Hardy spaces for the conjugated Beltrami equation in a doubly connected domain

Messoud Efendiev, Emmanuel Russ

To cite this version:

Messoud Efendiev, Emmanuel Russ. Hardy spaces for the conjugated Beltrami equation in a doubly connected domain. Journal of Mathematical Analysis and Applications, 2011, 383 (2), pp.439-450. 10.1016/j.jmaa.2011.05.031 . hal-00605932

HAL Id: hal-00605932

https://hal.science/hal-00605932

Submitted on 4 Jul 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hardy spaces for the conjugated Beltrami equation in a doubly connected domain

Messoud Efendiev * Emmanuel Russ ${ }^{\dagger}$

July 4, 2011

Contents

1 Introduction 2
1.1 Notations 2
1.2 The conjugated Beltrami equation 3
2 Two classes of Hardy spaces in the ring 4
2.1 Classical Hardy spaces 4
2.2 New classes of Hardy spaces on G_{2} 5
3 The Dirichlet problem for generalized analytic functions in the ring 7
4 The Dirichlet problem for the conjugated Beltrami equation in the ring 8
5 Proofs of the properties of Hardy spaces 8
6 Solving the Dirichlet problem for generalized analytic functions 9
6.1 The analytic projection 9
6.2 The Dirichlet problem for generalized analytic functions with prescribed analytic projection 10
6.3 Solution of the Dirichlet problem for generalized analytic functions 11
7 Solution of the Dirichlet problem for the conjugated Beltrami equation 12
A Appendix: Proof of the properties of some operators 12
B Appendix: Proof of some properties of functions in $H^{p}\left(G_{2}\right)$ 13
Abstract. We consider Hardy spaces associated to the conjugated Beltrami equation on doubly connected planar domains. There are two main differences with previous studies ([4]).

[^0]First, while the simple connectivity plays an important role in [4], the multiple connectivity of the domain leads to unexpected difficulties. In particular, we make strong use of a suitable parametrization of an analytic function in a ring by its real part on one part of the boundary and by its imaginary part on the other. Then, we allow the coefficient in the conjugated Beltrami equation to belong to $W^{1, q}$ for some $q \in(2,+\infty]$, while it was supposed to be Lipschitz in [4]. We define Hardy spaces associated with the conjugated Beltrami equation and solve the corresponding Dirichlet problem. The same problems for generalized analytic function are also solved.
Keywords: Hardy spaces, doubly connected domain, Dirichlet problem, analytic projection.
AMS Classification: 30H10, 35J25.

1 Introduction

1.1 Notations

Throughout the paper, let $r_{0} \in(0,1)$ and define $\mathbb{D}:=\{z \in \mathbb{C} ;|z|<1\}, \mathbb{D}_{r_{0}}:=r_{0} \mathbb{D}$ and $G_{2}:=$ $\left\{z \in \mathbb{C} ; r_{0}<|z|<1\right\}$. For all $r>0$, let \mathbb{T}_{r} stand for the circle with center 0 and radius r.
We will make use of the operators

$$
\partial:=\frac{1}{2}\left(\partial_{x}-i \partial_{y}\right) \text { and } \bar{\partial}:=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right)
$$

Let $\Omega \subset \mathbb{C}$ be a bounded domain, $p \in[1,+\infty]$. We identify \mathbb{R}^{2} with \mathbb{C}, writing $\xi=x+i y$ for $\xi \in \mathbb{C}$ with $x, y \in \mathbb{R}$, and denote interchangeably the (differential of) planar Lebesgue measure by

$$
d m(\xi)=d x d y=(i / 2) d \xi \wedge d \bar{\xi}
$$

where $d \xi=d x+i d y$ and $d \bar{\xi}=d x-i d y$. A measurable function $f: \Omega \rightarrow \mathbb{C}$ belongs to $L^{p}(\Omega)$ if and only if

$$
\|f\|_{L^{p}(\Omega)}^{p}:=\int_{\Omega}|f(z)|^{p} d m(z)<+\infty
$$

and to $L^{\infty}(\Omega)$ if and only if

$$
\text { ess sup } z \in \Omega|f(z)|<+\infty
$$

If $p \in[1,+\infty]$, say that $f \in W^{1, p}(\Omega)$ if and only if $f \in L^{p}(\Omega)$ and ∂f and $\bar{\partial} f$ belong to $L^{p}(\Omega)$, and set

$$
\|f\|_{W^{1, p}(\Omega)}:=\|f\|_{L^{p}(\Omega)}+\|\partial f\|_{L^{p}(\Omega)}+\|\bar{\partial} f\|_{L^{p}(\Omega)}
$$

