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The mechanisms of laminar premixed flame propa-
gation have been intensively studied over the last
century. Numerous authors have highlighted intrinsic
phenomena in flame propagation such as Darrieus-
Landau instability and Rayleigh-Taylor instability.
Rayleigh-Taylor instability is often linked to the interac-
tion between the flame front and an acoustic wave.

To better characterize the interaction between a
flame and aerodynamic conditions, we designed a
special vertical closed tube apparatus. Our analysis
focused on the behavior of a flame that propagates in
a uniform stoichiometric mixture of H2 and O2

diluted with nitrogen. The experimental investigation
revealed that acoustic waves emitted as the flame
formed near the ignition point could increase the
flame front surface by a factor of 10. An acoustic
node with an amplitude of 1.3 m was identified and
seemed to be responsible for the disappearance of one
of the acoustic modes and for a reduction in the
average flame surface. This could explain why the
flame trajectory had two distinct parts: one corre-
sponding to propagation at a high speed in the lower
part of the tube, and the other with a slower speed in
the upper part of the tube. The flame surface seemed
to depend primarily on the frequencies of vibration
and marginally on the nature of the reactive compo-
nents. Propagation velocities, obtained by multiplying
these flame surfaces by the fundamental burning
velocity, strongly depended on the mixture reactivity.
� 2009 American Institute of Chemical Engineers
Process Saf Prog 0000: 000–000, 2009

Keywords: Hydrogen, flame, Darrieus-Landau
instability, Rayleigh-Taylor instability, acoustic waves

INTRODUCTION
The mechanisms of laminar premixed flame propa-

gation have been intensively studied over the last
century. Mallard and Le Chatelier [1] were the first to
establish a theory that defined the laminar flame ve-
locity. The mechanism of flame propagation control
is by heat transfer in unburned gas layers. The flame
consists of two zones (Figure F11). Zone 1 is the zone
in which heat is transferred by conduction from the
reactive zone. The unburned gases are heated until
an ignition temperature, Ti, is reached. In the reactive
zone, heat is produced. The flame propagation speed
is constant if the heat transfer velocity in Zone 1 is
equal to the heat production rate.

The expression describing laminar flame velocity
is:

Slad �
k

q � cp
� RR

� �1=2

ð1Þ

where k is the thermal conduction coefficient, cp is
the specific heat, and RR is the chemical reaction
term. This approach was developed in the work of
Zeldovitch, Frank-Kamenetskii, and Semenov [2].

The chemical reaction term is expressed by the
classical Arrhenius law with different orders of reac-
tion. With a Lewis number Le = 1 and an order of
reaction not equal to 0, further developments led to
the following expression for laminar flame velocity:

Slad ¼
2 � k � Le � Z 0 � R � T 2

f � exp � Ea

R � Tf

� �
q0 � Ea � cp � ðTf � T0Þ

2
4

3
5

1=2

ð2Þ

where Tf is the burned gas temperature, T0 is the
unburned gas temperature, R is the ideal gas con-
stant, Z0 is the pre-exponential factor and Ea is the
activation energy.
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This expression has been used for the last 30 years
to study flame behavior under perturbations. Indeed,
temperature variations have a large influence on
laminar adiabatic flame velocity. This expression has
also been used to take into account the effect of flow
curvature on the flame velocity [3].

If a flame presents a positive curvature with regard
to the flow, the heat flux towards the reactants have
a tangential component. Thus, this phenomenon can
be represented by a heat loss for the convex part of
the flame. The effect of flow curvature is also ampli-
fied or decreased by ‘‘preferential diffusion’’ repre-
sented by Le = 1. Authors like Sivashinsky, Dold and
Joulin, and Proust [4–6] used more precise models
and more sophisticated resolution techniques to
obtain expressions such as [6]:

Su ¼ Slad � 1� Lmk
1

Rflame
� 1

Rflow

� �� �
ð3Þ

with Lmk the Markstein length

Lmk ¼ df � 1þ b

2
� Le � 1

Le

� �
ð4Þ

where Rflame is the curvature radius of flame, Rflow is
the curvature radius of flow and b is the Zeldovitch
number.

