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Abstract: Whatever the phylogenetic method, genetic sequences are often described as strings of characters, thus molecular sequences 
can be viewed as elements of a multi-dimensional space. As a consequence, studying motion in this space (ie, the evolutionary process) 
must deal with the amazing features of high-dimensional spaces like concentration of measured phenomenon.
To study how these features might influence phylogeny reconstructions, we examined a particular popular method: the Fitch-Margoliash 
algorithm, which belongs to the Least Squares methods. We show that the Least Squares methods are closely related to Multi Dimensional 
Scaling. Indeed, criteria for Fitch-Margoliash and Sammon’s mapping are somewhat similar. However, the prolific research in Multi 
Dimensional Scaling has definitely allowed outclassing Sammon’s mapping.
Least Square methods for tree reconstruction can now take advantage of these improvements. However, “false neighborhood” and 
“tears” are the two main risks in dimensionality reduction field: “false neighborhood” corresponds to a widely separated data in the 
original space that are found close in representation space, and neighbor data that are displayed in remote positions constitute a “tear”. 
To address this problem, we took advantage of the concepts of “continuity” and “trustworthiness” in the tree reconstruction field, which 
limit the risk of “false neighborhood” and “tears”. We also point out the concentration of measured phenomenon as a source of error and 
introduce here new criteria to build phylogenies with improved preservation of distances and robustness.

The authors and the Evolutionary Bioinformatics Journal dedicate this article to the memory of Professor W.M. Fitch (1929–2011).
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1. Introduction
Phylogenetic trees building methods
Since the early works of Hitchcock and Hitchcock 
(1840),1 Darwin (1859, the only one illustration of the 
book)2 and those of Ernst Haeckel (1866),3 species 
are classified within trees. This idea has never been 
challenged and is supported by the evolutionary theory, 
which states that species genotypes/phenotypes drift 
from a common ancestor according to phylogenic 
proximity of the considered species. Trees are thereby 
convenient tools to express phylogenic relationships.

However, evolution has not been observed per se, 
and we must infer it from contemporary information 
(see Brocchieri4 for a review on phylogenetic 
methods). Phylogenetic trees are often achieved from 
aligned sequences using character-based methods. 
Maximum parsimony methods minimize the number 
of changes.5 Maximum likelihood methods are based 
on models of substitution process.6

Molecular character based methods can be launched 
from genomic or proteomic sequences but also from 
other molecular features like structural or thermody-
namic features.7,8 Conversely, distance based methods 
are often less powerful,9 but they can be applied to 
any kind of matrices (of possibly large size) collecting 
distances between items (whatever the distances 
used—from aligned sequences to any measurable 
features). For example, UPGMA (Unweighted Pair 
Group Method with Arithmetic mean)10 iteratively 
aggregates the most similar items. UPGMA has been 
said to suffer of long-branch attraction due to the 
(frequently false) hypothesis of the molecular clock 
(every sequence is supposed to evolve at the similar 
rate). In order to solve this problem, Neighbor Joining 
(NJ)11 generates trees with the minimum cumula-
tive branch lengths. We highly recommend the use 
of character based methods (such as maximum like-
lihood, minimum evolution, maximum parsimony, 
Bayesian approaches; they are more powerful9 when 
the related hypotheses are valid). However, in some 
difficult cases, distance based methods are the only 
option4,12 in large scale comparisons13 and analyses on 
oligonucleotides frequencies (the so-called “genomic 
signatures”),14,15 etc.

Note that every distance method assumes that a 
tree that preserves distances reflects the evolution 
between data. Fitch and Margoliash16 followed this 
concept and described a method designed to generate 

a tree that preserves distances at best. The tree that 
minimizes squared difference between original 
and resulting distances is assumed to express the 
evolution of considered genes (or proteins, if it 
is the case). Here, we hold on this widely shared 
hypothesis.

Biological sequences and amino acids are clearly 
multi-dimensional objects.17–20 It has been recently 
demonstrated that the high-dimensionality of biological 
sequences leads to emergent computational features 
like similarity measure and particular probability 
distribution of this similarity.21–23 Distance methods 
are the first approach for phylogeny reconstructions 
and consist merely in considering the data as a 
point in an η-dimensional phase space (where η is 
in first approximation the length of the sequence). 
If one knows the relative position of sequences 
(distance matrices) and the velocity modulus 
corresponding to the sequence evolution, it should 
be possible to reconstruct the divergence history of 
the sequences (which corresponds to a trajectory in 
the η-dimensional space). However, starting from 
a point of this phase space, another point cannot be 
reached by a simple straight line because only a few 
likely paths between the two points in this phase 
space are allowed (Biological features of sequences 
must be preserved all along the path).24 The topology 
of all a priori possible evolution process space has an 
Eη topology, where E is the space of the states of one 
residue position. Nevertheless, the topology of actual 
evolution process is clearly unknown, since the Eη 
subspace where the process occurs is also unknown. 
This is one of the reasons why maximum likelihood 
and parsimony methods are usually more accurate than 
distance methods. Indeed, ML and parsimony do take 
the intrinsic high-dimensional nature of the original 
data (ie, the sequences) into account, by modeling 
resp. optimizing character state changes. Conversely, 
distance-based methods such as Neighbor Joining or 
Fitch-Margoliash algorithm (which do not account 
for the data dimensionality) are commonly performed 
from genomic signature comparisons, very large data 
sets, such as DNA barcode libraries, or indeed large-
scale genomic comparisons, and so on. However, these 
often are high dimensional data and we will show in 
the following why Fitch-Margoliash algorithm could 
be misled by features of high dimensional space, and 
how modifying it to avoid these traps.
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Multi dimensional scaling
The general aim of the Multi Dimensional Scaling 
methods is the dimensionality reduction. The most 
used technique is by far the Principal Components 
Analysis (or PCA).25,26 To obtain this representation, 
data are projected (by orthogonal projection) on a 
selected vector subspace according to a criterion 
equivalent to the maximization of distances 
preservation.27 The “Multi Dimensional Scaling” 
(MDS) term was extracted from a method that allowed 
a mapping from a distance matrix27 (this method is 
known thereafter as “Classical Multi Dimensional 
Scaling” or Classical MDS). When dealing with 
Euclidean distances, Classical MDS can be seen 
as a linear projection method. However, non-linear 
projection can be achieved as well. For that purpose, 
the preservation of small distances is favored through 
a weighting system. The Sammon’s mapping28 is one 
of the first non-linear MDS methods. Many MDS 
techniques have been developed since then, including 
Curvilinear Components Analysis (or CCA),29 
Kernel Principal Component Analysis (or KPCA),30 
Isomap,31 Curvilinear Distances Analysis (CDA)32 
and Generative Topographic Mapping (GTM).33

We focus here on a new efficient method called 
Data-Driven High Dimensional Scaling (DD-HDS)34 
which specificities are i) the penalization of 
“false-neighborhoods” and “tears” and also ii) the 
consideration of the concentration of measured 
phenomenon. As many MDS methods (including 
Sammon’s mapping, CCA and Local-MDS) DD-HDS 
is driven by a given criterion in order to iteratively 
converge toward a satisfying map (several examples 
of criteria are given in the beginning of section 3).

