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Abstract. We consider Hardy spaces associated to the conjugated Beltrami equation on dou-

bly connected planar domains. There are two main differences with previous studies ([4]).
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First, while the simple connectivity plays an important role in [4], the multiple connectivity

of the domain leads to unexpected difficulties. In particular, we make strong use of a suitable

parametrization of an analytic function in a ring by its real part on one part of the boundary

and by its imaginary part on the other. Then, we allow the coefficient in the conjugated Bel-

trami equation to belong to W 1,q for some q ∈ (2,+∞], while it was supposed to be Lipschitz

in [4]. We define Hardy spaces associated with the conjugated Beltrami equation and solve the

corresponding Dirichlet problem. The same problems for generalized analytic function are also

solved.

Keywords: Hardy spaces, doubly connected domain, Dirichlet problem, analytic projection.
AMS Classification: 30H10, 35J25.

1 Introduction

1.1 Notations

Throughout the paper, let r0 ∈ (0, 1) and define D := {z ∈ C; |z| < 1}, Dr0
:= r0D and G2 :=

{z ∈ C; r0 < |z| < 1}. For all r > 0, let Tr stand for the circle with center 0 and radius r.
We will make use of the operators

∂ :=
1

2
(∂x − i∂y) and ∂ :=

1

2
(∂x + i∂y) .

Let Ω ⊂ C be a bounded domain, p ∈ [1,+∞]. We identify R
2 with C, writing ξ = x + iy for

ξ ∈ C with x, y ∈ R, and denote interchangeably the (differential of) planar Lebesgue measure
by

dm(ξ) = dx dy = (i/2)dξ ∧ dξ ,
where dξ = dx+ idy and dξ = dx− idy. A measurable function f : Ω → C belongs to Lp(Ω) if
and only if

‖f‖p
Lp(Ω) :=

∫

Ω
|f(z)|p dm(z) < +∞,

and to L∞(Ω) if and only if
ess sup z∈Ω |f(z)| < +∞.

If p ∈ [1,+∞], say that f ∈ W 1,p(Ω) if and only if f ∈ Lp(Ω) and ∂f and ∂f belong to Lp(Ω),
and set

‖f‖W 1,p(Ω) := ‖f‖Lp(Ω) + ‖∂f‖Lp(Ω) +
∥∥∂f

∥∥
Lp(Ω)

.

Finally, denote by Lp
R
(Ω) (resp. W 1,p

R
(Ω)) the real subspace of Lp(Ω) (resp. W 1,p(Ω)) made of

real-valued functions.
Say that a sequence ξn ∈ G2 approaches ξ ∈ ∂G2 non tangentially if it converges to ξ while no
limit point of (ξn − ξ)/|ξn − ξ| belongs to the tangent line to ∂G2 at ξ. A function f on G2

has non tangential limit ℓ at ξ if f(ξn) tends to ℓ for any sequence ξn which approaches ξ non
tangentially.
If A(f) and B(f) are two quantities depending on a function f ranging in a set E, say that
A(f) ∼ B(f) if and only if there exists C > 0 such that, for all f ∈ E,

C−1A(f) ≤ B(f) ≤ CA(f).
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1.2 The conjugated Beltrami equation

Let ν ∈W 1,∞
R

(G2) with ‖ν‖∞ < 1 and p ∈ (1,+∞). In [4], we focused on the Dirichlet problem
for the conjugated Beltrami equation:

∂f = ν∂f in D. (1)

Given ϕ ∈ Lp
R
(T1), we proved that there exists a solution f of (1) satisfying

Re tr f = ϕ on T1, (2)

with
ess sup
0<r<1

‖f‖Lp(Tr) < +∞ , (3)

where

‖f‖Lp(Tr) :=

(
1

2π

∫ 2π

0

∣∣∣f(reiθ)
∣∣∣
p
dθ

)1/p

.

The fact that f solves (1) and satisfies (3) entails that f has a non tangential limit almost
everywhere on T1, denoted by tr f , and the trace in (2) has to be understood in this sense.
Moreover, f is unique up to a purely imaginary constant, and if we normalize f by

∫ 2π

0
Im tr f(eiθ)dθ = 0,

then f is unique and
ess sup
0<r<1

‖f‖Lp(Tr) ≤ Cp ‖ϕ‖Lp(T1) .

The space of solutions of (1) satisfying (3) is a Hardy space on D, denoted by Hp
ν (D), which

shares many properties of the classical Hp(D) space. Note that, when ν = 0 in D, (1) exactly
means that f is holomorphic and the solution of the Dirichlet problem (2) belongs to the classical
Hp(D) space.

