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Abstract

The aim of the present work is to present an efficient numerical tool for the sim-

ulation of the behavior of 3D assemblies of structures with contact and friction

when strong structural modifications occur. The paper focuses on the effects

of missing connection elements (screws, bolts, rivets, . . . ) on the behavior of

the assembly. A fast and efficient domain decomposition strategy for predicting

the responses of an assembly for different configurations of missing elements is

proposed. The efficiency is provided by the use of a pre-calculated solution as

initialization for the calculation of a new design configuration. Applications are

concerned with bolted joints under quasi-static loads.

Keywords: Missing Fasteners, Contact, Friction, Uncertainties, Assemblies,

Optimization

1. Introduction

Many mechanical connections are made of multiple fastener assemblies so

that the load is distributed on the different connecting elements. Transmission

of forces in such assemblies is allowed by both friction forces due to pre-strain

of the connectors and contact forces on the body of the fasteners (screws, bolts

or rivets). The load capacity of the connection strongly depends on the way
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forces are distributed on each one of the fasteners. It is extremely important

to be able to establish this distribution at the design stage. Moreover, being

able to predict modifications of force distributions due to a change of state of

the connection (loss of adherence, loosening of bolts, . . . ) or imperfections with

respect to a nominal configuration (imperfect hole clearance, imperfection of

friction properties, missing fasteners, . . . ) is also of great importance.

There is an extensive literature on the behavior of multi-fastener assemblies

for nominal perfect geometries and given state of the connections. Analytical

works [1, 2, 3] offer some quick evaluation techniques for establishing the load

distribution in the assemblies. In more recent works [4], finite element calcu-

lations are used to optimize the load transfer in such connections. In order to

precisely establish the load transfers, many simulations use 3D finite element

models. They include a fine description of frictional contact zones. Simulations

using such models under quasi-static loadings are obviously not straightforward

and can be time consuming. Being able to carry out such simulations is still a

challenge.

The effects of friction on the load capacities and the behavior of bolted joints

have been intensely studied and a review is presented in [5]. Loosening of the

fasteners can have critical effects on the distribution of friction forces and so on

the distribution of loads on the fasteners. The effects of such phenomena have

been studied by many authors in the last decade using either experimental or

numerical approaches [6, 7, 8, 9].

For assembling purposes, gaps (hole clearances) must be introduced between

the assembled parts and the fasteners. Due to machining, the diameters and

positions of the holes can be imperfect and so the gaps can be strongly uncertain.

The effect of uncertainties of the geometry (hole clearance for example) on the

behavior of the assembly has been studied in very few experimental works [10].

The simulation of the effects of all the types of imperfections and changes of

state is still a challenge. The approach that is presented in this paper has been

successfully used for the prediction of the effects of imperfections of pre-strain

of bolts and of friction effects [11, 12]. It has recently been extended to the
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study of imperfections of hole clearances [13].

This paper deals with the study of the effects of missing fasteners on the

behavior of connections. When the number of fasteners is high, it can frequently

happen that a fastener is forgotten when the connection is assembled. Moreover,

loosening of a bolt can end by a complete disappearance of the bolt. Some

experimental studies [14] offer some procedures for the detection of missing

connectors but no specific work on numerical simulations is available. Predicting

the effect of a missing fastener might be trivial as one has just to simulate the

behavior of the connection without modeling the missing component. When

the number of fasteners is elevated, this can lead to a large number of different

simulations. This paper details a computational strategy for an accelerated

determination of the solutions of such simulations.

The proposed strategy relies on a specific approach that has been developed

at Laboratory of Mechanics and Technology (LMT Cachan, France) during the

last twenty years and which is dedicated to the simulation of the behavior of 3D

assemblies of structures. This calculation technique is based on a decomposition

of the assembly that emphasize the connections by modeling them by an inter-

face behavior. The resolution scheme is the LArge Time INcrement (LATIN)

Method [15]. The approach builds, at each iteration, an approximate solution

of the problem on the whole studied time interval. Its efficiency as already been

proved on the calculation of solutions for quasi-static analysis of 3D assemblies

of structures including a large number of frictional contact zones [16]. This

approach is highly parallel and its extension to dynamics on parallel computers

is presented in [17].

