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Abstract

The general topic of the present paper is to study the conservation of vari-
ational properties for a given problem when discretising it. Precisely we are
interested in Lagrangian or Hamiltonian structures and thus with variational
problems attached to a least action principle. Considering a partial differ-
ential equation (PDE) deriving from such a variational principle, a natural
question is to know whether this structure at the continuous level is preserved
at the discrete level when discretising the PDE. To address this question a
concept of coherence is introduced. Both the differential equation (the PDE
translating the least action principle) and the variational structure can be
embedded at the discrete level. This provides two discrete embeddings for
the original problem. In case these procedures finally provide the same dis-
crete problem we will say that the discretisation is coherent. Our purpose
is illustrated with the Poisson problem. Coherence for discrete embeddings
of Lagrangian structures is studied for various classical discretisations (finite
elements, finite differences and finite volumes). Hamiltonian structures are
shown to provide coherence between a discrete Hamiltonian structure and
the discretisation of the mixed formulation of the PDE, both for mixed finite
elements and mimetic finite differences methods.
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Introduction

Many problems in physics, formulated in terms of Partial Differential Equations
(PDE), are associated with essential structural properties. For instance we mention
the maximum principle, conservation laws or variational principles in mechanics,
which last entry we will focus on in this paper. It is quite natural to ask the nu-
merical methods to translate these structural properties from the continuous level
to the discrete level. This in order to enforce the numerical solutions to conform
with the underlying physics or the problem.
Two fundamental notions arising in classical mechanics are Lagrangian and Hamil-
tonian structures. Lagrangian systems are made of one functional, called the La-
grangian functional, and a variational principle called the least action principle.
From the least action principle is derived a second order differential equation called
the Euler-Lagrange equation, see e.g. [1]. The Lagrangian structure is much more
fundamental than its associated Euler-Lagrange equation: it contains information
that the Euler-Lagrange equation does not. An important example is the change of
coordinates. The Lagrangian structure is independent from change of coordinates,
whereas the associated Euler-Lagrange equation may completely change of nature
(from linear to non linear for instance).
Similarly, Hamiltonian systems also are associated to a variational structure. They
are associated with fundamental properties such as energy conservation or existence
of first integrals.
Consider a numerical method for the resolution of a problem that derives from a
variational principle. When understanding how the original variational structure is
embedded at the discrete level, one can answer how the associated properties will
be preserved by the numerical solutions. This questioning is quite important. There
has been a wide range of works about the conservation of geometrical properties at
the numerical level by Hairer et al. [17, 15, 16], by Faou [11] and on the conser-
vation of variational structures by Marsden et al. [23, 18, 20, 19] in the case of ODEs.

In this paper we will analyse the question of variational structure preservation as fol-
lows. We consider the general framework of embeddings as presented in [5, 4, 6, 7].
We introduce the concept of coherence. Consider a problem associated to a La-
grangian structure. On one hand we have the Lagrangian functional L on a func-
tional space. On the other hand we have the corresponding Euler-Lagrange equation,
formulated as a a second order PDE. Discretisation can be performed at two different
levels.

• Either by discretising the Euler-Lagrange equation. This will be called a dis-
crete differential embedding for it and it is based on defining discrete analogues
to the differential operators in this PDE.

• Or discretise the Lagrangian structure by defining a discrete Lagrangian func-
tional Lh. This second procedure is called discrete variational embedding.
With the help of Lh a discrete least action principle can be derived that defines
a discrete Euler-Lagrange equation. That procedure is also called variational
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integrator.

In case the discrete differential embedding and the discrete variational embedding
are equivalent, we will say that we have coherence. This is enunciated in saying that
the following diagram is commutative:

Lagrangian L disc. var. emb.−−−−−−−−→ discrete Lagrangian Lh
L.A.P.

y ydisc. L.A.P.

Euler− Lagrange equation
disc. diff. emb.−−−−−−−−→ discrete Euler− Lagrange equation

where L.A.P stands for least-action principle. The same notion of coherence can be
defined relatively to Hamiltonian structures.
In case of coherence, the discretisation firstly preserves the variational structure
of the problem so inheriting interesting properties (such as independence with the
coordinate system). It secondly may also preserve algebraic properties from the
differential operators within the Euler-Lagrange equation.
Based on this notion of coherence, the present work is an attempt to interpret numer-
ical methods as variational integrators for PDEs deriving from a Lagrangian/Hamiltonian
structure. We will focus on a canonical example of such a problem: the Poisson
equation. This problem is well documented at the continuous and at the discrete
levels. It provides an appropriate test case to improve the understanding of discrete
embeddings for Lagrangian/Hamiltonian structures.

The outline of the paper is as follows. Section 1 deals with Lagrangian systems.
In section 1.1 the Lagrangian structure and the associated calculus of variations for
fields are defined. The Lagrangian structure for the Poisson equation is recalled in
section 1.2. In section 2, the discrete embeddings are presented. A general definition
of discrete embeddings is first presented in section 2.1. Differential and variational
embeddings are then defined in sections 2.2 and 2.3 and illustrated with various
examples. The concept of coherence between differential and variational embed-
dings is defined in section 2.4 and illustrated by considering finite element methods.
In section 3, we focus on the Poisson equation and on the coherence of two clas-
sical numerical methods for this problem: finite differences and finite volumes in
sections 3.1 and 3.2 respectively. Section 4 is concerned with Hamiltonian struc-
tures and mixed formulations. Hamiltonian structures and the associated calculus
of variations are presented in section 4.1. One recovers the mixed formulation of the
Poisson equation with Hamiltonian least action principle. The discrete embedding
of Hamiltonian structures and the notion of coherent embeddings are presented in
section 4.2. Coherence of mimetic finite difference methods (see e.g. [2]) is analysed
in the last Section 4.3.

Throughout this paper, Ω ⊂ Rd will denote an open bounded domain with regular
boundary. The Sobolev space of order m is denoted by Hm(Ω) and the two following

spaces H1
0 (Ω) =

{
v ∈ H1(Ω), v|∂Ω = 0

}
, Hdiv(Ω) =

{
p ∈ [L2(Ω)]

d
, div p ∈ L2(Ω)

}
will be considered.


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1 Lagrangian systems

We recall classical results about Lagrangian calculus of variations for PDEs, illus-
trated in section 1.2 with the Lagrangian formulation of the Poisson problem. For
more details, we refer to [9, 12, 13].

1.1 Lagrangian calculus of variations

Definition 1. An admissible Lagrangian function L is a function,

L : Ω× R× Rd −→ R
(x, y, v) 7→ L(x, y, v),

such that L is of class C1 with respect to y and v and integrable in x. The Lagrangian
function L defines the Lagrangian functional L:

L : H1(Ω) → R,

u 7−→
∫

Ω

L(x, u(x),∇u(x)) dx.

We are interested to vanish the first variations of the Lagrangian functional L
on a space of variations V . As in [12], we could give a general notion for extremals
and variations. We take the following definitions of the notions of a differentiable
functional and an extremal for L.