In the present work, we investigate the Dirichlet problem for the conjugated Beltrami equation
in a doubly connected domain D2 with analytic boundary. For simplicity of the presentation,
we will restrict ourselves to the case of the ring G2 = {z ∈ C; r0 < |z| < 1}. Since any D2 with
analytic boundary is conformally equivalent to G2 with a conformal map continuous up to the
boundary, for some unique r0 ∈ (0, 1) (see [12], see also [13]), all the results of Sections 2, 3
and 4 below remain valid in D2. An important difference with the case of simply connected
domains, due to the fact that the boundary has now two connected components, is that, in
the Dirichlet problem, we prescribe the real part of the solution on one part of the boundary
and the imaginary part on the other. Another difference with [4] is that we only assume that
ν ∈W 1,q

R
(G2) for some q ∈ (2,+∞] instead of being Lipschitz continuous.

To solve the Dirichlet problem in G2, we first introduce two classes of Hardy spaces in G2 (see
Section 2). The first one, denoted by Hp

ν (G2), is made of solutions of the conjugated Beltrami
equation in G2 satisfying a condition analogous to (3). The second one, denoted by Gp

A,B(G2),
is made of so-called generalized analytic functions in G2, also satisfying a condition analogous
to (3). These two classes are related to each other by a trick going back to Bers and Nirenberg.
Some properties of Gp

A,B(G2) are derived from the corresponding ones for the usual Hp(G2)
space (made of analytic functions). We then solve the Dirichlet problem for generalized analytic
functions in Gp

A,B(G2) and deduce the solution of the Dirichlet problem in Hp
ν (G2).

We present the two classes of Hardy spaces in Section 2. Section 3 is devoted to the statement of
the solution of the Dirichlet problem for generalized analytic functions, while Section 4 contains
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the analogous statement for the conjugated Beltrami equation. We then prove the essential
properties of Gp

A,B(G2) in Section 5. In Section 6, the results stated in Section 3 are established,
and the solution of the Dirichlet problem for the conjugated Beltrami equation is derived in
Section 7.

Remark 1.1. We especially emphasize that the parametrization used in the present work for
holomorphic functions in G2 by the real part on one boundary and by the imaginary part on the
other is a very explicit representation and is only valid for G2. To extend the main results of
this paper to higher multiplicities (i.e. multiply connected domains), it is possible to use other
parametrizations of holomorphic functions in q-connected domains by potentials (see [9, 11]).
This will be done in a forthcoming paper.

Remark 1.2. During the preparation of this manuscript, we learnt that L. Baratchart, Y.
Fischer and J. Leblond ([3, 10]) considered generalized Hardy spaces on an annulus, in order
to solve the Dirichlet problem for the equation div(σ∇u) = 0 with Lp boundary data, establish
density results and solve bounded extremal problems in the spirit of [4]. Even if the generalized
Hardy spaces are the same in the two works, the results obtained in the present work and in
[3, 10] are of different nature.

2 Two classes of Hardy spaces in the ring

2.1 Classical Hardy spaces

Let us first recall what the classical Hardy spaces on D and G2 are ([7], Chapter 2 for D and
Chapter 10 for G2). Let p ∈ [1,+∞). Denote by Hp(D) the space of holomorphic functions w
in D such that

‖w‖Hp(D) := sup
0<r<1

‖w‖Lp(Tr) < +∞.

An essential feature of this space is that any function w ∈ Hp(D) has a non tangential limit
almost everywhere in T1, denoted by tr w, which belongs to Lp(T1). One has

‖w‖Hp(D) = ‖tr w‖Lp(T1) .

Moreover,

lim
r→1

∫ 2π

0

∣∣∣w(reiθ) − tr w(eiθ)
∣∣∣
p
dθ = 0.

A function w : G2 → C is said to belong to Hp(G2) if and only if w is holomorphic in G2 and

‖w‖Hp(G2) := sup
r0<r<1

‖w‖Lp(Tr) < +∞.

Again, any function w ∈ Hp(G2) has a non tangential limit almost everywhere in ∂G2, denoted
by tr w. This non tangential limit belongs to Lp(∂G2) and

‖tr w‖Lp(∂G2) ∼ ‖w‖Hp(G2) . (4)

Again, one has

lim
r→r0

∫ 2π

0

∣∣∣w(reiθ) − tr w(r0e
iθ)

∣∣∣
p
dθ = 0 and lim

r→1

∫ 2π

0

∣∣∣w(reiθ) − tr w(eiθ)
∣∣∣
p
dθ = 0.
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Let us also recall a classical topological decomposition of Hp(G2). Denote by Hp(C \ r0D) the
space of holomorphic functions w in C \ r0D such that

‖w‖Hp(C\r0D) := sup
r>r0

‖w‖Lp(Tr) < +∞ .

Any function in Hp(C \ r0D) has a trace on Tr0
, which belongs to Lp(Tr0

), and one defines
Hp,0(C \ r0D) as the space of functions w ∈ Hp(C \ r0D) such that

∫ 2π

0
tr w(r0e

iθ)dθ = 0.

Then, one has
Hp(G2) = Hp(D)|G2

⊕Hp(C \ r0D)|G2
(5)

and the decomposition is topological.

