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Gaseous explosion models generally assume the gas
mixture to be uniform. However, in a real explosion,
the vapor cloud may not be homogeneous, and reparti-
tioning of the reactivity inside the cloud can be subject
to wide spatial variations. In this work, experimental
tests were run to study the flame propagation and
acceleration in nonuniform mixtures. Experiments
were performed in a long vertical confined tube with a
square cross section, composed of four equal sections.
A gate valve separated the tube into two parts, and the
composition of the gases was different on each side of
the valve. The opening of the valve permitted the mix-
ing of gases by molecular diffusion. For nonuniform
mixtures, a mode of propagation identical to that seen
in uniform mixtures was observed; however, a third
phase of propagation was found, in which the flame
velocity increased strongly. This increase occurred
with higher hydrogen concentration in an upward-
propagating flame. A concentration gradient can
appreciably modify the trajectory and acceleration of a
flame. Here, however, the incidence of pressure effects
remained modest, since the combustion was confined
and the final pressure depended mainly on the quan-
tity of reactants available. � 2009 American Institute of
Chemical Engineers Process Saf Prog 00: 000–000, 2009

Keywords: hydrogen; flame; concentration gradi-
ent; nonuniform reactive mixture

INTRODUCTION
The story of industrialization has been punctuated

by explosions, whose frequency and severity have

increased with the expansion of industry. Several
explosions, such as Flixborough (1974) in the US, La
Mède (1992) in France, and more recently, Buncefield
(2005) in England, are memorable. The extreme dam-
ages incurred by these accidents have considerably
affected the neighborhoods and pushed the public
authorities to reinforce the regulations governing
industries.

Due to public demand, tools for explosion risk
analysis and consequences have been progressively
developed. These tools are based on observations,
analysis of past accidents, or large scale experiments.
Developed in the 70s and 80s, the Multi-Energy
method [1] serves as a common tool of analysis.
Although related tools have become more and more
predictive, important simplifications have been made,
such as assuming a homogeneous combustible cloud
for the Multi-Energy method. However, in real situa-
tions, heterogeneities exist. For instance, turbulent
jets, induced by massive leaks, are characterized by a
much larger concentration near the breach than fur-
ther downstream. Such leaks produce a significantly
nonuniform mixture. Simple simulations [2] show that
assuming an equivalent homogenous mixture under-
estimates damaging effects. Moreover, this method
was used in the Buncefield postaccident analysis. It
predicted 20–50 mbar of overpressure on buildings,
whereas the postaccident analysis revealed magni-
tudes of overpressure around 700–1,000 mbar [3]. The
propagation of an explosion in a space with a varied
blockage ratio does not seem sufficient to explain
this discrepancy in the overpressures, and one expla-
nation advocated by the Britannic expert committee
is cloud heterogeneity.
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Direct experimental works can assist in the confir-
mation of this assumption. Indeed, Girard et al. [4]
noted a multiplication of maximum overpressure by a
factor of three for a flame propagation in two mix-
tures of different equivalence ratios created by con-
centric soap bubbles, as well as an important increase
of flame propagation speed. A modification of flame
propagation speed has also been observed by Karim
and Panlilio [5], who noted an increase of 70% for a
flame propagating in a vertical open tube filled by a
stratified methane/air mixture. The conclusions of
Whitehouse et al. [6] are the same for a hydrogen/air
flame. In a closed tube, they also noted an important
increase in the maximum overpressure. For a free-
propagation flame, Sochet et al. [7] showed that
explosion effects are linked to the history of the
flame through the cloud and that a concentration gra-
dient may significantly modify the pressure evolution,
maximum levels reached, and impulse. Furthermore,
the effects of cloud heterogeneities are linked to
modifications of the fundamental parameters of com-
bustion, such as expansion ratio and laminar flame
velocity. The variations generate a differential acceler-
ation between rich and poor zones, with important
modifications of the flame front surface. Hirano et al.
[8] confirmed that the differential in expansion veloc-
ity induced by a heterogeneous mixture creates an
increase of flame front area compared with the equiv-
alent homogeneous mixture. This increase can be
added to the effect of cloud heterogeneities, suggest-
ing that the dynamics of flame can affect the kinemat-
ics of flame.