This approach has successfully been developed for taking into account the

influence of uncertainties on connection parameters such as friction coefficients

and pre-strains [11]. The main idea is the reusing of one solution that was

calculated for a set of design parameters to initialize the calculation for a new set

of parameters. When the responses that are obtained for both sets of parameters

are close, this initialization allows a great reduction of the computational costs
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for the second calculation. When, due to the nonlinear behavior of the assembly,

the two solutions are not so close, the reduction of the computational costs is

still significant. To achieve the initialization, the design parameters are simply

changed along the iterations in order to efficiently build solutions by re-using

the best pre-calculated solutions for different sets of parameters [12].

In this paper, the proposed approach is extended to the quick calculation

of a series of design configuration of assemblies where fasteners are successively

missing. The purpose of the strategy that is proposed here is to get fine informa-

tions on the effects of the lack of a connecting element. In the situations that

are studied here, one only seeks for the force distributions in the connecting

elements before any degradation occurs in the assembly. So, only small dis-

placements and deformations are considered with no plasticity or damage. An

accurate description of the contact and friction interactions is needed in order

to get the load distribution in the connectors. Obtaining this level of accuracy

is only possible if conformal meshes are used on the contact zones. However,

taking non-conformal meshes into account is possible ; this procedure is not

presented here but is detailed in [16].

The resolution scheme and the way Coulomb’s friction contact condition are

taken into account are first presented. The principles of reusing solutions for

initialization is detailed. Then the way the lack of fasteners is taken into account

is shown. Two examples show the efficiency of the approach and some possible

improvements that concern the selection of solution for initialization.

2. Resolution scheme: LATIN method

A brief presentation of the main aspects of the LATIN method is proposed

here after. Details of the method are available in [15] and the application to the

treatment of frictional contact problems are proposed in [16]. In this paper, we

address structural mechanics problems including unilateral contact and friction.

That is to say that we need to solve systems of nonlinear partially differential

equations in time and space. Here, a discrete formulation of the LATIN method
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is presented only. It is obtained using a classical finite element discretization

and time discretization of the continuous formulation that can be found in [12],

which also gives the details of the discretization issues.

2.1. Decomposition of an Assembly

The model of structural assembly that is used here is composed of substruc-

tures ΩE that communicate with each other through interfaces (see figure 1).

Substructures are the components of the assembly and interfaces model the con-

nections between the components. In some cases, substructures model sub-parts

of one component. In this paper, we only consider friction unilateral contact in-

terfaces with Coulomb’s friction law. The two substructures that are connected

by interface ΓEE
′

are denoted ΩE and ΩE′ .

On one interface are defined four fields. Two force fields, represented by

vectors FEE′ and FE′E , model the action of the interface on each substructure.

Two dual velocity fields, represented by vectors U̇EE′ and U̇E′E , model the

motion of each substructure seen from the interface (figure 1).

2.2. Problems on the substructures

Classical finite element meshes are used on each substructure, and the dif-

ferent meshes match on the interfaces (figure 2). In the following, vectors U

refers to nodal displacements values, vectors U̇ to the nodal velocity values and

vectors F to nodal forces.

A substructure ΩE must cope with the velocity field U̇EΓ of its neighboring

interfaces at each time step:

U̇EΓ = CEΓU̇E , (1)

where subscript EΓ collects all the neighboring interfaces of a substructure E.

UE is the displacement vector of the whole substructure. CEΓ is a boolean

matrix mapping the substructure degrees of freedom on the boundary.

The same substructure must also satisfy to the equilibrium equation when

subject to forces due to the neighboring interfaces FEΓ, and to the given body
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forces F d

E
, at each time step:

KEUE = F d

E
+ CT

EΓFEΓ, (2)

where superscript T denotes transposition.

2.3. Problems on interfaces

At each time step, the equilibrium of the interface ΓEE′ between substruc-

tures E and E′ is enforced by the equation:

FEE′ + FE′E = 0 (3)

and a constitutive equation in which the forces depend on the displacement

discontinuity:

FEE′ = f(UE′E − UEE′), (4)

where the function f can be nonlinear. This function is used to describe the

nonlinear behavior of the connection that is modeled by the interface.