Finally, we recall a generalized Hilbert transform for the ring, already obtained in [8] under
slightly stronger regularity assumptions:

Proposition 2.1.1. Let (u1, v2) ∈ Lp
R
(Tr0

)×Lp
R
(T1). There exists a unique function g ∈ Hp(G2)

such that {
Re tr g = u1 on Tr0

,
Im tr g = v2 on T1.

(6)

Moreover,

‖g‖Hp(G2) ≤ Cp

(
‖u1‖Lp(Tr0

) + ‖v2‖Lp(T1)

)
. (7)

The operator
S(u1, v2) :=

(
Im tr g|Tr0

,Re tr g|T1

)

is Lp
R
(Tr0

) × Lp
R
(T1)-bounded.

As a corollary, one has:

Proposition 2.1.2. Let g ∈ Hp(G2). Assume that

{
Re tr g = 0 on Tr0

,
Im tr g = 0 on T1.

Then g = 0 in G2.

Propositions 2.1.1 and 2.1.2 will be proved in Appendix B.

2.2 New classes of Hardy spaces on G2

Let us now introduce two classes of Hardy spaces on G2, both generalizing Hp(G2). Let q ∈
(2,+∞) and ν ∈ W 1,q

R
(G2). Note that ν ∈ L∞(G2) by the Sobolev embeddings, and we always

assume in the sequel that
‖ν‖∞ < 1 (8)

and that
p >

q

q − 2
. (9)

Let Hp
ν (G2) denote the space of measurable functions f : G2 → C solving

∂f = ν∂f in G2 (10)
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in the sense of distributions and satisfying furthermore

ess sup
r0<r<1

‖f‖Lp(Tr) < +∞. (11)

Equipped with the norm
‖f‖Hp

ν (G2) := ess sup
r0<r<1

‖f‖Lp(Tr) , (12)

Hp
ν (G2) is a Banach space. Clearly, when ν = 0, Hp

ν (G2) coincides with the classical Hp(G2)
space.

The second class of Hardy spaces we consider is made of generalized analytic functions in G2

(see [14]). Let p and q as before and A,B ∈ Lq(G2). By “generalized analytic functions”, we
mean solutions of

∂w = Aw +Bw in G2 (13)

in the sense of distributions. Denote by Gp
A,B(G2) the space of all measurable functions w on

G2 solving equation (13) in the sense of distributions and satisfying

ess sup
r0<r<1

‖w‖Lp(Tr) < +∞, (14)

equipped with the norm
‖w‖Gp

A,B
(G2) := ess sup

r0<r<1
‖w‖Lp(Tr) . (15)

It is also a Banach space, which is obviously equal to Hp(G2) when A = B = 0.

Let us now summarize essential properties of these spaces. We begin with Gp
A,B(G2):

Proposition 2.2.1. 1. For any w ∈ Gp
A,B(G2), there exist w̃ ∈ Cα(G2) for all α ∈

(
0, 1 − 2

q

)

and F ∈ Hp(G2) such that w = e ewF . One has ‖w̃‖∞ ≤ C where C > 0 only depends on
A and B. Moreover, w̃ can be chosen in such a way that Im w̃ = 0 on ∂G2.

2. Any function w ∈ Gp
A,B(G2) has a non tangential limit at almost every point ξ ∈ ∂G2,

denoted by tr w(ξ). Moreover, tr w ∈ Lp(∂G2) and, for all w ∈ Gp
A,B(G2),

‖tr w‖Lp(∂G2) ∼ ‖w‖Gp
A,B

(G2) .

Finally, for all w ∈ Gp
A,B(G2),

lim
r→r0

∫ 2π

0

∣∣∣w(reiθ) − tr w(r0e
iθ)

∣∣∣
p
dθ = 0 and lim

r→1

∫ 2π

0

∣∣∣w(reiθ) − tr w(eiθ)
∣∣∣
p
dθ = 0. (16)

3. Any function w ∈ Gp
A,B(G2) belongs to Lp1(G2) for all p1 ∈ [p, 2p) and

‖w‖Lp1 (G2) ≤ Cp1
‖w‖Gp

A,B
(G2) .

4. If w ∈ Gp
A,B(G2), Re tr w = 0 on ∂Tr0

and Im tr w = 0 on ∂T1, then w = 0.

Note that the principle of the factorization given by assertion 1. actually goes back to Bers and
Vekua (see [14], see also [5, 6]). The proof of this proposition will be given in Section 5.
The link between Hp

ν and Gp
A,B is given by a trick which originally appeared in [6]. Given

ν ∈W 1,q
R

(G2) satisfying (8), define

B =
∂ν√

1 − ν2
∈ Lq(G2).
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Then f ∈ Hp
ν (G2) if and only if the function w defined by

w :=
f − νf√
1 − ν2

=

√
1 − ν

1 + ν
Re f + i

√
1 + ν

1 − ν
Im f (17)

belongs to Gp
0,B(G2) (see [4]). Using the fact that (17) is equivalent to f = w+νw√

1−ν2
and that ν

is continuous in G2 by the Sobolev embeddings, we derive from Proposition 2.2.1 the following
properties of Hp

ν (G2):

Proposition 2.2.2. 1. Any function f ∈ Hp
ν (G2) has a non tangential limit at almost every

point ξ ∈ ∂G2, denoted by tr f(ξ). Moreover, tr f ∈ Lp(∂G2) and, for all f ∈ Hp
ν (G2),

‖tr f‖Lp(∂G2) ∼ ‖f‖Hp
ν (G2) .

