completeness, that there exists other types of matching
that can be required:

• One can ask for an exemplar matching, in which we only keep one oc-
currence of each gene g [12]

• One can also ask for an intermediate matching, in which for each gene
g, we keep 1 ≤ x ≤ min{occ(g, P ), occ(g, Q)} occurrences of g [1]

Coming back to the full matching variant, in both the balanced and un-
balanced cases, finding a full matching that optimizes a given measure is
NP-hard, and even APX-hard for all classical measures. This is for instance
the case for minimizing the number of breakpoints [9], maximizing the num-
ber of common intervals [2] or the number of conserved intervals [2], and this
hardness holds even for very restricted instances. Consequently, most of the
efforts in the literature have focused on what seemed to be the “simplest”
case, i.e. minimizing the number of breakpoints.

In the rest of this section, we describe two algorithms that deal with
genomes P and Q, represented as strings of integers, and aim at finding a
full matching M that minimizes the number of breakpoints in the permuta-
tion induced by M (possibly obtained after pruning, in case P and Q are not
balanced). Let us denote this problem by BAL-FMB(P, Q) (FMB = Full Match-
ing Breakpoints) in the balanced case, and UNBAL-FMB(P, Q) in the unbalanced
case. The two algorithms we describe here are :

1. An approximation algorithm for BAL-FMB [10]

2. An exact (thus, exponential) algorithm for UNBAL-FMB [1], written in the
form of a 0-1 linear program, the goal being to be able to handle large
instances.

We want to emphasize the fact that this section does not aim at being an
exhaustive survey of the results concerning BAL-FMB and UNBAL-FMB, but at
providing different algorithmic techniques and results that we think can be of
interest for the reader.

1.3.2 An Approximation Algorithm for BAL-FMB

In this section, we show the main ideas and arguments of an approximation
algorithm provided by Kolman and Waleń [10]. Let P and Q be two bal-
anced strings containing signed integers, let n = mP = mQ, and let k be the
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maximum number of copies of a gene in P (resp. in Q). Note that, since
a gene is represented by a signed integer, k takes into account both positive
and negative occurrences of the most represented integer in P (resp. Q). The
result from Kolman and Waleń [10] that we develop here is the following.

Theorem 1 There exists an O(k) approximation algorithm for solving the
problem BAL-FMB.

A slightly different problem: UMCSP. In order to make things simpler, we first
develop the main arguments for the above theorem, in the specific case where
the strings are unsigned (i.e., every integer in both strings carries the same
sign, which we will always consider as positive). The algorithm can easily be
adapted for instances containing signed strings, but with a loss of a factor 2
in the approximation ratio, which of course does not change the ratio of O(k)
given in Theorem 1.

It should be first said that the result from Kolman and Waleń [10] con-
siders a slightly different problem than BAL-FMB, called UMCSP, which stands
for Unsigned Minimum Common String Partition. This problem is the fol-
lowing: given two balanced unsigned strings P and Q, find a partition P =
{P1, P2, . . . Pt} of substrings (i.e., sets of consecutive elements) of P such that:

1. P1 ·P2 ·P3 . . . Pt = P , where X · Y denotes the concatenation of strings
X and Y

2. there exists a permutation π on {1, 2, . . . t} such that Q = Pπ(1) · Pπ(2) ·
Pπ(3) . . . Pπ(t)

3. t is minimized

In this context, each Pi, 1 ≤ i ≤ t is called a block. It can be seen that
BAL-FMB and UMCSP are closely related in the following sense:

• any block partition of P and Q returned by UMCSP can be converted as
a full matching between genes of P and genes of Q, and vice-versa.

• if b (resp. t) denotes the minimum number of breakpoints obtained by
BAL-FMB (resp. the minimum number of blocks obtained by UMCSP),
then b and t differ by 1. Thus, any approximation algorithm of ratio
O(k) for UMCSP is also an approximation algorithm of ratio O(k) for
BAL-FMB.