Subscript EE′ refers to the side of substructure E along the interface ΓEE′ ;

especially FEE′ (respectively FE′E) is the action of the same interface on sub-

structure E (resp. on the substructure E′). The examples that are proposed in

this paper only use compatible meshes on the interfaces (figure 2). The inter-

face is composed of pairs of nodes each of them belonging to one of the opposite

substructures. The nodal values in the velocities and forces vectors are ordered

such that the interface equations can be written under a vectorial form.

Note that subscript EΓ refers to a data structure that is related to each

substructure independently, while subscripts EE′ and E′E refer to the same

quantities, but related to an interface-oriented data structure. Obviously, data

transfers are required between the two descriptions. Each of these two descrip-

tions will be used in the following, depending if the expressions are related to a

substructure or an interface.
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2.4. The iterative scheme

The iterative scheme that is used here is derived from the LATIN method

proposed by Pierre Ladevèze [15]. The main principle is to separate the equa-

tions in order to avoid the solving of both a global and a nonlinear problem.

As the behaviour of the material is linear, a solution is completely given by

the boundary displacement and force vectors on each substructure or by the

interface displacement and forces on each interface: s =
⋃

E
(U̇EΓ, FEΓ) =

⋃
Γ

EE′
(U̇EE′ , FEE′ , U̇E′E , FE′E) . The solution procedure is to search solutions

s that will alternatively satisfy the global linear equations (kinematic admis-

sibility and equilibrium on the substructure) and then to the local equations

(interface equations). This leads to a decoupling of the problem.

This procedure can be summarized on Figure 3 for which sn is the solution

that satisfies to the global equations at iteration n and ŝ
n+ 1

2

is the one that

satisfies to the interface equations between iterations n and n+1 (subscript n + 1
2

is given away in the following). The solution sn lies in a subspace represented

by a straight line because it corresponds to linear equations. The solution ŝ lies

in a subspace represented by a curved line because the interface behavior can

be nonlinear for more complex connection conditions.

Searching for sn is called the linear stage, and searching for ŝ, the local

stage. At each stage, the solutions are found thanks to local and linear search

directions E− and E+, represented by straight lines on Figure 3.

2.4.1. Local stage

At this stage, a solution ŝ is searched from the known solution of the previous

linear stage sn and with the upward search direction E+. This search direction

is defined interface by interface as for a augmented Lagrangian procedure:

F̂EE′ = FEE′ + k( ̂̇
UEE′ − U̇EE′) (5)

and

F̂E′E = FE′E + k( ̂̇
UE′E − U̇E′E), (6)
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where k is a scalar parameter. As for augmented Lagrangian formulations, the

rate of convergence may depend on this parameter, but the final solution does

not.

The constitutive relations of the interface for a perfect connection behavior

are:

̂̇
UEE′ = ̂̇

UE′E ; F̂EE′ + F̂E′E = 0. (7)

Using the search direction, the interface vectors can thus be computed as:

F̂EE′ = −F̂E′E =
1

2
(FEE′ − FE′E) −

1

2
k(U̇EE′ − U̇E′E) (8)

and

̂̇
UEE′ = ̂̇

UE′E =
1

2
(U̇EE′ + FEE′) −

1

2k
(FEE′ + FE′E). (9)

The resolution of the local stage for frictional contact behavior is presented later

in the paper.

2.5. Discretization

Due to the form of the search directions (5) and (6), a discretization of the

interface forces is also adopted. The same finite element interpolation functions

are used for both the velocities and the forces on each side of one interface. Thus,

the force vectors F̂EE′ and F̂E′E contain the nodal values of the components

of the forces. On substructure E, FEΓ is a vector of finite element generalized

forces that is an assembly of the forces coming from each interface. So, FEΓ is

linked to the boundary force vectors F̂EE′ by a unit interface mass matrix.