Finally, denote by $L_{\mathbb{R}}^{p}(\Omega)$ (resp. $W_{\mathbb{R}}^{1, p}(\Omega)$) the real subspace of $L^{p}(\Omega)$ (resp. $W^{1, p}(\Omega)$) made of real-valued functions.
Say that a sequence $\xi_{n} \in G_{2}$ approaches $\xi \in \partial G_{2}$ non tangentially if it converges to ξ while no limit point of $\left(\xi_{n}-\xi\right) /\left|\xi_{n}-\xi\right|$ belongs to the tangent line to ∂G_{2} at ξ. A function f on G_{2} has non tangential limit ℓ at ξ if $f\left(\xi_{n}\right)$ tends to ℓ for any sequence ξ_{n} which approaches ξ non tangentially.
If $A(f)$ and $B(f)$ are two quantities depending on a function f ranging in a set E, say that $A(f) \sim B(f)$ if and only if there exists $C>0$ such that, for all $f \in E$,

$$
C^{-1} A(f) \leq B(f) \leq C A(f)
$$

1.2 The conjugated Beltrami equation

Let $\nu \in W_{\mathbb{R}}^{1, \infty}\left(G_{2}\right)$ with $\|\nu\|_{\infty}<1$ and $p \in(1,+\infty)$. In [4], we focused on the Dirichlet problem for the conjugated Beltrami equation:

$$
\begin{equation*}
\bar{\partial} f=\nu \overline{\partial f} \text { in } \mathbb{D} . \tag{1}
\end{equation*}
$$

Given $\varphi \in L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$, we proved that there exists a solution f of (1) satisfying

$$
\begin{equation*}
\operatorname{Re} \operatorname{tr} f=\varphi \text { on } \mathbb{T}_{1}, \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
\underset{0<r<1}{\operatorname{ess} \sup }\|f\|_{L^{p}\left(\mathbb{T}_{r}\right)}<+\infty, \tag{3}
\end{equation*}
$$

where

$$
\|f\|_{L^{p}\left(\mathbb{T}_{r}\right)}:=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p} .
$$

The fact that f solves (1) and satisfies (3) entails that f has a non tangential limit almost everywhere on \mathbb{T}_{1}, denoted by $\operatorname{tr} f$, and the trace in (2) has to be understood in this sense. Moreover, f is unique up to a purely imaginary constant, and if we normalize f by

$$
\int_{0}^{2 \pi} \operatorname{Im} \operatorname{tr} f\left(e^{i \theta}\right) d \theta=0
$$

then f is unique and

$$
\underset{0<r<1}{\operatorname{ess} \sup }\|f\|_{L^{p}\left(\mathbb{T}_{r}\right)} \leq C_{p}\|\varphi\|_{L^{p}\left(\mathbb{T}_{1}\right)} .
$$

The space of solutions of (1) satisfying (3) is a Hardy space on \mathbb{D}, denoted by $H_{\nu}^{p}(\mathbb{D})$, which shares many properties of the classical $H^{p}(\mathbb{D})$ space. Note that, when $\nu=0$ in \mathbb{D}, (1) exactly means that f is holomorphic and the solution of the Dirichlet problem (2) belongs to the classical $H^{p}(\mathbb{D})$ space.

In the present work, we investigate the Dirichlet problem for the conjugated Beltrami equation in a doubly connected domain \mathbb{D}_{2} with analytic boundary. For simplicity of the presentation, we will restrict ourselves to the case of the ring $G_{2}=\left\{z \in \mathbb{C} ; r_{0}<|z|<1\right\}$. Since any \mathbb{D}_{2} with analytic boundary is conformally equivalent to G_{2} with a conformal map continuous up to the boundary, for some unique $r_{0} \in(0,1)$ (see [12], see also [13]), all the results of Sections 2, 3 and 4 below remain valid in \mathbb{D}_{2}. An important difference with the case of simply connected domains, due to the fact that the boundary has now two connected components, is that, in the Dirichlet problem, we prescribe the real part of the solution on one part of the boundary and the imaginary part on the other. Another difference with [4] is that we only assume that $\nu \in W_{\mathbb{R}}^{1, q}\left(G_{2}\right)$ for some $q \in(2,+\infty]$ instead of being Lipschitz continuous.