As a consequence, in the rest of the section, we only focus on UMCSP, keeping
in mind that the result also applies to BAL-FMB.

Before going into further details, we need a few definitions: a substring of
a string S is a set of consecutive elements of S. Recall that a duo in a string
S is just a substring of length 2 of S, and let us denote by duos(S) the set of
duos of S. Finally, given any solution for UMCSP, if a duo d from P does not
appear in P , the we say that d is broken.
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A first approximation algorithm for UMCSP. The crucial idea behind the ap-
proximation algorithm from [10] is the following: in any solution for UMCSP,
whenever a substring X appears a different number of times in P than in Q,
then at least one duo in at least one occurrence of X must be broken. For
any non empty string X , we denote by #substr(P, X) (resp. #substr(Q, X))
the number of times X appears as a substring of P (resp. Q). Hence, the
approximation algorithm ApproxUMCSP we look for could work as follows: for
every X such that #substr(P, X) 6= #substr(Q, X), cut at least one duo in
each occurrence of X in P and Q, and return the partitions P and Q induced
by those cuts. The correctness of ApproxUMCSP is given by the following
lemma.

Lemma 4 Algorithm ApproxUMCSP returns two partitions P and Q that
form a common partition of P and Q.

Note that we should try to avoid too many cuts of duos, since each cut of a
duo corresponds to an increase in the number of blocks in P and Q. However,
minimizing the number of cuts is equivalent to the Hitting Set problem, which
is known to be hard to approximate [11]. Thus, a deeper analysis is needed.
Let T denote the set of all substrings X ∈ Σ∗ such that #substr(P, X) 6=
#substr(Q, X). Then, it can be seen that not all substrings X ∈ T need
to be considered. Indeed, if two substrings X, Y ∈ T are such that X ⊏ Y
(where X ⊏ Y here means “X is a proper substring of Y ”), then any duo d
that breaks an occurrence of X contained in Y will also break Y . Thus we
can limit ourselves to the study of the set Tmin, which is defined as follows:

Tmin = {X ∈ T |∄X ′ ∈ T s.t. X ′
⊏ X}

In other words, Tmin is the set of the substrings of T that are minimal with
respect to the relation ⊏.

Thus, instead of going through T , going through Tmin only in algorithm
ApproxUMCSP maintains its correctness. Now, in order to determine the
approximation ratio we look for, we need to analyze how Tmin is involved in
any optimal solution of UMCSP. Let the two partitions (PO,QO) represent an
optimal solution of UMCSP, and let an optimal break be any broken duo in this
solution. The following lemma holds.

Lemma 5 If X ∈ Tmin, then there exists at least one occurrence of X in P
or Q that contains an optimal break.

Our goal is now to assign to each X ∈ Tmin an optimal break. For this, for
any X ∈ Tmin, we denote by f(X) the optimal break that X contains. If X
contains more than one optimal break, f(X) is set arbitrarily to the leftmost
one. In that case, the following lemma holds.

Lemma 6 Let X = X [1]X [2] . . .X [l] and Y be two strings from Tmin such
that f(X) = f(Y ). In that case, duos(Y ) ∩ {X [1]X [2], X [l− 1]X [l]} 6= ∅.
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The above lemma leads us directly to the following modification of algo-
rithm ApproxUMCSP: for each X ∈ Tmin, we cut the first and last duo in all
occurrences of X in P and Q. Algorithm ApproxUMCSP is now complete, and
is summarized in Algorithm 1.7.

Algorithm 1.7 Algorithm ApproxUMCSP [10]

Input: Two balanced unsigned strings of integers, P and Q,

each of length n = mP = mQ

1. Compute the set Tmin defined in the text above

2. Φ = ∅
3. P = {P}, Q = {Q}
4. For each X ∈ Tmin do

6. If duos(X) ∩Φ = ∅ then

7. Add the first and last duo of X in Φ
8. Cut all occurrences of those two duos in the

partitions P and Q
9. End If

10. End For

Output: Partitions P and Q

It can be seen that Algorithm ApproxUMCSP remains correct, because each
occurrence of any X ∈ Tmin is cut by at least one duo, and Lemma 4 still
holds. Moreover, the following theorem holds.