2.6. Linear stage

At this stage, a solution sn is searched from the known solution of the

previous local stage ŝ and with the downward search direction E−. On each

interface, this search direction is conjugate to the previous one:

FEE′ = F̂EE′ − k(U̇EE′ − ̂̇
UEE′). (10)

Assembled on the neighboring interfaces on substructure E, it leads to:

FEΓ = F̂EΓ − k(U̇EΓ − ̂̇
UEΓ). (11)
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The global linear system to solve at this stage is obtained with this search

direction (11), the boundary conditions (1) and the equilibrium of substructure

E (2):

KEUE + CT

EΓkCEΓU̇E = F d

E
+ CT

EΓ(F̂EΓ + k
̂̇
UEΓ). (12)

This problem is of first order in time. It is solved at each time step starting

from initial conditions by the use of an implicit integration scheme. Finally, this

gives the boundary velocity U̇EΓ = CT

EΓU̇E and the boundary forces using the

downward search direction at each time step.

2.7. The frictional contact interface

Contact problems are characterized by constraints such as non-penetration

conditions, and an active area of contact - that is, an area where contact effec-

tively occurs - that is unknown a priori. For these reasons, the problems lead to

stiff non-linear systems of equations. Several approaches exist for solving static

contact problems [18, 19, 20]. In most of them, the numerical methods that are

employed for enforcing the contact constraints can be grouped into Lagrange

multiplier and penalty methods. The penalty methods [21, 22] are closely related

to the regularization of the contact constraints. They are usually formulated in

terms of the displacement variables, and therefore are primal methods. They

allow treating contact as a material behavior, as exemplified by the method of

joint finite elements [23]. Penalty methods can experience various numerical

difficulties, especially ill-conditioning, when a too large or too small penalty

parameter is introduced. Lagrange multiplier methods are dual methods where

the multipliers, which represent the contact reaction forces, are introduced in

order to enforce exactly the non-penetration conditions. Augmented Lagrange

multiplier methods [24, 25, 26, 27, 28] result in mixed formulations involving

both displacement and force unknowns. The numerical solution schemes under-

lying both the Lagrange multiplier and augmented Lagrange multiplier methods

are often related to the Uzawa algorithm [29, 30].

Considering the strategy that was presented in the previous sections, the

approach that is proposed here is a mixed domain decomposition method for a
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contact and friction problem of Augmented Lagrangian type. A dual domain

decomposition method for the same type of problems was recently proposed in

[31]. Moreover, some recent examples of domain decomposition strategies for

contact problems are proposed in the following papers [32, 33, 34].

The following sections describe the form of function f in the case of classical

Coulomb’s frictional contact conditions. Considering that the contact status

(closed, open, sticking, sliding) can be different on each point of the interface,

the local stage is solved node by node. As compatible meshes are used on the

interfaces (figure 2), one point corresponds to two opposite nodes. WEE′ is the

three-component displacement vector that is the restriction of the boundary

displacements to the considered node on substructure E side and WEE′ on

substructure E′ side. TEE′ and TE′E are the three-component force vectors

that is the restriction of the boundary forces to the same nodes.

In order to separate the normal behavior and the tangential one, local co-

ordinates are used. The outward local normal at each point of an interface is

defined by the three-component vector N . N is oriented from substructure E

towards substructure E′. The 3 × 3 projection operator on the local tangential

plane P is defined by :

PW = W − (NT W )N. (13)

For the definition of contact and sliding conditions, the jump in displacement

on the interface is:

DEE′ = (WE′E − WEE′). (14)

2.7.1. The unilateral contact problem

At each time step, the non-penetrating contact conditions are:

• Open: if NT D̂EE′ > 0 then NT T̂EE′ = NT T̂E′E = 0,

• Contact : if NT D̂EE′ = 0 then NT T̂EE′ = −NT T̂E′E ≤ 0.

These conditions can be simply written as:

• Open: cn > 0,
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• Contact : cn ≤ 0,

where the contact indicator cn is:

cn =
1

2
NT D̂EE′ −

1

2k
NT (T̂E′E − T̂EE′). (15)

2.7.2. The friction problem

At each time step, Coulomb’s friction conditions can be written as:

• Stick : if ‖PT̂EE′‖ < µ|NT T̂EE′ | then P
̂̇
DEE′ = 0,

• Slip: if ‖PT̂EE′‖ = µ|NT T̂EE′ | then ∃λ > 0 such that P
̂̇
DEE′ = −λT̂EE′ .

