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ABSTRACT 

 

This paper presents an efficient no-reference metric that 

quantifies perceived image quality induced by blur. Instead 

of explicitly simulating the human visual perception of blur, 

it calculates the local edge blur in a cost-effective way, and 

applies an adaptive neural network to empirically learn the 

highly nonlinear relationship between the local values and 

the overall image quality. Evaluation of the proposed metric 

using the LIVE blur database shows its high prediction 

accuracy at a largely reduced computational cost. To further 

validate the performance of the blur metric on its 

robustness against different image content, two additional 

quality perception experiments were conducted: one with 

highly textured natural images and one with images with 

an intentionally blurred background
1
. Experimental results 

demonstrate that the proposed blur metric is promising for 

real-world applications both in terms of computational 

efficiency and practical reliability. 

 

Index Terms♥ Image quality assessment, objective 

metric, perceived blur, edge, neural network 

 

1. INTRODUCTION 

 

Blur is one of the important attributes in image quality 

assessment [1]. Developing an objective metric, which 

automatically quantifies perceived blur, is of fundamental 

importance to a broad range of applications, such as the 

optimization of auto-focus systems, super-resolution 

techniques, and sharpness enhancement in displays. In 

many real-world applications, there is no access to the 

distortion-free reference image, thus these objective metrics 

need to be of the no-reference (NR) type. This implies that 

the assessment of blur is based on the distorted image only. 

Achieving a NR metric that reliably predicts the extent to 

which humans perceive blur, while being computationally 

efficient for real-time applications, is still challenging. 

                                                
1 The subjective data and the implementation of the metric are available on 

the web-site: http://mmi.tudelft.nl/iqlab/index.html 

Existing blur metrics are formulated either in the 

spatial domain or in the frequency transform domain. The 

metrics implemented in the transform domain (see e.g. [2]-

[4]) usually involve a rather complex calculation of energy 

falloff in the DCT or wavelet transform domain. Moreover, 

some metrics require the access to the encoding parameters, 

which are, however, not always available in practical 

applications. A blur metric defined in the spatial domain 

generally relies on measuring the spread of edges in an 

image (see e.g. [5]-[7]). Perhaps, the simplest and most 

well-known edge-based blur metric is the one proposed in 

[5], which estimates the overall blur annoyance by simply 

calculating the averaged local edge width. It, however, 

shows limitations in predicting perceived blur, partly due to 

its lack of including aspects of the human visual system 

(HVS). To improve the reliability of a blur metric, 

researchers investigated explicit simulation of the way 

human beings perceive blur (see e.g. [6] and [7]). The 

metric in [6] refines the calculation of local blur by 

adjusting the edge detection and by adding an existing 

model for masking by the HVS. In [7], a more dedicated 

human perception model of JNB (Just Noticeable Blur) is 

integrated in a blur metric. Both metrics in [6] and [7] are 

claimed to be more consistent with subjective data, but they 

heavily rely on the sophisticated and expensive modeling of 

the HVS. A known approach to avoid the explicit 

simulation of the assessment of overall quality is the use of 

a neural network (NN) (see e.g. [8]-[10]). However, these 

approaches usually start from the selection of active 

features from a set of generic image characteristics, a 

process that is rather ad hoc and computationally extensive. 

In this paper, we propose a novel blur metric that 

combines the advantages of two approaches, i.e. the 

dedicated calculation of the local edge blur in the spatial 

domain, and the use of a NN to yield overall quality 

resulting from blur. The proposed metric is validated using 

the LIVE blur database, and is compared against 

alternatives existing in literature. Two additional subjective 

experiments for perceived quality induced by blur were 

conducted: one with highly textured, natural images and 

one with images having an intentionally blurred 

background. The resulting subjective data are highly 



beneficial to evaluate the performance of blur metrics for 

larger variations in image content. 

