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HIERARCHICAL HIDDEN MARKOV STRUCTURE FOR
DYNAMIC CORRELATIONS: THE HIERARCHICAL RSDC

MODEL.

By Philippe Charlot
∗

and

Vêlayoudom Marimoutou
∗,†

GREQAM
∗

and Institut Français de Pondichéry
†

This paper presents a new multivariate GARCH model with time-
varying conditional correlation structure, which is a special case of the
Regime Switching Dynamic Correlation (RSDC) of [17]. This model,
have named Hierarchical RSDC (HRSDC), has been built with the
hierarchical generalization of the hidden Markov model introduced by
[7]. This can be viewed graphically as a tree-structure with different
types of states. The former are called production states, and they can
emit observations, as in the class of Markov-Switching approach. The
later are called ”abstract” states. They can’t emit observations but
establish vertical and horizontal probabilities that define the dynamic
of the hidden hierarchical structure. The main advantage of this ap-
proach, comparable to the classical Markov-Switching model that it
improve the granularity of the regimes. Our model is also compa-
rable to the new Double Smooth Transition Conditional Correlation
GARCH model (DSTCC), a STAR approach for dynamic correlations
proposed by [20]. The reason is that, under certain assumptions, the
DSTCC and our model represent two classical competing approaches
to modeling regime switching. We performed, Monte-Carlo simula-
tions, and we applied the model to two empirical applications in
studying the conditional correlations of selected stock returns. Re-
sults show that the HRSDC provides a good measure of the correla-
tions, and possesses an interesting explanatory power.

1. Introduction. Since the seminal papers of [6] and [4], the study
of multivariate GARCH with dynamic correlations has given rise to many
extensions and developments. This growth in interest in the subject has
been engendered by several empirical studies of stock market behaviours
(e.g. [13–15]). They show that the hypothesis of constant correlations (the
CCC model of [2]) is not realistic. However, the assumption of dynamic
correlations is now widely accepted in the literature, the matter of the form

AMS 2000 subject classifications: Primary 62M10, 62H20; secondary 91B84, 62P20
Keywords and phrases: Multivariate GARCH, Dynamic correlations, Regime switching,

Hierarchical Hidden Markov models

1

http://www.imstat.org/aoas/


2 P. CHARLOT AND V. MARIMOUTOU

of the dynamic still remain an open question; see [1] or [19] for some recent
surveys.

The purpose of this paper is to present a new multivariate GARCH model
with dynamic correlations. We propose a regime switching model that is
part of the Markov-Switching class. It is a special case of the RSDC model
of [17]. This model is halfway between the CCC of [2] and the DCC of [6].
Correlations are constant within each regime, but vary from one regime to
another and the transitions between different regimes are performed by a
Markov chain. [18] have proposed a model with smooth transition between
regimes for correlations (the STCC model), which can be seen, under cer-
tain assumptions, as a special case of the competitive STAR approach of
Pelletier’s model. The STCC requires the correlations to vary between two
matrices of constant correlations. The transition between this two extreme
matrices is governed by a conditional logistic function. Recently, they built
an extension of this model, the Double-STCC (see [20]), in which conditional
correlations vary across four matrices of constant correlations through two
logistic functions. Our new model, the Hierarchical-RSDC (HRSDC), can
be seen as a Markov-Switching version of the DSTCC. In this new model,
correlations vary between four correlation matrices constant in time, but
their transition from one matrix to another is determined by a hierarchical
hidden Markov structure. The originality of this structure lies in its ability
to establish a hierarchy between the hidden states in order to increase the
granularity of the regime. This hierarchical hidden structure was first devel-
oped by [7] for handwriting recognition. In the present context, this specific
structure will allow us to bring out a finer definition of regimes that do not
conform to the classical Markov-Switching approach.

This paper is organized as follows. The HRSDC model is introduced in
section 2.1.2. The HRSDC and the DCC is compared in section3.1. Section
3 presents results of Monte-Carlo simulations and two empirical applications
and compare the HRSDC with the DSTCC and the DCC models. Section 4
presents concluding remarks and expose some directions for future research.

2. Hierarchical Hidden Markov Structure for Dynamic Correla-
tions. The DSTCC model of [20] expresses the conditional correlation ma-
trix as a combination of two extreme matrix that are themselves dynamics.
By introducing another transition around the first one, the DSTCC works
on two primary regimes, themselves built under four secondary regimes.
This classification into primart and secondary regimes refers to the concept
of sub-regime. The Markov-Switching approach of [17] doesn’t consider the
case of sub-regime to establish a hierarchy between states that define sub-
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regimes, and show the nuances induced by the existence of sub-regimes in
the dynamic of the correlations. As a first step, we will present the class
of hierarchical hidden Markov models, the structure upon which our model
has been built. Next we will explain our model.