The present paper shows how close are Multi 
Dimensional Scaling and tree building methods 
fields and extracts from Multi Dimensional Scaling 
new ways to improve actual tree building methods 
from distance matrices. The article is organized as 
follows: Section  2 compares the Fitch-Margoliash 
algorithm with Multi Dimensional Scaling methods 
(with a special attention for Sammon’s mapping)28 
Section  3 describes the possible contribution of 
the recently introduced Multi Dimensional Scaling 
methods to tree building methods through a new 
criterion. Section 4 sums up the resulting algorithm, 
used to generate results presented and analyzed in 
Section 5.

2. Existing links between  
Fitch-Margoliash and Sammon’s 
Mapping criteria
Least Square (LS) methods are designed to generate a 
classification (through a tree) from distances between 
data. This distance matrix is noted d (dij is the element 
in the iest row and the jest column, which corresponds 
to the distance between item i and item j; d is then 
a N  ×  N matrix where N is the number of items). 
In the field of molecular evolution, data are DNA 
(sometimes RNA) or protein sequences, represented 
as strings of characters, and distances are calculated 
between aligned sequences. Least Square methods 
purpose is to generate a tree that preserves distances 
between data “as much as possible” in the sense that 
it should minimize a selected criterion (eg, eq. 1).

The general aim of Multi Dimensional Scaling 
is also to provide a configuration of points that 
preserves “as much as possible” distances between 
data (and a criterion is also selected to that purpose). 
Multi Dimensional Scaling can be then considered as 
a function that associates N items in a metric space to 
the original distance matrix. The output space is fre-
quently a Euclidian two-dimensional space (which is a 
well-known metric space). However, any metric space 
could be obviously used here instead. Least Square 
methods (such as the Fitch-Margoliash method) can 
be then reformulated as Multi Dimensional Scaling 
where the distance in the output space is an additive 
distance (ie, a distance calculated on a tree).

In fact, striking parallel features can be drawn 
between Multi Dimensional Scaling and Least Square 
methods: inputs (distances matrices), purposes 
(preservation of distances “as much as possible”) and 
outputs (configuration of items in an intuitive metric 
space) are similar. The only difference between Multi 
Dimensional Scaling methods (including Sammon’s 
mapping) and tree building Least square methods 
(including the Fitch-Margoliash method) can be found 
in the “nature” of the output (and consequently, in 
the optimization methods). Moreover, we will show 
thereafter that Sammon and Fitch-margoliash’s criteria 
are similar. Multi Dimensional Scaling methods might 
therefore provide a framework to better understanding 
criteria for tree building methods.

Note that we consider unrooted trees in the 
present paper. Moreover, branches with negative 
length, a common feature, are considered as 
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0-length branches,35,36 distances in trees will have 
all the three mathematical properties of distances 
(∀x,y,z, 1) d(x,y)  =  d(y,x); 2) d(x,y)  =  0⇔x  =  y; 
3) d(x,z)#d’x,y) + d(y,z)).37 Note also that no 
hypothesis is made on the input distance; moreover 
all mathematical properties of distances are not 
required here (triangle inequality can possibly be 
transgressed). As a consequence, any dissimilarity 
could be considered (in tree reconstruction as well as 
in Multi Dimensional Scaling).34

Fitch-Margoliash criterion
Least Square methods are achieved in order to mini-
mize difference between original distances and 
distances in the resulting tree. In particular, Fitch-
Margoliash proposes a criterion (eq. 1) to quantify 
the misfit between the original distance d and the dis-
tance matrix between items positioned in a given tree 
(we will designate this tree-distance matrix as ∂ ).

	
ς = × − ∂( )∑ w dij ij ij

i j

2

,

	 (1)

where wij = f(dij). Several functions have been pro-
posed for f ( f is thereafter designed as the weighting 
function). Within the Least Square framework, wij is 
often considered to be proportional to the reverse of an 
estimation of the variance of dij, seen as an estimator 
of the “real” evolutionary distance between i and j.

Generally, f is chosen as fp(x)  =  1/xp, where p is 
positive. For example, wij = f0(dij)  =  1 (ie, P  =  0)38 
corresponds to the Ordinary Least Square methods 
(OLS). It assumes that every distance is measured 
with the same error rate. Conversely, by choosing 
a strictly positive value for p leads to Weighted 
Least Square methods (WLS), we can naturally 
consider that the larger the evolutionary distance, 
the poorer its estimation and then the weaker its 
weight. In that case, wij = f1(dij) = 1/dij could be con-
sidered appropriate (ie, P = 1). The most commonly 
used weight is wij = f2(dij) = 1/dij

2 (ie, P = 2).16 It is 
based on the observation that the variance of the error 
for the estimation of the evolutionary distance is 
often approximately proportional to dij

2 in simulated 
datasets (these datasets are aligned sequences follow-
ing classical evolutionary models).35 This estimation 
as been refined recently, to propose the following 
weight: wij = f1.823(dij) = 1/dij

1.823 (ie, P = 1.823).39

Similarity between Fitch-Margoliash and 
Sammon’s mapping criteria
The Sammon’s mapping28 has been designed to 
embed data in a low-dimensional space while pre-
serving distances “as much as possible” with a 
special consideration for small distance. The method 
is known as one of the earliest non-linear projection 
proposed by John W. Sammon in 1969.

Striking parallel features can be drawn between 
Fitch-Margoliash and Sammon’s mapping criteria 
(for P = 1 in Eq. 1 that corresponds to the case where 
wij = 1/dij). Indeed, eq. 1 exactly expresses criterion 
that drives the Sammon’s mapping if ∂ assigns dis-
tances in a Euclidean output space.

Multi Dimensional Scaling has been improved 
since it was first introduced (for an overview of 
the field, please report to Lee et  al)40 and many 
non-linear Multi Dimensional Scalings have 
outclassed Sammon’s mapping. Progresses obtained 
in the field of non-linear mapping can be applied to 
Fitch-Margoliash method. In particular, we will focus 
on Data-Driven High Dimensional Scaling (DD-
HDS),34 an effective mapping method that follows the 
Sammon’s mapping concept.

