Ultramicrotomy reveals the crystallographic information on the sectioned surface of the metallic block specimen

Adrian Mihai Sandu, Helmut Gnaegi, Johannes J.L. Mulders, Henny W.
Zandbergen

To cite this version:

Adrian Mihai Sandu, Helmut Gnaegi, Johannes J.L. Mulders, Henny W. Zandbergen. Ultramicrotomy reveals the crystallographic information on the sectioned surface of the metallic block specimen. Philosophical Magazine, 2010, 90 (29), pp.3817. 10.1080/14786435.2010.495040 . hal-00605959

HAL Id: hal-00605959

https://hal.science/hal-00605959

Submitted on 5 Jul 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ultramicrotomy reveals the crystallographic information on the sectioned surface of the metallic block specimen

Journal:	Philosophical Magazine \& Philosophical Magazine Letters
Manuscript ID:	TPHM-10-Feb-0055.R1
Journal Selection:	Philosophical Magazine
Date Submitted by the	
Author:	12-May-2010
Complete List of Authors:	SANDU, Adrian; Delft University of Technology, Faculty of Applied Sciences GNAEGI, Helmut; Diatome Ltd. MULDERS, Johannes; FEI Electron Optics ZANDBERGEN, Henny; Delft University of Technology, Faculty of Applied Sciences
Keywords:	dislocations, EBSD, TEM, SEM
Keywords (user supplied):	ultramicrotomy

Ultramicrotomy reveals the crystallographic information on the sectioned surface of the metallic block specimen

A.M. Sandu ${ }^{1,2^{*}}$, H. Gnaegi ${ }^{3}$, J.J.L. Mulders ${ }^{4}$ and H.W. Zandbergen ${ }^{2}$
1. Materials innovation institute (M2i), Mekelweg 2, Delft, NL-2628 CD, The Netherlands
2. Delft University of Technology, Faculty of Applied Sciences, Lorentzweg 1, Delft, NL-2628
CJ, The Netherlands
3. Diatome Ltd, Biel, CH-2501, Switzerland
4. FEI Electron Optics, Achtseweg Noord 5, NL-5600 KA Eindhoven, The Netherlands
* Corresponding author
4 February 2010
Adrian M. SANDU
First name: Adrian
Middle name initial: M.
Family name: SANDU
Postal address work: Lorentzweg 1, NL-2628 CJ Delft, The Netherlands
Email address work: sandu@m2i.nl
Telephone number work: +31-15-278-4796
FAX number work: +31-15-278-6730
Helmut GNAEGI
First name: Helmut
Family name: GNAEGI
Postal address work: P.O. Box 1164, CH-2501 Biel, Switzerland
Email address work: helmut.gnaegi@diatome.ch
Telephone number work: +41-32-332-9113
Johannes J.L. MULDERS
First name: Johannes
Middle name initials: J.L.
Family name: MULDERS
Postal address work: Achtseweg Noord 5, NL-5600 MD Eindhoven, The Netherlands
Email address work: jjm@fei.com
Telephone number work: +31-40-235-6725
Henny W. ZANDBERGEN
First name: Henny
Middle name initial: W.
Family name: ZANDBERGEN
Postal address work: Lorentzweg 1, NL-2628 CJ Delft, The Netherlands
Email address work: h.w.zandbergen@tnw.tudelft.nl
Telephone number work: +31-15-278-2266

Abstract

Ultramicrotomy is widely regarded as a thin section preparation method for transmission electron microscopy (TEM) investigations. Here, we show that ultramicrotomy can also provide a simple

Comment [A1]: English check path for microstructure analysis and assessment of mechanical properties for the sectioned blockface. Furthermore, electron backscatter diffraction (EBSD) analysis can be applied directly on ultramicrotomed surfaces without any additional polishing or etching. EBSD analysis relat inherent cutting artifacts to the crystallographic orientations of the grains, hence delivering $\equiv \mathrm{h}$ assessment of their deformation resistance. TEM investigations revealed that crystallographicrelated cutting artifacts, which exhibit a wave-like pattern, are the result of the dislocation pile-ups close to the knife-specimen interface. We consider that this technique is suitable to be with EBSD for three-dimensional microstructure reconstructions when used for serial sectioning of large volumes.