An analysis carried out in a previous paper [9]
highlighted the influence of the acoustic wave inter-
action on the flame front and the influences of ther-

mal losses to and vapor condensation on the walls
on the pressure signal and the mechanism of flame
propagation. Taking these effects into account, in this
study, we aimed to analyze the situation in the case
of a nonuniform mixture.

EXPERIMENTAL SET-UP
To carry out this study, a special setup was

designed. We needed a very careful control of the ini-
tial conditions, including the repartition of the reac-
tants. If any convection current were to appear, er-
ratic pockets of mixture could be produced. Conse-
quently, the diameter of the tube needed to be kept
small (a few centimeters) so that the formation of gra-
dients could result from molecular diffusion. It was
further estimated that a length of tube on the order
of 1 m would permit simulation of the range of reac-
tivity gradients likely to be produced in practical sit-
uations (0.1–1 m).

The tested setup was a 2-m-long tube, to simulate
the range of reactivity gradients that might appear in
industry. The sides consisted of 0.03-m-long square
sections (Figure F11) to limit the possible convection
effects. The specifications of the setup were that it
should be transparent and resistant to a high-pressure
explosion (around 150 bar). Gate valves separated
the tube into four equal sections. Each section of the
tube was composed of three PMMA walls and one
aluminum wall set in a metallic skeleton. Gas tight-
ness was ensured by the application of silicone putty.
The skeleton provided support for all of the mechani-
cal stresses.

The gate valves (Figure F22) were two steel shells in
which a thin aluminum sheet slides. The composition
of the gases was different on both sides of the valve.
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Figure 1. Global view of experimental set-up. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

2 Month 2009 Published on behalf of the AIChE DOI 10.1002/prs Process Safety Progress (Vol.00, No.00)



The opening of the valve permitted the mixing of
gases by molecular diffusion.

A special effort was made to develop the instru-
mentation necessary for conveniently interpret the
tests; specifically, an opacimeter system consisting of
a laser diode and a photovoltaic cell fixed on two
aluminum supports magnetically mounted on the
metallic skeleton was employed (FigureF3 3). Eight
opacimeters were distributed along the tube, with
dual functions. They allowed detection of the flame
by a modification of a luminous laser signal detected
by the photovoltaic cell, consequently allowing us to
obtain both the flame speed and trajectory. Moreover,
this allowed deduction of the gas mixing ratio. Nano-
particles of ammonium chloride were added to only
one part of the tube, and the particles diffused out
with the gases after the opening of the gate valve.
The ‘‘opacity’’ of the gas changed according to the

mixing and was detected by measuring the transmit-
tance at each detector location. An experimental cali-
bration law links the light attenuation ratio and the
gas mixing ratio.

A second optical technique was developed to
observe the flame area. It consisted of illuminating a
thin slab of the tube with an argon ion laser via a
rotating mirror. During its propagation, the flame dis-
sociates the ammonium chloride particles without
modifying the combustion. As green light is diffused
by ammonium chloride, the flame area can be
detected via high-speed video to the threshold
between high- and low-contrast regions. Pressure
was measured by a classical piezoresistive gauge.
One pressure gauge was located at the middle of
each section. Hence, pressure gauge 1 was at a dis-
tance of 0.25 m, pressure gauge 2 at 0.75 m, pressure
gauge 3 at 1.25 m, and pressure gauge 4 at 1.75 m
from the bottom.