Finding the best configuration
While wij is chosen, (which lead to define the criterion 
ς, eq. 1), the best fitting tree has to be discovered. 
However, the number of possible tree topologies 
increases explosively with the number of items 
(number of possible topologies for N items = (2 N-5)!/
[2 × (N-2)!] = (2 N-5) × (2 N-3) × … × 5 × 3).41 Of 
course, the exhaustive exploration is not an option, 
and finding the tree that best preserves distances is a 
NP-difficult problem.42,43 Numerous algorithms have 
been proposed to approach this goal including genetic 
algorithm,44–46 ant colony optimization47 and TABU 
search.48 In particular, the popular FITCH software 
from the PHYLIP package49 iteratively introduces items 
(each possible place is tested for the new item, the best 
place from the criterion point of view is validated). 
After the introduction of each item, a “tree swapping” 
optimization process is run to reconsider the global 
organization of the tree: the Nearest Neighbor Inter-
changes (NNI).50–52 Some alternative methods can be 
used in such framework rather than NNI. In particu-
lar, the “Tree Bisection-Reconnection” (TBR) and the 
“Subtree Pruning Regrafting” (SPR) can be used and 
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allow a wider tree reorganization.51 However, such 
advantage is expensive in term of complexity: com-
plexities are O(N) for NNI, O(N2) for TBR and O(N3) 
for SPR (N is the number of leaves).53 For that reason, 
and to be mimetic with the original Fitch-Margoliash 
algorithm, we used NNI in the present work.

A corresponding problem occurred in Multi 
Dimensional Scaling. However, even when methods 
agree about the criterion that should be optimized, 
various ways can be followed to generate the best 
configuration of points in the output space. Among 
optimization methods used in this framework, we 
can cite Generalized Newton-Raphson algorithm,28,54 
TABU search,55,56 genetic algorithms,57,58 simulated 
annealing,59,60 neural networks29 and Force Directed 
Placement.34,60–62

3. Improvement of the Fitch-Margoliash 
Criterion
We have shown the proximity between Sammon’s 
mapping and Fitch-Margoliash criteria. However, 
some drawbacks have been identified for the 
Sammon’s mapping criterion. They obviously impact 
Fitch-Margoliash and have then to be avoided.

Penalization of “false neighborhoods”  
and “tears”
It has been found that Sammon’s mapping poorly 
penalizes “false neighborhoods”.34,63–65 Indeed, let 
suppose that dij is high; f(dij) is small; (dij−∂ij)

2 × f (dij) 
does not contribute much to ς, even if ∂ij is small. A case 
where dij is high and ∂ij is small (which corresponds to 
a “false neighborhood”) is then poorly penalized.

This situation can be avoided using the Curvilinear 
Components Analysis criterion29 (eq. 2) (the weight 
depends now on the distance in the representation 
space).

	
ς = − ∂ × ∂∑ ( ) ( )

,

d fij ij ij
i j

2 	 (2)

Unfortunately, “tears” are now poorly penalized: 
if dij is small and ∂ij is high (which corresponds to 
a “tear”), (dij−∂ij)

2  ×  f(∂ij) remains small and does 
not contribute much to ς. Note that, consideration 
of “tears” and “false neighborhoods” are some-
times addressed under concepts of “continuity” and 
“trustworthiness”.65,66

However, “tears” and “false neighborhoods” can 
now be simultaneously penalized through a new 
criterion like the following:34

	
ς = − ∂ × ∂∑ ( ) (min( , ))

,

d f dij ij ij ij
i j

2 	 (3)

f1(min(dij,∂ij)) is high if and only if dij or ∂ij is small: 
each small distance is considered as important 
(whatever if the distance is small in original or output 
space). This criterion proposed for Data-Driven High 
Dimensional Scaling has been found effective for 
avoidance of “tears” and “false neighborhoods” on 
several simulated and real datasets.

When considering trees, this analysis is still 
valid. In this context, two items that are connected 
whereas they are widely different is a “false 
neighborhood”, when close items that are placed in 
different parts of the tree corresponds to a “tear”. 
Naturally, within phylogenetic inference, both “false 
neighborhoods” and “tears” should be avoided. 
However, we demonstrated that Fitch-Margoliash 
(as well as Sammon’s mapping) does not penalize 
efficiently “false neighborhoods”. As a consequence, 
the consideration of criterion proposed in eq. 3 
could provide benefits in tree building like in Multi 
Dimensional Scaling.

Consideration on concentration  
of measure phenomenon (CMP)
The concentration of measure phenomenon
Dealing with high-dimensional data is complicated. 
Indeed, high-dimensional spaces have several 
surprising properties that discomfit human spirit (the 
famous “curse of dimensionality”).67,68 Among them, 
the concentration of measured phenomenon (illus-
trated in Fig. 1) is critical; it makes the relative differ-
ence between small and large distances tends to zero 
when the dimension increases.68–71 Such phenomenon 
can be illustrated by the distribution of distances 
between data points randomly drawn in a hypercube 
according to the dimension of the space.72

The concentration of measured phenomenon has 
a main impact on Multi Dimensional Scaling: even if 
small distances are believed to be emphasized in the 
mapping (through the weighting function fp defined in 
section 2.1), the weights for small and large distances 
could be very close.15,34
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As an illustration, let us considered two distances 
noted a and a + ε, where a is small and a + ε is large. 
When the dimension of space increases, ε/a may tend 
to 0 ( ε

a n→∞ → 0 ). Then,

f a

f a
a a

a

p

i p i
a

p

p

p p

p
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− ( )

=
+
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i
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−

=
→+( )

 →∑
1

0
0

� (4)

Weights for a and a + ε (noted fp(a) and fp(a + ε)) are 
then very close for high-dimensional data. Here, p (the 
parameter of the weighting function f; in Fitch-Margo-
liash, p often equals 2) is supposed to be a strictly posi-
tive integer for the calculus simplicity (this could be 
generalized to P ∈ [1, + ∞[using the gamma function).

Impact of CMP on phylogenic data
Proteins and DNA sequences are high dimensional 
objects (including when the only available material 
is the distance matrix between items).17 The question 
of their dimensionality has been theoretically addressed 
through the question of intrinsic dimension (or degree of 
freedom) of data.18,19 However, determining the dimen-
sionality is not needed in the present framework. Still, 
the distance matrix may show properties close to ones of 
distances between high-dimensional data, ie, a low “rel-
ative contrast” (contrast can be defined as ([distance of 
the farthest to the origin of the vector space]—[distance 
of the nearest to the origin])/[distance of the nearest to 
the origin]) in the distance matrix.69,73 In such case, the 

phenomenon described by equation 4 may occur: every 
distance has almost the same weight in contradiction 
with the spirit of Fitch-Margoliash method. In case of 
phylogenetic data, the origin of an eventual concentration 
of measured phenomenon could be discussed. However, 
such discussion can be avoided here, indeed we do not 
consider the dimensionality here, but the concentration 
of measure itself (whatever its origin).