Finally, for all f ∈ Hp
ν (G2),

lim
r→r0

∫ 2π

0

∣∣∣f(reiθ) − tr f(r0e
iθ)

∣∣∣
p
dθ = 0 and lim

r→1

∫ 2π

0

∣∣∣f(reiθ) − tr f(eiθ)
∣∣∣
p
dθ = 0. (18)

2. If f ∈ Hp
ν (G2), Re tr f = 0 a.e. on Tr0

and Im tr f = 0 a.e. on T1, then f = 0 in G2.

Remark 2.1. If, instead of (17), we define

w = f − νf,

then a straightforward computation yields that f ∈ Hp
ν (G2) if and only if w ∈ Gp

A,B(G2) with

A = − ν∂ν

1 − ν2
, B = − ∂ν

1 − ν2
.

3 The Dirichlet problem for generalized analytic func-

tions in the ring

As in [4], Theorem 4.4.1.2, we solve the Dirichlet problem associated to equation (13) in
Gp

A,B(G2). More precisely:

Theorem 3.1. Let p ∈ (1,+∞). For all −→ϕ = (ϕ1, ϕ2) ∈ Lp
R

(Tr0
) × Lp

R
(T1), there exists a

unique function w ∈ Gp
A,B(G2) such that

{
Re tr w = ϕ1 a.e. on Tr0

,
Im tr w = ϕ2 a.e. on T1.

(19)

Moreover, there exists Cp,A,B,r0
> 0 only depending on p,A,B and r0 such that

‖w‖Gp
A,B

(G2) ≤ Cp,A,B,r0

(
‖ϕ1‖Lp(Tr0

) + ‖ϕ2‖Lp(T1)

)
. (20)

Remark 3.1. 1. Note the form of the boundary condition (19): we prescribe the real part of
w on the inner circle and its imaginary part on the outer circle. Even when A = B = 0,
i.e. for holomorphic functions, it is not possible in general to prescribe the real part of w
on both circles. Indeed, let u1 ∈ L2(Tr0

) and u2 ∈ L2(T1) be real-valued and assume that
there exists a holomorphic function w in G2 such that

Re w = u1 on Tr0
and Re w = u2 on T1.

7



Writing u1(r0e
it) =

∑
n∈Z

u1,nr
n
0 e

int, u2(e
it) =

∑
n∈Z

u2,ne
int and w(z) =

∑
n∈Z

anz
n,

computations analogous to [8], p. 948, yield

u1,n = anr
n
0 + a−nr

−n
0

and
u2,n = an + a−n

for all n ∈ Z. In particular, u1,0 = u2,0. For more on this, see [11].

2. Let us point out a difference with Theorem 4.4.1.2 of [4]: in the disk, if the real part of w is
prescribed on the boundary, then the solution of the Dirichlet problem in the corresponding
Hardy space is unique up to an imaginary constant. Here, once the real part of w on the
inner circle and the imaginary part on the outer one are fixed, the solution is unique.

Theorem 3.1 will be established in Section 6.

4 The Dirichlet problem for the conjugated Beltrami

equation in the ring

We conclude with the solution of the Dirichlet problem in Hp
ν (G2):

Theorem 4.1. For all −→ϕ = (ϕ1, ϕ2) ∈ Lp
R
(Tr0

) × Lp
R
(T1), there uniquely exists f ∈ Hp

ν (G2)
such that: {

Re tr f = ϕ1 a.e. on Tr0
,

Im tr f = ϕ2 a.e. on T1.
(21)

Moreover, there exists Cp,ν,r0
> 0 only depending on p, ν and r0 such that:

‖f‖Hp
ν (G2) ≤ Cp,ν,r0

(
‖ϕ1‖Lp(Tr0

) + ‖ϕ2‖T1

)
. (22)

5 Proofs of the properties of Hardy spaces

This section is devoted to the proof of Proposition 2.2.1. Assertion 1. is a slightly modified
version of the similarity principle stated in [9], Theorem 2.1, in the more general context of
multiply connected domains, under the extra assumption that w ∈ Cβ(G2) for some β ∈ (0, 1).
We provide here a quick proof for the reader’s convenience.
Let e : G2 → R be the solution of





∆e = 0 in G2,
e = 0 on T1,
e = 1 on Tr0

.

Set

a :=

∫

Tr0

∂e

∂n
dσ,

where ∂
∂n stands for the normal derivative and dσ for the surface measure on ∂G2. By the Hopf

lemma, a > 0. Define
c := a−1 > 0.