We considered a nonuniform mixture with an av-
erage nitrogen ratio of 62.5%. This was accomplished
by setting in contact the upper part (1 m) of the
tube, filled with mixture M3 (30% vol. H2 1 15% O2

1 55% N2), with the lower part (1 m) of the tube
filled with mixture M1 (20% H2 1 10% O2 1 70%
N2). The ignition took place 10 min after the opening
of the valve. The distribution of the species at the
ignition time, calculated by Fick’s (one-dimensional)
law of diffusion, is presented in Figure F44. The gradi-
ent zone extends 0.70 m, from 0.65 to 1.35 m.

PRESSURE ANALYSIS
The pressure signals obtained after ignition of the

nonuniform mixture (Figure 4) are reported in Figure

F55. There were identical responses in each section. A
high-frequency signal of low amplitude (typically
100 mbar at 100 Hz), corresponding to the local
peaks of Fi overpressure, is superimposed on an en-
velope of large amplitude at low frequency (typically
3 bar at 10 Hz, between 0 and F). The fitted pressure
signals obtained in each section are superimposed,
meaning that the pressure was homogeneous in the
tube overall.

J_ID: AIP Customer A_ID: 325 Cadmus Art: PRS10338 Date: 30-JUNE-09 Stage: I Page: 3

ID: thambikkanue Date: 30/6/09 Time: 19:17 Path: J:/Production/PRS#/Vol00000/090041/3B2/C2PRS#090041

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

Figure 3. Opacimeters. [Color figure can be viewed
in the online issue, which is available at www.
interscience.wiley.com.]

Figure 4. Distribution of species in the tube after
10 min of diffusion. [Color figure can be viewed in the
online issue, which is available at www.interscience.
wiley.com.]

Figure 2. Gate valve. [Color figure can be viewed
in the online issue, which is available at www.
interscience.wiley.com.]
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An increase in size of the pressure signal between
0 and 0.3 s is presented in FigureF6 6. One notes a first
phase, of 0.062 s duration, where the pressure
increases almost linearly upto an inflection point I1,
marking a break in the slope. Beyond this point, the
increase in pressure is linear upto a second inflection
point, I2, at the time tb (0.103 s). The I2 point marks
a second break in slope. Beyond tb, the pressure
increases linearly to a maximum at P2, reached at tc
(0.1456 s). Then, the pressure decreases exponen-
tially until time tr (0.0586 s), upto a final pressure
value systematically smaller than the atmospheric
pressure, typically about 0.7 bar.

A traditional model of combustion by sections was
used. In a closed chamber, the inflammation of a gas
pocket leads to the development of a flame front in
both directions in the chamber. The combustion of
each section by the flame front causes a compression
of fresh and burned gas due to the expansion of the
combustion products. In the burned gas, the progres-
sive compression causes a highly increased tempera-

ture. In the fresh gas, the increasing pressure leads to
a temperature increase as well, and due to the
burned gas expansion, the gases are moving.

To calculate the thermodynamics parameters dur-
ing the combustion, the following assumptions were
considered:

—the gas follows the ideal gas law
—the combustion occurs at constant volume
—the gaseous mixture is divided into N sections of

the same mass
—the specific heat at constant pressure of the ideal

gas is constant
—the pressure is the same at each point of the

chamber at a given time.

Heat losses appear due to thermal and volume
contractions of the gas and are conducive to a reduc-
tion in pressure effects. The combustion by sections
model was adapted to our study by including thermal
losses by conduction and condensation and the effect
of mixture nonuniformities. First, each section of
burned gas transfers heat to the wall by turbulent
thermal conduction in a nonstationary regime. Sec-
ond, each section of burned gas also transfers heat
by a nonstationary flow of water vapor to the cold
wall, where it condenses integrally.

By introducing the experimental flame trajectory
into the model of combustion by sections, the pres-
sure and the flame surface can be determined. The
pressure signal calculated with this model is very well
correlated with the experimental signal (Figure F77).