 

2. PROPOSED NR BLUR METRIC 

 

The schematic overview of the proposed NR blur metric is 

shown in Figure 1. It consists of two components: first, 

extraction of the features effectively describing the local 

edge blur, and second, the use of an adaptive NN to learn 

the highly nonlinear relationship between the dedicated 

features and the overall quality ratings. After appropriate 

training with subjective data, the NN yields a model that at 

run-time calculates the perceived quality from the extracted 

features without considerable computational effort. Details 

of the implementation are explained below. 

 

 
 
Fig. 1. Schematic overview of the proposed NR blur metric. 

 

2.1. Feature Extraction 

 

2.1.1. Local Edge Blur Estimation 

 

Measuring the smoothing or smearing effect on strong 

edges has been proved to be an effective approach to 

approximate perceived blur in an image [5]-[7]. To detect 

strong edges literature offers a wide variety of techniques 

(e.g. [14] and its references). As already mentioned in [19], 

an advanced edge detection method would be beneficial for 

improving the robustness of local edge blur estimation, but 

at the expense of computational efficiency. In this paper, we 

use a straightforward Sobel edge detector resulting in a 

gradient image, mainly to limit the metric s complexity. 

The location of the strong edges is then extracted applying 

a threshold to this gradient image (as such removing noise 

and insignificant edges). The threshold value is 

automatically set depending on the image content (e.g. 

using the mean of the squared gradient magnitude over the 

image). 

Instead of calculating the distance between the start 

and end position of an edge (as described in [5]), we 

propose to locally define edge blur in the gradient domain 

as the gradient energy of the edge related to its surrounding 

content within a limited extent. When the luminance 

channel of an image of M×N (height×width) pixels is 

denoted as I(i, j) for iΓ[1, M], jΓ[1, N], the local edge blur 

Lblur-h along the horizontal direction is quantified as: 
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where Gh(i, j) indicates the gradient map along the 

horizontal direction, and is computed as: 

 

 Gh(i, j)= ]1,1[),()1,( −∈−+ NjjiIjiI  (2) 

 

and n determines the size of the template used to describe 

the local content. The size is determined as a balance 

between collecting sufficient information of the local 

content and avoiding noise from content too far away (i.e. 

n=3 in our experiments). Lblur-v, i.e. the local blur in the 

vertical direction, can be calculated similarly. The lower 

the value of Lblur-h and Lblur-v, the larger the distortion of the 

blur artifact is. Figure 2 explains the reasoning behind the 

proposed approach of using gradient energy to detect blur. 
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Fig. 2. Illustration of the calculation of local edge blur: (a) image 

patch extracted from an image (i.e. img86  of the LIVE blur 

database [15]) [the red dot indicates the location of the detected 

edge at (252, 101) in this image, and the template indicates the 

area in which the local blur is calculated for this edge], (b) the 

intensity profile over the pixels within the template of (a), (c) the 

gradient profile of (b), (d) the same image patch of a blurred 

version of image (a) i.e. img139  of the LIVE database, (e) the 

intensity profile over the pixels within the template of (d), and (f) 

the gradient profile of (e). 

 

2.1.2. Global Descriptor 



 

Direct application of all extracted values of local edge blur 

as input to a NN is problematic, since the dimensionality of 

these values is in general too large and varies with image 

content, and as such inappropriate for the network in terms 

of training. First, high dimensionality of the input might 

introduce noise and redundancies, with the consequent risk 

of over-fitting. Second, the architecture of a NN has to be 

fixed prior the training, therefore a varying number of input 

is not allowed. In this paper, the statistical description of an 

image feature as proposed in [8] and [9] is adopted. It 

unifies the local blur values to a single vector using 

percentiles. Having computed the local values fi (i=1, , 

NF, and NF is the total number of the local values) per 

image (i.e. Lblur calculated in both the horizontal and 

vertical direction on the detected edges), these values are 

sorted in ascending order of magnitude. The outline of the 

obtained distribution is then expressed in a global 

descriptor f by taking 11 of its percentiles ナ: 
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2.2. NR Quality Estimator Based on a Neural Network 

 

Computational intelligence tools are known for their ability 

of dealing with highly complex modeling problem. In 

particular, theory proves that feed-forward neural networks 

embedding a sigmoidal nonlinearity can support arbitrary 

mappings [11]. In this paper, a feed-forward NN is 

employed to map the extracted feature vector describing the 

local edge blur into the associated rating of perceived 

quality. The implementation of this NN is already described 

in more detail in [8] and [9], and is only briefly repeated 

here. 