To solve the Dirichlet problem in G_{2}, we first introduce two classes of Hardy spaces in G_{2} (see Section 2). The first one, denoted by $H_{\nu}^{p}\left(G_{2}\right)$, is made of solutions of the conjugated Beltrami equation in G_{2} satisfying a condition analogous to (3). The second one, denoted by $G_{A, B}^{p}\left(G_{2}\right)$, is made of so-called generalized analytic functions in G_{2}, also satisfying a condition analogous to (3). These two classes are related to each other by a trick going back to Bers and Nirenberg. Some properties of $G_{A, B}^{p}\left(G_{2}\right)$ are derived from the corresponding ones for the usual $H^{p}\left(G_{2}\right)$ space (made of analytic functions). We then solve the Dirichlet problem for generalized analytic functions in $G_{A, B}^{p}\left(G_{2}\right)$ and deduce the solution of the Dirichlet problem in $H_{\nu}^{p}\left(G_{2}\right)$.
We present the two classes of Hardy spaces in Section 2. Section 3 is devoted to the statement of the solution of the Dirichlet problem for generalized analytic functions, while Section 4 contains
the analogous statement for the conjugated Beltrami equation. We then prove the essential properties of $G_{A, B}^{p}\left(G_{2}\right)$ in Section 5. In Section 6, the results stated in Section 3 are established, and the solution of the Dirichlet problem for the conjugated Beltrami equation is derived in Section 7.

Remark 1.1. We especially emphasize that the parametrization used in the present work for holomorphic functions in G_{2} by the real part on one boundary and by the imaginary part on the other is a very explicit representation and is only valid for G_{2}. To extend the main results of this paper to higher multiplicities (i.e. multiply connected domains), it is possible to use other parametrizations of holomorphic functions in q-connected domains by potentials (see [9, 11]). This will be done in a forthcoming paper.

Remark 1.2. During the preparation of this manuscript, we learnt that L. Baratchart, Y. Fischer and J. Leblond ([3, 10]) considered generalized Hardy spaces on an annulus, in order to solve the Dirichlet problem for the equation $\operatorname{div}(\sigma \nabla u)=0$ with L^{p} boundary data, establish density results and solve bounded extremal problems in the spirit of [4]. Even if the generalized Hardy spaces are the same in the two works, the results obtained in the present work and in [3, 10] are of different nature.

2 Two classes of Hardy spaces in the ring

2.1 Classical Hardy spaces

Let us first recall what the classical Hardy spaces on \mathbb{D} and G_{2} are ($[7]$, Chapter 2 for \mathbb{D} and Chapter 10 for G_{2}). Let $p \in[1,+\infty)$. Denote by $H^{p}(\mathbb{D})$ the space of holomorphic functions w in \mathbb{D} such that

$$
\|w\|_{H^{p}(\mathbb{D})}:=\sup _{0<r<1}\|w\|_{L^{p}\left(\mathbb{T}_{r}\right)}<+\infty .
$$

An essential feature of this space is that any function $w \in H^{p}(\mathbb{D})$ has a non tangential limit almost everywhere in \mathbb{T}_{1}, denoted by $\operatorname{tr} w$, which belongs to $L^{p}\left(\mathbb{T}_{1}\right)$. One has

$$
\|w\|_{H^{p}(\mathbb{D})}=\|\operatorname{tr} w\|_{L^{p}\left(\mathbb{T}_{1}\right)} .
$$

Moreover,

$$
\lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|w\left(r e^{i \theta}\right)-\operatorname{tr} w\left(e^{i \theta}\right)\right|^{p} d \theta=0
$$

A function $w: G_{2} \rightarrow \mathbb{C}$ is said to belong to $H^{p}\left(G_{2}\right)$ if and only if w is holomorphic in G_{2} and

$$
\|w\|_{H^{p}\left(G_{2}\right)}:=\sup _{r_{0}<r<1}\|w\|_{L^{p}\left(\mathbb{T}_{r}\right)}<+\infty .
$$

Again, any function $w \in H^{p}\left(G_{2}\right)$ has a non tangential limit almost everywhere in ∂G_{2}, denoted by $\operatorname{tr} w$. This non tangential limit belongs to $L^{p}\left(\partial G_{2}\right)$ and

$$
\begin{equation*}
\|\operatorname{tr} w\|_{L^{p}\left(\partial G_{2}\right)} \sim\|w\|_{H^{p}\left(G_{2}\right)} \tag{4}
\end{equation*}
$$