Consider the function ψ defined on ∂G2 by

ψ(z) = 0 if z ∈ T1, ψ(z) = α if z ∈ Tr0
, (23)
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where α ∈ R will be chosen later. Define also, for all z ∈ G2,

g(z) =





A(z) +B(z)
w(z)

w(z)
if w(z) 6= 0,

0 if w(z) = 0.

Applying Theorem 4.5 in [9] with the function ψ given by (23) yields a function w̃ ∈ C0,γ(G2) for
some γ ≤ 1− 2

q (this follows from [14] and holds whenever w is measurable) such that w = e ewF
where F is holomorphic in G2,

Im w̃ = 0 on T1

and

Im w̃ = α+ cα

∫

Tr0

∂e

∂n
dσ − 4Im

∫∫

G2

g(ζ)∂e(ζ)dζ ∧ dζ

= 2α− 4Im

∫∫

G2

g(ζ)∂e(ζ)dζ ∧ dζ on Tr0
.

Choosing α appropriately therefore gives Im w̃ = 0 on ∂G2. Finally, since w satisfies (14) and
w̃ is bounded in G2 by a constant only depending on A and B, F also satisfies (14).
Assertion 2. follows at once from assertion 1. and the fact that w̃ is continuous in G2. For
assertion 3, in view of assertion 1, it is clearly enough to establish the conclusion for functions
in Hp(G2). But this follows from (5) and the fact that the corresponding property holds for
functions in Hp(D) (Lemma 5.2.1 in [4]) and therefore also for functions in Hp(C \ r0D), since

w ∈ Hp(C \ r0D) ⇔ z 7→ w
(r0
z

)
∈ Hp(D).

Finally, let w ∈ Gp
A,B(G2) satisfy the assumptions of assertion 4. Write w = e ewF as in assertion

1. Since w̃ is real-valued on ∂G2, an easy computation shows that F satisfies the assumptions
of Proposition 2.1.2. As a consequence, F = 0 and w = 0.

6 Solving the Dirichlet problem for generalized ana-

lytic functions

The proof is divided in two steps: we first solve a different Dirichlet type problem, prescribing
the analytic projection of the trace of the solution, from which we derive the conclusion of
Theorem 3.1.

6.1 The analytic projection

We consider here a version of the analytic projection adapted to the case of the ring (see [7]).
Given −→ϕ = (ϕ1, ϕ2) ∈ Lp(Tr0

) × Lp(T1), define, for all z ∈ G2,

C(−→ϕ )(z) :=
1

2π

∫

Tr0

ϕ1(ζ)

ζ − z
dζ +

1

2π

∫

T1

ϕ2(ζ)

ζ − z
dζ,

where, in the first integral, Tr0
is described clockwise and T1 is described counterclockwise.

The function C(−→ϕ ) is holomorphic in G2 and actually belongs to the Hardy space Hp(G2). It
therefore has a non tangential limit at almost every point of ∂G2, and we set

P+ (−→ϕ ) :=
(
tr C(−→ϕ )|Tr0

, tr C(−→ϕ )|T1

)
.

Note that P+ is Lp
R
(Tr0

) × Lp
R
(T1)-bounded.
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6.2 The Dirichlet problem for generalized analytic functions

with prescribed analytic projection

Our first step towards Theorem 3.1 is the solution of the Dirichlet problem for generalized
analytic functions with prescribed analytic projection:

Theorem 6.2.1. Let p ∈ (1,+∞). For all g ∈ Hp(G2), there exists a unique w ∈ Gp
A,B(G2)

such that
P+ (tr w) =

(
tr g|Tr0

, tr g|T1

)
. (24)

Moreover,
‖w‖Gp

A,B
(G2) ≤ Cp ‖g‖Hp(G2) . (25)

Proof: the argument is inspired by the one of Theorem 4.4.1.1 in [4]. Consider the operator
T defined, for all w ∈ Lp(G2) and all z ∈ G2 by

Tw(z) :=

∫∫

G2

w(ζ)

ζ − z
dζ ∧ dζ.

Define also, for all f ∈ Lp(C) and all z ∈ C,

T̆ f(z) :=

∫∫

G2

f(ζ)

ζ − z
dζ ∧ dζ.

We claim:

Proposition 6.2.1. 1. The operator T is bounded from Lp(G2) to W 1,p(G2) and compact
on Lp(G2). Moreover, for all w ∈ Lp(G2),

∂(Tw) = w. (26)

2. The operator T̆ is bounded from Lp(C) to W 1,p
loc (C).

3. Let w ∈ Lp(G2) and g ∈ Hp(G2). Assume that

w = g + T (Aw +Bw).