Definition 2 (Differentiability). We consider a space of variations V ⊂ H1(Ω). The
functional L is differentiable at point u ∈ H1(Ω) if and only if the limit,

lim
ε→0

L(u+ εv)− L(u)

ε
,

exists in any direction v ∈ V . We then define the differential DL(u) of L at point
u as,

v ∈ V 7→ DL(u)(v) = lim
ε→0

L(u+ εv)− L(u)

ε
.

With the above definition of differentiability, one recovers the usual definition
of the differential in case V = H1(Ω) and DL(u) is linear and continuous in u on
H1(Ω). The definition given here suffices to introduce extremals:

Definition 3 (Extremals). A function u ∈ H1(Ω) is an extremal for the functional
L relatively to the space of variations V ⊂ H1(Ω) if L is differentiable at point u
and:

DL(u)(v) = 0 for any v ∈ V.
Proposition 1. The Lagrangian functional L is differentiable at point u ∈ H1(Ω) if:

x 7→ ∂L

∂y
(x, u(x),∇u(x)) and x 7→ ∂L

∂v
(x, u(x),∇u(x)) are in L2(Ω) and in [L2(Ω)]

d

respectively. In such a case the differential is given for any v ∈ H1(Ω) by:

DL(u)(v) =

∫
Ω

[
∂L

∂y

(
x, u(x),∇u(x)

)
v(x) +

∂L

∂v

(
x, u(x),∇u(x)

)
·∇v(x)

]
dx. (1)
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Proof. Using a Taylor expansion of L at the point (x, u + εv,∇(u + εv)) in the
variables y and v leads to:

L
(
x, u+εv,∇(u+εv)

)
= L(x, u,∇u)+ε v

∂L

∂y
(x, u,∇u)+∇(ε v) · ∂L

∂v
(x, u,∇u)+o(ε).

Integrating over the domain Ω gives:

L(u+ εv) = L(u) + ε

∫
Ω

v(x)
∂L

∂y
(x, u(x),∇u(x))dx

+ ε

∫
Ω

∇v(x) · ∂L
∂v

(x, u(x),∇u(x))dx+ o(ε),

leading to (1).

Extremals of the functional L can be characterised by an order 2 PDE, called
the Euler-Lagrange equation given in following theorem.

Theorem 2 (Least action principle). Let us assume the Lagrangian functional L
is differentiable at point u ∈ H1(Ω) and that u is an extremal for a given space
of variations V . Assume moreover that ∂L

∂v
(·, u(·),∇u(·)) ∈ Hdiv(Ω) and that the

subspace V0 = {v ∈ V, v = 0 on ∂Ω} is dense in L2(Ω). Then u satisfies the
generalised Euler-Lagrange equation:

∂L

∂y
(x, u(x),∇u(x))− div

(
∂L

∂v
(x, u(x),∇u(x))

)
= 0. (2)

associated to the differential operator P given by

P (u) :=
∂L

∂y
(x, u(x),∇u(x))− div

(
∂L

∂v
(x, u(x),∇u(x))

)
. (3)

Proof. Following (1) and using the Green formula gives: ∀ v ∈ V0,∫
Ω

[
∂L

∂y
(x, u(x),∇u(x))− div

(
∂L

∂v
(x, u(x),∇u(x))

)]
v(x)dx = 0,

which implies (2) by density of V0 in L2(Ω).

1.2 Lagrangian structure for the Poisson problem

We consider the following Poisson problem on Ω for a homogeneous Dirichlet bound-
ary condition,

find u ∈ H1
0 (Ω) so that −∆u = f in Ω, (4)

for a data f ∈ L2(Ω). Assuming that Ω is bounded with a smooth boundary,
problem (4) has a unique solution u ∈ H2(Ω) ∩H1

0 (Ω).


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Equation (4) is the differential formulation of the Poisson problem. Let us now
present its variational formulation. We consider the Lagrangian function L:

L(x, y, v) =
1

2
v · v − f(x)y.

The associated Lagrangian functional L is given by,

L(u) =

∫
Ω

( 1

2
|∇u|2 − fu

)
dx . (5)

Corollary 3. The differential formulation (4) of the Poisson problem is equivalent
to,

find u ∈ H1
0 (Ω) so that ∀ v ∈ H1

0 (Ω), DL(u)(v) = 0, (6)

Equation (6) is the variational formulation of the Poisson problem, with the space
of variation V = H1

0 (Ω).

2 Discrete embeddings

The formalism of embeddings has been initiated in [5] and further developed in
[4, 6, 7]. We propose here a general notion of discrete embeddings. This notion is
defined in two particular cases: discrete embeddings of differential operators called
discrete differential embedding in section 2.2 and discrete embeddings of Lagrangian
functionals called discrete variational embedding in Section 2.3. The notion of coher-
ence between discrete differential and discrete variational embeddings is presented
in section 2.4.

2.1 General definitions

Let X denote a functional space on Ω. We consider the mapping,

P : u ∈ X 7→ P (u) ∈ Y,

where Y either is a second functional space on Ω or Y = R. At this point no
particular property is required for P .

Definition 4. We consider Xh and Yh two finite dimensional spaces and π1 : X →
Xh, π2 : Y → Yh two surjective linear mappings. We introduce Ph : Xh → Yh and
consider the diagram:

X
P−−−→ Y

π1

y yπ2
Xh

Ph−−−→ Yh

(7)

We say that Ph is a discrete embedding of P .


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Remark 1. The setting presented in definition 4 is general. It introduces discrete
(finite dimensional) counterparts for the functional spaces X and Y . These discrete
spaces theirselves can be functional spaces (such as for finite element methods e.g.)
or not (such as for finite difference methods). The diagram is not commutative in
general.

Consider again the Poisson problem. On one hand we have its differential for-
mulation (4). It is associated to the mapping P : u ∈ X 7→ ∆u + f ∈ Y , with
X = H2(Ω) and Y = L2(Ω). The Poisson problem rewrites as:

find u ∈M ⊂ X so that P (u) = 0,

with M = H1
0 (Ω)∩X. A discretisation for the differential formulation of the Poisson

problem reads,
find uh ∈Mh ⊂ Xh so that Ph(uh) = 0, (8)

where Ph : Xh → Yh is a discrete embedding of P and where Mh ⊂ Xh encodes
the boundary condition. The definition of Ph requires a definition of ∆h. This
is a discrete embedding for the Laplace operator and will be referred as discrete
differential embeddings. This is detailed in section 2.2.
On the other hand now the variational formulation (6) of the Poisson problem, with
X = H1(Ω), L : X → R and V = H1

0 (Ω) = M rewrites as,

find u ∈M ⊂ X so that ∀ v ∈ V, DL(u)(v) = 0.

A discretisation for the variational formulation of the Poisson problem reads:

find uh ∈Mh ⊂ Xh so that ∀ vh ∈ Vh, DLh(uh)(vh) = 0.