2.1. Structure.

2.1.1. The Hierarchical Hidden Markov Model. The Hierarchical Hidden
Markov Model (HHMM) was proposed by [7] in order to generalize the HMM
model. The idea was to build a stochastic process with several levels by
adopting a tree structure to obtain an interlacing of regimes. The hierarchy
of the tree is built with internal states, which are abstract states (i.e. they do
not produce observations). The internal states can lead to called emitting

states, which produce observations. Internal and emitting states can also
lead to a third type of state, which are called exiting states. The exiting
states allow quitting from a level of the tree. Each internal states produces
an sub-HMM, which can also be itself an HHMM. In this framework, the
classical HMM is a special case of the HHMM with only one level. The main
advantage of the HHMM compared to the HMM lies in its ability to improve
the granularity of the regimes. The HHMM approach permits one to break
up a time series into several types of regimes. For example, an HHMM with
two levels has two types of regimes: primary regimes and secondary regimes.
Certain combinations of the secondary regimes permits one to deduce the
primary regimes. This increased granularity allows us to bring out nuances
in regimes, something that is not possible with the simplified structure of
an HMM.

Formally, an HHMM can be represented as the process {Yt,Qt}t∈N where
:

• {Yt}t∈N is the process followed by the observations, which are supposed
to be conditionally independent to the hidden states.

• {Qt}t∈N is a homogeneous first order Markov chain. Each state of a
HHMM q

d
i belongs to the set Q = {S, I, E} where S is the set of

emitting states, I the set of internal states and E the set of exiting
states. The superscript d corresponds to the index Hierarchy (vertical
location) in the tree, with d ∈ {1, ...,D} and subscript i is its horizontal
location.

The tree structure, obtained by imposing an internal state at the root (level
d = 1)1. This initial state may have several descendants which can be in-

1We will see later that this condition is not always necessary. The HRSDC model does
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ternal or emitting states. These sub-internal states can themselves have de-
scendants which can be internal or emitting states and so on. The transition
from level d to level d + 1 is provided by the probabilities of vertical transi-
tions through an internal state. The return from level d+1 to level d is done
with the exiting states, and corresponds to a probability of exiting. Internal
and emitting states of the same sub-HMM of level d communicate with a
transition matrix as in a classical HMM model. An internal state leading to
another layer of internal/emitting states of a lower level is called a parent

state. A parent state leads to child states. Finally, three probabilities govern
the dynamics of the hidden structure:

• Ad
k = (ad

k(i, j)) : is the matrix of horizontal transition of state i to
state j where i and j are two states of the same sub-HMM of level d,
i.e. a

d
k(i, j) = P[qd

t+1 = j|qd
t = i], q

d
t+1, q

d
t ∈ {S, I}.

• e
d
i = P[qd

t+1|qd+1
t ], with q

d+1
t , q

d
t+1 ∈ {S, I}: vertical probability to

leads from a child at level d + 1 state to parent state at level d.

• π
d
i = P[qd+1

t+1 |qd
t ] with q

d+1
t , q

d
t+1 ∈ {S, I} : vertical probability to lead

from a parent state to its child state.

Each sub-model depending on parent k, must satisfy the conditions:

(2.1)
�

j∈ch(k)

a
d
k(i, j) + e

d
i = 1 and

�

i∈ch(k)

π
d
i = 1

where i, j ∈ ch(k) are two states with parents k. Figure 1 is an illustration
of the basic structure of an HHMM. Following the notation of [21], , we shall
denote by Q the size of the space state of each sub-model. Thus, the global
configuration of a HHMM starting from the root up to the d

th level can be
written as:

(2.2) q
(d) = (q1q2...qd) =

d�

i=1

q
i
Q

d−i

Thus, assuming that there is only one state at the root, all the parameters
comprising an HHMM, satisfy the conditions:

(2.3) θ = (∪D
d=2 ∪

Qd−1−1
i=0 {Ad

k, π
d
i , e

d
i }) ∪ (∪QD−1

i=0 {φi})

where φi corresponds to the parameters of a probability distribution.

not possesses an internal state at the summit.