Theorem 2 Algorithm ApproxUMCSP is a 4k-approximation algorithm for
UMCSP.

The proof is as follows: suppose that X1 and X2 are two distinct strings
of Tmin that contributed to increasing the cardinality of the set Φ during the
execution of ApproxUMCSP. Then, by Lemma 6, f(X1) 6= f(X2). Since, on
the whole, there are Card(PO) + Card(QO) − 2 optimal breaks, this means
that Card(Φ) ≤ 2 Card(PO) + 2 Card(QO) − 4. Here, we consider instances
where a given integer appears at most k times, thus each duo from Φ induces
at most k cuts. Let P and Q be the partitions returned by ApproxUMCSP, and
recall that, by definition, Card(P) = Card(Q) and Card(PO) = Card(QO).
We have Card(P) ≤ k Card(Φ) + 1, thus Card(P) ≤ 4k(Card(PO) − 1) + 1,
that is Card(P) ≤ 4k Card(PO).

About the time complexity of ApproxUMCSP. Kolman and Waleń have pre-
sented different tricks for achieving a time complexity of O(n) for ApproxUM-
CSP, where n = mP = mQ.

First, instead of computing Tmin, it is sufficient to compute a set T ′ of
strings satisfying the three following properties:

1. Card(T ′) is in O(n) and can be computed in O(n) time

2. Tmin ⊆ T ′ ⊆ T
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3. If a string X ∈ T passes the test of Line 6. of algorithm ApproxUMCSP
(i.e., duos(X) ∩ Φ = ∅), then X ∈ Tmin

In other words, T ′ is just a set that is easier to compute than Tmin. Prop-
erty 1. ensures it is not too large, and that it can be found efficiently. Prop-
erties 2. and 3. ensure that ApproxUMCSP remains correct using T ′ instead
of Tmin.

T ′ can actually be computed in O(n) time using a suffix tree: let P and Q be
the two balanced genomes from the instance. Then we build the (compact)
suffix tree T of string S = P$P Q$Q, where $P and $Q are characters not
appearing in P and Q. Such a suffix tree can be constructed in O(n) time [15].
Let r be the root of T , and let v 6= r be any node of T . Let parent(v) be
the father of v in T , let s(v) be the string represented by the path from
r to parent(v), and let s′(v) = s(v) · c, where c is the first character of
the string represented by the edge {parent(v), v}. Finally, we say that v
is a proper node of T when s′(v) contains neither $P or $Q. Now we can
define T ′: T ′ is the set of the strings s′(v), for any proper node v in T for
which #substr(P, s′(v)) 6= #substr(Q, s′(v)). One can see that Card(T ′) is
in O(n), because T contains O(n) nodes. Besides, Tmin ⊆ T ′ by definition.
Finally, using the suffix tree, #substr(P, s′(v)) (resp. #substr(Q, s′(v))) can
be computed in O(n) time, and T ′ can thus be computed in O(n) time as
well.

Second, Kolman and Waleń describe how to maintain the set Φ, test the
condition of Line 6. of algorithm ApproxUMCSP, and realize the cuts in O(1)
time, leading to O(n) overall. For this, they use a data structure from Gabow
and Tarjan [8] that ensures an amortized O(1) time for each such operation.