Keywords
ultramicrotomy, electron backscattering diffraction, transmission electron microscopy, dislocations

1. Introduction

Microstructure is analyzed using classic techniques such as imaging a mechanically polished surface or a thin section in an optical (OM), scanning (SEM) and/or transmission electron microscope (TEM). However, many parameters of the complex microstructural features, such as \quad Dip sivity, spatial distribution and true size and shape, cannot always be determined accurately from two-dimensional (2D) images [1] and require a three-dimensional (3D) approach.

Many of 3D visualization methods were initially developed by life sciences community, whereby they combined the ex-sit al sectioning by ultramicrotomy with successive TEM imaging [2,3]. This laborious 3D technique was simplified when the serial ultramicrotomed block-face was directly imaged with an optical microscope. Surface imaging microscopy (SIM) [4] facilitated 3D sample reconstruction for larger volumes than those obtained by TEM Δn increase in the resolution for both for biological and non-metallic materials, was ac. E d with the use of serial block-face scanning electron microscopy
(20. (SBFSEM) [5,6] which couples conventional SEM with in-situ ultramicrotome.

The primary tools for serial sectioning of metallic specimens are mechanical polishing [7,8] and recently, the focused ion beam (FIB) [9,10]. The latter was recently employed and can be coupled with electron backscattering diffraction (EBSD) analysis which, h \quad r, requires a high-quality finish for the specimen surface since topographical features and/or preparation induced deformation may alter the Kikuchi pattern quality [11]. FIB sectioning delivers high surface finish for $\operatorname{EBSD}[9,10,12]$ but the procedure itself is time consuming when compared to the high data acquisition speed of the new [13-16] EBSD cameras.

Ultramicrotomy performs accurate serial sectioning over larger areas, while not subjecting the sectioned block-face to ion beam influences [17]. Here, we introduce ultramicrotomy sectioning as a fast sample preparation method that exposes the block-face microstructure of metallic specimens in just a few seconds and directly facilitates EBSD investigation. In particular what was investigated was whether the cutting artefacts hamper the EBSD analysis or lead to an undesired surface roughness. Also, we analyzed whether the cutting process produces microstructural surface features that can further speed up the 3D analysis process. Fo ${ }^{\rho}$ ince if grain boundaries can be displayed in SEM imaging then only a fraction of the sample surface needs to be analysed by EBSD because the shape of the grains can be deter I Ifrom the grain boundary locations. We show, based on TEM and EBSD results, that most of the knife-induced strain is limited to the upnermost region of the blockface. Furthermore, we show that grain boundaries are well disp in SEM and optical
 microscopy and that so \equiv ttting effects can be used to quickly assess their deformation resistance in respect to the cutting direction. We theorize that all these can speed up the 3D grain analysis by a factor of 10^{3}, allowing for 3D analysis of large volumes (e.g. $200^{3} \mu \mathrm{~m}^{3}$) instead of the $\sim 30^{3} \mu \mathrm{~m}^{3}$ that can be obtained using a FIB for sectioning.