Again, one has

$$
\lim _{r \rightarrow r_{0}} \int_{0}^{2 \pi}\left|w\left(r e^{i \theta}\right)-\operatorname{tr} w\left(r_{0} e^{i \theta}\right)\right|^{p} d \theta=0 \text { and } \lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|w\left(r e^{i \theta}\right)-\operatorname{tr} w\left(e^{i \theta}\right)\right|^{p} d \theta=0
$$

Let us also recall a classical topological decomposition of $H^{p}\left(G_{2}\right)$. Denote by $H^{p}\left(\mathbb{C} \backslash r_{0} \overline{\mathbb{D}}\right)$ the space of holomorphic functions w in $\mathbb{C} \backslash r_{0} \overline{\mathbb{D}}$ such that

$$
\|w\|_{H^{p}\left(\mathbb{C} \backslash r_{0} \overline{\mathbb{D}}\right)}:=\sup _{r>r_{0}}\|w\|_{L^{p}\left(\mathbb{T}_{r}\right)}<+\infty .
$$

Any function in $H^{p}\left(\mathbb{C} \backslash r_{0} \overline{\mathbb{D}}\right)$ has a trace on $\mathbb{T}_{r_{0}}$, which belongs to $L^{p}\left(\mathbb{T}_{r_{0}}\right)$, and one defines $H^{p, 0}\left(\mathbb{C} \backslash r_{0} \overline{\mathbb{D}}\right)$ as the space of functions $w \in H^{p}\left(\mathbb{C} \backslash r_{0} \overline{\mathbb{D}}\right)$ such that

$$
\int_{0}^{2 \pi} \operatorname{tr} w\left(r_{0} e^{i \theta}\right) d \theta=0
$$

Then, one has

$$
\begin{equation*}
H^{p}\left(G_{2}\right)=\left.\left.H^{p}(\mathbb{D})\right|_{G_{2}} \oplus H^{p}\left(\mathbb{C} \backslash r_{0} \overline{\mathbb{D}}\right)\right|_{G_{2}} \tag{5}
\end{equation*}
$$

and the decomposition is topological.
Finally, we recall a generalized Hilbert transform for the ring, already obtained in [8] under slightly stronger regularity assumptions:

Proposition 2.1.1. Let $\left(u_{1}, v_{2}\right) \in L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$. There exists a unique function $g \in H^{p}\left(G_{2}\right)$ such that

$$
\begin{cases}\text { Re tr } g=u_{1} & \text { on } \mathbb{T}_{r_{0}}, \tag{6}\\ \text { Im tr } g=v_{2} & \text { on } \mathbb{T}_{1}\end{cases}
$$

Moreover,

$$
\begin{equation*}
\|g\|_{H^{p}\left(G_{2}\right)} \leq C_{p}\left(\left\|u_{1}\right\|_{L^{p}\left(\mathbb{T}_{r_{0}}\right)}+\left\|v_{2}\right\|_{L^{p}\left(\mathbb{T}_{1}\right)}\right) . \tag{7}
\end{equation*}
$$

The operator

$$
S\left(u_{1}, v_{2}\right):=\left(\left.\operatorname{Im} \operatorname{tr} g\right|_{\mathbb{T}_{r_{0}}},\left.\operatorname{Re} \operatorname{tr} g\right|_{\mathbb{T}_{1}}\right)
$$

is $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$-bounded.
As a corollary, one has:
Proposition 2.1.2. Let $g \in H^{p}\left(G_{2}\right)$. Assume that

$$
\begin{cases}\text { Re tr } g=0 & \text { on } \mathbb{T}_{r_{0}}, \\ \text { Im tr } g=0 & \text { on } \mathbb{T}_{1}\end{cases}
$$

Then $g=0$ in G_{2}.
Propositions 2.1.1 and 2.1.2 will be proved in Appendix B.