From UMCSP to the signed case SMCSP. The above description was focused
on UMCSP, that is the unsigned case. If we want to adapt ApproxUMCSP to
the signed case (a problem that we call SMCSP), a few adaptations need to be
made. For any string S, let −S denote its reversed string, both in order and
sign. Then three main changes need to be done:

• #substr(P, X) should now count the number of occurrences of X and
−X in P

• The set T ′ should be computed using the suffix tree T ′ of string S′ =
P$P Q$Q(−P )$P (−Q)$Q (where the brackets are here just to delimit
strings)

• Whenever a duo ab should be cut, all duos −b − a should be cut too

None of these adaptations changes the time complexity or the correctness
of the algorithm. However, the last one increases the approximation ratio of
ApproxUMCSP by a factor 2.
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Remarks. First, we note that the above approximation algorithm ApproxUM-
CSP is actually a Θ(k) approximation algorithm, because there exist instances
for which the optimum number of blocks is O(1), whereas the number of blocks
returned by the algorithm is O(k). Strings P = ba{ab}k−1 and Q = abk [10]
form such an instance: there exists a partition of P (resp. Q) containing 3
blocks, but ApproxUMCSP will return a solution containing k + 1 blocks.

It should also be noted that, strangely enough, if instead of trying to min-
imize the number of breakpoints, we aim at finding a full matching that
maximizes the number of adjacencies, then there exists a 4-approximation al-
gorithm [2], i.e. an approximation ratio that does not depend on k. However,
each problem is in some sense the dual of the other. This raises the question
whether we can do better than an O(k)-approximation algorithm for BAL-FMB;
and more precisely, is BAL-FMB O(1)-approximable ?

1.3.3 An Exact Algorithm for UNBAL-FMB

In this section, we focus on problem UNBAL-FMB, where the goal is to find a
full matching M between two unbalanced signed genomes, in such a way that
the permutation induced by M minimizes the number of breakpoints.

Here, we give the main elements of an exact algorithm that solves UNBAL-FMB,
published in [1]. The problem is known to be APX-hard, even for instances
in which P does not contain duplicates and occ(g,Q)≤ 2 for any gene g from
Q [2]. Thus, the algorithm we give here is exponential; our approach is to
express UNBAL-FMB into a 0-1 linear program, that is a series of inequali-
ties implying boolean variables only, together with an objective function on
boolean variables, that we wish to maximize.

The main interest in such an approach lies in the fact that there has been
many efforts in the past to develop softwares that are able to handle such
programs, even if they contain a large number of variables and inequalities.
Thus, our hope is that powerful enough solvers (such as minisat+ or CPLEX)
will be able to provide optimal solutions on real data in reasonable time. If
this is the case, then we have two options:

• we can solve exactly those instances for themselves. However, even if this
works for some data, one can easily imagine that there exists instances
which will never be solved in reasonable time;

• or, thanks to exact results obtained by this method, we can analyze and
evaluate one or several heuristic(s), as was done e.g. in [1].

As we will see later, we have tested our program on a set of 12 genomes of
bacteria, for which all 66 pairwise comparisons were achieved rapidly.

We first present below the complete 0-1 linear program in itself (referred
hereafter as FMA for Full Matching Adjacencies, a name that will be justified
later), together with an explanation of the different variables we have defined
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and used. Next, a few data reduction rules are provided, that aim at reducing
the input size, and hence at speeding-up the program.

Program FMA takes as input two genomes P and Q with duplicates, of
respective lengths mP and mQ, and solves problem UNBAL-FMB. Recall that Σ
denotes the set of integers (representing genes) on which P and Q have been
built. The objective function, the variables and the constraints involved are
now discussed.
Variables:

• Variables adj(i, j, k, ℓ), 1 ≤ i < j ≤ mP and 1 ≤ k < ℓ ≤ mQ, represent
adjacencies according to M. Our initial problem is to try minimize the
number of breakpoints; however, maximizing the number of adjacencies
makes the writing of our 0-1 linear program more simple. Besides, it
can been easily seen that since Card(M) is given by the input, the full
matching that minimizes the number of breakpoints also maximizes the
number of adjacencies. Thus we only focus on adjacencies here, and
adj(i, j, k, ℓ) = 1 iff the three following propoerties are satisfied:

1. One of the two following cases occur:

– (P [i], Q[k]) and (P [j], Q[ℓ]) belong to M, P [i] = Q[k] and
P [j] = Q[ℓ], or

– (P [i], Q[ℓ]) and (P [j], Q[k]) belong to M, P [i] = −Q[ℓ] and
P [j] = −Q[k]

2. P [i] and P [j] are consecutive in P according to M

3. Q[k] and Q[ℓ] are consecutive in Q according to M.

• Variables a(i, k), 1 ≤ i ≤ mP and 1 ≤ k ≤ mQ, define a matching M:
ai,k = 1 iff P [i] is matched with Q[k] in M.

• Variables bX(i), X ∈ {P, Q} and 1 ≤ i ≤ mX , define whether the
gene appearing at position i of X is covered by the matching M. More
precisely, bX(i) = 1 iff X [i] is covered by M. Clearly,

∑
1≤i≤mP

bP (i) =∑
1≤k≤mQ

bQ(k), and this is precisely the size of M.

• Variables cX(i, j), X ∈ {P, Q} and 1 ≤ i < j ≤ mX , determine whether
genes at positions i and j in X are consecutive genes according to M:
cX(i, j) = 1 iff X [i] and X [j] are both covered by M and no gene X [p],
i < p < j, is covered by M.

Constraints:
Assume 1 ≤ i < j ≤ mP and 1 ≤ k < ℓ ≤ mQ.

• Constraint C.01 ensures that each gene of P and of Q is matched at most
once, i.e. bP (i) = 1 (resp. bQ(k) = 1) iff gene i (resp. k) is matched
in P (resp. Q). Observe that in any matching, any two genes that are
mapped together necessarily have the same label (except maybe for the
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Program FMA

Objective :

Maximize
P

1≤i<mP

P

i<j≤mP

P

1≤k<mQ

P

k<ℓ≤mQ

adj(i, j, k, ℓ)

Constraints :

C.01 ∀ 1 ≤ i ≤ mP ,
P

1≤k≤mQ

|P [i]|=|Q[k]|

a(i, k) = bP (i)

∀ 1 ≤ k ≤ mQ,
P

1≤i≤mP

|P [i]|=|Q[k]|

a(i, k) = bQ(k)

C.02 ∀ X ∈ {P, Q}, ∀ g ∈ Σ,
P

1≤i≤mX

|X[i]|=|g|

bX(i) = min(occ(g, P ), occ(g, Q))

C.03 ∀ X ∈ {P, Q}, ∀ 1 ≤ i ≤ j − 1 < mX , cX(i, j) +
P

i<s<j

bX(s) ≥ 1

C.04 ∀ X ∈ {P, Q}, ∀ 1 ≤ i < s < j ≤ mX , cX(i, j) + bX(s) ≤ 1
C.05 ∀ 1 ≤ i < j ≤ mP , ∀ 1 ≤ k < ℓ ≤ mQ,

such that P [i] = Q[k] and P [j] = Q[ℓ],
a(i, k) + a(j, ℓ) + c1(i, j) + c2(k, ℓ)− adj(i, j, k, ℓ) ≤ 3

C.06 ∀ 1 ≤ i < j ≤ mP , ∀ 1 ≤ k < ℓ ≤ mQ,

such that P [i] = Q[k] and P [j] = Q[ℓ],
a(i, k)− adj(i, j, k, ℓ) ≥ 0
a(j, ℓ)− adj(i, j, k, ℓ) ≥ 0
c1(i, j)− adj(i, j, k, ℓ) ≥ 0
c2(k, ℓ)− adj(i, j, k, ℓ) ≥ 0