2. Experimental procedure

A laboratory elaborated 6016 aluminium alloy containing $0.25-0.6 \mathrm{wt} . \% \mathrm{Mg}, 1-1.5 \mathrm{wt} . \% \mathrm{Si}$ was subjected to ultramicrotomy sectioning. The sample sectioning employed a Leica EM UC6 ultramicrotome using a Diatome ultra 35° diamond knife with a cutting speed of 30 mm / s. Rectangular specimens with the base parameter of 1 mm were polished to form a fine tip. 50 serial sections with 500 nm depth of cut were performed until a surface of the desired size was obtained at an undisturbed depth from the previous polishing. Afterwards, each specimen was sectioned with depths of cut of $30,100,500,1000$ and 5000 nm , respectively. The average roughness $\left(\mathrm{R}_{\mathrm{a}}\right)$ of the ultramicrotomed block-faces was measured with a Veeco WYKO 3300 interferometer. The SEM investigations were performed using a FEI Strata 235 DB operated at 10 kV . The EBSD analysis was carried out at an accelerating voltage of 25 kV with a scan step size of 250 nm on a sample tilted 70°. Electron transparent lamellas for TEM observations were prepared via the focused ion beam method and investigated with a Philips CM30T microscope operated at 300 kV .

3. Results and discussion

3.1 Scanning electron microscopy / electron backscattered diffraction investigations

Figure 1(a) shows a SEM micrograph for the block-face specimen after ultramicrotomy sectioning at a feed (depth of cut) of 30 nm . The EBSD scanned area ($40 \times 10 \mu \mathrm{~m}^{2}$) is marked with a white rectangle which includes a knife-induced groove and a few fine scratches (the white arrows). Figure 1(b) exhibits the EBSD orientation map from three grains marked as "A", "B", "C" revealing the existence of sharp grain boundaries. The groove position is indicated by the high number of randomly indexed points. Figure 1(c) shows the image quality (IQ) map which describes the sharpness of the Kikuchi bands. The patterns may become diffuse due to distortions of the crystal lattice induced by dislocations or precipitates
[18]. In this experiment the analyzed grains exhibit light grey to white IQ values indicating
Comment [A21]: English check boundary which contains the crystal lattices of the neighbouring grains and hence a mix of the two patterns.

Figure 2(a) shows the SEM micrograph for the block-face specimen after ultramicrotomy sectioning at a feed of $1 \mu \mathrm{~m}$. The EBSD scanned area $\left(48 \times 18 \mu \mathrm{~m}^{2}\right)$ is marked with a white rectangle and includes a wave-like feature as indicated by the white arr the orientation map (Fig. 2(b)), five grains were identified: "D", "E" - area marked by white arrow in Fig. 2(a), "F", "G" and "H" respectively. The IQ map (Fig. 2(c)) also exhibits easily identifiable grain boundaries since, as mentioned before, they have lower IQs than the grains. The IQs for grains " E " and " F " exhibit a cyclic variation from lighter to darker grey with a wavelength of $1 \mu \mathrm{~m}$. These "waves" are oriented perpendicular to the cutting direction and their arrangement resembles the wave-lik ure indicated in Fig. 2(a). They may be associated to the local internal strains found within 40 nm below the sample surface which constitutes the diffraction volume [19]. The diffraction volume is a function of the electron beam diameter, the applied accelerating voltage, the specimen atomic number and its tilt angle during EBSD analysis. Typically, the specimen surface makes a 20° angle in respect to the incident beam. For this high tilt, the depth reached by the electron p S between 10 to 40 nm [19]. Therefore, the backscattered electrons the srate the Kikuchi patterns, escape the specimen surface relatively undeviated after few inelastic scattering events [19]. In the case of grain "H", the relatively high IQ values suggest a rather limited knife-induced strain at the cutting interface and hence also in the sampled diffraction volume.