This expression shows the impact of flow on flame
velocity. By extension, it highlights the importance of
interactions between flame and flow, commonly
called flame instabilities.

Here, we focus our examination on two kinds of
flame instabilities:

• Darrieus-Laudau instability
• Rayleigh-Taylor instability

In the case of an interface separating two media of
different densities, the hydrodynamic instability
results in the growth of a fortuitous disturbance (local
curvature) in the gas flow in the vicinity of the flame
front. Thus, the dynamics of the flame are superim-
posed on the dynamics of the flow in the global
response and the evolution of the total quantity of
burned gas per unit of time in the flame. The speed
of fresh gases is increased in the concave part of the
disturbance (towards the fresh gas) and decreased in
the convex part. This observation led Darrieus [7] and
Landau [8] to the conclusion that the flames of pre-
mixed gases can accelerate themselves by the mecha-

nism of disturbance amplification. Thus, the flame
can become turbulent even if the upstream flow is
not. Without imposed hydrodynamics, an interface
can become unstable and distort under the influence
of an acceleration field, e.g., gravity. We are all famil-
iar with the interface example of the separation of
two liquids of different densities: in a gravity field,
the interface is unstable if the heavier liquid is
located above the light one; the interfaces between a
fresh gas and a burned gas have the same properties.
Consequently, the ascending propagation of a flame
in a gravity field is unstable while the downward
propagation is stable. This observation is still valid if
the acceleration of gravity is replaced by an accelera-
tion created by a pressure wave or a shock propagat-
ing through the gas, for example. In practice, the
mechanisms of hydrodynamic and Taylor instabilities
are simultaneous. The curved shape [9] is due to the
thermal expansion of burned gas, which entails the
growth of flame perturbations. Darrieus and Landau
proposed a model that describes this instability. The
flame is considered a surface separating burned and
unburned gases. The flow is governed by classical
fluid motion equations. Flame propagates normally to
the surface with a constant velocity. The parameters
on each side of the flame are linked by jump condi-
tions that assure mass and momentum conservation.
According to this model, the flame is unconditionally
unstable and perturbations grow indefinitely. How-
ever, numerical and experimental observations show
that the flame’s curvature produces a flame growth
stabilization.

As far as the flame modifies its shape, the
unburned flow is disturbed and its perturbations (in
tangential flow) stop flame deformation. Bychkov
and Liberman [10] proposed, for an axisymmetric
flame, an expression for flame velocity with respect
to the unburned gas (Eq. 5):

ULD ¼ 1þ 4 � a � ða� 1Þ2

ða3 þ a2 þ 3 � a� 1Þ

 !
� Slad ð5Þ

Numerous experimental results have shown that
there is a narrow relationship between flow disturb-
ance and flame structure. If we consider a flame
exited by an acceleration such as acoustic waves or
gravitational acceleration (an instability commonly
called Rayleigh-Taylor instability), the growth of the
flame perturbation is stabilized. An example is flame
propagation in a vertical tube excited by the accelera-
tion of gravity. Under these conditions, the flame
takes on the very curved shape of a bubble. The
velocity of propagation is higher than Slad. Bychkov
[10] generalized the Rayleigh-Taylor model to obtain
Eq. 6:

URT ¼ 0:51 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 1

a
� g � r

r
ð6Þ

where a is the expansion rate of burned gas, g is
the acceleration of the phenomenon, and r the radius
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Figure 1. Combustion wave description.
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of curvature of the disturbance. For Byckov, the
combustion velocity resulting from the Darrieus-Lan-
dau and Rayleigh-Taylor instabilities can be estimated
by Eq. 7:

UComp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2

RT þ U 2
LD

q
ð7Þ

EXPERIMENTAL SET-UP
To characterize the interaction between a flame and

aerodynamic conditions, we designed a special set-up.
The experimental configuration was a vertical closed
tube, as a closed tube is favorable for the appearance
of flame instabilities. Using the basic principles of con-
servation, this configuration allows for a good analysis
of flame behavior by a crosscheck between flame tra-
jectory and pressure signal. The test set-up was a 2 m
long tube with a diameter of 0.03 m (FigureF2 2). Specifi-
cally, the set-up was a transparent chamber that was
resistant to high pressure explosions (�150 bar). The
tube was composed of four equal parts, allowing for
the creation of concentration gradients. Each part was
composed of three PMMA walls and one aluminum
wall set in a metallic skeleton (FigureF3 3). This skeleton
provided all of the mechanical support; silicone putty
was applied as necessary to ensure gas-tight fittings.

Special effort was made to develop the instrumen-
tation necessary to conveniently interpret the tests,
specifically consisting of an opacimeter system con-
sisting of a laser diode and a photovoltaic cell fixed
on two aluminum supports magnetically mounted on
the metallic skeleton (FigureF4 4). Eight opacimeters
were distributed along the tube. These allowed for

the detection of flame via modifications in a luminous
laser signal detected by the photovoltaic cell, allow-
ing us to obtain the flame speed and trajectory. A
second optical technique was developed to capture
the flame area. It consisted of illuminating a thin slab
of the tube with an Argon Ion laser via a rotating mir-
ror. Ammonium chloride particles, which diffuse
green light, were added to the tube during combus-
tion. During propagation, the flame dissociates the
ammonium chloride particles without modifying the
combustion. Thus, the flame area can be detected via
high speed video as the threshold between high and
low contrast regions. Pressure was measured using a
classical piezoresistive gauge.

We focused our work on the analysis of a flame
propagating in a uniform stoichiometric mixture of
H2/O2 diluted with nitrogen in a closed volume.
We used the stoichiometric mixture 25% H2 1 12.5%
O2 1 62.5% N2.

PRESSURE SIGNAL ANALYSIS

Global Description
Following ignition, the pressure signals obtained in

each part are reported in Figure F55. A fitting of each
curve shows clearly that the pressure was homogene-
ous in the tube. However, Figure 5 also indicates that
a high-frequency signal of low amplitude (100 mbar
at few hundred Hz), corresponding to the local over-
pressure peaks, FI, was superimposed on a signal of
low-frequency and amplitude (typically 3 bar at 10
Hz, between 0 and F). The dominant frequency was
100 Hz up to the inflection point I, and beyond this
the main frequency was 350 Hz. A magnification of
the signal is presented in Figure F66. One notes a first
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Figure 2. Global view of experimental set-up. [Color
figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 3. One part of the tube and its metallic skele-
ton. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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phase of duration 0.043 s where the increase in the
pressure is almost linear up to inflection point I,
marking a rupture in the slope. Beyond this point,
the increase in pressure clearly inflects and presents
irregularities such as a secondary maximum P1 that
precedes the maximum of the signal, P2 (2.77 bar).
Beyond this point, corresponding to 0.115 s, the pres-
sure decreases exponentially with a characteristic
duration tr (0.076 s), up to an end-point pressure
value systematically less than atmospheric pressure,
typically about 0.7 bar.

Low-Frequency of Pressure Signal
The final pressure of combustion resulting from

the experiments was approximately two times smaller
than the predicted value. Two possibilities must be
taken into account to explain these variations: leaks
to the outside of the apparatus and an intense cool-
ing of burned gases during the propagation. The gas-
tightness of the tube was controlled very meticulously
and so is not called into question. To explore the
second possibility, a traditional model of combustion

by sections was used and adapted to our study by
including heat losses to the walls by conduction and
condensation. These result in a thermal loss and vol-
ume contraction of the gases responsible for the
reduction of the pressure effects. Thus, cooling is car-
ried out in two stages. The first stage is the cooling
of the burned gas column, section by section, via
turbulent non-stationary thermal conduction. The
second stage consists of the contraction of the gas
column by turbulent non-stationary condensation,
section by section, of the steam towards the cold
walls, where it condenses completely. The corrected
model of combustion by sections, by introducing the
trajectory of flame from experiment to model, allows
us to define the level of stretching of the flame. It is
noted that the method of combustion by sections
(under the assumption of a non-adiabatic propaga-
tion of the flame) makes it possible to reproduce
with precision the pressure signals from the experi-
ments (Figure F77).