HIERARCHICAL RSDC MODEL 5

id

ed+1

sd+1
1

sd+1
2 sd+1

3

π
d+1
1

π
d+1
2 π

d+1
3

a21

ed+1
1

a31

a11

a12

e
d+1
2

a32

a22

a13

e
d+1
3

a23

a33

Fig 1. Basic structure of a HHMM with three emitting states.

2.1.2. The Hierarchical RSDC model. The objective of our model is to
vary the correlations between two extreme major regimes, while allowing
the existence of secondary regimes. As shown by [20], the correlation process
is bounded by four states of constant correlations over time. The structure
highlights two primary regimes, depending on abstract states i

1
1 and i

2
2. Each

of these abstract states is connected with emitting states. Thus, the regime
corresponding to i

1
1 is determinated by the emitting states s

2
1 and s

2
2; that

of i
1
2 by s

2
3 et s

2
4. Figure 2 shows the hierarchical hidden structure of the

Hierarchical RSDC model (HRSDC).

The hierarchical structure allows states to increase the granularity of the
regimes. It establishes different types of regimes, which in our case are pri-
maries and secondaries. The primary regimes correspond to the regimes
obtained with a classical Markov Switching model. To ensure higher level of
granularity, these primary regimes are build with sub-regimes, known as sec-
ondary regimes. The structure allows the secondaries’s to capture nuances
of dynamics that are finer than those of primaries’s. The idea of granularity
is illustrated on the figure 3.
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Fig 2. Hierarchical Hidden structure of the HRSDC.

The pair of emitting states defined by (s2
1, s

2
2) forms a Markov-Switching

model, and the same is true for (s2
3, s

2
4). The link between these sub-models

is provided by the abstract states i
1
1 and i

1
2. The model is then built on

two sub-models with two emitting states each, for the transition matrices
respectively2 :

A
2
1 =

�
a

2
11 a

2
12

a
2
21 a

2
22

�

and A
2
2 =

�
a

2
33 a

2
34

a
2
43 a

2
44

�

and verified constraints:
�

a
2
11 + a

2
21 + e

2
1 = 1

a
2
12 + a

2
22 + e

2
2 = 1 and

�
a

2
33 + a

2
43 + e

2
3 = 1

a
2
34 + a

2
44 + e

2
4 = 1

where e
2
i , i = 1, ..., 4 is the probability of exiting from a state of level two

and go to a parent state at level one. The two sub-HMM, communicate via
exiting states through abstract states i

1
1 and i

1
2. The activity involved in

the transition from one to another of these abstract states is defined by the
transition matrix:

A
1 =

�
a

1
11 a

1
21

a
1
12 a

1
22

�

2Recall that the probability that the state q which was in i at time t− 1 is in j at time
t is written P[qt = j|qt−1 = i] = pji.
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which satisfies:
a

1
11 + a

1
12 = 1 and a

1
21 + a

1
22 = 1

The parameters π
2
i , i = 1, ..., 4 represent the probability of moving from a

parent state of the first level to one of its children at the second level. These
probabilities must verify:

π
2
1 + π

2
2 = 1 and π

2
3 + π

2
4 = 1

The specification for the four correlation matrices constants in time is that
outlined by Pelletier. In fact, the only difference between this specification
and the RSDC lies in the hierarchical hidden structure which led us to
view the RSDC as a special case of the HRSDC with only one level. As in
the RSDC model, the model can be estimated by either EM algorithm or
iterative methods such as Gradient.

regime 1
regime 1.1

regime 1.2

regime 2
regime 2.1

regime 2.2

primary reg. secondary reg.

initial
regime

granularity

Fig 3. The increase of the granularity in the HRSDC model.

2.2. Estimation. Estimation under the HRSDC model is made using the
multi-step estimation of [6] and [4]. This computationally attractive method
splits up the log-likelihood as the sum of two parts : the volatility compo-
nent and the correlation term. Estimation of the volatility part is done by
maximizing the sum of the individual GARCH likelihoods. Estimation of
the correlation part is trickier because of the abstract states involved. To
estimate the second part, we follow the method of [21]3. The main advan-
tage of this method is the speed of implementation. Xie builds the transition

3[21] succeeds in estimating the HHMM with the HMM’s standard tools while respect-
ing the vertical dynamic of the model. Xie’s is built on a particular expression of the
transition matrix. Instead of considering the whole dynamic of the model, the method
breaks the transition matrix into several sub transition matrices for each hierarchical
level. Each level of the tree is then linked with a transition matrix. This rewriting of the
transition matrix allows one to estimate the correlations with a version of the Baum-Welch
algorithm very similar to that used in the context of the standard HMM.
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matrix by successive layers in order to have an expression of the likelihood
of complete data that can be factorizable. In this framework, vertical tran-
sitions, which allows one to activate the child of a parent state, are given
by:

(2.4) πq =
D�

d=1

π
d
qd , q = 0, ..., Q

D − 1

The transition matrix is rewritten by layers, each layer represents a level of
the hierarchy of the tree:

(2.5) ã
d(q�, q) =

D�

i=d

e
i
q�iπ

i
qi · a(q�d, qd)

These probabilities are called hypertransition probabilities. Aggregation of
these probabilities leads to the hypertransition matrix of our model:

(2.6) Ã(q�, q) =
D�

i=1

ã
i(q�, q)

Finally, the hypertransition matrix has size (S × S) where S = card(S).
This formulation is attractive in the sense that it enables working with a
transition matrix similar to the classical HMM or Markov-Switching model.
The hypertransition matrix of our HRSDC model is then written as:

(2.7) Ã =





a
2
11 + e

2
1π

2
1a

1
11 a

2
21 + e

2
2π

2
1a

1
11 e

2
3π

2
1a

1
12 e

2
4π

2
1a

1
12

a
2
21 + e

2
1π

2
2a

1
11 a

2
22 + e

2
2π

2
2a

1
11 e

2
3π

2
2a

1
12 e

2
4π

2
2a

1
12

e
2
1π

2
3a

1
21 e

2
2π

2
3a

1
21 a

2
33 + e

2
3π

2
3a

1
22 a

2
43 + e

2
4π

2
3a

1
22

e
2
1π

2
4a

1
21 e

2
2π

2
4a

1
21 a

2
34 + e

2
3π

2
4a

1
22 a

2
44 + e

2
4π

2
4a

1
22





The hidden hierarchical structure requires twenty parameters. However,
in practice, only sixteen parameters will be needed in order to carry out
estimations due to constraints of stochastic matrices. In the next sub-section,
we propose two ways to estimate the correlations. The first is based on the
EM algorithm. The second is done with Hamilton’s filter.

2.2.1. Estimation by EM algorithm. To run EM algorithm, we need to
write the quantity Q(θ|θk). With our hypertransition matrix, it is simply
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written as:

Q(θ|θp) = Eθp [log f(�1:T , s1:T ; θ)|�1:T ](2.8)

=
T�

t=1

S�

i=1

log(f(�t;φi))Pθp [st = i|�1:T ]

+
T−1�

t=1

D�

d=1

S�

i=1

S�

j=1

log(ãd
ij)Pθp [st+1 = j, st = i|�1:T ]

+
S�

i=1

log(νi)Pθp [s1 = i|�1:T ]

To simplify later formula 2.8, we define:

(2.9) γ
p
t (q) def= Pθp [qt = q|�1:T ]

ξ
p
t (q�, q, d) def= Pθp [qt = q

�
, qt+1 = q, et = d|�1:T ]

Re-estimation formulas are obtained by maximizing the expected value of
the complete-data log-likelihood Q(θ|θp). We refer to the work of [21] for
a complete explanation of the procedure, and directly give the expression
of the re-estimation formulas. Adopting [21]’s notations for indexing the
states and writing q = (rir�) and q

� = (rir��), two states configurations
which are identical up to the d

th level and have the same (d − 1)th parent
r such that r = q

1:d−1 = q
�1:d−1 and r

� = q
d+1:D
t and r

�� = q
d+1:D
t+1 , two

state configurations of a level below d, for each level d ∈ {1, ...,D}, the
re-estimation variables at iteration p + 1 can be displayed as:

(2.10)

• π̂
d
r (j) =

�T−1
t=1

�
r�

�
r��

�
i ξ

p
t ((rir�), (rjr��), d)

�T−1
t=1

�
r�

�
r��

�
j
�

i ξ
p
t ((rir�), (rjr��), d)

• ê
d
r(i) =

�T−1
t=1

�
r�

�
r��

�
q�

�
d�≤d ξ

p
t ((rir�), q�, d�)

�T−1
t=1

�
r�

�
r�� γ

p
t ((rir�))

• â
d
r(i, j) =

�T−1
t=1

�
r�

�
r�� ξ

p
t ((rir�), (rjr��), d)

�T−1
t=1

�
r�

�
r��

�
j ξ

p
t ((rir�), (rjr��), d)

× (1− ê
d
r(i))