It involves Lh : Xh → R, a discrete embedding of the Lagrangian functional
L : X → R, that will be referred as discrete variational embedding. This is
developed in section 2.3.

2.2 Discrete differential embeddings

Definition 5. Consider the diagram (7) in definition 4 in the case where P is
associated with some PDE P (u) = 0, i.e. P is a differential operator. In that
particular case we call Ph a discrete differential embedding.

Note that a a discrete differential embedding is not a differential operator itself.
It is the discretisation of a differential operator.

Consider the discrete differential embedding for the Poisson problem (8). We set
Phuh = ∆huh + fh. The definition of Ph involves a definition of fh and of ∆h.
Two ways can be followed to derive ∆h. The first one is to directly discretise the
Laplacian, as it is done using finite difference methods in section 3.1. The second
one is to use the divergence form of the Laplacian: ∆ = div ◦∇ and to derive a
discrete embedding for the Laplacian as ∆h = divh ◦∇h, where divh and ∇h are


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two discrete differential embedding of div and ∇. This will be the case with finite
volume methods in section 3.2.
This leads to two discrete differential embeddings for the Poisson problem: either,

−∆huh = fh,

or,
− divh(∇huh) = fh.

These two discrete problems do not coincide in general. Indeed, recovering the al-
gebraic properties of the original differential operators (here ∆ = div ◦∇) at the
discrete level (here ∆h = divh ◦∇h) is a full problem by itself.

We now give three illustrations of discrete differential embeddings: for the gra-
dient operator and for the divergence one. Let us start precising the notion of a
mesh for the domain Ω ⊂ Rd, d = 2, 3.

Definition 6 (Mesh). A cell is a polygonal/polyhedral non empty open subset. A
mesh T of the domain Ω is a collection of cells partitioning Ω in the following sense:

∪K∈TK = Ω, and
(
K1, K2 ∈ T ⇒ either K1 ∩K2 = ∅ or K1 = K2

)
.

A face (or an edge) e of some K ∈ T such that e ⊂ ∂Ω is called a boundary face.
The set of boundary faces is denoted E0. It satisfies: ∂Ω = ∪e∈E0e. For every e ∈ E0,
there exists a unique K ∈ T satisfying e ⊂ K ∩ ∂Ω: one writes e = K|∂Ω.
The internal faces set Ei associated with T is the set of all geometrical subsets
e = K1 ∩ K2, K1, K2 ∈ T and K1 6= K2, having non-zero (d − 1)−dimensional
measure. For every e ∈ Ei, there exists a unique couple K1, K2 ∈ T satisfying
e = K1 ∩K2: one writes e = K1|K2.
The faces set associated with T is given as E = E0 ∪ Ei. It provides a partitioning
of ∪K∈T ∂K, in the same meaning as earlier: ∪e∈Ee = ∪K∈T ∂K and the overlapping
of two distinct faces either is empty or of zero (d − 1)−dimensional measure. Let
e ∈ E such that e ⊂ ∂K for K ∈ T . We denote nK,e the unit normal to e pointing
outward of K. We also provide intrinsic orientation to faces: to all face e ∈ E is
associated ne one of its (two) unit normal, if e ⊂ ∂K we have ne = ±nK,e.
The set of vertexes associated with T is denoted N : it contains exactly all the ver-
texes of all the cells K ∈ T .

One shall denote |O| the measure of a geometrical object O according to its di-
mension. Taking d = 3, |K| is the volume of the cell K, |e| the area of an edge e ∈ E
and |xy| the length between two points x and y. The cardinal of a set E is #E.

2.2.1 The finite volume divergence

We denote here X = [H1(Ω)]d, Y = L2(Ω) and div : X → Y is the divergence
operator. Let T be a mesh of Ω. We here define Xh = R#E , and Yh = P 0(T ) the
space of piecewise constant functions over the cells of the mesh, with the natural


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identification Yh = R#T . Note that in general there is no natural identification of
R#E with some finite dimensional vector field space over Ω, we however mention the
case of simplicial meshes where such an identification is provided by the Raviart-
Thomas finite element space of order 0, RT0(Ω), see [21].
To p ∈ X we associate π1p = (pe)e∈E with pe =

∫
e
p · nedl/|e| the mean flux of p

across the face e according to its orientation provided by ne (in the trace sense). To
f ∈ L2(Ω), we associate π2f = (fK)K∈T with fK =

∫
K
f dx/|K| the mean value of

f on the cell K. The discrete divergence is defined as,

divh : ph = (pe)e∈E ∈ R#E 7→ (divK ph)K∈T ∈ R#T ,

with,

divK ph =
1

|K|
∑

e∈E,e⊂∂K

pe|e| ne · nK,e. (9)

This definition simply is the flux balance around the cell K, the last term ne · nK,e
giving the correct orientation for the fluxes, i.e. outside the cell K.

With these definitions we have a discrete differential embedding for the divergence,

[H1(Ω)]d
div−−−→ L2(Ω)

π1

y yπ2
R#E divh−−−→ R#T

(10)

and this diagram moreover is commutative thanks to the divergence formula: π2 ◦
div = divh ◦π1.

2.2.2 The P 1(T ) finite element gradient

We introduce X = C1(Ω) and Y = [C0(Ω))]
d

the spaces of continuously differen-
tiable functions and of continuous vector fields over Ω respectively. We now consider
the gradient operator ∇ : C1(Ω)→ [C0(Ω)]

d
.

Let Xh = P 1(T ) be the space of continuous functions over Ω that moreover are piece-
wise affine on each cell K ∈ T . Let us assume that the mesh is simplicial, the space
Xh is identified to R#N . We have the projection π1 : u ∈ C1(Ω) 7→ π1u = (uS)S∈N ∈
P 1(T ) with uS = u(S). Let Yh = [P 0(T )]

d
be the space of piecewise constant vector

fields over each cell K ∈ T . We have a simple projection π2 : [C0(Ω)]
d → [P 0(T )]

d

by averaging a vector field over each cell of the mesh (similarly to π2 in section 2.2.1).

We have the following discrete differential embedding for the gradient:

C1(Ω)
∇−−−→ [C0(Ω))]

d

π1

y yπ2
P 1(T )

∇h−−−→ [P 0(T )]
d

(11)

where the discrete gradient ∇h = ∇|P 1(T ) indeed is the restriction of the continuous
one to P 1(T ). In that case the diagram is not commutative.