C.07 ∀ 1 ≤ i < j ≤ mP , ∀ 1 ≤ k < ℓ ≤ mQ,

such that P [i] = −Q[ℓ] and P [j] = −Q[k],
a(i, ℓ) + a(j, k) + c1(i, j) + c2(k, ℓ)− adj(i, j, k, ℓ) ≤ 3

C.08 ∀ 1 ≤ i < j ≤ mP , ∀ 1 ≤ k < ℓ ≤ mQ,

such that P [i] = −Q[ℓ] and P [j] = −Q[k],
a(i, ℓ)− adj(i, j, k, ℓ) ≥ 0
a(j, k)− adj(i, j, k, ℓ) ≥ 0
c1(i, j)− adj(i, j, k, ℓ) ≥ 0
c2(k, ℓ)− adj(i, j, k, ℓ) ≥ 0

C.09 ∀ 1 ≤ i < j ≤ mP , ∀ 1 ≤ k < ℓ ≤ mQ,

such that {|P [i]|, |P [j]|} 6= {|Q[k]|, |Q[ℓ]|} or P [i]− P [j] 6= Q[k]−Q[ℓ],
adj(i, j, k, ℓ) = 0

C.10 ∀ 1 ≤ i < j ≤ mP ,
P

1≤k<mQ

P

k<ℓ≤mQ

adj(i, j, k, ℓ) ≤ 1

Domains :

∀ 1 ≤ i < j ≤ mP , ∀ 1 ≤ k < ℓ ≤ mQ,

a(i, k), bP (i), bQ(i), cP (i, k), cQ(i, k), adj(i, j, k, ℓ) ∈ {0, 1}

Figure 1.2 Program FMA solves exactly UNBAL-FMB

sign), and hence we do not have to explicitly ask for a(i, k) = 0 in case
P [i] and Q[k] are two different genes.
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• Constraint C.02 actually defines the fact that we ask for a full match-
ing. For each gene g, min(occ(g, P ), occ(g, Q)) occurrences of g must be
covered by M in both P and Q.

• Constraints in C.03 and C.04 are concerned with our definition of con-
secutive genes. Variable cX(i, j) is equal to 1 iff there exists no p such
that i < p < j and bX(p) = 1. It is worth noticing here that, according
to these constraints, one may have cX(i, j) = 1 even if one of the genes
X [i] or X [j] is not covered by M.

• Constraints in C.05 to C.10 define variables adj. In the case where
P [i] = Q[k] and P [j] = Q[ℓ], Constraints C.05 and C.06 ensure that
we have adj(i, j, k, ℓ) = 1 if and only if all variables a(i, k), a(j, ℓ),
c1(i, j) and c2(k, ℓ) are equal to 1. In the case where P [i] = −Q[ℓ]
and P [j] = −Q[k], Constraints C.07 and C.08 ensure that we have
adj(i, j, k, ℓ) = 1 iff all variables a(i, ℓ), a(j, k), c1(i, j) and c2(k, ℓ) are
equal to 1. Constraint C.09 sets variable adj(i, j, k, ℓ) to 0 if none of the
two above cases holds. Finally, thanks to Constraint C.10, one must
have at most one adjacency for every pair (i, j).

The objective of Program FMA is to maximize the number of adjacencies
between the two considered genomes. According to the above, this objective
thus reduces in our model to maximizing the sum of all variables adj(i, j, k, ℓ).

Speeding-up the program. Program FMA has O((mP mQ)2) variables and O((mP mQ)2)
constraints. In order to speed-up the execution of the program, there are some
simple rules to apply for reducing the number of variables and constraints in
FMA.

First, the genomes are pairwise pre-processed to delete all genes that do
not appear in both genomes, since we know that no full matching will contain
them.

Second, for any gene g for which occ(g, P ) = occ(g, Q) = 1 and |P [i]| =
|Q[k]| = g, the corresponding variable ai,k is directly set to 1, as well as the
two variables bP (i) and bQ(k).