Then there exists p0 > 2 such that Aw +Bw ∈ Lp0(G2) and

‖Aw +Bw‖Lp0 (G2) ≤ C ‖g‖Hp(G2) . (27)

4. The operator w 7→ w − T (Aw +Bw) is an isomorphism from Lp(G2) onto itself.

5. For all w ∈ Gp
A,B(G2),

w = C(tr w) + T (Aw +Bw) , a.e. in G2 . (28)

6. If w ∈ Gp
A,B(G2) and P+ (tr w) = 0 a.e. on ∂G2, then w(z) = 0 for all z ∈ G2.

The proof of this proposition will be given in Appendix A. Relying on the conclusions of
Proposition 6.2.1, let us conclude the proof of Theorem 6.2.1. Proposition 6.2.1, assertion 4,
yields a function w ∈ Lp(G2) such that

w = g + T (Aw +Bw) .

Since g is holomorphic in G2, assertion 1. in Proposition 6.2.1 shows that ∂w = Aw + Bw.
Moreover, since g ∈ Hp(G2), it follows from item 3 in Proposition 6.2.1 that Aw + Bw ∈ Lp0

for some p0 > 2 with estimate (27), and therefore T (Aw +Bw) ∈W 1,p0(G2) ⊂ L∞(G2), with

‖T (Aw +Bw)‖L∞(G2) ≤ C ‖g‖Hp(G2) .

As a consequence, w ∈ Gp
A,B(G2) and (25) holds. Formula (28) now shows that g = C (tr w) and

therefore
(
tr g|Tr0

, tr g|T1

)
= P+ (tr w). Uniqueness of w follows from assertion 6. in Proposition

6.2.1.
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6.3 Solution of the Dirichlet problem for generalized analytic

functions

Let us conclude the proof of Theorem 3.1, arguing as for the proof of Theorem 4.4.1.2 in [4].
Define T : Gp

A,B(G2) → Lp
R
(Tr0

) × Lp
R
(T1) by

T w =
(
Re tr w|Tr0

, Im tr w|T1

)
.

The operator T is bounded from Gp
A,B(G2) to Lp

R
(Tr0

)×Lp
R
(T1), and the conclusion of Theorem

3.1 exactly means that T is an isomorphism from Gp
A,B(G2) onto Lp

R
(Tr0

) × Lp
R
(T1).

In order to establish this fact, we define an operator S from Lp
R
(Tr0

) × Lp
R
(T1) to Gp

A,B(G2) in

the following way. For all
−→
ψ = (ψ1, ψ2) ∈ Lp

R
(Tr0

)×Lp
R
(T1), Proposition 2.1.1 yields the unique

function g ∈ Hp(G2) such that
{

Re tr g = ψ1 on Tr0
,

Im tr g = ψ2 on T1,

with
‖g‖Hp(G2) ≤ C

(
‖ψ1‖Lp(Tr0

) + ‖ψ2‖Lp(T1)

)
. (29)

Define now w := S(ψ1, ψ2) as the unique function w ∈ Gp
A,B(G2) (given by Theorem 6.2.1) such

that P+(tr w) =
(
tr g|Tr0

, tr g|T1

)
. Recall also that

‖w‖Gp
A,B

(G2) ≤ C ‖g‖Hp(G2) . (30)

Thus, (29) and (30) show that S is continuous. It is plain to see that S is one-to-one on
Lp

R
(Tr0

) × Lp
R
(T1) . Moreover, let w ∈ Gp

A,B(G2). If g = C(tr w), one has g ∈ Hp(G2) and
P+(tr w) = tr g. Setting ϕ1 = Re tr g|Tr0

and ϕ2 = Im tr g|T1
, one has S(ϕ1, ϕ2) = w, which

shows that S is onto. Therefore, S is an isomorphism from Lp
R
(Tr0

) × Lp
R
(T1) onto Gp

A,B(G2).

To check that T is an isomorphism from Gp
A,B(G2) onto Lp

R
(Tr0

)×Lp
R
(T1), it is therefore enough

to check that A := T ◦ S is an isomorphism from Lp
R
(Tr0

) × Lp
R
(T1) onto itself.

The operator A is Lp
R
(Tr0

) × Lp
R
(T1)-bounded. Moreover, formula (28) yields that, for all

−→
ψ ∈ Lp

R
(Tr0

) × Lp
R
(T1), one has

A−→
ψ =

−→
ψ + B−→ψ

where
B−→ψ :=

(
Re tr (T (Aw +Bw)) |Tr0

, Im tr (T (Aw +Bw)) |T1

)

and w := S(
−→
ψ ). If g := C(tr w), (28) shows that w = g+T (Aw+Bw) and item 3. in Proposition

6.2.1 therefore yields that Aw +Bw ∈ Lp0(G2) for some p0 > 2 and

‖Aw +Bw‖Lp0 (G2) ≤ C ‖g‖Hp(G2) ≤ C
(
‖ψ1‖Lp(Tr0

) + ‖ψ2‖Lp(T1)

)
,

so that T (Aw +Bw) ∈W 1,p0(G2) and

‖T (Aw +Bw)‖W 1,p0 (G2) ≤ C
(
‖ψ1‖Lp(Tr0

) + ‖ψ2‖Lp(T1)

)
.