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2.2.3 Non-conforming finite element gradient

We propose a second definition of discrete differential embedding of the gradient,
that is referred to as non-conforming finite element gradient since it matches with
the Crouzeix-Raviart finite element of order 1 discretisation, [8], in the case of a
simplicial mesh.
Let X = H1(Ω), Y = [L2(Ω)]

d
and consider ∇ : H1(Ω) → [L2(Ω)]

d
. We set

Xh = R#E and Yh = [P 0(T )]
d

the space of piecewise constant vector fields over the

cells of the mesh, with the natural identification Yh =
[
Rd
]#T

. To u ∈ H1(Ω) we
associate π1u = (ue)e∈E with ue =

∫
e
udl/|e| the mean value of u on the face e (in

the trace sense). We have the same simple projection π2 : [L2(Ω)]
d →

[
Rd
]#T

as
in Section 2.2.2 by averaging a vector field over each cell of the mesh. The discrete
gradient is defined as,

∇h : uh = (ue)e∈E ∈ Xh 7→ (∇Kuh)K∈T ∈
[
Rd
]#T

,

with,

∇Kuh =
1

|K|
∑

e∈E,e⊂∂K

ue|e| nK,e.

With these definitions we have the following discrete differential embedding for the
gradient,

H1(Ω)
∇−−−→ [L2(Ω)]

d

π1

y yπ2
Xh

∇h−−−→
[
Rd
]#T

and this diagram moreover is commutative thanks to the formula
∫
K
∇udx =

∫
∂K
undl,

with n the unit normal on ∂K pointing outwards K.

2.3 Discrete variational embeddings

Definition 7. We consider a Lagrangian functional L : X → R as defined in
definition 1 for some (infinite dimensional) functional space X ⊂ H1(Ω). A discrete
variational embedding is a discrete embedding Lh of L as defined in definition 4 in
the particular framework Y = R = Yh and π2 = id. The diagram for a discrete
variational embedding is the following,

X L //

π1
��

R

Xh

Lh

>>


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Finite element discrete variational embedding

We consider a general Lagrangian functional L as in definition 1. We use here the
same framework as in section 2.2.2. The mesh is assumed to be simplicial. We
consider X = C1(Ω), Xh = P 1(T ) and the projection π1 : u ∈ C1(Ω) 7→ π1u =
(uS)S∈N ∈ Xh with uS = u(S). Since P 1(T ) ⊂ H1(Ω) we define Lh : P 1(T ) → R
as Lh = L|P 1(T ). We have the diagram,

C1(Ω) L //

π1
��

R

P 1(T )

Lh

<<

Note that this definition extends to any conformal finite element space Xh, since we
always have Xh ⊂ H1(Ω) (see e.g.[3, 14]). Of course the definition of π1 needs to be
adapted to each particular choice of Xh.
Also note that the extension to non-conforming finite elements is possible since L
can be evaluated on any function u that would only be locally H1, over each cell of
the mesh (precisely u|K ∈ H1(K) for all K ∈ T ) instead than globally H1 on the
whole domain Ω.

2.4 Coherence

Consider a problem associated with a Lagrangian variational structure and con-
sider this problem either under its variational formulation (Lagrangian least action
principle),

find u ∈M ⊂ X so that ∀ v ∈ V, DL(u)(v) = 0, (12)

or under its differential formulation (Euler-Lagrange equation),

find u ∈M ⊂ X so that P (u) = 0, (13)

where P (u) defined in equation (2) is the operator associated to the Euler-Lagrange
equation.
Under the conditions of theorem 2, these two formulations are equivalent. They
however give rise to two discretisation procedures.

– Being given a discrete variational embedding of L as in definition 7,

find uh ∈Mh ⊂ Xh so that ∀ vh ∈ Vh, DLh(uh)(vh) = 0. (14)

This is a discrete variational formulation.

– Being given a discrete differential embedding of P as in definition 5,

find uh ∈Mh ⊂ Xh so that Ph(uh) = 0. (15)

This is a discrete differential formulation.
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A priori, the two discrete problems (14) and (15) do not provide equivalent problems.
This question is addressed considering the concept of coherence introduced in [5].

Definition 8 (Coherence). Consider a Lagrangian functional L satisfying the hy-
pothesis in theorem 2. The operator associated to its Euler Lagrange equation in
equation (2) is denoted P . Consider a discrete variational embedding of L as in
definition 7: it is associated to a functional Lh. Consider a discrete differential
embedding of P as in definition 5: it is associated to an operator Ph. These embed-
dings are said coherent if the discrete variational formulation (14) and the discrete
differential formulation (15) are equivalent.
In other words the following diagram is commutative,

u 7→ L(u)
disc. var. emb.−−−−−−−−→ uh 7→ Lh(uh)

L.A.P.

y ydisc. L.A.P.

u solution of PDE (13)
disc. diff. emb.−−−−−−−−→ uh solution of PDEh (15)

E.L. equation disc. E.L. equation

where L.A.P. stands for least action principle and E.L. for Euler Lagrange.

A general raised question then is: can we find conditions ensuring the coherence
between the discrete differential and variational embeddings ?
In the next two parts we study the coherence for discrete differential embeddings of
problems having a Lagrangian or Hamiltonian variational formulation. It turns out
that one cannot set apart the coherence from the algebraic properties of Ph inherited
from the one of P . More precisely a property of integration by parts type is required
at the discrete level to ensure coherence.
A deeper insight into this relationship is gained by considering the Poisson problem.
Assume one performs a discrete differential embedding ∆h for the Laplacian. In
all forthcoming examples, coherence is obtained in case ∆h is the composition of a
discrete gradient and a discrete divergence ∆h = divh ◦∇h, and if in addition these
two discrete operators fulfil a duality property of type Green-Gauss formula. This
is the case for finite differences with formula (18), for finite volumes with formula
(21) and for mimetic finite differences in section 4.3.

Coherence for conforming finite elements

We first consider the Poisson problem (4) together with a homogeneous Dirichlet
boundary condition u = 0 on ∂Ω. As developed in section 1.2, this PDE is the
Euler Lagrange equation associated with a least action principle on the Lagrangian

functional L(u) =
∫

Ω

(1

2
|∇u|2 − fu

)
dx in equation (5).

Let Xh ⊂ H1
0 (Ω) be some conforming finite element space. We can define Lh = L|Xh

.
This provides a discrete variational embedding of L as in definition 7. The numerical
problem solved in practice is the linear problem Ph(uh) = 0 on Xh (involving the
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mass and stiffness matrices) where the operator Ph is defined by,

∀vh ∈ Xh,

∫
Ω

Ph(uh)vhdx =

∫
Ω

(∇uh · ∇vh − fvh) dx = DLh(uh)(vh).

The operator Ph on Xh provides a discrete differential embedding for the operator
P (u) = −∆u − f . By construction, these two discrete variational and differential
embeddings are coherent.

The coherence for conforming finite element methods naturally extends to the PDE
P (u) = 0 in equation (2) for an homogeneous Dirichlet boundary condition. This
problem derives from a least action principle associated with the Lagrangian func-
tional L in definition 1. On one hand we have a discrete variational embedding with
Lh = L|Xh

. On the other hand the problem solved in practice is Ph(uh) = 0 with
Ph(uh) defined as,

∀ vh ∈ Xh,

∫
Ω

Ph(uh) vh dx =

∫
Ω

(∂L
∂y

(x, uh,∇uh) vh +
∂L

∂v
(x, uh,∇uh) · ∇vh

)
dx,

that provides a discrete differential embedding of P . These discrete embeddings are
coherent by construction.