• R̂q =
�T

t=1 �t · γp
t (q) · ��t�T

t=1 γ
p
t (q)

We simply use as stopping rule the conventional difference �θ̂p+1 − θ̂
p� ≤

10−6.
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2.2.2. Estimation by Gradient methods. Using Gradient methods to es-
timate an HMM is made possible with the so-called Hamilton’s filter (see
[9–11]). This iterative filter allows one to make inference in the state of the
unobserved Markov chain. With Hamilton’s notations, let ξ̂t|t be a vector of
size (N × 1) which elements ξjt = Pr[st = j|Ft−1, θ], j = 1, ..., N , are the
conditional probabilities to be in regime j, given the information set Ft−1 at
time t− 1 and Ã our hypertransition matrix of size (N ×N) (see equation
2.6). Then one obtain a vector ηt of size (N × 1), of the elements are the
densities under the N regimes, i.e. f(�t|st = j,Ft−1; θ), j = 1, ..., N . Then,
Hamilton’s filter gives the following filtered probabilities:

(2.11) ξ̂t|t =
(ξ̂t|t−1 ⊙ ηt)

1�(ξ̂t|t−1 ⊙ ηt)

with forecasts calculated by:

(2.12) ξ̂t|t+1 = Ã× ξ̂t|t

The inference for each date t is then found by iterating equations 2.11 and
2.12.

2.2.3. Smoothed probabilities. Hamilton’s filter allows one to make in-
ferences about the state of the Markov chain at time t conditional on the
information set up to time t. [12] has developed one filter in order to make in-
ferences with the whole information set. Instead of computing ξt|t, it permits
to compute ξt|T with t < T . Kim’s filter is computed with our hypertransi-
tion as in the classical case:

(2.13) ξ̂t|T = ξ̂t|t ⊙ {Ã�[ξ̂t+1|T � ξ̂t+1|t]}

where � denotes element-by-element division.

3. Applications. This section contains Monte-Carlo experiments and
two applications based on real dada. The first real database is that used by [3]
and contains daily data from S&P500 and 10-year bond futures. The second
real database application is performed with that of [17]. It contains the
exchange rates at the close of four week-days of the Pound, the Deutschmark,
the Yen, and the Swiss-Franc against the US dollar.

3.1. Simulated data. In this sub-section, we compare the correlation es-
timates of our HRSDC model and the DCCES of [6] in a setting where the
true correlation structure is known. For simplicity, it is done in a bivariate
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Fig 4. Simulated Correlation Processes. The last two graphs are an example of the esti-

mated correlations of the two models for DGP1.

framework. We simulate six DGP. The first one has the following variance
equation:

h1,t = 0.01 + 0.05r1,t−1 + 0.85h1,t−1

h1,t = 0.12 + 0.1r1,t−1 + 0.85h1,t−1

and the others (DGP2...DGP6):

h1,t = 0.01 + 0.04r1,t−1 + 0.95h1,t−1

h1,t = 0.01 + 0.2r1,t−1 + 0.5h1,t−1

For DGP1, the correlations process follows a TAR-CCC model with constant
correlations. The DGP2...DGP6 are built with dynamic processes. The dif-
ferent DGP are labelled as:

• DGP1: R12,t =






0.99 if t ∈ [1; 250]
−0.99 if t ∈ [251; 500]
0.4 if t ∈ [501; 750]
−0.4 if t ∈ [751; 1000]

• DGP2: R12,t = 0.4 + 0.34 cos(t/250)
• DGP3: R12,t = 0.5 + cos(d/s) − (1/3) cos(3d) + (1/7) cos(5d), d =

(t− 50)/145, s = 35
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DGP1 DGP2 DGP3 DGP4 DGP5 DGP6
MAE1

DCC .1331 .5125 .3774 .4237 .5298 .2764
HRSDC .0562 .5521 .3836 .4642 .5386 .2831
MAE2

DCC .0553 .2901 .1700 .2361 .2824 .0778
HRSDC .0235 .3408 .1660 .2659 .3008 .0835
DQ 5% (strategy EW)

DCC .7594 .5884 .6499 .9299 .5784 .9586
HRSDC .5966 .6985 .7814 .9699 .4263 .9800
DQ 1% (strategy EW)

DCC .3359 .9944 .9970 1e−4 .0217 .9925
HRSDC .4382 .9733 .9995 2e−4 .0215 .9929
DQ 5% (strategy LS)

DCC .7969 .1616 .5136 .9532 .7284 .7068
HRSDC .8731 .0912 .3509 .9216 .6574 .7321
DQ 1% (strategy LS)

DCC .4294 4.3e−5 .9986 .9996 .01 .0523
HRSDC .3896 .2685 .9959 .9994 .01 .0136

Table 1

Performance measures results.