A Circular Back Propagation (CBP) [12] network 

improves the conventional MultiLayer Perceptron (MLP) 

[13] paradigm by adding one more input value, which is the 

sum of the squared values of all the network inputs (see 

Figure 1). The quadratic term boosts the network s 

representation ability without affecting the fruitful 

properties of an MLP structure. 

The CBP architecture can be described as follows. For 

an input stimulus vector x={x1, , xni}, the input layer 

connects the ni values to each of the nh neurons of a hidden 

layer. The j-th hidden neuron performs a nonlinear 

transformation of a weighted combination of the input 

values with coefficients ( weights ) wj,i (j=1, , nh, and 

i=1, , ni): 
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where sigm(z)=(1+e
-z
)

-1
, wj,0 is a bias term, and aj is the 

neuron activation. The output layer provides the actual 

network response, y: 
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For a fixed architecture (i.e. nh is fixed empirically 

before the training, see [8] and [9]), the CBP network is 

trained to optimize the desired input-output mapping, 

minimizing a cost function which measures the mean 

squared error between the actual NN output and the 

expected reference output (i.e. the MOS) for a sample of 

training patterns.  

 

3. PSYCHOVISUAL EXPERIMENTS 

 

A sub-set of the LIVE database comprising Gaussian 

blurred images [15] has been extensively adopted to 

validate blur metrics. It contains twenty-nine high-quality 

colored source images that reflect diversity in image 

content. These source images are filtered using a circular-

symmetric 2-D Gaussian kernel of standard deviation B, 

ranging from 0.42 to 15 pixels, which results in a set of 174 

stimuli (including the source images). Since the LIVE 

database is limited in its amount of demanding images, we 

performed two additional quality perception experiments. 

For example, the LIVE database includes only two source 

images with distinct foreground objects against a rather 

homogeneous background, as illustrated in Figure 3. In 

addition, also the amount of highly textured images is 

limited in the LIVE database. Evaluating how well a blur 

metric is able to handle these more demanding images is 

valuable for various applications; in particular the 

evaluation of images with a distinct foreground object 

against a homogeneous background is relevant for 

professional photography. Hence, we propose to extend the 

evaluation of the robustness of blur metrics with more 

image content. To that end, we make the data of two 

additional experiments of perceived quality resulting from 

blur available: one experiment used natural images of 

highly textured content, and the second experiment used 

images with an intentionally blurred background. 

 

 
Fig. 3. The two source images of the LIVE database [15] that 

have a distinct foreground object against a background. 



 

3.1. Highly Textured Images (HTI) Database  

 

The first quality perception experiment was conducted at 

the A University. A set of 12 images with highly textured 

content, as illustrated in Figure 4, was used as source 

material. These source images were high-quality colored 

images of size 512×768 (height×width) pixels. They were 

blurred in the same way and with the same range of B as 

the images of the LIVE database. Since each source image 

was blurred at five different levels, we obtained a test 

database of 72 stimuli (including the source images). The 

stimuli were displayed on a Dell 24  LCD screen with a 

native resolution of 1920×1200 pixels. The experiment was 

conducted in a standard office environment and the viewing 

distance was approximately 70cm. Eighteen participants, 

being ten males and eight females, were recruited for the 

experiment. A single-stimulus (SS) image quality 

assessment methodology as described in [16] was used and 

the raw data were processed according to the method 

described in [14] to produce the mean opinion scores 

(MOS). 

 

 
Fig. 4. Source images of the HTI database. 

 

3.2. Database of the Intentionally Blurred Background 

Images (IBBI) 

 

 
Fig. 5. Source images of the IBBI database. 