3 Coherence of classical discrete embeddings

In section 2.4, we showed a first example of coherent discrete embedding of La-
grangian structure. In this precise case, several facilities were available: the discrete
solution also is a function uh : Ω → R so that differentiation and integration had
the same sense at the discrete and at the continuous levels. As a result the definition
of a discrete Lagrangian Lh was obvious and natural: Lh was the restriction of L to
some functional space of finite dimension.
Such facilities are not always available, they rather are restricted to conforming fi-
nite element methods. Such a lifting between the discrete space of unknowns Xh

and a function space is not available in general. As a result differentiation and
integration have to be re-defined at the discrete level to provide a definition of a
discrete Lagrangian. In this section we give two examples of discrete embeddings
for a Lagrangian structure: finite differences and classical finite volumes. Coherence
is proved in both cases.

3.1 Finite differences

We refer to [22] for a general presentation of finite difference methods. We study in
this section the coherence properties of finite difference methods applied firstly to
the Poisson problem (4) and secondly to the general Euler-Lagrange PDE (2). The
domain is set to Ω = [0, 1]2. We consider a Cartesian grid T of Ω with uniform size
h = 1/N , N ∈ N∗, in every direction. The results of this section can be extended to
more general domains, to other space dimensions and more general lattices.
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We will use the following notations. For j = (i, j) ∈ Z2 we write 0 ≤ j ≤ N if
0 ≤ i ≤ N and 0 ≤ j ≤ N . Let J = {j ∈ N2, 0 ≤ j ≤ N}. The point of coordinates
(ih, jh) ∈ Ω is denoted xj. The mesh with vertexes {xj, j ∈ J} is denoted T , it is a
cartesian grid of Ω.
Let us consider the two spaces S = {u : Z2 −→ R} and V = {p : Z2 −→ R2}. Let
j = (i, j) ∈ Z2: we denote for u ∈ S, ui,j = uj = u(j) and for p ∈ V , pi,j = pj = p(j).
We consider the discrete space

Xh = {u ∈ S, uj = 0 if j /∈ J and if xj ∈ ∂Ω}.

The truncation operator T : S → Xh is defined as
(
Tu
)
j
= uj if 0 < j < N and by(

Tu
)
j
= 0 otherwise.

3.1.1 Discrete differential embedding for the Laplacian

The discrete Laplacian ∆h : S → S is defined as, for j = (i, j) ∈ Z2,

(∆hu)j =
ui−1,j − 2ui,j + ui+1,j

h2
+
ui,j−1 − 2ui,j + ui,j+1

h2
.

The operator T ◦∆h : S → Xh induces a mapping on Xh. Considering the projection
π1 : C0(Ω) → Xh, given by (π1u)j = u(xj) if 0 < j < N , or (π1u)j = 0 otherwise,
we have the following discrete differential embedding:

C2(Ω)
∆−−−→ C0(Ω)

π1

y yπ1
Xh

T◦∆h−−−→ Xh

For f ∈ C0(Ω), the discrete differential embedding of P (u) = −∆u − f then is
Ph(uh) = −T ◦∆huh− π1f for uh ∈ Xh. The discrete differential formulation of the
Poisson problem is,

find u ∈ Xh so that Ph(u) = −T ◦ ∆hu− π1f = 0. (16)

Let us introduce a discrete gradient ∇h : S → V and a discrete divergence
divh : V → S. For j = (i, j) ∈ Z2 they are given by,

(∇hu)j =
1

h

(
ui+1,j − ui,j
ui,j+1 − ui,j

)
, (divh p)j =

p1
i,j − p1

i−1,j

h
+
p2
i,j − p2

i,j−1

h
,

for u ∈ S and p = (p1, p2) ∈ V (p1 ∈ S and p2 ∈ S are the two components of p).
This defines two discrete differential embeddings,

C1(Ω)
∇−−−→ [C0(Ω)]

2

π1

y yπ2
Xh

T2◦∇h−−−−→ Xh ×Xh

,

[C1(Ω)]
2 div−−−→ C0(Ω)

π2

y yπ1
Xh ×Xh

T◦ divh−−−−→ Xh
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with π2 = π1 × π1 and T2 = T × T component by component.
As one can see, a forward finite difference formula has been used for the definition
of the discrete gradient, whereas a backward one has been used for the discrete
divergence. This choice has been made in order to have the following properties
(that can easily be checked). We have the composition rule,

∆h = divh ◦∇h, (17)

and the discrete Green-Gauss formula:

∀ u ∈ Xh, ∀ p ∈ V :
∑
j∈J

pj · (∇hu)j = −
∑
j∈J

(divh p)j uj. (18)

3.1.2 Discrete variational embedding, coherence

For f ∈ C0(Ω) we introduce the discrete Lagrangian functional:

∀ u ∈ Xh, Lh(u) =
1

2

∑
j∈J

|∇ju|2 h2 −
∑
j∈J

(π1f)juj h
2.

This definition provides the following discrete variational embedding for the Poisson
Lagrangian functional L : u 7→

∫
Ω

(1
2
|∇u|2 − fu)dx given in equation (5),

C1(Ω) L //

π1

��

R

Xh

Lh

<<

The discrete variational formulation of the Poisson problem reads:

findu ∈ Xh so that ∀ vh ∈ Xh : DLh(u)(vh) = 0. (19)

Theorem 4. The discrete variational and differential embeddings of the Poisson
problem using the finite difference method are coherent. Precisely, the two discrete
problems (16) and (19) are equivalent.

Proof. Let us consider a solution u to (19). We have for all vh ∈ Xh,∑
j∈J

(∇hu)j · (∇hvh)j h
2 −

∑
j∈J

(π1f)jvj h
2 = 0.

Using the discrete Green-Gauss formula (18), we get: for all vh ∈ Xh,

−
∑
j∈J

(divh(∇hu))j vj h
2 −

∑
j∈J

(π1f)jvj h
2 = 0.

Using the composition rule (17), this exactly means, for all j so that 0 < j < N ,
− (∆hu)j = (π1f)j, which is equation (16).
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3.1.3 Extension

The previous coherence theorem extends to the general Euler-Lagrange PDE (2)
that we recall,

P (u) =
∂L

∂y
(x, u(x),∇u(x))− div

(
∂L

∂v
(x, u(x),∇u(x))

)
= 0.

This equation is considered here together with a homogeneous boundary condi-
tion on ∂Ω. The two discrete differential embeddings for the gradient and for the
divergence introduced in section 3.1.1 provide the following discrete differential em-
bedding Ph : Xh → Xh. It is defined for u ∈ Xh by,

∀ j ∈ Z2, (Phu)j =
∂L

∂y
(xj, uj, (∇hu)j)− (divh q)j = 0

with q ∈ V , qj =
∂L

∂v
(xj, uj, (∇hu)j) ∀ j ∈ Z2.