2.2 New classes of Hardy spaces on G_{2}

Let us now introduce two classes of Hardy spaces on G_{2}, both generalizing $H^{p}\left(G_{2}\right)$. Let $q \in$ $(2,+\infty)$ and $\nu \in W_{\mathbb{R}}^{1, q}\left(G_{2}\right)$. Note that $\nu \in L^{\infty}\left(G_{2}\right)$ by the Sobolev embeddings, and we always assume in the sequel that

$$
\begin{equation*}
\|\nu\|_{\infty}<1 \tag{8}
\end{equation*}
$$

and that

$$
\begin{equation*}
p>\frac{q}{q-2} . \tag{9}
\end{equation*}
$$

Let $H_{\nu}^{p}\left(G_{2}\right)$ denote the space of measurable functions $f: G_{2} \rightarrow \mathbb{C}$ solving

$$
\begin{equation*}
\bar{\partial} f=\nu \overline{\partial f} \text { in } G_{2} \tag{10}
\end{equation*}
$$

in the sense of distributions and satisfying furthermore

$$
\begin{equation*}
\underset{r_{0}<r<1}{\operatorname{ess} \sup ^{2}}\|f\|_{L^{p}\left(\mathbb{T}_{r}\right)}<+\infty \tag{11}
\end{equation*}
$$

Equipped with the norm

$$
\begin{equation*}
\|f\|_{H_{\nu}^{p}\left(G_{2}\right)}:=\underset{r_{0}<r<1}{\operatorname{ess} \sup _{1}}\|f\|_{L^{p}\left(\mathbb{T}_{r}\right)} \tag{12}
\end{equation*}
$$

$H_{\nu}^{p}\left(G_{2}\right)$ is a Banach space. Clearly, when $\nu=0, H_{\nu}^{p}\left(G_{2}\right)$ coincides with the classical $H^{p}\left(G_{2}\right)$ space.

The second class of Hardy spaces we consider is made of generalized analytic functions in G_{2} (see [14]). Let p and q as before and $A, B \in L^{q}\left(G_{2}\right)$. By "generalized analytic functions", we mean solutions of

$$
\begin{equation*}
\bar{\partial} w=A w+B \bar{w} \text { in } G_{2} \tag{13}
\end{equation*}
$$

in the sense of distributions. Denote by $G_{A, B}^{p}\left(G_{2}\right)$ the space of all measurable functions w on G_{2} solving equation (13) in the sense of distributions and satisfying

$$
\begin{equation*}
\underset{r_{0}<r<1}{\operatorname{ess} \sup }\|w\|_{L^{p}\left(\mathbb{T}_{r}\right)}<+\infty \tag{14}
\end{equation*}
$$

equipped with the norm

$$
\begin{equation*}
\|w\|_{G_{A, B}^{p}\left(G_{2}\right)}:=\underset{r_{0}<r<1}{\operatorname{ess} \sup }\|w\|_{L^{p}\left(\mathbb{T}_{r}\right)} . \tag{15}
\end{equation*}
$$

It is also a Banach space, which is obviously equal to $H^{p}\left(G_{2}\right)$ when $A=B=0$.
Let us now summarize essential properties of these spaces. We begin with $G_{A, B}^{p}\left(G_{2}\right)$:
Proposition 2.2.1. 1. For any $w \in G_{A, B}^{p}\left(G_{2}\right)$, there exist $\widetilde{w} \in C^{\alpha}\left(\overline{G_{2}}\right)$ for all $\alpha \in\left(0,1-\frac{2}{q}\right)$ and $F \in H^{p}\left(G_{2}\right)$ such that $w=e^{\widetilde{w}} F$. One has $\|\widetilde{w}\|_{\infty} \leq C$ where $C>0$ only depends on A and B. Moreover, \widetilde{w} can be chosen in such a way that Im $\widetilde{w}=0$ on ∂G_{2}.
2. Any function $w \in G_{A, B}^{p}\left(G_{2}\right)$ has a non tangential limit at almost every point $\xi \in \partial G_{2}$, denoted by $\operatorname{tr} w(\xi)$. Moreover, $\operatorname{tr} w \in L^{p}\left(\partial G_{2}\right)$ and, for all $w \in G_{A, B}^{p}\left(G_{2}\right)$,

$$
\|\operatorname{tr} w\|_{L^{p}\left(\partial G_{2}\right)} \sim\|w\|_{G_{A, B}^{p}\left(G_{2}\right)}
$$