The Multi Dimensional Scaling method DD-HDS34 
has treated this problem: a sigmoid function adapted 
on the distances distribution allows us to assign a 
high weight to smaller distances and a low weight 
to larger ones whatever the dimension. We propose 
to apply the same solution to Weighted Least Square 
methods: the weighting function f is modified accord-
ing to equation 5.

	
f x g u dusigmo

x

, , ,λ µ λ σ λ( ) = − ( ) ( )( )
−∞
∫1 	 (5)

where g(u,µ(λ),σ (λ)) is the probability density function 
of a Gaussian variable with mean µ(λ) and standard 
deviation σ (λ). µ(λ) and σ (λ) are suggested to be:

	
µ λ λ( ) ( ) ( ) ( )= − × − ×

< <
mean d std d

i j
ij

i j
ij2 1 	 (6)

and

	
σ λ λ( ) ( )= × ×

<
2 std d

i j
i j 	 (7)

where λ is a user-defined positive parameter, usually 
equal to 0.1, that reflects the trade-off between 
preservation of local versus global distances. λ can 
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Figure 1. 200 random data are uniformly distributed in a unit cube (of a given dimensionality). Histograms of distances between every pairs of items  
(19 500 distances) are displayed according to space dimension. Distributions of distances for dimensions larger than 200 would have the same Gaussian-
like shape, but their centers would be shifted to the right proportionally to the square root of the dimension.
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be initially set at a high value (0.9 for example) and 
be decreased during the optimization, initially to 
take into account the global organization of data and 
progressively focus on local relationships.

Noticeably, the use of a Gaussian density 
function does not result from a hypothesis of 
Gaussian distribution of measured but only allows a 
continuous decrease of function f with high values for 
smaller distances and low values for larger distances. 
Equations 6 and 7 allow adjusting parameters µ and 
σ for equation 5; in case of an atypical distances 
distribution, the user can therefore adjust parameters.

Within the phylogenetic analysis framework, 
sequences are somehow related to each other and 
distances are usually expected to follow patterns. 
A similar argument applies to dimensionality 
reduction methods, regarding distances between data 
points (that are supposed to lie onto a low-dimensional 
manifold). However, we can observe that patterns 
are sometimes blotted out by the concentration of 
measure phenomenon when dealing with real data. 
Obviously, we cannot rely on this hypothesis in 
the context of tree reconstruction (of course, in the 
favorable case where patterns can be found, the goal 
will be reached more easily).

A new criterion
DD-HDS introduces a new criterion which is 
optimized ς λ= − ∂ × ∂( )( )∑ d f dij ij sigmo ij ij

i j

min , ,
,

 

(the absolute difference between distances allows to be 
consistent with an optimization process called Force 
Directed Placement that simulates a spring system, 
not used in the present tree building method). In order 
to develop a Weighted Least Square method (which 
is more common in tree building framework), we can 
use a corresponding criterion that rather considers 
square difference between distances (eq. 8). For sure, 
close minimums should be found for these criteria.
The optimized criterion is now:

	
ς λLS ij ij sigmo ij ij

i j

d f d= − ∂( ) × ∂( )( )( )∑
2 2

min , ,
,

	(8)

where λ is the user-defined parameter defined in 
the previous section. λ must be set between 0 (for 
maximally emphasizing of small distances) and 1 
(where large distance still weight).

In Least Square methods, wij is often considered 
as the reverse of an estimation of the variance of dij, 
which is not the case for our criteria. Classically, wij is 
selected based on this perspective from observations 
on simulated data. These simulated data follow 
a definite form, since the alignment of artificial 
sequences is strictly based on assumption regarding 
the evolutionary model. When the user’s data follow 
a similar model, such a criterion must be chosen. 
Conversely, when data do not follow the usual 
standard evolutionary models or when distances are 
not measured in the same way or when data are not 
aligned sequences etc, the classical Fitch-Margoliash 
criterion is not necessarily more suitable than any 
other one. In such cases, we gave important argu-
ments to prefer using weights as presented in sec-
tion  3, subsection “Consideration on concentration 
of measure phenomenon (CMP)”. As a consequence, 
eq. 8 provides a model-free criterion (in the sense 
that it is based on no explicit model but it is designed 
to adapt to the distance distribution).

4. Algorithm
We exposed a new criterion and gave theoretical 
arguments to prefer its use instead of the classical 
Fitch-Margoliash’s one. To test our assumptions, an 
algorithm using the new criterion is set up.

Optimization
Our algorithm mimics FITCH software49 (except, 
naturally, for the criterion). Three randomly selected 
data are initially chosen as leaves of a 3-branch tree 
(one single possible topology). Remaining leaves 
are then randomly selected to be introduced one by 
one according to an iterative procedure: each position 
is tested for the new leaf; when the best position is 
chosen, the whole topology is challenged by testing 
branch permutations (the so called “tree swapping” 
procedure) according to the NNI (Nearest Neighbor 
Interchange) algorithm. When all leaves have been 
introduced, the procedure is stopped. The only 
difference between algorithms lies in the criterion 
(c.f. eq. 1 for example).

A modification is nevertheless necessary for the 
calculus of branch lengths. Originally, branch lengths 
depend on original distances and could then be 
analytically deduced from a given topology and chosen 
weighting simply using matrix algebra.74 However, 
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weights can no more be fixed a priori, because they 
now also depend on distances in output tree. A slight 
adaptation using an incremental approach is then 
necessary. Firstly, weights are fixed as wij = fsigmo(dij,λ)2 
and branch lengths are calculated. We then get esti-
mations for ∂ij, which allows the modification of 
weights as wij =  f(min(dij,∂ij),λ)2 that generates new 
estimations for ∂ij (each of these iterations is a linear 
operation). This process is iterated until stability of ∂ij 
is reached. This modification does not strongly affect 
the calculus time. Indeed, few quasi-instantaneous 
steps (each one is a simple matrix algebra operation) 
are generally needed to converge.

The use of progressive reduction of λ (c.f. 
section  3.2), at worst multiplies the calculus time 
by the number of steps (here 2 steps). Overall these 
procedures increase the calculus time by less than a 
2-fold factor (and, as a consequence, has no impact 
in term of complexity). It is worth to note that the 
overall complexity of the algorithm is O(N4), 
just as the classical Fitch-Margoliash (FITCH 
implementation).75

Expected benefits
If distances are additive there is a perfect solution to 
Least Square methods. Obviously, Fitch-Margoliash 
(just as most of classical methods like Neighbor 
Joining, etc) will solve this: no benefit can be expected 
in this ideal case. However, distances are often far 
from being additive, and it may be hard to reach the 
best tree in these cases.

Since additivity is a very restrictive property for 
distances, there are few chances to be in that case when 
dealing with real data. Fitch-Margoliash has shown 
efficiency in such a situation. However we highlight 
some drawback in this paper that may be a matter of 
concern. If, in addition, the distribution of distances is 
tight (which corresponds for example to distances in 
a high-dimensional space), we have shown that Fitch-
Margoliash can be overtaken for theoretical reasons. 
As a consequence, better results can be expected in 
such case (and/or when the user’s data do not follow 
classical evolution models, cf. section 3, subsection 
“A new criteria”) because of a criterion that quantifies 
more appropriately the correspondence between the 
distances and the tree.