The differential form for the discretisation of the PDE (2) is,

find u ∈ Xh such that Ph(u) = 0.

We can define the discrete Lagrangian Lh : Xh −→ R for u ∈ Xh by,

∀ j ∈ Z2,
(
Lhu

)
j
=
∑
j∈J

L
(
xj, uj, (∇hu)j

)
h2,

It provides a discrete variational embedding for L. The associated discrete varia-
tional formulation of the problem is:

findu ∈ Xh such that DLh(u)(v) = 0 for any v ∈ Xh.

We conserve in this framework the coherence result enunciated in theorem 4. It
is similarly the consequence of the discrete Green-Gauss formula (18). Precisely a
solution to the discrete variational formulation of the problem satisfies for all v ∈ Xh,∑

j∈J

∂L

∂y
(xj, uj, (∇hu)j) vj h

2 +
∑
j∈J

∂L

∂v
(xj, uj, (∇hu)) · (∇hv)j h

2 = 0.

With the discrete Green-Gauss formula (18) we get:

∑
j∈J

(
∂L

∂y
(xj, uj,∇ju)− (divh q)j

)
vj h

2 = 0

and we exactly recover the discrete differential formulation of the problem.
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3.2 Finite Volumes

We focus in this section on the classical finite volume method (as presented e.g. in
[10]) for the Poisson problem (4). We consider a mesh T of the domain Ω as in
definition 6. Relatively to this mesh we assume that we can build two sets of points:
cell centres (xK)K∈T and boundary face centres (xe)e∈E0 that satisfy:

∀ K ∈ T , ∀ e ∈ E0 : xK ∈ K, xe ∈ e.
∀ e ∈ Ei : e = K1|K2, [xK1 , xK2 ] ⊥ e,

∀ e ∈ E0 : e = K|∂Ω, [xe, xK ] ⊥ e.

These two conditions are referred to as admissibility conditions. They impose a
strong constraint on the mesh T . Distances (de)e∈E across the faces are defined as
follows:

∀ e = K1|K2 ∈ Ei : de = |xK1xK2 |,
∀ e = K|∂Ω ∈ E0 : de = |xKxe|.

3.2.1 Discrete differential embedding

We consider the settings in section 2.2.1: X = [H1(Ω)]d, Y = L2(Ω), Xh = R#E and
Yh = R#T . We recall that the projections π1 : X → Xh and π2 : Y → Yh are the
normal component mean values on the mesh faces and the mean values on the mesh
cells respectively.
The finite volume divergence divh : Yh → Xh is defined in equation (9) that we
recall,

divK ph =
1

|K|
∑

e∈E,e⊂∂K

pe|e| ne · nK,e,

with the same notation divK ph := (divh ph)K .

The flux operator ∇ : H2(Ω) → R#E (thus relatively to the mesh T ) is defined as
∇ = π1 ◦ ∇ (it consists in averaging the gradient of a function over the edges in
their normal direction). The discrete flux operator is defined as:

∇h : uh = (uK)K∈T ∈ R#T 7→ (∇euh)e∈E ∈ R#E ,

with,

∀ e = K1|K2 ∈ Ei : ∇euh =
uK2 − uK1

de
nK1,e · ne,

∀ e = K|∂Ω ∈ E0 : ∇euh = −uK
de

nK,e · ne.

Numerical fluxes across edges (and according to their intrinsic orientation) thus
are computed using a finite difference scheme. Note that the Dirichlet boundary





Jacky Cresson, Isabelle Greff and Charles Pierre

condition has implicitly being taken into account when defining the numerical fluxes
on the boundary faces. This provides a discrete embedding for the flux operator ∇:

H2(Ω) ∇ //

π3
��

R#E

R#T
∇h

;;

where the projection π3 is defined as (π3u)K = u(xK), i.e. as the values of the
function u at each cell centre xK .

The discrete Laplace operator ∆h is defined as,

∆h : R#T → R#T , ∆h = divh ◦∇h.

For f ∈ L2(Ω), the discrete differential embedding of P (u) = −∆u − f then is
Ph(uh) = −∆huh − π2f for uh ∈ R#T . The differential formulation for the discrete
Poisson problem is,

find uh ∈ R#T so that Ph(uh) = −∆huh − π2f = 0. (20)

Moreover we have the following discrete Green-Gauss formula: for all p = (pe)e∈E ∈
R#E and for all uh = (uK)K∈T ∈ R#T ,∑

K∈T

(divK p)uK |K| = −
∑
e∈E

pe∇euh|e|de. (21)

3.2.2 Discrete variational embedding, coherence

In the continuous case, the diffusion energy
∫

Ω
|∇u|2/2 dx is part of the Lagrangian

functional L. In the framework of finite volume method, no proper discrete gradient
is available, but only numerical fluxes in the normal direction to the mesh faces.
Thus only the normal component (and not the tangential one) of some discrete
gradient on the mesh faces is approximated.
We introduce the discrete Lagrangian functional Lh : R#T → R as follows. Let
fh = π2f ∈ R#T , for all uh ∈ R#T ,

Lh(uh) =
1

2

∑
e∈E

(∇euh)
2 |e|de −

∑
K∈T

fKuK |K|.

The functional Lh defines a discrete variational embedding of L. The variational
form for the finite volume discrete Poisson problem is,

find uh ∈ R#T such that ∀ vh ∈ R#T , DLh(uh)(vh) = 0. (22)

Theorem 5. The discrete variational and differential embeddings of the Poisson
problem using the finite volume method are coherent. Precisely, the discrete dif-
ferential formulation (20) and discrete variational formulation (22) for the Poisson
problem are equivalent.
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Proof. Let uh satisfy (22), we have by differentiating Lh: for all uh, vh ∈ R#T ,

DLh(uh)(vh) =
∑
e∈E

(
∇euh

)(
∇evh

)
|e|de −

∑
K∈T

(π2f)KvK |K| = 0.

Using the discrete Green-Gauss formula (21), we get for all uh, vh ∈ R#T ,:

−
∑
K∈T

(divK(∇huh)) vK |K| −
∑
K∈T

(π2f)KvK |K| = 0,

which is equivalent with (20).

4 Hamiltonian calculus of variations and mixed

formulations

In this section let L be an admissible Lagrangian function as defined in section
1.1. We recall the link between Hamiltonian and Lagrangian systems in section
4.1. We will stress here the relationships between mixed formulations and discrete
embedding of Hamiltonian systems in section 4.3.

4.1 Hamiltonian and mixed formulation

4.1.1 Hamiltonian formulation

Definition 9 (Legendre property). We say that L satisfies the Legendre property

if the mapping v 7→ ∂L

∂v
(x, y, v) is a bijection on Rd for any x ∈ Ω, y ∈ R.