These conditions can be simply written as:

• Stick : ‖Gt‖ ≥ µ|NT T̂EE′ |,

• Slip: ‖Gt‖ < µ|NT T̂EE′ |,

where the slip indicator Gt is the vector:

Gt =
k

2
P

̂̇
DEE′ −

1

2
P (T̂E′E − T̂EE′). (16)

2.7.3. Resolution

The resolution is carried out by projecting the solution of the previous linear

stage onto the contact and friction conditions following the search directions:

(T̂EE′ − TEE′) = k(̂̇WEE′ − ẆEE′), (17)

(T̂E′E − TE′E) = k(̂̇WE′E − ẆE′E). (18)

The status (Open, Contact, Stick or Slip) of each point of the interface is ob-

tained explicitly since the indicators cn and Gt can be derived from the previous

solution using the search directions. An implicit time integration scheme is used

to calculate the contact indicator cn using an expression in terms of the displace-

ments (see Eq. 15):

D̂
(t+1)
EE′ = D̂

(t)
EE′ + ∆t

̂̇
D

(t+1)
EE′ . (19)
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The initial condition of the time integration is used to take into account the

initial gap. Thus, the contact indicator is written as:

cn =
1

2∆t
NT D̂EE′ −

1

2k
NT (T̂E′E − T̂EE′), (20)

in order to obtain, using the time integration (Eq. 19) and the search directions

(Eq. 17 and 18):

cn(t+1) =
1

2∆t
NT D̂

(t+1)
EE′ −

1

2k
NT (T̂

(t+1)
E′E

− T̂
(t+1)
EE′ )

=
1

2
NT ̂̇

D
(t+1)
EE′ −

1

2k
NT (T̂

(t+1)
E′E

− T̂
(t+1)
EE′ )

+
1

2∆t
NT D̂

(t)
EE′

=
1

2
NT Ḋ

(t+1)
EE′ −

1

2k
NT (T

(t+1)
E′E

− T
(t+1)
EE′ )

+
1

2∆t
NT D̂

(t)
EE′ .

So

cn(t+1) =
1

2
NT Ḋ

(t+1)
EE′ −

1

2k
NT (T

(t+1)
E′E

− T
(t+1)
EE′ ) +

1

2∆t
NT D̂

(t)
EE′ . (21)

Thus, the contact indicator is calculated incrementally from the known solu-

tion of the previous global stage. The slip indicator Gt (Eq. 16) is calculated

explicitly using the search directions (Eq. 17 and 18):

Gt =
k

2
PḊEE′ −

1

2
P (TE′E − TEE′). (22)

2.8. Properties of the iterative scheme

As a conclusion, this iterative scheme presents the following properties:

• the strategy gives an approximation of the solution, over the complete

time interval, at each iteration,

• the problems that must be solved on each substructure, at each time step

and each iteration (12), can have a large size, depending on the way the

assembly is decomposed and on the mesh size. However, It is important to

notice that the involved operators do not depend on the interface parame-

ters and on the contact statuses. Thus they can be factorized once during

the initialization. This reduces the numerical cost of each iteration.
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• when frictional contact is involved, the resolution of the local stage is

completely explicit and does not require any iterative process,

• as any Augmented Lagrangian type scheme, the convergence is not rapid

but the algorithm is very robust and the iterations are not very costly.

The solution that is obtained when convergence is reached is not affected

by the parameter k, which affects only the rate of convergence

• The quality of the solution is measured using an error indicator that gives

an energy norm of the distance between two successive solutions ŝ and sn.

The expression of this error indicator is given in [12]

• For contact and friction problems where discontinuities can occur, the res-

olution strategies can be very sensitive to the time and space discretization.

The LATIN method acts as a regularization method and present a smooth

convergence. This property has already been shown for buckling problems

and is presented in [15].

3. Taking into account structural changes

3.1. Principles of multiple resolution

In order to calculate the influence of the design parameters, an multiple

resolution strategy using the LATIN method has been implemented [11]. During

the design process, several configurations, corresponding to different values of

the sets of design parameters, must be simulated. Thus, some very similar

calculations must be carried out in order to get the solutions corresponding to

the different sets of design parameters. Multiple resolution means that, the

similarity of the problem is used in order to reduce the computational costs.