Moreover, during inference processes, the opti-
mization to find the best tree is the major difficulty. 

We believe that the penalization of both “false 
neighborhoods” and “tears” will allow us to avoid the 
exploration of many poor solutions that were lightly 
penalized by classical criteria. As a consequence, 
the risk of reaching a local minimum is reduced: our 
method may therefore drive us more closely to the 
optimal tree.

Eventually, we propose the choice of a parameter λ 
that balances the matter of small versus large distances 
in order to allow a control by user.

5. Results
Methods and criteria
We evaluated trees within six criteria to test the 
benefits obtained by each one of our modifications 
(Fig.  2). The benefit supplied by every proposed 
modification can thus be sized up.

These criteria allow us to build trees. Ti corresponds 
to trees generated by minimizing ζi. TFM corresponds 
to the tree based on the original Fitch and Margo-
liash’s criterion ζFM and TSa corresponds to the tree 
based on the Sanjuán and Wróbel39 criterion ζSa. 
Several variations around the criterion that have 
been previously discussed are tested (criteria ζ1, ζ2, 
ζ3, ζ4, ζ5 and ζ6, described in Table 1). Note that T2 
(respectively T5) is calculated from T1 (respectively 
T4) thanks to NNI transformations, within the pro-
cess of progressive reduction of λ. TNJ corresponds 
to trees generated by Neighbor Joining,11 which is 
an agglomerative method for tree building from the 
distance matrix. Neighbor Joining (often noted NJ) 
is designed to generate the tree topology that gives 
the least total branch length. It is known to be a very 
fast method for phylogeny, which often provides 
a good preservation of distances even in maximum 
likehood methods, which are slower methods, were 
shown to be much more accurate than NJ. As a con-
sequence, Neighbor Joining will be also compared to 
our method. We will then test here eight criteria and 
nine ways to create trees.

Evaluation plots: “continuity”  
and “trustworthiness”
Within Multi Dimensional Scaling framework, the 
distance preservation is often analyzed thanks to 
the Shepard’s dy-dx diagram.29,76 However, in tree-
building framework, an equivalent diagram is not as 
easily interpretable (data not shown). To explore the 
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distance preservation in a more appropriate way, we 
split the distance preservation through two curves that 
display “continuity” and “trustworthiness” (concepts 
introduced by Venna and Kaski).65

On the one hand, “continuity” quantifies the 
preservation of small original distances. As a 
consequence, a “tear” (close data in original space 
that are displayed widely separated) is a violation of 
the continuity. On the other hand, “trustworthiness” 
corresponds to the ability of the tree to express small 

distances. As a consequence, a “false neighborhood” 
(far distanced data in original space that are displayed 
as neighbors) is a violation of the trustworthiness.

Trustworthiness and continuity are displayed here 
as two curves: 1) the curve that draws the square 
differences between original and output distances as 
a function of the original distance allows evaluating 
the continuity, and 2) the curve that draws the square 
differences between original and output distances as a 
function of the output distance allows evaluating the 
trustworthiness. Of course, these curves are often not 
slick; according to the user’s purpose, these curves 
can be smoothened or not (a smooth curves allows 
the visualization of the general behaviors while an 
unsmooth curve reveals default). In the present paper, 
most figures show smoothened curves of “continuity” 
and “trustworthiness”.

Some data randomly embedded (uniform distri-
bution) in a two-dimensional Euclidian space were 
analyzed here (Fig.  3, upper insert). Trees are first 
generated from the matrix distance according to 
the Fitch-Margoliash method and then by the new 
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Figure 2. Summary of the eight tested criteria and links between them. Every combination of criterion components is tested to evaluate each improvement. 
Components allows: penalizing either “tears” (as in original criteria) or “tears” and “false neighborhoods” together (as it is suggested here); emphasizing 
small distances either thanks to the traditional reverse function or while considering the concentration of measure phenomenon with more (cases ζ2 and 
ζ5) or less (cases ζ1 and ζ4) focusing on smaller distances. ζFM corresponds to the original Fitch-Margoliash’s criterion and ζSa to the Sanjuán and Wróbel’s 
one. ζ1 and ζ2 avoid both risks of “false neighborhoods” and risks related to the concentration of measure phenomenon. ζ3 and ζ6 avoid risks related to the 
concentration of measure phenomenon and risks of “tears” (but do not considered the risk of “false neighborhoods”). ζ4 and ζ5 avoid risks related to the 
concentration of measure phenomenon (while highly focusing on smaller distances in case of ζ5) but lightly penalize “false neighborhoods”.

Table 1. Kappa coefficients (c.f. section  5.3) for each 
method (in column) and for various k (in row). Note that the 
whole number of distances between 15 species is 105.

T1 T2 T3 T4 T5 TFM T6 TSa TNJ

1 0.85 0.98 0.91 0.85 0.98 0.9 0.88 0.89 0.86
2 0.83 0.96 0.9 0.84 0.95 0.89 0.90 0.89 0.87
3 0.8 0.96 0.87 0.81 0.95 0.87 0.86 0.86 0.88
4 0.81 0.96 0.88 0.82 0.94 0.88 0.87 0.87 0.85
5 0.82 0.94 0.87 0.83 0.92 0.87 0.86 0.86 0.86
10 0.85 0.88 0.87 0.85 0.87 0.86 0.86 0.86 0.87
15 0.85 0.85 0.86 0.85 0.85 0.86 0.86 0.86 0.87
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method. Some differences can be noticed between the 
topology of the two resulting trees (lateral inserts). 
The comparison between original and resulting tree 
distances are presented in the lower insert in terms 
of “continuity” and “trustworthiness” (lower insert). 
Figure  3 illustrates the algorithm progress but does 
not allow conclusion about the characteristics of each 
criterion.

Kappa coefficients: preservation  
of k smallest distances
In order to compare the preservation of short 
distances in each method, the concordance between 
the k smallest original distances and the k smallest 
distances in trees is analyzed by mean of Kappa 
coefficients.77 Kappa measures the degree of 
concordance on a scale from minus infinity to 1. 

A Kappa of one indicates full concordance, a Kappa 
of zero indicates that there is no more concordance 
than expected by chance and negative values are 
observed if concordance is weaker than expected by 
chance (a very rare situation). The measure could be 
seen as another mean to quantify the quality of result-
ing trees.

Kappa values are generated for each method and 
for various size of neighborhood (ie, various k).