 

The second quality perception experiment was conducted at 

the B University. A new set of 12 images having an 

intentionally blurred background, as illustrated in Figure 5, 

was extracted from [17]. Also these images were colored, 

and they had a size of 321×481 (height×width) pixels. 

Their background was blurred showing an obvious effect of 

depth of field. Since also these 12 images were blurred with 

the same five levels of B, again a database of 72 stimuli 

was obtained. The stimuli were displayed on a Samsung 

22  LCD screen with a resolution of 1680×1050. They were 

viewed in a darkened room at a distance of approximately 

60cm. Eighteen subjects participated in this experiment. 

They were requested to assess the overall image quality 

using again the single-stimulus (SS) image quality 

assessment methodology as described in [16]. The raw data 

were processed towards the MOS in the same way as for the 

HTI database. 

 

4. EVALUATION OF METRIC PERFORMANCE 

 

4.1. Performance Evaluation of the Proposed Metric 

 

To fairly evaluate the performance of the proposed NR blur 

metric, a K-fold cross-validation method [8] was adopted. It 

randomized the statistical design problem by repeatedly 

splitting the available data into a training set and a test set. 

The source images were divided into several (i.e. six for the 

LIVE database and four for the HTI/IBBI database) groups. 

The entire procedure included six different trials for the 

LIVE database and four for the HTI/IBBI database. For 

each trial (hereafter referred to as run ) five/three (for the 

LIVE database and HTI/IBBI databases, respectively) 

groups of source images were used for training and the 

remaining one group of source images was used for testing. 

In our experiments, for each image, a vector containing 

eleven percentiles of the distribution of the local blur 

features was calculated as the input to the NN, which was 

equipped with three hidden neurons (i.e. nh =3). 

The performance of our metric was quantified by the 

Pearson linear correlation coefficient (CC) and the root 

mean squared error (RMSE) (note: the scores are 

normalized to the scale [1, 10] before the calculation of the 

RMSE) between the subjective quality ratings (the MOS) 

and the predictions of the metric. Figure 6 illustrates the 

scatter plot of the MOS versus the quality prediction for the 

test images of the LIVE, HTI and IBBI databases, 

respectively. The corresponding CC and RMSE values are 

listed in Table 1. Both the figure and the table show that 

our proposed metric consistently results in a high prediction 

performance for all runs of each database. Since the 

performance for the more demanding images of the 

HTI/IBBI databases is largely comparable to the 

performance for the images of the LIVE database, our 

proposed NR blur metric demonstrate its robustness against 

a large variation in image content. 

 



Table 1. Performance evaluation of the proposed NR blur metric 

(based on the K-fold cross-validation method used in [8]). LIVE, 

HTI and IBBI refer to each of the databases. CC and RMSE refer 

to the Pearson linear correlation coefficient and the root-mean-

square error, respectively. 

 
LIVE HTI IBBI 

CC RMSE CC RMSE CC RMSE 

RUN1 0.9468 1.0256 0.9896 0.4732 0.9596 1.0460 

RUN2 0.9597 0.8147 0.9822 0.5723 0.9743 0.6862 

RUN3 0.9554 1.2555 0.9825 0.5749 0.9780 0.9872 

RUN4 0.9804 0.5234 0.9819 0.6489 0.9812 0.6229 

RUN5 0.9515 0.6766     

RUN6 0.9857 0.4536     

MEAN 0.9633 0.8216 0.9840 0.5673 0.9733 0.8356 

 

To make an even more critical evaluation of our metric, 

we trained it with one database, and tested it with the other 

two databases (i.e. referred to as cross database evaluation). 

Table 2 lists the corresponding CC values. Our metric 

indeed demonstrates its promising performance; e.g. when 

training it with the limited HTI/IBBI databases, it still 

yields a high CC value (over 0.9) on the LIVE database. 

 
Table 2. Cross database evaluation of the proposed NR blur 

metric (based on training with one database and testing on the 

other two). 