If L satisfies the Legendre property, the following function g : Ω×R×Rd → Rd

is well defined:

v = g(x, y,p) with p =
∂L

∂v
(x, y, v).

Let us consider p =
∂L

∂v
(x, y, v) as a new variable, then,

p =
∂L

∂v

(
x, y, g(x, y,p)

)
and g

(
x, y,

∂L

∂v
(x, y, v)

)
= v .

Definition 10 (Hamiltonian). Let L satisfy the Legendre property. The Hamilto-
nian H : Ω× R× Rd → R associated to L reads:

H(x, y,p) = p · g(x, y,p)− L(x, y, g(x, y,p)).

We introduce two different definitions for the Hamiltonian functionalH : Dom(H) ⊂
L2(Ω)× [L2(Ω)]

d → R associated to H:

1. Primal Hamiltonian, Dom(H) = H1(Ω)× [L2(Ω)]
d
,

H(u,p) =

∫
Ω

p · ∇u−H(x, u,p) dx. (23)
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2. Dual Hamiltonian, Dom(H) = L2(Ω)×Hdiv(Ω),

H(u,p) =

∫
Ω

− div(p)u−H(x, u,p) dx. (24)

Proposition 6. According to definition 2, the Hamiltonian functional H is differ-
entiable at point (u,p) ∈ Dom(H) if

∂H

∂y
(x, u,p) ∈ L2(Ω) and

∂H

∂p
(x, u,p) ∈

[
L2(Ω)

]d
.

In such a case we have, for (v,q) ∈ Dom(H):

• In the primal case:

DH(u,p) ·(v,q) =

∫
Ω

[
q ·
(
∇u− ∂H

∂p
(x, u,p)

)
+∇v · p− v∂H

∂y
(x, u,p)

]
dx.

(25)

• In the dual case:

DH(u,p)·(v,q) =

∫
Ω

[
− div(q)u− q · ∂H

∂p
(x, u,p)− v

(
div p +

∂H

∂y
(x, u,p)

)]
dx.

Definition 11 (Extremals). Let us consider a space of variation V ×W ⊂ Dom(H).
We say that (u,p) ∈ Dom(H) is an extremal for H relatively to V × W if H is
differentiable at point (u,p) and:

∀ (v,q) ∈ V ×W, DH(u,p) · (v,q) = 0.

Theorem 7 (Hamilton’s least action principle). Let (u,p) ∈ Dom(H) be an ex-
tremal for H relatively to V ×W . Assume moreover that:

• in the primal case: p ∈ Hdiv(Ω), V0 = {v ∈ V, v = 0 on ∂Ω} is dense in L2(Ω)

and W is dense in [L2(Ω)]
d
,

• in the dual case: u ∈ H1(Ω), V is dense in L2(Ω) and W0 = {q ∈ W,q · n =

0 on ∂Ω} is dense in [L2(Ω)]
d
.

Then (u,p) is a solution of the Hamiltonian system:
div p = −∂H

∂y
(x, u,p)

∇u =
∂H

∂p
(x, u,p).

(26)

Proof. Let us consider the case of the primal definition of the Hamiltonian functional
H. Since p ∈ Hdiv(Ω), using the Green formula in (25) gives: ∀ (v,q) ∈ V ×W ,∫

Ω

(
−
(
div p +

∂H

∂y
(x, u,p)

)
v + q ·

(
∇u− ∂H

∂p
(x, u,p)

))
dx +

∫
∂Ω

v p · n ds = 0.

The boundary integral vanishes for v ∈ V0. We recover (26) by density of V0 in

L2(Ω) and of W in [L2(Ω)]
d
.
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Corollary 8 (Lagrangian and Hamiltonian formulations). The solutions (u,p) of
the Hamiltonian system (26) are exactly the solutions of the Euler-Lagrange equa-
tion (2) under the condition

p =
∂L

∂v
(x, u,∇u).

4.1.2 Application to the Poisson problem

We consider the Poisson problem (4). We recall that the Lagrangian function asso-
ciated with this problem is

L(x, y, v) =
1

2
v · v − f(x)y.

The Legendre property is clearly satisfied by L. We introduce the new variable
p = v and the function g is given by g(x, y,p) = p. A Hamiltonian for the Poisson
problem is then given by,

H(x, y,p) = p · p− L(x, y, g(x, y,p)) =
1

2
p · p + f(x)y. (27)

The Hamiltonian system (26) associated with (27) is the mixed formulation of the
Poisson problem (4), it reads, {

− div p = f

∇u = p .
(28)

Applying theorem 7, one obtains that the weak solutions of the Poisson problem in
its mixed form (28) exactly are extremals for the Hamiltonian functional H in (27).
Precisely:

• Primal form (23) of H. Consider an extremal (u,p) ∈ H1
0 (Ω)× [L2(Ω)]

d
of H

relatively to the space of variations V ×W = H1
0 (Ω)× [L2(Ω)]

d
. An extremal

exactly is a solution for the primal weak formulation of the mixed Poisson
equation: find (u,p) ∈ H1

0 (Ω)× [L2(Ω)]
d

such that,{
−
∫

Ω
p · ∇v dx = −

∫
Ω
fv dx ∀ v ∈ H1

0 (Ω)∫
Ω

(p−∇u) · q dx = 0 ∀ q ∈ [L2(Ω)]
d

• Dual form (24) of H. Consider an extremal (u,p) ∈ L2(Ω) × Hdiv(Ω) of H
relatively to the space of variations V ×W = L2(Ω)×Hdiv(Ω). An extremal ex-
actly is a solution for the dual weak formulation of the mixed Poisson equation
that reads: find (u,p) ∈ L2(Ω)×Hdiv(Ω) such that{ ∫

Ω
(div p + f)v dx = 0 ∀ v ∈ L2(Ω)∫

Ω
p · q dx+

∫
Ω
u div q dx = 0 ∀ q ∈ Hdiv(Ω)
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4.2 Coherence

The definition of the discrete differential embedding in section 2 applies to the
Hamiltonian system where P is given by

P (u,p) =

 div p +
∂H

∂y
(x, u,p)

∇u− ∂H

∂p
(x, u,p)

 .

The definition (7) of the discrete variational embedding also applies to Hamiltonian
system by replacing L by H. The definition of coherence for the discretisation of
Hamiltonian systems is the same to definition 8 for Lagrangian systems.

Definition 12. Let us consider a discrete differential embedding of the mixed prob-
lem (26). If the discrete problem solutions exactly are extremals of a discrete Hamil-
tonian functional Hh that moreover also is a discrete variational embedding of H,
then we say that we have coherence.
In case of coherence we then have the following commutative diagram:

(u,p) 7→ H(u,p)
disc. var. emb.−−−−−−−−→ (uh,p) 7→ Hh(uh,p)

L.A.P.

y ydisc. L.A.P.

(u,p) solution of PDE (26)
disc. diff. emb.−−−−−−−−→ (uh,p) solution of PDEh

Hamiltonian system disc. Hamiltonian system

where L.A.P. stands for least action principle.