Finally, for all $w \in G_{A, B}^{p}\left(G_{2}\right)$,

$$
\begin{equation*}
\lim _{r \rightarrow r_{0}} \int_{0}^{2 \pi}\left|w\left(r e^{i \theta}\right)-\operatorname{tr} w\left(r_{0} e^{i \theta}\right)\right|^{p} d \theta=0 \text { and } \lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|w\left(r e^{i \theta}\right)-\operatorname{tr} w\left(e^{i \theta}\right)\right|^{p} d \theta=0 \tag{16}
\end{equation*}
$$

3. Any function $w \in G_{A, B}^{p}\left(G_{2}\right)$ belongs to $L^{p_{1}}\left(G_{2}\right)$ for all $p_{1} \in[p, 2 p)$ and

$$
\|w\|_{L^{p_{1}}\left(G_{2}\right)} \leq C_{p_{1}}\|w\|_{G_{A, B}^{p}\left(G_{2}\right)}
$$

4. If $w \in G_{A, B}^{p}\left(G_{2}\right)$, Re tr $w=0$ on $\partial \mathbb{T}_{r_{0}}$ and Im $\operatorname{tr} w=0$ on $\partial \mathbb{T}_{1}$, then $w=0$.

Note that the principle of the factorization given by assertion 1. actually goes back to Bers and Vekua (see [14], see also $[5,6]$). The proof of this proposition will be given in Section 5. The link between H_{ν}^{p} and $G_{A, B}^{p}$ is given by a trick which originally appeared in [6]. Given $\nu \in W_{\mathbb{R}}^{1, q}\left(G_{2}\right)$ satisfying (8), define

$$
B=\frac{\bar{\partial} \nu}{\sqrt{1-\nu^{2}}} \in L^{q}\left(G_{2}\right)
$$

Then $f \in H_{\nu}^{p}\left(G_{2}\right)$ if and only if the function w defined by

$$
\begin{equation*}
w:=\frac{f-\nu \bar{f}}{\sqrt{1-\nu^{2}}}=\sqrt{\frac{1-\nu}{1+\nu}} \operatorname{Re} f+i \sqrt{\frac{1+\nu}{1-\nu}} \operatorname{Im} f \tag{17}
\end{equation*}
$$

belongs to $G_{0, B}^{p}\left(G_{2}\right)$ (see [4]). Using the fact that (17) is equivalent to $f=\frac{w+\nu \bar{w}}{\sqrt{1-\nu^{2}}}$ and that ν is continuous in $\overline{G_{2}}$ by the Sobolev embeddings, we derive from Proposition 2.2.1 the following properties of $H_{\nu}^{p}\left(G_{2}\right)$:

Proposition 2.2.2. 1. Any function $f \in H_{\nu}^{p}\left(G_{2}\right)$ has a non tangential limit at almost every point $\xi \in \partial G_{2}$, denoted by tr $f(\xi)$. Moreover, $\operatorname{tr} f \in L^{p}\left(\partial G_{2}\right)$ and, for all $f \in H_{\nu}^{p}\left(G_{2}\right)$,

$$
\|t r f\|_{L^{p}\left(\partial G_{2}\right)} \sim\|f\|_{H_{\nu}^{p}\left(G_{2}\right)}
$$

Finally, for all $f \in H_{\nu}^{p}\left(G_{2}\right)$,

$$
\begin{equation*}
\lim _{r \rightarrow r_{0}} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)-\operatorname{tr} f\left(r_{0} e^{i \theta}\right)\right|^{p} d \theta=0 \text { and } \lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)-\operatorname{tr} f\left(e^{i \theta}\right)\right|^{p} d \theta=0 \tag{18}
\end{equation*}
$$

2. If $f \in H_{\nu}^{p}\left(G_{2}\right)$, Re tr $f=0$ a.e. on $\mathbb{T}_{r_{0}}$ and Im $\operatorname{tr} f=0$ a.e. on \mathbb{T}_{1}, then $f=0$ in G_{2}.