Comment [A27]: Referee comment number 2

Comment [A28]: Referee comment number 2

3.2 Light interference microscopy investigations

The topography of the block-face specimen after ultramicrotomy sectioning at a feed of 30 nm is investigated in Fig. 3(a) by light interference analysis. T rage roughness $\left(\mathrm{R}_{\mathrm{a}}\right)$ is 11 $\pm 13 \mathrm{~nm}$ which is comparable to lapping [20] $\sim 10 \mathrm{~nm}$, electrolytic abrasion ($\sim 25 \mathrm{~nm}$) or super finishing [21]. Some grains ("B" and "C") exhibit different heights with respect to each other, therefore a surface profile measurement was performed (black line in Fig. 3(a)). In Fig 3(b), the left side of the plot represents the surface profile of grain "B" which exhibits most of its values above the reference line $\left(\mathrm{P}_{\mathrm{h}}=0\right)$. The right side of the plot originates from grain "C" and most of its values are under the reference line. The average dit ee in height between these grains is 13 nm . A bulge-dimple feature is marked at the grain boundary by the black triangle in Fig. 3(b). The height difference between the top of the bulge (grain "B" side) and the bottom of the dimple (grain "C" side) is 30 nm . The width of the dimple is $\sim 2 \mu \mathrm{~m}$.

The topography of the block-face specimen after ultramicrotomy sectioning at a feed of $1 \mu \mathrm{~m}$ is exhibited in Fig. 3(c). The R_{a} is $8 \pm 14 \mathrm{~nm}$ and is comparable with the one obtained after sectioning at a feed of 30 nm . The grains boundaries can be identified along with some wave-like features marked with white arrows. Figure 3(d) presents the ${ }^{\rho}$ ofile of a wavelike feature (indicated by the black line in Fig. 3(c)) while the positions of the grain boundaries are indicated by black triangles. Between the grain boundaries there appears a pronounc. \ldots pling of the grain surface which corresponds to the wave-like pattern. The wave has a wavelength of $\sim 1 \mu \mathrm{~m}$ and the peak-valley difference varies from $\sim 5 \mathrm{~nm}$ to ~ 20 nm. Similar fluctu [22] were reported in thin TEM sections of aluminium prepared by ultramicrotomy. A periodic change of the section's thicl with a wavelength of approximately $1 \mu \mathrm{~m}$ was observed.

Comment [A31]: Additional change

Comment [A32]: Additional change

Comment [A33]: English check

Comment [A34]: English check

3.3 Analysis of the knife-induced cutting artefacts

Studies on the microcutting of aluminium single crystals [23-26] have shown that a change in cutting direction with respect to crystal orientation leads to a change in the values of the cutting forces that dictate the surface finish. For instance, the cutting force was lower when cutting was performed parallel to $\{001\}$ planes along [010] direction, compared to cutting along the [110] direction [22]. One may interpret these results as a change in the defor-mo: nn resistance of the single crystal with respect to the cutting direction. Hence, given that vur specimens are polycrystalline materials, one may expect each grain to have different cutting behaviour. We can analyze this process through a simple shear deformation, whereby each grain is considered as a single crystal with respect to cutting direction. The orientation of a given crystal, in regards to the cutting direction, can be described by an orientation factor [27] \mathbf{m} whose higher absolute values show for what specific slip system the grain deforms easier:

$$
\begin{equation*}
m=\cos k * \cos \Theta * \cos \alpha+\sin k * \cos 2 \Theta * \sin \alpha \tag{1}
\end{equation*}
$$

where: k is the angle between the slip direction of the considered crystallographic system in the grain and the direction of the applied stress, Θ is the angle between the normal to the shear plane and the axis perpendicular to the sample surface (or grain surface in this case) and α is the angle between the applied stress direction and one of the axes of the sample coordinate system. Now, considering that α is zero i.e. the applied stress direction is parallel to sample surface, the formula becomes:

$$
\begin{equation*}
m=-\cos k * \cos \Theta \tag{2}
\end{equation*}
$$

The analysis of the \mathbf{m} values (see Supplementary information - Table 1) after sectioning at a feed of 30 nm revealed that grain "C" deformed the easiest, followed by grain "A" and grain " B ". This analysis shows that the larger height of the grain " B " is related to an
elastic recovery following the knife passing its position, as seen in other investigations regarding nanometric cutting [28]. Moreover, the dimple is on the "softer" grain " C " side, while the bulge is on the "harder" grain "B" side (Fig 3(a)). This effect is also observed in steels, at the interface between the harder pearlite and the softer ferrite [29] analysis of m after sectioning at a feed of $1 \mu \mathrm{~m}$ indicated that grain " E " opposed more to the deformation than grair "F", Therefore, the wave-like features occurred predominantly in the grains with a higher delunation resistance (white arrows in Fig. 3(c)). ultramicrotomy sectioning at a feed of 500 nm revealing a relatively low dislocation density in its bulk. Some dislocations that exceed $1.5 \mu \mathrm{~m}$ in length (white single-headed arrows) originate close to the knife-specimen interface and are oriented parallel to $<2-20>_{\mathrm{Al}}$ dir s. Figure 4(b) presents the knife-specimen interface of an area containing some wave-like features. This interface exhibits a high density of dislocation pile-ups aligned parallel to the cutting direction. They are discontinuous along the cutting interface at depths ranging between 75 to 150 nm . Other pile-up dislocations run parallel to the cutting interface at depths between 200 and 300 nm (double-headed arrows in Fig. 4(a-d)) on the entire length of the TEM specimen.

Figure 4(d) exhibits a relatively "flat" top-region of the specimen with a lower density of dislocations close to the cutting interface when compared to the wave-like feature region. Dislocation pile-ups aligned parallel to the top surface are found at a depth of $\sim 200 \mathrm{~nm}$ with no dislocations running along $\langle 2-20\rangle_{\mathrm{Al}}$ directions are present. Thus, it may be inferred that the line dislocations are associated to the presence of the wave-like features presence. The overall assessment of the knife-induced strain in the sample's bulk is given by the selected
3.4 Transmission electron microscopy observations on cross sectio. microtomed surfaces
Figure 4(a) exhibits a bright field TEM micrograph of the top region of the sample after
area diffraction pattern (the inset in Fig. 4(d)) which exhibits sharp and undistorted reflections. This is an indication that the high dislocation density at the cutting interface does not change sig ttly the overall lattice orientation of the bulk grain which is sampled by the electron probe during EBSD analysis.

TEM observations revealed that for a "smooth" area, the knife-induced strain (such as dislocation pile-ups) is located beneath the depth of the diffracting volume for FRSD and does not affect the quality of the Kikuchi patterns. Therefore, the EBSD ima does not exhibit any variation of the grey levels, as it was also seen after 30 nm sectioning in Fig. 1. In the case of the "wave-like feature" the dislocations pile-ups accommodate part of the induced strain close to the cutting interface. They do not form a continuous damaged region and their depth also varies, in some cases being within the diffracting volume for EBSD. Thus, the strain sensitive IQ map exhibits periodic features, as shown in Fig. 2(c) for the grains " E ", " F " and " G ".

4. Conclusions

We have shown that EBSD maps can be obtained directly from the aluminium block-face specimens sectioned on an ultramicrotome for depths of cut up to $1 \mu \mathrm{~m}$ and were not hampered by inherent cutting artefacts. They are related to the relative orientation of the grains with respect to the cutting direction. The grain boundaries are clearly visible and this facilitates a precise control of the depth of the subsequent serial sectioning when ren grain/grains with certain orit ms , in the particular case of aluminium alloys. TEM observations showed the "smooth" surfaces exhibit pile-up dislocations at a depth of 200 300 nm whereas the wave-like features consist of pile-up dislocations within 150 nm from the cutting interface, influencing the IQ maps. The mechanical properties of the grains can be readily assessed for low depth of cut based on the height difference with respect to each other.

Comment [A48]: Referee comment number 3

Comment [A49]: Additional change

Comment [A50]: Referee comment number 3

For higher depth of cut the mechanical properties of the grains can be assessed based on the wave-like patterns. Ultramicrotomy sectioning is a technique with high potential for microstructure analysis of 1 stallic materials, in particular for aluminium specimens which require relatively large volumes to be serial sectioned in a short time. The enhanct in boundary visibility makes easier the control of serial sectioning in order to expose a certain grain. This technique can be potentially devised in a computer-controlled automated set-up which combines an in-situ ultramicrotome, a SEM and/or EBSD for imaging and a FIB for eventual re 1 of the strained region of the block-face after cutting, since other metallic materials may exhibit different deformation behaviours.