Simulated data
Randomly positioned data
To test the capability of each criterion to gener-
ate fine trees from matrix of no additive distances, 
we created distance matrices from data randomly 
embedded in a Euclidean space. We tested sets 
of 15 data (ie, species) in two-dimensional and  
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Figure 3. Example of comparison between two tree-building methods: Tree built according to the classical Fitch-Margoliash method versus the tree built 
thanks to the new criterion. Original data (and the associate distance matrix) are displayed in the upper insert. Left and right inserts express the two trees. 
“Continuity” and “trustworthiness” can then be compared on the lower insert (the grey curve corresponds to the Fitch-Margoliash method and the black 
curve is related to the new method).
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100-dimensional spaces. Using 15 data points only 
could seem low, but it is clearly large enough to 
compare algorithms. Indeed, there is 7.9 × 1014 pos-
sible unrooted trees (which provide many chances 
for differences between results). Moreover, using 
15 data points fits with the order of magnitude of 
real phylogenic problems. Lastly, 15-leaves trees 
are computable in a reasonable time; a large number 
of datasets can be simulated, which ensure to limit 
biases due to atypical situations.

Simulated sequences
Biological sequence evolution was simulated using 
a branching process. So, they are always related to 
a tree topology. For each time unit, all sequences 
present in the process can both be duplicated (with a 
fixed probability of duplication) and be mutated. The 
process starting from i) a sequence a0 ii) a probability 
distribution with the a0 amino acids position as support 
for this distribution reflecting the profile from which 
is derived the a0 protein family and iii) a duplication 
rate which can be allowed to vary with time or not. 
This program named EvolSeq was written in language 
C and can be requested to the authors.

In the present paper we mainly test the tree 
building methods with randomly positioned data; 
but several results reached with simulated sequences 
are also shown as supplementary material. Why 
was randomly positioned data preferred? Because 
randomly positioned data can maintain a perfect 
control on the topology and the dimensionality of 
the dataset. Conversely, as far as we know, whereas 
degrees of freedom are often controlled in case of 
simulated sequences, the sequences can however lie 
onto a subspace that dimensionality and topology 
are unknown. Indeed, let us consider biological 
sequences under evolution process as data that follow 
paths in a sequence space (the so called Configuration 
Space of Homologous Proteins, CSHP, after Bastien 
et  al).18 The dimensionality of such a space is the 
number of varying sites, but sequences more often 
live in a subspace with a much lower dimension (due 
to the co-varying sites and so on). In such a case, 
the possible configuration of sequences allowed 
by the process (which corresponds to the topology of 
the subspace) is unknown. However, highlighting the 
critical impact of the subspace dimensionality is one 
of the main claims of the present paper.

Two-dimensional space
A distance matrix has been created from 15 points 
embedded in a two-dimensional Euclidean space 
(random points, uniform distribution). Nine trees 
have been produced according to the nine tested cri-
teria (with the same order for the insertion of data). 
We then observe various topologies according to the 
considered criterion. The average of Robinson and 
Foulds distances (Robinson and Foulds)50 allows 
observing the proximity of tree topology obtained by 
each method (up and left insert in Figure 4 display 
these distances on a two-dimensional map thanks 
to the Data-Driven High Dimensional Scaling algo-
rithm). For each method, “continuity” and “trustwor-
thiness” are displayed as curves. To avoid considering 
the peculiarities of a given dataset, 200 sets of 15 data 
have been successively generated. For each dataset, 
trees have been calculated according to the various 
tested methods. This procedure led to 200 results that 
are merged in order to compare methods: the pre-
sented Robinson and Foulds distances corresponds to 
the average of the 200 Robinson and Foulds distances 
and trustworthiness and continuity curves are gener-
ated from every resulting couple of distances (that is 
200 × 15 × 14/2 = 21000 distances).

Methods lead to different results, even from the 
topology point of view. Criteria that use the weighting 
function with high consideration of small distance 
(criteria ζ2 and ζ5 ) provide the best “continuity”. Note 
that they both lead to close results (c.f. Robinson and 
Foulds distance). However, ζ5 does not provide a high 
“trustworthiness”: many small distances in the tree 
correspond to large original distances which relies 
on “false neighborhoods” predicted by theoretical 
arguments (indeed ζ5 has been said to few penalize 
“false neighborhoods”). Robinson and Foulds distance 
also reveals that other criteria (ζ ζ3 ζ4 ζ6 ζSa and ζFM) 
lead to close results except for the Neighbor Joining 
(NJ). Such a simple dataset highlights the reality of 
the problem mentioned in section 3, and shows that 
some improvement can be done to circumvent these 
problems.

Kappa values are globally close to 1, which 
indicates that the distances sorting is generally well 
preserved (Table  1). Here again, criteria that focus 
on small distances (ζ2 and ζ5) clearly stand out. 
However, ζ2 (the proposed criterion) seems to lightly 
outclass ζ5. These results are clearly statistically 
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significant. Indeed, after reproducing the estimation 
of Kappa values procedure 30 times, we observed a 
standard deviation around the values equal to 0.01  
(a difference higher than 0.02–2 × σ–can be consid-
ered as significant).

High-dimensional space
The same procedure has been used on datasets ran-
domly generated in a 100-dimensional space (the 
quantity of data and the number of iterations remain 
stable) and the result is illustrated in Figure 5.

As previously, ζ2 and ζ5 show the best preservation 
of short original distance (“continuity”). ζ5 provides 
a poor “trustworthiness” due to the presence of 
“false neighborhoods” predicted by theoretical 
arguments (same in the previous test). However, in 
case of high-dimensional data, results from ζ2 and ζ5 
are somewhat different (high Robinson and Foulds 

distance). Moreover, results obtained with ζ1 and ζ4 
can be discriminated from those obtained with ζ3,ζFM, 
ζ6,ζSa and NJ. This difference is expected because ζ1 
and ζ4 use the sigmoid weighting function: in case of 
high-dimensional data, only the sigmoid differentiates 
large and small distances (c.f. section 3).

Obviously, preserving the distances sorting is much 
harder for high dimensional data (values in Table 2 
are weaker that the ones in Table 1). This situation can 
surely be related with the concentration of measured 
phenomenon that ensures that all distances are more 
or less similar (c.f. section 3).

Contrast between Kappa values is much weaker 
here, which indicates that most methods are more 
or less equivalent from the distance sorting point of 
view. However, methods using ζ2 and ζ5 are clearly 
ahead of the curve in quality. The standard deviation 
of the Kappa values estimation equals to 0.015: a 
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difference higher than 0.03 can then be considered as 
statistically significant.

Test for the robustness of optimization 
processes
The NNI procedure can be seen as a gradient descent 
algorithm used to optimize the tree topology (moni-

tored by various criteria). It is well known that a risk 
of gradient methods is to fall into local minimums. To 
quantify this risk according to each criterion, we used a 
randomly embedded dataset (8 data; two-dimensional 
at first, and then in 100-dimensional spaces). 20 ran-
dom trees are then used as initializations of a NNI 
process (same data and same initializations are used 
for every criterion). The tree with the minimal value 
for the criterion is considered as the global minimum: 
the percentage of resulting trees corresponding to this 
solution quantifies then the robustness of optimization 
using a given criterion. To be free from the feature of 
a particular dataset, this test is iterated 1000 times, 
and results are averaged (Table 3).