It can be seen from this model that the shape of the
pressure signal results directly from the evolution of
the average burning rate of the flame. Furthermore,
the good agreement between the experiments and
the simulation of non-adiabatic propagation justify the
assumption according to which the contraction of the
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Figure 4. Opacimeters. [Color figure can be viewed
in the online issue, which is available at www.
interscience.wiley.com.]

Figure 5. Pressure signals in each section of the tube.

Figure 6. Zoom of the first period of the pressure
signals.

Figure 7. Pressure versus time.
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burned gas column under the effect of thermal losses
is responsible of the difference between the maximum
explosion pressure measured and that resulting from
an adiabatic calculation of combustion.

High-Frequency Pressure Signal
The analysis of the high-frequency part of the

pressure highlights the coexistence of two distinct
bands during the propagation. The pressure signal
measurements between the bottom and the top of
the tube are in opposition of phase, suggesting that
the gas column vibrates. The frequencies of reso-
nance of a constant section tube can be calculated by
considering that the tube of length L, closed at the
two extremities, contains burned gases from 0 to xf

(in which the acoustic waves are propagated at the
sonic speed, ab) and in the other part the unburned
gases (in which the acoustic waves are propagated at

the sonic speed au). If it is supposed that this column
vibrates, then a fluid particle that sees a passing dis-
turbance at a given time sees it again in the same
direction and with a time delay T such that:

T ¼ 2 � xf

ab
þ 2 � ðL� xfÞ

au
ð8Þ

The associated frequency is:

f ¼ ab � au

2 � ½ðL�xfÞ � abþxf � au�
ð9Þ

which corresponds to the fundamental mode of
vibration of the gas column.

This makes it possible to distinguish a singular
point in the tube corresponding to the equality of
passage times of the waves in the flame through the
burned gases on the one hand and through the reac-
tive gas on the other hand. This point corresponds to
the position in the flame, xfs, such that:

2 � xfs

ab
¼ 2 � ðL� xfsÞ

au
ð10Þ

xfs is very close to 1.4 m (under the assumption of
an adiabatic combustion). However, it is observed
that one of the wavebands disappears at a height of
1.3 m for the tests carried out. One can propose fol-
lowing interpretation: when the surface of the flame
is disturbed, a wave of the same pressure amplitude
is emitted towards the gases and towards the fresh
gases. If their passage times are strictly identical, then
the considered waves arrive at the flame front at the
same time and hence are mutually destroyed. It is
thus possible that this position of flame plays the part
of a filter.

CHARACTERISTICS OF THE FLAME

Flame Trajectory
The study of the propagation of the flame is

mainly undertaken through the use of film images.
An example is proposed in Figure F88 of a broad plan

J_ID: AIP Customer A_ID: PRS318 Cadmus Art: PRS10331 Date: 26-MAY-09 Stage: I Page: 5

ID: manokaranp Date: 26/5/09 Time: 17:18 Path: J:/Production/PRS#/VOL00000/090034/3B2/C2PRS#090034

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

Figure 8. Flame propagation—Frames 1 to 88: 1/1500 s;
Frames 89 to 95: 2/1500 s; Frames 96 to 102: 4/1500 s.

Figure 9. Pressure signal and flame trajectory.
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making it possible to extract the trajectory, the flame,
and its speed. It is noted visually that the propagation
of the flame is pulsed, and sometimes the front even
moves back (frames 15–19).

The trajectory of the flame with time (FigureF9 9) is
given by regarding the position of the most advanced
part of the front. However, the flame is not planar. If,
for the final part of the propagation, the idea of con-
sidering a planar flame is reasonable, it becomes
more questionable in the first moments of the flame
because the flame can be stretched over a length of 5
cm. The point P2 of the pressure signal corresponds
to the X-coordinate at 2 m of the flame (point C),
which means that combustion is completed at this
point. It is also noted that, as for the pressure signal,
an oscillation of the trajectory is superimposed on the
average propagation, whose shape and frequency are
similar to the pressure oscillations; these oscillations
are strongly attenuated beyond this point.