Comment [A52]: English check

Comment [A53]: Referee comment number 3

Comment [A54]: English check

Acknowledgments

This research was carried out under the project number MC7.05209 in the framework of the Research Program of the Materials innovation institute M2i (www.m2i.nl). The authors would like to thank Prof. Leo Kestens and Dr. Jurij Sidor (TU Delft) for supplying the study material. A.M.S acknowledges the helpful discussions with $\overline{\mathrm{D}} \overline{\mathrm{r}}$. Octav Paul Ciuca of the Toyohashi University of Technology / National Institute for Materials Science, Japan.

References

[1] R.T. DeHoff, J. of Microsc. 131 (1983) 259.
[2] J.K. Stevens, T.L. Davis, N. Friedman, P. Sterling, Brain Res. Rev. 2 (1980) 265.
[3] K.M. Harris, Curr. Opin. Neurobiol. 9 (1999) 343.
[4] A. J. Ewald, H. Mcbride, M. Reddington, S. E. Fraser, R. Kerschmann, Developm. Dyn. 225 (2002) 369.
[5] W. Denk, H. Horstmann, PLoS Biol 2 (11) (2004) 1900.
[6] A. Zankel, B. Kraus, P. Poelt, M. Schaffer, E. Ingolic, J.of Microsc. 233 (2009) 140.
[7] T. Yokomizo, M. Enomoto, O. Umezawa, G. Spanos, R.O. Rosenberg, Mater. Sci. Eng. A 344 (2003) 261.
[8] A.C Lewis, J.F. Bingert, D.J. Rowenhorst, A. Gupta, A.B. Geltmacher, G. Spanos, Mater. Sci. Eng. A 418 (2006) 11.
[9] W. Xu, M. Ferry, J.M. Cairney, F.J. Humphreys, Acta Mater. 55 (2007) 5157.
[10] M.D. Uchic, L. Holzer, B.J. Inkson, E. L. Principe, P. Munroe, MRS Bulletin 32 (2007) 408.
[11] M. M. Nowell, R. A. Witt, B. True, Microsc. Microanal. 11(2) (2005) 504.
[12] N. Mateescu, M. Ferry, W. Xu, J.M. Cairney, Mater. Chem. and Phys. 106 (2007) 142.
[13] http://www.edax.com/snippet.cfm?Snippet_Id=1536
[14] http://www.oxinst.com/products/microanalysis/ebsd/detectors/Pages/nordlys.aspx
[15] http://www.bruker-axs.de/crystalign-ebsd.html
[16] http://www.nordif.com/?cat=2
[17] C. Quintana, Micron 28 (1997) 217.
[18] S.T. Wardle, L.S. Lin, A. Cetel, B.L. Adams, Proc. of 52nd Annual Meeting of the Microsc. Soc. of America (1994) 680.
[19] V. Randle, Adv. in Imag. and Electr. Phys. 151 (2008) 363.
[201 M F. Ashby, Materials Selection in Mechanical Design: Third Edition. Butterworth-
三 einemann Publish. House (2005) 200.
[21, , nese industrial standard JIS B 0031 Geometrical Product Specifications (GPS) Indication of surface texture in technical product documentation (1994).
[22] M. Ahlers, L.F. Vassamillet, J. of Appl. Phys. 39 (1968) 3592.
[23] M. Sato, T. Yamazaki, M. Kubo, Trans. of JIM 26 (1985) 251.
[24] M. Sato, T. Yamazaki, Y. Shimizu, T. Takabayashi, JSME Internat. J. 34 (1991) 540.
[25] S. To, W.B. Lee, C.Y. Chan, J. of Mater. Process. Tech. 63 (1997) 157.
[26] Z.J. Yuan, W.B. Lee, Y.X. Yao, M. Zhou, Annals of CIRP, 43 (1994) 39.
[27] J.P. Hirth, J. Lothe, Theory of Dislocations $-2^{\text {nd }}$ edition. Wiley Publ. House, New York, (1982) 287.
[28] R. Komanduri, N. Chandrasekaran, L.M. Raff, Wear 242 (2000) 60.
[29] A. Simoneau, E. Ng, M.A. Elbestawi, Int.. J. of Mach. Tools and Manufact. 46 (2006) 1378.