Because NNI is run from a tree containing all 
items, we were able to treat here an unfavorable case: 
indeed, the progressive introduction of items in the 
tree should often help to reach the optimal minima. 
This can explain the somewhat low robustness for 
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Figure 5. Evaluation of distance preservation (data in a 100-dimensional space). The up and left insert shows the Robinson and Foulds distance between 
trees generated by the various methods. Other inserts express “continuity” (lefts inserts) and “trustworthiness” (right inserts). Every curve is reported on 
each graph to allow an easy comparison. On each insert, the related method corresponds to the black curve.

Table 2. Kappa coefficients (c.f. section  5.3) for each 
method (in column) and for various k (in row). Note that the 
whole number of distances between 15 species is 105.

T1 T2 T3 T4 T5 TFM T6 TSa TNJ

1 0.77 0.87 0.75 0.78 0.89 0.77 0.74 0.77 0.77
2 0.71 0.87 0.68 0.71 0.89 0.69 0.67 0.69 0.69
3 0.68 0.86 0.66 0.71 0.84 0.66 0.65 0.67 0.66
4 0.69 0.85 0.65 0.73 0.83 0.65 0.65 0.65 0.67
5 0.69 0.84 0.65 0.72 0.81 0.64 0.64 0.64 0.66
10 0.67 0.72 0.64 0.7 0.71 0.64 0.64 0.64 0.65
15 0.68 0.64 0.65 0.69 0.67 0.65 0.66 0.65 0.65
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most methods (Table 3). However, obviously, an iter-
ative introduction of items (as implemented by most 
methods) cannot guarantee that the optimal minima 
will be reached and the robustness is then an impor-
tant property of tree building methods.

It can be seen that the use of the sigmoid weighting 
function with a low value for λ (that allows focusing 
on shortest distances) strongly increases the efficiency 
of the algorithm, as well as its robustness. Indeed, 
In Tables 1 and 2, we can observe the benefice in terms 
of efficiency though a gap between results reached 
from criterion 2 and the ones from criterion 3 as well 
as results reached from criterion 5 and the ones from 
the FM criterion (in both cases original Fitch-Margo-
liash weighting function is replaced by the sigmoid 
weighing function, please report to Fig. 2). Similarly 
in Table 3, the robustness of criterion 2 (respectively 
5) is clearly higher than the robustness of criterion 3 
(respectively, the FM criterion).

The penalization of both “false neighborhoods” 
and “tears” also clearly increases the robustness (by 
comparing criterion 3 to FM criterion or criterion 2 to 
criterion 5 in Table 2), but less strongly than the use 
of a sigmoid weighing function. However, it is not 
clear if it improves or damages the efficiency: trees 
from low-dimensional data seems to be very lightly 
improved (Table 1) but trees from high-dimensional 
data seems to be very lightly decreased (Table 2) when 
both defaults are similarly penalized. In order to eval-
uate the statistical significance of results presented in 
Table 3, we reproduced the estimation of robustness 
evaluation 30 times: the standard deviation around 
the values equal to 0.5% (a difference higher than 1% 
can thus be considered as significant).

6. Conclusion
Several properties derived from Multi Dimensional 
Scaling can be used within tree-building framework. 
In particular, we highlight the importance of taking 
“false neighborhoods” and “tears” into account 

while computing phylogeny. A new criterion is then 
proposed to overcome these risks and new evaluation 
processes using “continuity” and “trustworthiness” 
concepts allow us to check in it.

We also described the concentration of measured 
phenomenon and its possible influence when a tree 
is calculated according to classical methods. We then 
rectified the criterion in order to take account of the 
curse of dimensionality.

The analysis of simulated datasets highlighted 
that topology of trees may be different according to 
the chosen criterion. The new criterion outperforms 
other ones from distances preservation point of view. 
Moreover, a better robustness is observed.

As a consequence, the proposed criterion should be 
considered as a worthy alternative to the Fitch-Mar-
goliash’s one. Future works should i) include simula-
tions conducted in a more realistic way, for example 
by adding noise to the evolution process, ii) be evalu-
ated on several real datasets and iii) be extended to 
maximum-likehood approaches.
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Supplementary Data

Example of a simulation with a subspace equal to the original sequence space 
and with the same topology

1. Common parameters for the simulation
Probability to have a mutation in a sequence per evolutionary time
#define MUTATION 0.05
Probability to have a duplication of a sequence per evolutionary time
#define DUPLICATION 0.0002
Number of step of the simulation
#define EVOLTIME 10000

2. Simulation results with two dimensions allow varying with time
a) amino acids sequence a0
.Set12 domain, Toxoplasma Gondii

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYFKNG-
SRMMAIDATDEKQDFGPARLINHSRRNPNMT PRAITLGDFNSEPRLIFVARRNIEKGEELLVDY

b) Distribution of probabilities on the amino acids sequence a0 positions
{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

c) Results of the simulation process
The 15 sequences named A to O are the resulting sequences at the end of the evolution process.
1 (father: 0) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYFKNGS 
RMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  1001
2 (father: 1) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAKEREQRYNRSKVPMGSFMFYYKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
8999  name A
3 (father: 1) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYFKNGS 
RMMAIDATDEKQDFGPARLINHSRRNPNMTP RAITLGDFNSEPRLIFVARRNIEKGEELLVDY  624
4 (father: 3) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTP RAITLGDFNSEPRLIFVARRNIEKGEELLVDY  1446
5 (father: 4) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYFKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
6929   name B
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6 (father: 4) 
CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG-

SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  90
7 (father: 6) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  1167
8 (father: 7) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYL 
KNGSRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  
272
9 (father: 8) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  135
10 (father: 9) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYT-
KNGSRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
5265   name C
11 (father: 9) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
5265   name D
12 (father: 8) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  4164
13 (father: 12) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  182
14 (father: 13) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
1054   name E
15 (father: 13) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
1054   name F
16 (father: 12) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYL 
KNGSRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  
834
17 (father: 16) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
402  name G
18 (father: 16) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
402  name H
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19 (father: 7) 
CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG 

SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  1496
20 (father: 19) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYQKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  2109
21 (father: 20) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYQKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
2067  name I
22 (father: 20) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYR 
KNGSRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
1949
23 (father: 22) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYRKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
118  name J
24 (father: 22) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYRKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
118  name K
25 (father: 19) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYG-
KNGSRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
4176  name L

26 (father: 6) 
CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAWEREQRYNRSKVPMGSFMFYLKNG 

SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
6839  name M
27 (father: 3) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYFKNGS 
RMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  8014
28 (father: 27) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYFKNG-
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
361  name N
29 (father: 27) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAKEREQRYNRSKVPMGSFMFYFKNG 
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
361  name O

d) Distance matrices corresponding to the process. Numbers are evolutionary time units.