As a consequence, and since W 1,p0(G2) ⊂ C0,γ(G2) with γ := 1− 2
p0

, the operator B is bounded

from Lp
R
(Tr0

)×Lp
R
(T1) to C0,γ(Tr0

)×C0,γ(T1), and is therefore compact on Lp
R
(Tr0

)×Lp
R
(T1).

Since, by Proposition 2.2.1, assertion 4, T , and therefore A, are injective on Lp
R
(Tr0

)×Lp
R
(T1),

it follows that A is actually an isomorphism from Lp
R
(Tr0

) × Lp
R
(T1) onto itself. Thus, T is

an isomorphism from Gp
A,B(G2) onto Lp

R
(Tr0

) × Lp
R
(T1), which yields the existence and the

uniqueness of w. Finally, (20) follows from the boundedness of T −1.
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7 Solution of the Dirichlet problem for the conju-

gated Beltrami equation

We establish now Theorem 4.1. Define

σ :=
1 − ν

1 + ν
,

and note that, because of (8), there exist 0 < c < C such that c ≤ σ(z) ≤ C for almost every
z ∈ G2. Set ψ1 = ϕ1σ

1/2 ∈ Lp
R
(Tr0

) and ψ2 = ϕ2σ
−1/2 ∈ Lp

R
(T1). Theorem 3.1 yields the unique

function w ∈ Gp
0,B(G2) such that

{
Re (tr w) = ψ1 a.e. on Tr0

,
Im (tr w) = ψ2 a.e. on T1.

If f := w+νw√
1−ν2

, then f ∈ Hp
ν (G2) and, as in the proof of Theorem 4.4.2.1 in [4], satisfies (21) and

(22). Uniqueness of f follows from Proposition 2.2.2, assertion 3.

A Appendix: Proof of the properties of some opera-

tors

Proof of Proposition 6.2.1: the proofs of assertions 1. and 2. are identical to the corre-
sponding ones in the case of the disk (see assertion 4. in Proposition 5.2.1 in [4]).

Let us now turn to point 3. We first check that Aw + Bw ∈ Lp0(G2) for some p0 > 2. The
Hölder inequality yields that Aw +Bw ∈ Lr(G2) with 1

r = 1
p + 1

q .

Assume first that p > 2q
q−2 . In that case, r > 2, and we are done.

Assume now that p = 2q
q−2 , so that r = 2. Then T (Aw + Bw) ∈ W 1,2(G2) ⊂ Lt(G2) for all

t < +∞. As a consequence, since g ∈ Ls(G2) for all s ∈ (1, 2p) (Proposition 2.2.1, item 3.),
w ∈ Ls(G2) for all s ∈ (1, 2p). Since lims→2p

1
q + 1

s = 1
q + 1

2p = 1
r − 1

2p <
1
2 , there exists s ∈ (1, 2p)

such that 1
p0

:= 1
q + 1

s <
1
2 . Thus, Aw +Bw ∈ Lp0(G2).

Assume finally that p < 2q
q−2 , so that r < 2. Then T (Aw + Bw) ∈ W 1,r(G2) ⊂ Lr∗(G2)

with 1
r∗ = 1

r − 1
2 . Since furthermore p > q

q−2 by assumption (9), one has r∗ > 2p, so that

again w ∈ Ls(G2) for all s ∈ (1, 2p). Therefore, for all s ∈ (1, 2p), if 1
p0

= 1
q + 1

s , one has

Aw +Bw ∈ Lp0(G2). Since 1
q + 1

2p = 1
r∗ − 1

2p + 1
2 <

1
2 , one concludes as before.

We will now establish (27) and assertion 4. simultaneously, making use of the following notation:
for any function u on G2, denote by ŭ its extension by 0 outside G2.
Define T1(w) := T (Aw +Bw) for w ∈ Lp(G2), and observe first that T1 is compact on Lp(G2).
Indeed, since A,B ∈ Lq(G2) and w ∈ Lp(G2), Aw+Bw ∈ Lr(G2) with r = pq

p+q . It follows from

assertion 1 that T1 is bounded from Lp(G2) to W 1,r(G2), and this space is always compactly
embedded in Lp(G2). Indeed, this is immediate when r ≥ 2, and if r < 2, this follows from the
fact that p < r∗ := 2r

2−r since q > 2.
To prove that I − T1 is an isomorphism from Lp(G2) onto itself, it is therefore enough to check
that it is one to one. Let w ∈ Lp(G2) such that w = T1w = T (Aw + Bw). Assertion 3 shows

that Aw +Bw ∈ Lp0(G2) for some p0 > 2. Set now u = T̆ (
⌣

Aw +Bw) ∈W 1,p0

loc (C).
It holds in the sense of distributions that

∂̄u =
⌣

Aw +Bw = Ău+ B̆ u a.e. in C. (31)
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In addition, u(z) clearly goes to 0 when |z| goes to +∞. It now follows from the generalized
Liouville theorem [2, Prop. 3.3] that u = 0, therefore w = 0.
Coming back to assertion 3., if w = g+T (Aw+Bw), with w ∈ Lp(G2) and g ∈ Hp(G2) ⊂ Lp(G2),
one deduces from assertion 4. that w = (I − T1)

−1g, which yields

‖w‖Lp(G2) ≤ C ‖g‖Lp(G2) .