• DGP4: R12,t =
�

.8 + .2 cos(t/20) if t ∈ [1; 500]
0.2 + .2 cos(t/20) if t ∈ [501; 1000]

• DGP5: R12,t = 0.99− 1.98
1+exp(0.5 max(�21,t−1,�22,t−1))

• DGP6: R12,t = 0.5 + sin(s3)/(1 +
�
|s3|), s = 5− t/100

The simulated correlations are voluntarily pathological in order to test the
accuracy of the correlation estimates corresponding to a very volatile/distress
periods of the financial markets. The DGP2, DGP4 and DGP6 are each
built with sinusoidal functions to create correlations with different regimes
or sub-regimes. The DGP5 was used by [16], and corresponds of the stylized
fact pointed out by Longin and [15] that correlations among assets tend to
increase during volatile periods.

The performance measures we use are very similar to those used by [4].
We first calculate two versions of a very classical loss function, which are
computed as follows:

MAE1 = 1
T

�T
t=1

���R̂t −Rt

���
MAE2 = 1

T

�T
t=1(R̂t −Rt)2
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For the second type of measure, we follow the methodology of [4] by consid-
ering the loss function of the Value-at-Risk (VaR). Recall that for a portfolio
with a share w invested in the first asset and (1−w) in the second, the VaR
assuming normality can be computed as:

V aR
α
t = Φ−1

t (α)
�

(w2Ĥ11,t + (1− w)2Ĥ22,t + 2w(1− w)R̂12,t

�
Ĥ11,tĤ22,t)

The loss function of the VaR is then defined by:

hitt = 1{wr1,t+(1−w)r2,t<−V aRt} − α

We then use the in-sample Dynamic Quantile (DQ) test introduced by [5].
This consists of checking if all the regression coefficients of the violation
process hitt with its lagged values and others exogenous variables are equal
to zero. To perform this F test, we use as explanatory variables ,five lags
hitt and the current value of the VaR. We test two numbers of rejections
(1% and 5%) and two portfolios: an equal-weighted (w = 0.5, strategy EW)
and long-short (1 and -1, strategy LS). Table 1 presents the results of the
performance measures.

The results show that the HRSDC performs better than the DCC when
correlations are constant within a sample. This result is consistent with what
could be expected since the HRSDC varied correlations between several con-
stant correlations matrices over time. Once the simulated correlations are no
longer constant within a specific sample, the DCC model has better MAE,
a result which, once again, seems normal. However, differences in the MAE
between the DCC and the HRSDC are comparatively small. The dynamic
process from a combination of regimes of the HRSDC does not too appear
to fare too badly in comparison to the autoregressive motion of the DCC.

The results of the DQ test are more mixed, and appear highly dependents
on the strategy chosen. The DCC is the best for the EW strategy, while the
HRSDC dominates on the LS strategy. A simple addition of the best values
show that the HRSDC seems preferable to DCC. Nevertheless, it would be
unfair to conclude to the dominance of HRSDC under the DCC. It is just
better to point out that the HRSDC remains credible face to the DCC.

Finally, the HRSDC remains a tool of great efficiency when correlations
are constant within a given sample (DGP1), but becomes less effective when
that is no longer the case (DGP2...DGP6). It seems that the autoregres-
sive activity of the DCC remains very efficient when correlations oscillate
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Fig 5. Estimated correlations of the HRSDC, the DCCES, and the DSTCC with the sample

of Colacito and Engle (2006).

around a trend value. However, the appeal of the HRSDC lies in its ex-
planatory power. Apart from providing a simple measure of correlations, its
structure allows one to bring out the components of their overall variability
by increasing the granularity of regimes.