By examining the overall tendencies, one notes
two distinct modes of propagation between OA and
AC. Each one can be characterized by a mean flame
velocity: v0A 5 31.7 m/s and vAC 5 9.0 m/s21. Finally,
the point A corresponds strictly to the point I on the
pressure signal, and beyond that, a similar structure
of the curves of pressure and trajectory appears,
which suggests a relation between the two. Note that
despite the difference for the extrema, P1 and P2,
whose peaks are corresponding, do not have paral-
lels on the curve of the flame trajectory. The fluctua-
tions of the trajectory of the flame have an identical
base frequency to the pressure oscillations.

Flame Structure
The strong deformation of the flame, highlighted

in the analysis of the ratio of the flame surface at the
section of the tube (FigureF10 10), encourages us to seek
the effect of the pressure waves that are propagated
in the tube.

These are then compared to sinusoidal waves, and
the induced acceleration is approximated as: g 5
2pUaf, where Ua is the rate of acoustic velocity associ-
ated with the amplitude of the pressure wave (DP 5

qaUa). Knowing that the amplitude of the pressure
wave is about 100 mbar, Ua is �25 m/s while f lies
between 100 and 500 Hz, so g varies from 15,000 to
80,000 m/s2.

To a first approximation, the generalized model of
the Rayleigh-Taylor instability (Eq. 2) is used to eval-
uate the effect of this type of acceleration:

URT ¼ 0:51 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 1

a
� g � r

r
ð11Þ

where a is the expansion rate of burned gas, g is the
acceleration of the phenomenon and r the radius of
curvature of the disturbance. This makes it possible
to find a ratio of flame surface to tube section, Af/At,
which ranges from six to 13, indicating a coherent
order of magnitude with respect to the experimental
observations.

Flame Velocity
The propagation velocity of the flame can be eval-

uated theoretically in each part of the tube. In the
zone OA, the velocity is given by considering:

• the ratio of the flame surface of the tube section,
• the compression of the gas column, proportional

to ðP0=PIlÞ1=g (where PI1 is the pressure corre-
sponding to the point A)

• the contraction of the burned gas column under
the effect of heat losses and proportional to
Pf=Pexpl

� �1=g
(Pexpl is the theoretical pressure of

constant-volume combustion)

Hence, the flame velocity between OA is
expressed by:

VOA ¼
Af

At
: Slad : a

� �
:

P0

PI1

� �1=g
:

Pf

Pexpl

� �1=g
ð12Þ

In the reactive zone (AC), the velocity is simply
determined by:

VAC ¼
Af

At
� Slad ð13Þ

Hence, the flame velocities VOA 5 40 m/s and
VAC 5 13 m/s are in good agreement with observed
velocities of 32 m/s and 9 m/s, respectively.

CONCLUSIONS
In this article, the interaction of acoustic waves

emitted near the ignition point during flame forma-
tion with the flame propagation is highlighted. The
acoustic waves could increase the flame front surface
by a factor of 10. An acoustic node appears to exist
at a height of 1.3 m that is responsible for the disap-
pearance of one of the acoustic modes and of a
reduction in the average flame surface. This disap-
pearance of an acoustic mode could explain why one
observes a flame trajectory in two distinct parts: one
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Figure 10. Flame surface over tube section versus
flame position.
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corresponding to propagation with a high speed in
the lower part of the tube, and the other with a
slower speed in the upper part of the tube. It was
noted that the flame surface depends mainly on the
frequencies of vibration and marginally on the nature
of the reactive components. On the other hand, prop-
agation velocities, obtained by multiplying these
flame surfaces by the fundamental burning velocity
(or the expansion speed of the burned gases),
strongly depend on the mixture reactivity.
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