A B C D E F G H I J K L M N O
0 17998 17998 17998 17998 17998 17998 17998 17998 17998 17998 17998 17798 17998 17998
17998 0 13858 13858 13858 13858 13858 13858 13858 13858 13858 13858 13858 16750 16750
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e) Phylogenetic tree corresponding to the process
(A:8999,((B:6929,((((C:5265,D:5265):135,((E:1054,F:1054):182,(G:402,H:402):834):4164):272,((I:2067,(J:11
8,K:118):1949):2109,L:4176):1496):1167,M:6839):90):1446,(N:361,O:361):8014):624):1001

3. Simulation results with 100 dimensions allow varying with time
a) amino acids sequence a0
.Set12 domain, Toxoplasma Gondii

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYFKNG-
SRMMAIDATDEKQDFGPARLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY

b) Distribution of probabilities on the amino acids sequence a0 positions
{0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 
0.005, 0.005, 0.005, 0.005, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 
0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 
0.02, 0.02, 0.02, 0.02, 0.02, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 
0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

c) Results of the simulation process
1 (father: 0) 
CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYFKNGS 
RMMAISATDEKQDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  797
2 (father: 1) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRSKVPIGSFMFYFKNGS 
RMMAISATDEKQTFGPSRLINHSRRSPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  6555
3 (father: 2) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRAKVPIGSFMFYFKNGS 
RMMAISATDEKQTFGPSRLINHSRRSPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  1148
4 (father: 3) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRAKVPIGSFMFYFKNGSRM-
MAISLTDEKQTFGPSRLINHSRRSPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  1500  name A

A B C D E F G H I J K L M N O
17998 13858 0 10530 10800 10800 10800 10800 11344 11344 11344 11344 13678 16750 16750
17998 13858 10530 0 10800 10800 10800 10800 11344 11344 11344 11344 13678 16750 16750
17998 13858 10800 10800 0 2108 2472 2472 11344 11344 11344 11344 13678 16750 16750
17998 13858 10800 10800 2108 0 2472 2472 11344 11344 11344 11344 13678 16750 16750
17998 13858 10800 10800 2472 2472 0 804 11344 11344 11344 11344 13678 16750 16750
17998 13858 10800 10800 2472 2472 804 0 11344 11344 11344 11344 13678 16750 16750
17998 13858 11344 11344 11344 11344 11344 11344 0 4134 4134 8352 13678 16750 16750
17998 13858 11344 11344 11344 11344 11344 11344 4134 236 0 8352 13678 16750 16750
17998 13858 11344 11344 11344 11344 11344 11344 8352 8352 8352 0 13678 16750 16750
17798 13858 13678 13678 13678 13678 13678 13678 13678 13678 13678 13678 0 16750 16750
17798 16750 16750 16750 16750 16750 16750 16750 16750 16750 16750 16750 16750 0 722
17798 16750 16750 16750 16750 16750 16750 16750 16750 16750 16750 16750 16750 722 0
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5 (father: 3) 
CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRAKVPIGSFMFYFKNGS 

RMMAISATDEKQTFGPSRLINHSRRSPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  456
6 (father: 5) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRAKVPIGSFMFYFKNG-
SRMMAINATDEKQTFGPSRLINHSRRSPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
1044  name B
7 (father: 5) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRAKVPIGSFMFYFKNGS 
RMMAISATDEKQTFGPSRLINHSRRSPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  822
8 (father: 7) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRAKVPIGSFMFYFKNGSRM-
MAISATDEKQTFGPSRLINHSRRSPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  222  name C
9 (father: 7) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRAKVPIGSFMFYFKNGS 
RMMAISATDEKQTFGPSRLINHSRRSPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  222  name D
10 (father: 2) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRSKVPIGSFMFYFKNGS 
RMMAISATDEKQTFGPSRLINHSRRSPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  141
11 (father: 10) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRSKVPIGSFMFYFKNG-
SRMMAISATDEKQTFGPSRLINHSRRSPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
2507  name E
12 (father: 10) 

CIHLTKVPGKGRAVFAADTILKDDFVVEYKGELCSEREAREREQRYNRSKVPIGSFMFYFKNG-
SRMMAISATDEKQTFGPSRLINHSRRSPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
2507  name F
13 (father: 1) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYFKNGS 
RMMAISATDEKQDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  1079
14 (father: 13) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYFKNGS 
RMMAISATDDKQDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  252
15 (father: 14) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFRFYFKNGS 
RMKAKSVTDDKQDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  6514
16 (father: 15) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSLRFYFKNGS 
RMKAKSVTDDKQDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
1358  name G
17 (father: 15) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFRFYFKNGS 
RMKAKSVTDDKQDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
1358  name H
18 (father: 14) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYFKNGS 
RMMAISATDDKQDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  4295
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19 (father: 18) 
CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSERESREREQRYNRSKVPMGSWMFYFKNG-

SRMLAISATDDKQDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
3577  name I
20 (father: 18) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSERESREREERYNRSKVPMGSFMFYFKNDS 
RMMAISATDDKQDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
3577  name J
21 (father: 13) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYF 
KNGSRMMAISATDEKQDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
1500
22 (father: 21) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEKEAREREQRYNRSKVPMGSFMFY 
FKNGSRMMAISAIDEKQDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
4779
23 (father: 22) 

CIHLTKVPGKGRAVFAPQTILKDDFVMEYKGELCSEKEAREREQRYNRSKVPMGSFMFYFKNG-
SRMMAIPAIDEKQDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
1845  name K
24 (father: 22) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEKEAREREQRYNRSKVPMGSFMFYFKNG-
SRMMAISAIDEKQDFGPSRLINHSRRSPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
1845  name L
25 (father: 21) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYFK 
NGSRMMAISATDEKHDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY  
2042
26 (father: 25) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYF 
KNGSRMMAISATDEKHDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
2993
27 (father: 26) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMSSFMFHFKN 
GSRMMAISATDEKHDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
1589  name M
28 (father: 26) 

CIHLTKVPGKGRAVFAPQTILKDDFVAEYKGELCSEREAREKEQRYNRSKVPMGSFMFYF 
KNGSRMMAISATDEKHDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
1589 name N
29 (father: 25) 

CIHLTKVPGKGRAVFAPQTILKDDFVVEYKGELCSEREAREREQRYNRSKVPMGSFMFYFKNG-
SRMMAISATDEKHDFGPSRLINHSRRNPNMTPRAITLGDFNSEPRLIFVARRNIEKGEELLVDY 
4582  name O
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e) Phylogenetic tree corresponding to the process
(((A:1500,(B:1044,(C:222,D:222):822):456):1148,(E:2507,F:2507):141):6555,(((G:1358,H:1358):6514,(I:3577,
J:3577):4295):252,((K:1845,L:1845):4779,((M:1589,N:1589):2993,O:4582):2042):1500):1079):797

4. Comparisons Simulation results

The proposed methodFitch-MartgoliashTrue configuration
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