Figure captions

Figure 1 SEM/EBSD investigations for the block-face specimen after ultramicrotomy sectioning at a feed of 30 nm : (a) SEM micrograph tilted 70° indicating the scanned area by

Comment [A58]: Additional change EBSD (white rectangle) and marking some knife induced scratches (white arrows); the difference in image contrast is given by electron beam contamination of the sample surface such as the circular features; (b) tilt corrected orientation map [001]; (c) tilt corrected IQ map. The black line indicates the cutting direction.

Figure 2 SEM/EBSD investigations for the block-face specimen after ultramicrotomy sectioning at a feed of $1 \mu \mathrm{~m}$: (a) Series of three consecutive (the white triangles mark the stitching lines) SEM micrographs tilted 70° indicating the scanned area by EBSD (white rectangle); some regions with different contrasts are given by electron beam contamination of the \quad le surface; (b) tilt corrected orientation map [001]; (c) tilt corrected IQ map. The bla \quad indicates the cutting direction.

Comment [A61]: Referee comment
Figure 3 Light interference micrograph and the line profile analysis for the block-face specimens after ultramicrotomy cutting: (a) 3D reconstruction of the sample surface aft ultramicrotomy sectioning at a feed of 30 nm ; (b) line profile of an area crossing a grain boundary (black bar in (a)); (c) 3D reconstruction of the sample surface after specimen after ultramicrotomy sectioning at a feed of $1 \mu \mathrm{~m}$; (d) line profile of an area containing a wave-like feature (black bar in (c)). The black lines indicate the cutting direction.

Figure 4 TEM investigations for the block-face specimen after ultramicrotomy sectioning at a feed of 500 nm : (a) bright field micrograph of the cross-sectioned area; (b) high magnification TEM micrograph of a "wave-like feature"; (c) simplified sketch of dislocations distribution in (b) where light grey is Pt layer, black is 6016 Al alloy and white are the dislocations; (d) high ma ation TEM micrograph of a "flat" area and selected area diffraction pattern as inset (e- $=1]_{\mathrm{Al}}$) of the areas in (a), (b) and (d).

Figure 1 SEM/EBSD investigations for the block-face specimen after ultramicrotomy sectioning at a feed of 30 nm : (a) SEM micrograph tilted 70° indicating the scanned area by EBSD (white rectangle) and marking some knife induced scratches (white arrows); the difference in image contrast is given by electron beam contamination of the sample surface such as the circular features; (b) tilt corrected orientation map [001]; (c) tilt corrected IQ map. The black line indicates the cutting direction.
$75 \times 51 \mathrm{~mm}$ (300×300 DPI)

Figure 2 SEM/EBSD investigations for the block-face specimen after ultramicrotomy sectioning at a feed of $1 \mu \mathrm{~m}$: (a) Series of three consecutive (the white triangles mark the stitching lines) SEM micrographs tilted 70° indicating the scanned area by EBSD (white rectangle); some regions with different contrasts are given by electron beam contamination of the sample surface; (b) tilt corrected orientation map [001]; (c) tilt corrected IQ map. The black line indicates the cutting direction.
$75 \times 93 \mathrm{~mm}$ (300×300 DPI)