Estimate (27) follows. Indeed, when p > 2q
q−2 > 2,

‖Aw +Bw‖Lr(G2) ≤ C ‖w‖Lp(G2) ≤ C ‖g‖Lp(G2) ≤ C ‖g‖Hp(G2) ,

with 1
r = 1

p + 1
q . When p = 2q

q−2 , one has, for all t < +∞,

‖T (Aw +Bw)‖Lt(G2) ≤ C ‖T (Aw +Bw)‖W 1,2(G2) ≤ C ‖Aw +Bw‖L2(G2) ≤ C ‖w‖Lp(G2) ≤ C ‖g‖Lp(G2) ,

and since
‖g‖Ls(G2) ≤ C ‖g‖Hp(G2)

for all s ∈ (1, 2p), (27) follows. Finally, when p < 2q
q−2 ,

‖T (Aw +Bw)‖Lr∗ (G2) ≤ C ‖T (Aw +Bw)‖W 1,r(G2) ≤ C ‖Aw +Bw‖Lr(G2) ≤ C ‖w‖Lp(G2) ,

and one concludes similarly.

For assertion 5., consider now w ∈ Gp
A,B(G2). By assertion 1., ∂ (w − T (Aw +Bw)) = 0 in

the sense of distributions, so that the function w − T (Aw + Bw) is holomorphic in G2, and
therefore belong to W 1,r

loc (G2) for all r ∈ (1,+∞). Since T (Aw + Bw) ∈ W 1,r(G2), we obtain

w ∈W 1,r
loc (G2) for all r ∈ (1,+∞). For all ε > 0, the Cauchy-Green formula therefore yields

w(z) =
1

2πi

∫

Tr0+ε

w(ζ)

ζ − z
dζ+

1

2πi

∫

T1−ε

w(ζ)

ζ − z
dζ+T

(
(Aw +Bw)χG2,ε

)
(z) , r0 +ε < |z| < 1−ε,

(32)
with

G2,ε := {z ∈ C; r0 + ε < |z| < 1 − ε} .
Letting ε → 0 in (32), and using (16) for the two first terms and dominated convergence and
assertion 1. for the third one, we obtain (28).
Finally, for point 6., assume that w ∈ Hp(G2) and P+ (tr w) = 0 a.e. on ∂G2. The function
C(tr w) is in Hp(G2) and its trace vanishes on ∂G2, which entails that it is zero in G2. Formula
(28) therefore yields that w = T (Aw +Bw), which in turn, by assertion 4., shows that w = 0.

B Appendix: Proof of some properties of functions

in Hp(G2)

Proof of Proposition 2.1.1: we argue similarly as in [8], Theorem 2.2. For all k ∈ Z, define

u1,k :=
1

2π

∫ 2π

0
u1(r0e

iθ)e−ikθdθ and v2,k :=
1

2π

∫ 2π

0
v2(e

iθ)e−ikθdθ.

The proof of Theorem 2.2 in [8] shows that, if a function g satisfying the conclusions of Propo-
sition 2.1.1 exists, then one has g(z) =

∑
k∈Z

akz
k in G2, with

ak := 2
rk
0u1,k + iv2,k

r2k
0 + 1

. (33)
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This already proves uniqueness of g.
Recall now that, according to Theorem 2.3 in [8], for all functions f1 ∈ L2

R
(Tr0

) and g2 ∈ L2
R
(T1),

there exists a unique holomorphic function w in G2 such that Re w = f1 on Tr0
and Im w = g2

on T1. If the operator S is defined by w = S(f1, g2), Theorem 2.5 in [8] shows that S can be
written as

S(f1, g2) =
(
H0f1 + Âf1 + B̂g2,H0g2 + Ĉf1 + D̂g2

)

where H0 stands for the usual Hilbert transform and Â, B̂, Ĉ and D̂ are linear integral operators
with analytic kernels. This shows that S extends to an Lp

R
(Tr0

) × Lp
R
(T1)-bounded operator.

Given now u1, v2 ∈ Lp
R
(Tr0

) × Lp
R
(T1), set (u2, v1) = S(u1, v2) and

−→
ψ := (u1 + iu2, v1 + iv2).

Define now
g := C

(−→
ψ

)
.

Since
−→
ψ ∈ Lp(Tr0

) × Lp(T1), the function g belongs to Hp(G2) and the definition of
−→
ψ yields

that (6) and (7) hold.

Proof of Proposition 2.1.2: it is an immediate corollary of Proposition 2.1.1.

Acknowledgements: the authors would like to thank the referee for useful and interesting
remarks.
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