Training Set 
Test Set 

LIVE (174) HTI (72) IBBI (72) 

LIVE (174)  0.9770 0.9652 

HTI (72) 0.9394  0.9758 

IBBI (72) 0.9028 0.9602  

 

4.2. Comparison to Alternative Metrics 

 

In the image quality community, researchers are 

accustomed to compare the performance of their metric to 

that of alternatives available in literature. This allows these 

researchers to better understand the strengths and 

weaknesses of all metrics. For practical reasons the 

comparison of our proposed metric to alternative NR blur 

metrics is limited to the metric described in [5] (hereafter 

referred to as NRPB) and the one described in [7] (hereafter 

referred to as JNBM). Table 3 lists the performance of these 

metrics in terms of Pearson correlation coefficient. 

In order to check whether the numerical differences in 

metric performance are statistically significant or not, a 

variance-based hypothesis test was conducted. It is based on 

the residuals between the quality predicted by the blur 

metric and the MOS (hereafter referred to as BM-MOS 

residuals) [18]. The results of the statistical significance 

tests are presented in Table 4, whereas the results of the 

Gaussianity tests are given in Table 5. It should, however, 

be noted that statistical significance testing is not 

straightforward, and the conclusions drawn from it largely 

depend e.g. on the number of sample points, on the 

selection of the confidence criterion, and on the assumption 

of Gaussianity of the residuals. 

The NRPB metric is simple, but its performance is 

limited as compared to our proposed metric, as can be seen 

from Table 3. The lower performance might be a direct 

consequence of the fact that the NRPB simply maps the 

averaged local blur to the quality scores with a nonlinear 

transformation only. Our proposed metric clearly 

outperforms NRPB, yet without introducing additional 

computational cost. Our metric also exhibits a better 

performance than the JNBM metric. In addition, since the 

latter contains sophisticated modeling of the HVS, our 

proposed metric has its advantages in terms of 

computational complexity. 

 

5. CONCLUSIONS 

 

In this paper, we present an efficient NR metric for the 

assessment of perceived image quality induced by blur. It 

calculates local edge blur in a computationally inexpensive 

way, and leaves the simulation of the HVS for the perceived 

overall quality to an adaptive neural network. The proposed 

metric is validated with the sub-set of blur images of the 

LIVE database and with the content of two newly created 

databases of demanding images. The performance of our 

metric is compared to state-of-the-art alternatives in the 

literature and shows to be highly consistent with subjective 

data at a largely reduced computational complexity. 

Combined with its practical reliability and computational 

efficiency, our metric is a good alternative for real-time 

implementation. 

 
Table 3. Performance comparison in terms of CC between our 

proposed metric and state-of-the-art NR blur metrics (a nonlinear 

regression (see [18]) is applied to NRPB [5] and JNBM [7]). 
NR Blur Metric LIVE (174) HTI (72) IBBI (72) 

NRPB [5] 0.8959 0.9413 0.9136 

JNBM [7] 0.8425 0.9490 0.9238 

Proposed 0.9633 0.9840 0.9733 

 
Table 4. Matrix representing the results of the statistical 

significance tests based on BM-MOS residuals. Each entry in the 

table is a codeword consisting of three symbols. The position of 

the symbol in the codeword represents the databases (from left to 

right): LIVE, HTI and IBBI. Each symbol gives the result of the 

hypothesis test: 1  means that the blur metric for the row is 

statistically significantly better that the blur metric for the column, 

0  means that it is statistically significantly worse, and -  

means that there is no difference. 
 NRPB [5] JNBM [7] Proposed 

NRPB [5] --- 0-- 0-- 

JNBM [7] 1-- --- 000 

Proposed 1-- 111 --- 

 
Table 5. Gaussianity of the BM-MOS residuals: 1  means that 

the residuals can be assumed to have a normal distribution since 

the Kurtosis lies between 2 and 4. 
 LIVE (174) HTI (72) IBBI (72) 

NRPB [5] 1 0 0 



JNBM [7] 0 0 1 

Proposed 0 1 1 
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Fig. 6. Performance of the proposed NR blur metric: (a) (b) and (c) 

are the scatter plot of the MOS versus the proposed metric of all 

runs for the LIVE, HTI and IBBI databases, respectively. 