Figure 3 Light interference micrograph and the line profile analysis for the block-face specimens after ultramicrotomy cutting: (a) 3D reconstruction of the sample surface after ultramicrotomy sectioning at a feed of 30 nm ; (b) line profile of an area crossing a grain boundary (black bar in (a)); (c) 3D reconstruction of the sample surface after specimen after ultramicrotomy sectioning at a feed of $1 \mu \mathrm{~m}$; (d) line profile of an area containing a wave-like feature (black bar in (c)). The black lines indicate the cutting direction.

$$
150 \times 87 \mathrm{~mm}(300 \times 300 \mathrm{DPI})
$$

Figure 4 TEM investigations for the block-face specimen after ultramicrotomy sectioning at a feed of 500 nm : (a) bright field micrograph of the cross-sectioned area; (b) high magnification TEM micrograph of a "wave-like feature"; (c) simplified sketch of dislocations distribution in (b) where light grey is Pt layer, black is 6016 Al alloy and white are the dislocations; (d) high magnification TEM micrograph of a "flat" area and selected area diffraction pattern as inset ($e^{-} / /[001]_{\mathrm{AI}}$) of the areas in (a), (b) and (d).
$149 \times 69 \mathrm{~mm}$ (600×600 DPI)

Sandu et al.

Table 1 Orientation factor (\mathbf{m}) for grains " A ", " B " and " C " after $30 n m$ sectioning; for grains " D ", " E ", " F ", " G " and " H " after $1 \mu \mathrm{~m}$ sectioning

Plane	(111)			(-1-11)			(-111)			(1-11)		
Direction	[01-1]	[-101]	[1-10]	[0-1-1]	[101]	[-110]	[01-1]	[101]	[-1-10]	[0-1-1]	[-101]	[110]
30 nm sectioning												
$\begin{gathered} \text { Grain } A \\ <417>\{-211\} \end{gathered}$	0	0	0	0.32	-0.45	0.12	0.49	-0.89	0.40	0.32	-0.12	-0.20
$\begin{gathered} \text { Grain B } \\ <-1-213>\{-9111\} \\ \hline \end{gathered}$	-0.10	0.09	0.0064	-0.02	0.02	-0.0021	0.68	-0.54	-0.13	-0.44	0.57	-0.12
$\begin{gathered} \text { Grain C } \\ <-1015>\{-10-2\} \\ \hline \end{gathered}$	-0.19	0.72	-0.53	-0.09	-0.07	0.17	-0.06	-0.07	0.14	-0.29	0.72	-0.43
$1 \mu \mathrm{~m}$ sectioning												
$\begin{gathered} \text { Grain D } \\ <21419>\{-23 \end{gathered}$	-0.02	0.07	-0.05	-0.41	0.26	0.15	0.06	-0.26	0.2	-0.96	0.49	0.47
$\begin{gathered} \text { Grain E } \\ \langle-3147>\{161\} \\ \hline \end{gathered}$	0.05	-0.62	0.57	-0.13	-0.29	0.43	0.03	0.29	0.33	-0.09	0.31	-0.22
$\begin{gathered} \text { Grain F } \\ <21419>\{-23 \end{gathered}$	-0.02	0.07	-0.05	-0.41	0.26	0.15	0.06	-0.26	0.2	-0.96	0.49	0.47
$\begin{gathered} \text { Grain G } \\ <4-21>\{134-44\} \\ \hline \end{gathered}$	-0.15	-0.15	0.3	0.11	0.58	-0.7	-0.3	0.51	-0.23	0.06	-0.2	0.13
$\begin{gathered} \text { Grain H } \\ <2778>\{-392\} \\ \hline \end{gathered}$	0.01	0.21	-0.22	-0.08	0.2	-0.11	0.01	-0.7	0.68	-0.21	-0.27	0.48

Table 1 Orientation factor (\mathbf{m}) for grains "A", "B" and "C" after 30 nm sectioning and for grains, "D", "E", "F", "G" and "H" after $1 \mu \mathrm{~m}$ sectioning $270 \times 203 \mathrm{~mm}$ (96×96 DPI)