3.2. Correlations between S&P500 index futures and 10-year bond futures.

The first application with a real database is based on the bivariate sample
of [3]. It contains daily returns of S&P500 index futures and 10-year bond
futures from January 1990 to August 2003. These data are also use by [20]
in demonstrating to apply their DSTCC model. The individuals volatilities
are obtained by running a GARCH(1,1) model. We later obtain the cor-
relations by running three different models in order to make comparisons.
These models are the HRSDC, the DCCES and the DSTCC. For this sample,
the correlations of the DCCES and DSTCC are estimated using Gradient
methods while the correlations of the HRSDC are computed with EM al-
gorithm. Figure 5 shows the estimated correlations for the three models. In
our application, transition variables for the DSTCC are defined as calendar
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Fig 6. S&P500 index futures and 10-year bond futures.

time.
Results of the estimated parameters of the HRSDC are presented in Ap-

pendix A and the smoothed probabilities corresponding to the secondary
regimes are in Figure 7. The model has correctly identified two sub-regimes
with positive correlations and two sub-regimes with negative correlations.
Adding the smoothed probabilities of each pair of sub-regimes gives the
smoothed probabilities that we would have had with a Markov-Switching
model with two regimes. This is shown in Figure 8. The results for the
DSTCC (with the calendar time specification) show that it does not accu-
rately capture the chronological changes in a regime. Correlation estimates
have the form of a curve. Rather than a local measure, this model serve to
indicate a trend. For example, in the DCC and the HRSDC models, cor-
relations go to a negative correlation regime around the 2400th observation
whereas they are still positives in the DSTCC. This is due to the fact that
the DSTCC has only two transition functions. A solution to this problem
could be to introduce more transition functions as in Amado and Teräsvirta
(2008). Even though the DCC and HRSDC correlations seem similar, in the
case study, the HRSDC has the advantage that it can explain the nuances
in the dynamics through the decomposition in the sub-regimes. An increase
The increasing in granularity ends up in a finer definition of the transition.

3.3. Correlations between exchange rate data. In this second application,
we apply our HRSDC model to the sample used by [17]. This series are
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Fig 7. Smoothed probabilities of the HRSDC. Regimes 1.1 and 1.2 correspond to the emit-

ting states {s2
1, s

2
2}, and regimes 2.1 and 2.2 to {s2

3, s
2
4}.
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1
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Fig 8. Smooth probabilities of the regimes defined by the internal states i11 and i12 (first

application).

exchange rate data and are plotted as in Figure 9. As before, the motion
of the standard deviations is obtained with a GARCH(1,1) model. For this
case study, only DSTCC and HRSDC models have been considered. We
use the two-step maximum likelihood estimation using Gradient methods
for both models. Figure 10 shows the estimated correlations plotted for
the two models. Parameters estimated for the HRSDC are shown in the
Table 3 (see Appendix A). Smooth probabilities for the HRSDC can be
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Fig 9. Exchange rate database.

seen in Figure 11. As we see from Figure 10, as in the previous application,
the DSTCC (with its calendar time specification, i.e. m1t = m2t = t/T )
allows one at best to perceive a trend in the evolution of correlations in the
sample. The reason for this limitation is often that, with only two transition
functions, the DSTCC cannot capture more than three regimes. A direct
consequence of this shortcoming is that the DSTCC fails to capture the
time specific extreme regimes, as it demonstrated in example on the Swiss
Fr/Deutschmark correlations. These are indeed marked by two peaks of
correlations close to zero as they oscillate the rest of the time around a
value about 0.8.

In this sample, the HRSDC clearly identifies four sub-regimes. Recall that
the first primary regime associated with the internal state i

1
1 is a combina-

tion of secondary regimes depending of the two emitting states s
2
1 and s

2
2. In-

creasing the granularity provided by the hidden hierarchical structure allows
one to highlight the existence of a sub-regime linked to s

2
2. This sub-regime

occurs only very rarely within the sample, around the 450th observation.
But it permits one to capture an extreme and time specific behaviour of
the correlations process. This element of the global activity of correlations
would be go unnoticed with a classical Markov-Switching model (because
that model is too limited and not significant enough in relation to the size
of the sample).

This application with a sample of four series brings to light a problem in
the correlations specification. As we have said before, estimated parameters
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Fig 10. Estimated correlations for the HRSDC (in black) and the DSTCC (in red).

have been obtained using Gradient methods to estimate the HRSDC. This
choice is not fortuitous. In fact, our experiments shows that the non con-
straint specification meets with difficulties in returning the maximum of the
objective function with the use of EM algorithm. The cause of the problem
is to be found in the constraint of the Choleski representation introduced
in the correlation matrix. Without this transformation, the derivatives of
the objective function produce a form of the correlation matrix with no
guarantees to have one in the diagonal and PSD. The transformed Choleski
representation without one in the diagonal greatly disrupts the convergence
of the EM algorithm. That’s why it is preferable to use the constraint speci-
fication which can be estimated with the Gradient method using Hamilton’s



HIERARCHICAL RSDC MODEL 19

0 350 700 945
0

0.5

1
regime 1.1

0 350 700 945
0

0.5

1
regime 1.2

0 350 700 945
0

0.5

1
regime 2.1

0 350 700 945
0

0.5

1
regime 2.2

Fig 11. Smoothed probabilities for the HRSDC (exchange rate data).

filter. In this example, despite a huge number of iterations, the EM algorithm
has not converged whereas Gradient methods rapidly reach the optimum of
the objective function. Nevertheless, even the constraint specification would
need numerous parameters, and the estimation of large correlation matrices
could turn out to be cumbersome.