Also, if two genes appearing only once in each genome occur consecutively
or in reverse order with opposite signs, the corresponding variable adj is di-
rectly set to 1, and the related constraints are discarded.

Finally, if for two genes, say occurring at positions i and j in P , at least
one gene g occurring between position i and j in P must be covered in any
matching M (for example if all occurrences of g appear between i and j in
P ), then the corresponding variable cP (i, j) and the variables adj(i, j, k, ℓ)
for all 1 ≤ k < ℓ ≤ mQ are set directly to 0 and the related constraints are
discarded. Of course, the same reasoning applies for two positions k and ℓ in
Q and the variables cQ(k, ℓ) and adj(i, j, k, ℓ) for all 1 ≤ i < j ≤ mP .
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Remarks. FMA has been tested on 12 genomes of γ-Proteobacteria (a subfam-
ily of bacteria), which contain from 564 to 5540 genes (3104 on average). This
led to 66 pairwise comparisons, that were achieved within 2 minutes (leading
to an average of 1.7 s per comparison) using the solver CPLEX [1].

FMA works for unbalanced genomes, and can greatly be simplified in order
to be adapted to balanced ones: more precisely, some variables and thus
some constraints do not need to exist anymore. For instance, if P and Q are
balanced and of length n, bP (i) (resp. bQ(i)) is set to 1 for any 1 ≤ i ≤ n, and
cP (i, j) (resp. cQ(i, j)) are unnecessary. The same goes for some constraints
such as (C.03) and (C.04).

1.3.4 Other Results and Open Problems

Balanced Case. Apart from the approximation algorithm given in Section 1.3.2,
the main recent result is a Fixed-Parameter Tractability algorithm for UMCSP
by Damaschke [6]. More precisely, the main result from [6] is the following:
there exists a Fixed-Parameter Tractability algorithm for UMCSP on P and Q,
whose exponential running time involves only parameters b and r, where:

• b is the minimum number of blocks in an optimal solution for UMCSP on
P and Q, and

• r is the repetition number of P , that is the maximum i such that P =
X · Y i · Z for some strings X, Y and Z, where Y is non empty.

Two main open problems remain:

1. Does there exist an approximation algorithm of ratio O(1) for SMCSP ?

2. Is UMCSP (resp. SMCSP) Fixed-Parameter Tractable on b only ?

Unbalanced Case. In this case, to our knowledge, no positive result (Poly-
nomial Time Approximation Scheme, approximation algorithm or FPT algo-
rithm) is known for UNBAL-FMB, even for restricted cases. In that sense, the
field is totally open.

We note though, that a related problem, called ZMBD, has been shown to
be polynomial in [2]. ZMBD is the following decision problem: given two signed
unbalanced genomes, determine whether there exists a full matching M such
that the number of breakpoints in the permutation induced by M is equal to
zero.

1.4 CONCLUSION

In this chapter, we have presented different algorithmic techniques that deal
with comparing pairs of genomes in order to infer (dis)similarity measures
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between them. The two main types of measures that have been studied were:
(i) common and conserved intervals in the first part, and (ii) breakpoints and
adjacencies in the second part.

We intentionally did not provide a survey of all existing results on the
topic, but we have chosen to focus only on few algorithms, in order to show
the different techniques and ideas that lie behind those algorithms. We think
and hope this could be of interest for the reader. It also allowed us to show
a sample of the ideas that have been developed in the algorithmic field of
comparative genomics.

As can be seen in this chapter, all of the above mentioned measures can be
computed in polynomial time whenever genomes are permutations. On the
contrary, when genomes contain duplicates and in case a matching is required,
all measures are hard to compute, and even hard to approximate, even in very
restricted cases. It can be seen, however, that when genomes are balanced,
some positive results exist, in the form of approximation and FPT algorithms,
in the full matching case.

The most challenging remaining open questions in this domain are probably
those that ask for positive results for comparing unbalanced genomes, using a
matching and any of the above mentioned measures.
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