FLAME PROPAGATION ANALYSIS

Flame Trajectory
The flame propagation was deduced by exploiting

high-speed video. A detailed analysis is possible
by tracing the trajectory of the flame with time
(Figure F88).
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Figure 5. Pressure signals in each section of the
tube—nonuniform mixture. [Color figure can be
viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 6. Increase in size of the pressure signal
between 0 and 0.3 s of the pressure signals—nonuni-
form mixture. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.
com.]

Figure 7. Pressure evolution versus time—nonuniform
mixture. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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As for the pressure signal, an oscillation in the tra-
jectory that is similar to the pressure oscillations is
superimposed on the average evolution. These oscilla-
tions disappear after point B, corresponding to the sec-
ond inflection point I2. Three distinct modes appear
during the flame propagation: between O and A, A and
B, and B and C. The sections OA to BC are character-
ized by a mean flame velocities of 13.5 m s21 in section
OA, 21.8 m s21 in section AB, and 10.5 m s21 in section
BC. Notably, between A and B, we observed a nonlin-
ear increase in the propagation velocity.

It is also interesting that the mean flame velocity in
section OA (13.5 m/s), where the concentration of the
mixture corresponds to M1, is similar to the flame ve-
locity in section OA (15.5 m s21) for the homogeneous
mixture M1. However, the mean velocity in section BC
(10.5 m s21) is very different from the velocity at the
end of propagation in the case of the homogeneous
tests of the corresponding mixture M3 (47 m s21).

The break in the flame trajectory coincides with
the beginning of the gradient zone at 1 m in the
direction of flame propagation.

Flame Structure
One can also extract the evolution of the flame

surface with respect to the section of the tube accord-
ing to the position of the flame (FigureF9 9).

The combustion by sections code made it possible
to estimate the effects of compression on the size and
the position of the gradient zone at the time of its
interaction with the flame. The gradient zone extends
70 cm, from 0.65 to 1.35 m (FigureF10 10). We calcu-
lated, using the combustion by sections code during
the flame propagation, that the gradient zone is
pushed about 30 cm toward the higher part of the
tube, extending from 0.95 to 1.65 m.

COMPARISON OF COMBUSTION BETWEEN NONUNIFORM
AND UNIFORM MIXTURES

Pressure Signals
In the case of a nonuniform mixture (Figure 6),

there is a difference in the high-frequency fraction of
the signal compared with homogeneous mixtures.

With the nonuniform mixtures, the first and the third
zones are identical to those of the homogeneous mix-
ture. The first zone extends over 50 ms with fre-
quency characteristics of 100 and 350 Hz and an am-
plitude of 50 mbar, whereas the third zone, extending
from 90 to 147 ms, presents an average frequency of
150 Hz and a low amplitude of 30 mbar. In contrast,
in the second zone, ranging between 50 and 90 ms
and presenting a frequency of 100 Hz, there is a dis-
appearance of the harmonics and a strong amplifica-
tion of the amplitude of the oscillations (200 mbar)
according to the fundamental mode.

A comparison of the envelope pressure signals for
the heterogeneous mixture and the homogeneous
mixtures M1, M2 (25% vol. H2 1 13% vol. O2 1 63%
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Figure 8. Flame trajectory. [Color figure can be
viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 9. Ratio of the flame surface on the tube sec-
tion—nonuniform mixture. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]