4. Conclusion. In this paper, we have presented a new multivariate
GARCH with dynamic correlations. This further extension, called Hierar-
chical RSDC (HRSDC), can be view as a special case of the RSDC model
of [17]. The HRSDC is a Markov-Switching class model with a correlation
process bounded by four correlation matrices constants over time. The in-
novation of our model is that it is built on a hierarchical hidden structure
introduced by [7].

The main advantage of this hidden tree-like structure lies in its ability
to increase the granularity of the regime. It permits one to define differ-
ent types of regime; in our case, primary and secondary regime. Applied
to correlation modeling, the HRSDC allows one to capture finer nuances
than is possible with the classical Markov-Switching approach. Monte Carlo
experiments and applications on real data show that this approach could
improve understanding of the randomness of correlations. The application
of the HRSDC to estimate the correlations between S&P500 index futures
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and 10-year bond futures, between exchange rate data has brought to light
the existence of sub-regimes which other regime switching models have so
far unable to do.

While the results in this paper show that the HRSDC possesses good ex-
planatory powers, one must be aware that it has limitations as well. The
first concerns selection of models. Our model has been buit from a sym-
metric hidden tree, with two primary regimes, each of them with which one
sub-HMM. This represents a very simple structure. It is possible to build
an asymmetric tree with severals levels of depth. However, finding the best
hierarchy, i.e. split/merge/swap levels, could be a present problem. [21] use
the Reversible-Jump MCMC (RJMCMC) of [8] in the selection of this mod-
els. While the approach may appear attractive, one will have to contend
with the questions of size that it entails. The second problem relates to the
specification of the correlation matrix. The specification of Pelletier is not
suitable in the modeling of large correlation matrices. As the hierarchical
hidden structure model is a plug-in method, it could be interesting to find a
specification for large correlation matrices. The tasks awaits future research.

APPENDIX A: ESTIMATED PARAMETERS OF THE
APPLICATIONS

Table 3 shows the parameters estimations of the correlations process for
the database of exchange rate data; table 2 for the database of Engle and
Colacito.

correlation matrix:

R1=

�
1

0, 5189 1

�
R2=

�
1

0.2924 1

�

R3=

�
1

−0.1853 1

�
R4=

�
1

−0.1597 1

�

transition probabilities

A1 =

�
0.9797 0.9365
0.0203 0.0635

�

A2
1 =

�
0.9919 1.4e−4

0.0055 0.7876

�
A2

1 =

�
0.8139 0.0618
0.1853 0.9299

�

e2
1 = 5.85e− 4, e2

2 = 0.2123, e2
3 = 7.7e− 4, e2

4 = 0.0084
π2

1 = 0.0067, π2
2 = 0.9933, π2

3 = 0.9933, π2
4 = 0.0067

Table 2

Estimated parameters for the correlations of the second real data application.
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correlation matrix:

R1=





1
−0, 4860 1
−0, 3943 0, 8125 1
−0, 5004 0, 9488 0, 8032 1



 R2=





1
−4e− 5 1
−3e− 5 8e− 05 1
−5e− 5 9e− 5 8e− 5 1





R3=





1
−0, 8746 1
−0, 6912 0, 7720 1
−0, 8299 0, 9214 0, 7587 1



 R4=





1
−0, 7337 1
−0, 5798 0, 6476 1
−0, 6962 0, 7730 0, 6365 1





transition probabilities

A1 =

�
0, 9933 0, 4167
0, 0066 0, 5832

�

A2
1 =

�
0, 6711 0, 0084
0, 0115 0, 9915

�
A2

1 =

�
0, 9835 0, 0002
0, 0157 0, 9571

�

e2
1 = 0.3172, e2

2 = 8.21e− 05, e2
3 = 7.37e− 04, e2

4 = 0.0425
π2

1 = 0.9933, π2
2 = 0.0066, π2

3 = 0.9933, π2
4 = 0.0067

Table 3

Estimated parameters for the correlations of the second real data application.
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