The numerical cost is expected to be less than the cost of one computation

multiplied by the number of studied configurations.

Our strategy consists in accelerating the calculation of one solution by using

another solution as an initialization. Using the LATIN method, the iterative

resolution for one set of parameters is initialized by the solution calculated for
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another set. This is done very simply by changing the parameters between two

successive iterations. The strategy is described in figure 4. As each iteration

of the LATIN method generates a solution on the whole time interval, the ini-

tialization overacts on the whole time interval. Due to the strong mechanical

content of this initialization, the number of iterations needed to reach conver-

gence for this new calculation is reduced. Indeed, if the two solutions are close,

the number of iterations can be very small.

So far, the parameters whose influence have been taken into account are

associated to the connection behavior: gaps, pre-strains, friction coefficient.

For such design parameters, this multiple resolution strategy leads to a great

reduction of computational costs as shown in [12]. In the example presented in

this last paper, the initialization solution was the one computed just before. An

optimization of the choice of the initialization is presented in [35].

In the present work, the same multiple resolution strategy is used to study

cases where the design parameters are the presence of the different fasteners

(bolts, screws, . . . ). In order to study the influence of missing fasteners on the

behavior, a first iterative calculation, including all the fasteners, is performed

until convergence is reached. Then, the substructures that correspond to missing

fasteners (bodies, heads, nuts, . . . ) are de-activated. De-activation means that

the substructures stay in the model but do not interact with the neighboring

interfaces. Then, the iterative process is continued until convergence to the

solution of this new configuration. As the iterative process is continued, the

calculation of this last solution is then initialized by the solution of the previous

situation where the fastener is present.

De-activating a substructure is a very simple action. The linear stage of the

LATIN method is not performed on such structures. It only returns a null force

field

FEΓ = 0, (23)

and the velocity field associated by the search direction:

U̇EΓ = ̂̇
UEΓ −

1

k
(FEΓ − F̂EΓ) = ̂̇

UEΓ +
1

k
F̂EΓ. (24)
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The next iterations, until convergence, calculate the new solution for the as-

sembly without the missing fasteners, as if the interfaces between the missing

substructures and the rest of the assembly were prescribed null force interfaces.

At the end of this second calculation, the concerned substructures are re-

activated and some others are de-activated in order to study the influence of

another missing fastener in a third calculation.

3.2. Improvements

As presented in the examples at the end of this paper, it is often observed

that the solution for one missing fastener is closer to the solution with no missing

fasteners than the solution for any other missing fastener. In our activation de-

activation process during the iterations, the calculation for one missing fastener

is naturally initialized by the solution of the previous calculated solution that

often corresponds to another missing fastener.

In order to initialize each new calculation with the solution obtained for

the assembly featuring all its fasteners, this last solution is computed first and

then saved. A solution consists only in the velocity and force vectors on each

interface s =
⋃

Γ
EE′

(U̇EE′ , FEE′ , U̇E′E , FE′E), at each time step. Indeed, as

the behavior of the substructures is linear, the internal solutions can easily be

reconstructed from the boundary fields. Such a solution corresponds to a small

amount of stored data. Each time a new calculation is started, i.e. each time

fastener substructures are deactivated or reactivated, this solution is restored:

forces and velocity vectors of the linear stage are set back to the stored values

before continuing the iterations. Thus, the new calculation is initialized by the

stored solution. The efficiency of this improvement based on the selection of the

initial solution is shown on the next example.

4. Example

In the following examples, only linear material behavior is considered. This

means that the only non-linearities are unilateral contact and friction. One only
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seeks for the effects of missing connecting elements on the distribution of forces

and the loading conditions on the most loaded element. These effects are studied

under the assumption of small deformations and displacements. From these

results a local re-analysis can be conducted in order to simulate the behavior of

the most loaded connector. This last simulation can include non-linear behavior

such as plasticity, damage and failure. Such simulations are not presented here.

As announced in the introduction, the proposed examples present conformal

meshes on the contact zones. The meshes are obtained from CAD models using

an automatic procedure. The CAD model does not include the connecting ele-

ments (bolts or screws) but only their localization and their type. A geometrical

patch is automatically introduced where an element is located and conformal

meshes are automatically built on this patch.