Figure 10. Interaction of gradient concentration with
the flame—nonuniform mixture. [Color figure can be
viewed in the online issue, which is available at
www.interscience.wiley.com.]
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vol. N2), and M3 is presented in FigureF11 11. Even
though each mixture contains the same quantity of
reactants, the shape of the pressure signals differs, as
well as the combustion times and the maximum pres-
sures of the explosions. In particular, although the
time of combustion is longer (256 ms, mixture M1;
114 ms, mixture M2; 31 ms, mixture M3; 147 ms, non-
uniform mixture), the maximum pressure of explosion
is higher for the nonuniform mixture (3.1 bar, nonuni-
form mixture; 2.3 bar, mixture M1; 2.8 bar, mixture
M2; 4.2 bar, mixture M3). This difference is more im-
portant with the mixture M3, which is present only in
one small fraction of the tube. Heterogeneous mix-
tures compared with the homogeneous mixture M3,
the explosion dynamics are significantly different,
which could be explained by considering that during
the ignition, the M3 mixture is present only in a small
fraction of the tube (20 cm at top). The same can be
said for the mixture M2. The pressure signals differ in
form, combustion times, and maximum pressure. On
first consideration, one might expect that the combus-
tion times are different, since the M3 mixture is more
reactive. However, it could also be the case that being
present in the tube at the end of the propagation the
M3 mixture would rather lead to suppression, similar
to the case of the uniform mixture M3.

Nonuniform mixtures compared with the experi-
ments with a uniform mixture M1, there is a good
correlation of the signals upto 80 ms (i.e., until the
1.3 m position), which is explained by the presence
of mixture M1 in the lower part of the tube. There is
also a reasonable agreement between experimental
flame surfaces and the model.

Flame Surface
When ignition occurs in the part of the tube where

the composition is the M1 mixture, the excited fre-
quencies are identical to those identified for the
experiments undertaken with the homogeneous M1

mixture. The observation that the surface of the flame
Af appears to be more dependent on the values of
these frequencies and less on the equivalence ratio of
the mixture explains why the evolutions in Af/At (At,
tube area) appear similar for the heterogeneous mix-
ture and the homogeneous mixture M1 (Figure F1212). A
significant difference in the evolution of flame surfa-
ces implies a difference in the combustion rate.

However, the fundamental flame velocity and the
burning rate are not constant during the propagation
of the flame in the case of nonuniform mixtures
(Figure F1313), which is opposite to what is seen with
the uniform mixtures. As the flame meets mixture
M3 (in particular at the end of the propagation),
for which the laminar flame velocity SSl is about
2.5 m s21 and the ratio Af/At is about 4, it is calcu-
lated that the flame velocity should be �10 m s21,
which is in good agreement with the experiments
(10.53 m s21 in section BC).
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Figure 11. Pressure signals of uniform mixtures and
nonuniform mixture. [Color figure can be viewed in
the online issue, which is available at www.
interscience.wiley.com.] Figure 12. Flame surface/tube section for uniform

mixtures and nonuniform mixture. [Color figure can
be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 13. Flame trajectory—nonuniform mixture.
[Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

6 Month 2009 Published on behalf of the AIChE DOI 10.1002/prs Process Safety Progress (Vol.00, No.00)



One can also interpret the jump in velocity
between A and B in the trajectory of the flame in
terms of the acceleration effect of the flame, since the
velocity of expansion (Sl a)AQ1 increases from 4 m s21 to
17 m s21 over a length of 0.2 m. Acceleration is cal-
culated by: (17 2 4)2/0.2 5 850 m s22. By using the
generalized Taylor model and a wavelength of dis-
turbance equal to the diameter of the tube, one cal-
culates that the flame must accelerate 20 m s21 in this
zone, which is in conformity with the observation.

CONCLUSIONS
In case of nonuniform mixtures, we observed a

mode of flame propagation identical to that seen with
homogenous mixtures; however, a third phase of
propagation was also observed, where the flame veloc-
ity increases strongly. This increase could be due to the
presence of a concentration gradient, which can very
appreciably modify the trajectory and acceleration of a
flame, according to the methods employed in this
study that could be highlighted. The modest impact on
pressure effects observed within the framework of this
study likely result from the combustion being con-
fined, which causes the final pressure to depend
mainly on the quantity of reactants available and not
on the mode of combustion. In other circumstances, in
a partially confined enclosure or in a free atmosphere,
the piston effect of the flame on the pressure effects is
significant; thus, the impact of the concentration gradi-
ent could be much stronger.
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