Remark 2. In section 2.4 it was shown that the coherence for conforming finite
element naturally derives from the method definition. The same conclusion also
holds for conforming mixed finite elements. The discrete Hamiltonian in that case
is the restriction of the Hamiltonian H to the finite element space.

4.3 Mimetic Finite Differences

We consider the mixed formulation (28) of the Poisson problem together with a
homogeneous Dirichlet condition u = 0 on ∂Ω. The scalar products on L2(Ω) and

on [L2(Ω)]
d

are respectively denoted, for u, v ∈ L2(Ω) and for p, q ∈ [L2(Ω)]
d
,

(u, v) =

∫
Ω

uv dx, [p,q] =

∫
Ω

p · q dx.

The Green-Gauss formula rewrites as, for all u ∈ H1
0 (Ω) and all p ∈ Hdiv(Ω),

[p,∇u] = − (div p, u) .

In the Mimetic Finite Differences (MFD) framework, a discrete flux operator ∇h :
Yh → Xh is defined as (minus) the adjoint of the finite volume discrete divergence
(see section 2.2.1) after the introduction of a scalar product on Xh that is consistent
with [·, ·]. We refer to [2] for the MFD discretisation of diffusion problems.
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4.3.1 Discrete differential embedding

A mesh T of the domain Ω is considered as in definition 6. The space P 0(T ) of the
piecewise constant functions over the mesh cells is considered and identified with
R#T . Since P 0(T ) ⊂ L2(Ω), the L2 scalar product on P 0(T ) is available.
The notations in section 2.2.1 for the finite volume divergence are considered: Xh =
R#E and π1 : [H1(Ω)]d → Xh, π2 : L2(Ω) → P 0(T ) are the projections in the
diagram (10). We adopt the following alternative (but equivalent) definition for the
finite volume divergence in the diagram (10). The space X̃h:

X̃h = {pK,e, K ∈ T , e ∈ E , e ⊂ ∂K and pK1,e + pK2,e = 0 if e = K1|K2} ,

is obviously isomorphic to Xh. With this identification we get the new commutative
diagram for the discrete divergence,

[H1(Ω)]
d div−−−→ L2(Ω)

π̃1

y yπ2
X̃h

divh−−−→ P 0(T )

where π̃1 is given by π̃1p = (pK,e) with pK,e =
∫
e
p · nK,edl/|e| the mean flux of p

across the face e according to the unit normal to e pointing outwards K. The discrete
divergence within this framework has the following expression (to be compared to
(9)), divh : p = (pK,e) ∈ X̃h 7→ (divK p)K∈T ∈ P 0(T ):

divK p =
1

|K|
∑

e∈E,e⊂∂K

pK,e|e|.

The definition of a scalar product on X̃h is not obvious. Let us consider K ∈ T and
denote X̃K

h the restriction of X̃h to K. We suppose that a cell scalar product [·, ·]K
is given on each X̃K

h ∈ T and that the scalar product on X̃h decomposes as:

∀ ph,qh ∈ X̃h : [ph,qh]h =
∑
K∈T

[ph,qh]K , (29)

A way to define the elemental scalar product (29) is to introduce a lifting operator

RK : X̃K
h −→ [L2(K)]

d
and then to define:

[ph,qh]K =

∫
K

RK(ph) · RK(qh)dx. (30)

For more details on the construction of RK , we refer to [2]. The present definitions
are sufficient for our purpose. Relatively to the scalar product (29), the discrete
flux operator ∇h : P 0(T ) −→ X̃h is defined as (minus) the adjoint of the discrete
divergence: ∇h = − div?h. It is uniquely determined by,

∀ uh, ph ∈ P 0(T )× X̃h : [ph,∇huh]h = −(divh ph, uh).
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The discrete differential embedding for the mixed Poisson problem (28) using the
MFD method then is defined by Ph : P 0(T )× X̃h → P 0(T )× X̃h:

Ph(uh,ph) =

(
− divh ph − π2f

ph −∇huh

)
.

The discretisation of the mixed Poisson problem (28) is : find uh ∈ P 0(T ) and
ph ∈ X̃h such that,

Ph(uh,ph) = 0. (31)

4.3.2 Discrete variational embedding, coherence

The HamiltonianH for the Poisson problem is given in equation (27). The associated
Hamiltonian functional H with the primal definition (23), Dom(H) = H1(Ω) ×
[L2(Ω)]

d
,

H(u,p) =

∫
Ω

p · ∇u− 1

2

∫
Ω

p · p−
∫

Ω

fu

= [p,∇u]− 1

2
[p,p]− (u, f) .

We therefore define the discrete Hamiltonian Hh : P 0(T )× X̃h → R as,

Hh(uh,ph) = [ph,∇huh]h −
1

2
[ph,ph]h − (uh, π2f)h .

It provides the following discrete variational embedding,

H1
0 (Ω)× [H1(Ω)]

d H //

π2×π̃1
��

R

P 0(T )× X̃h

Hh
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The variational form for the MFD discrete mixed Poisson problem is: find (uh,ph) ∈
P 0(T )× X̃h such that,

∀ (vh,qh) ∈ P 0(T )× X̃h, DHh(uh,ph)(vh,qh) = 0. (32)

Theorem 9. The MFD discrete differential formulation (31) and variational formu-
lation (32) for the mixed Poisson problem are equivalent. Then the MFD discreti-
sation for the mixed Poisson problem is coherent.

Proof. Differentiating Hh gives:

DHh(uh,ph)(vh,qh) = [ph,∇hvh]h + [∇huh,qh]h − [ph,qh]h − (π2f, vh)h .

Using that ∇h = − div?h relatively to the scalar product [, ]h we obtain,

DHh(uh,ph)(vh,qh) = (− divh ph − π2f, vh)h + [∇huh − ph,qh]h .

Therefore singular points for Hh exactly are the solutions to equation (31).
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Conclusion

In the present paper we studied the properties of the discretisation of PDEs deriving
from a variational principle, either Lagrangian or Hamiltonian. We addressed the
following questions. Does the discrete problem also satisfy a variational principle ?
If it does, what is the relationship between that variational principle and the one
that rules the PDE ? These questions are analysed by introducing the concepts of
discrete variational and discrete differential embeddings and of coherence between
these two types of embeddings.
By considering the Poisson problem as a test case, we showed for several classical
methods that the discrete Poisson equation satisfy a variational embedding. A
crucial property ensuring coherence for the discrete problems is the following. The
order 2 Euler Lagrange PDE involves two order one differential operators: a gradient
and a divergence. The differential embeddings of these two operators must satisfy
some duality property. That property is a discrete analogous of the Green-Gauss
formula.
Extensions of the present work to the diffusion equation or the p-Laplacian would be
natural, since these problems have the same variational structure in space. Extension
to the wave equation is also practicable, though in that case the Lagrangian structure
mixes spatial and temporal aspects.
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