4.1. First example : bolted connection

This example deals with the assembly of three aluminium plates fastened

by two steel bolts (figure 5). The assembly is submitted to traction. One seeks

for the solution for the case where the two bolts are present in the assembly

and the solutions in which each one of the bolts is successively missing. For

symmetry reasons, only one fourth of the assembly is modeled (figure 6). A

coarse mesh (7,819 dof) and a fine one (169,380 dof) are used for his example.

Figure 7 presents the fine mesh and the distribution of von Mises equivalent

stress for the three studied configurations. Configuration #1 includes both the

bolts. Left bolt is deactivated in configuration #2 and right bolt is deactivated

in configuration #3.

Figure 8 shows the evolution of the LATIN method convergence indicator

along iterations. One can easily notice the strong discontinuity of the evolution

whenever substructures are activated or dis-activated. The number of iterations

needed to reach convergence for the second calculation is only 40% of the number

needed for the first calculation. The strong effect of the initialization is clearly

shown here.

On the contrary, the number of iterations of the third calculation is the same
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as for the first one, when no solution selection technique is used. On such a two

bolt structure, it is obvious that the solution of the second configuration can

not be a useful initialization for the third one. When this last calculation is

initialized with the solution of the first calculation (see figure 9), acceleration is

observed. The efficiency of the acceleration is the same as the one observed for

the second calculation.

Table 1 presents the number of iterations for each calculated configuration

and for three different used strategies:

• without multi-resolution acceleration: one different calculation for each

configuration

• multi-resolution without initial solution selection: each calculation is ini-

tialized by the calculation of the previous one,

• multi-resolution with initial solution selection: calculations #2 and #3

are initialized by the solution of calculation #1 (two bolts present).

5. Second example : wheel-shaft assembly

This example deals with the assembly of a gear wheel on a hollow shaft using

eight pre-strained screws (figure 10). The hollow shaft is cantilevered on one

end and the wheel is submitted to a force that corresponds to the force applied

on the tooth of an helical gear.

Figure 11 presents the distribution of the von Mises equivalent stress for each

of the nine calculated configurations. Configuration #1 is the assembly with its

eight screws. For each configurations #2-9, one of the screws is missing.

Figure 8 shows the evolution of the LATIN method convergence indicator

along iterations. One can easily notice the strong discontinuity of the evolution

whenever substructures corresponding to screws are activated or deactivated.

The number of iterations needed to reach convergence for configuration #1 is

nearly the same as the total number of iterations needed to get the solutions for

configurations #2-9 (see figure 12).
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6. Conclusions

An accelerated strategy for the quick calculation of the influence of missing

fasteners on the behavior of connections was presented. It is based on the use

of a decomposition of the assembly into substructures and interfaces and on an

iterative resolution scheme based on the LATIN Method. The reusing of stored

solutions for initialization allows a strong reduction of the number of calculated

iterations and so of the computational costs. The model that is stored in the

computer stays the same during the whole process. Structures corresponding to

missing fasteners are simply deactivated. This limits the data exchanges. More-

over, the main operators remain constants during the process and are factorized

only once at the beginning. The proposed examples of assemblies showed the

efficiency of the approach and some possible improvements.
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Figure 7: Fine Mesh and Von Mises equivalent stress for the three studied configurations

(MPa)
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Figure 8: Error Indicator along the iterations when each calculation is initialized by the
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Figure 10: Studied problem: eight bolt connection between a wheel and a shaft

Mesh Coarse (7,812 dof) Fine (169,380 dof)

Type direct w/o imp. w imp. direct w/o imp. w imp.

Calculation #1 186 186 186 255 255 255

Calculation #2 190 75 75 262 55 55

Calculation #3 192 175 80 268 85 55

Total 568 436 339 785 395 365

Table 1: Computational costs (numbers of iterations) with or without improvement based on

the selection of the initial solution
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Figure 11: Von Mises equivalent stress on each one of the nine calculated configuration (MPa)
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Figure 12: Error indicator for the complete simulation (nine calculations).
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