Remark 2.1. If, instead of (17), we define

$$
w=f-\nu \bar{f}
$$

then a straightforward computation yields that $f \in H_{\nu}^{p}\left(G_{2}\right)$ if and only if $w \in G_{A, B}^{p}\left(G_{2}\right)$ with

$$
A=-\frac{\nu \bar{\partial} \nu}{1-\nu^{2}}, \quad B=-\frac{\bar{\partial} \nu}{1-\nu^{2}}
$$

3 The Dirichlet problem for generalized analytic functions in the ring

As in [4], Theorem 4.4.1.2, we solve the Dirichlet problem associated to equation (13) in $G_{A, B}^{p}\left(G_{2}\right)$. More precisely:

Theorem 3.1. Let $p \in(1,+\infty)$. For all $\vec{\varphi}=\left(\varphi_{1}, \varphi_{2}\right) \in L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$, there exists a unique function $w \in G_{A, B}^{p}\left(G_{2}\right)$ such that

$$
\begin{cases}\operatorname{Re} \operatorname{tr} w=\varphi_{1} & \text { a.e. on } \mathbb{T}_{r_{0}} \tag{19}\\ \operatorname{Im} \operatorname{tr} w=\varphi_{2} & \text { a.e. on } \mathbb{T}_{1}\end{cases}
$$

Moreover, there exists $C_{p, A, B, r_{0}}>0$ only depending on p, A, B and r_{0} such that

$$
\begin{equation*}
\|w\|_{G_{A, B}^{p}\left(G_{2}\right)} \leq C_{p, A, B, r_{0}}\left(\left\|\varphi_{1}\right\|_{L^{p}\left(\mathbb{T}_{r_{0}}\right)}+\left\|\varphi_{2}\right\|_{L^{p}\left(\mathbb{T}_{1}\right)}\right) \tag{20}
\end{equation*}
$$

Remark 3.1. 1. Note the form of the boundary condition (19): we prescribe the real part of w on the inner circle and its imaginary part on the outer circle. Even when $A=B=0$, i.e. for holomorphic functions, it is not possible in general to prescribe the real part of w on both circles. Indeed, let $u_{1} \in L^{2}\left(\mathbb{T}_{r_{0}}\right)$ and $u_{2} \in L^{2}\left(\mathbb{T}_{1}\right)$ be real-valued and assume that there exists a holomorphic function w in G_{2} such that

$$
R e w=u_{1} \text { on } \mathbb{T}_{r_{0}} \text { and Re } w=u_{2} \text { on } \mathbb{T}_{1}
$$

Writing $u_{1}\left(r_{0} e^{i t}\right)=\sum_{n \in \mathbb{Z}} u_{1, n} r_{0}^{n} e^{i n t}, u_{2}\left(e^{i t}\right)=\sum_{n \in \mathbb{Z}} u_{2, n} e^{i n t}$ and $w(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}$, computations analogous to [8], p. 948, yield

$$
u_{1, n}=a_{n} r_{0}^{n}+\overline{a_{-n}} r_{0}^{-n}
$$

and

$$
u_{2, n}=a_{n}+\overline{a_{-n}}
$$

for all $n \in \mathbb{Z}$. In particular, $u_{1,0}=u_{2,0}$. For more on this, see [11].
2. Let us point out a difference with Theorem 4.4.1.2 of [4]: in the disk, if the real part of w is prescribed on the boundary, then the solution of the Dirichlet problem in the corresponding Hardy space is unique up to an imaginary constant. Here, once the real part of w on the inner circle and the imaginary part on the outer one are fixed, the solution is unique.

Theorem 3.1 will be established in Section 6.

4 The Dirichlet problem for the conjugated Beltrami equation in the ring

We conclude with the solution of the Dirichlet problem in $H_{\nu}^{p}\left(G_{2}\right)$:
Theorem 4.1. For all $\vec{\varphi}=\left(\varphi_{1}, \varphi_{2}\right) \in L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$, there uniquely exists $f \in H_{\nu}^{p}\left(G_{2}\right)$ such that:

$$
\begin{cases}\operatorname{Re} \operatorname{tr} f=\varphi_{1} & \text { a.e. on } \mathbb{T}_{r_{0}}, \tag{21}\\ \operatorname{Im} \operatorname{tr} f=\varphi_{2} & \text { a.e. on } \mathbb{T}_{1} .\end{cases}
$$

Moreover, there exists $C_{p, \nu, r_{0}}>0$ only depending on p, ν and r_{0} such that:

$$
\begin{equation*}
\|f\|_{H_{\nu}^{p}\left(G_{2}\right)} \leq C_{p, \nu, r_{0}}\left(\left\|\varphi_{1}\right\|_{L^{p}\left(\mathbb{T}_{r_{0}}\right)}+\left\|\varphi_{2}\right\|_{\mathbb{T}_{1}}\right) . \tag{22}
\end{equation*}
$$

5 Proofs of the properties of Hardy spaces

This section is devoted to the proof of Proposition 2.2.1. Assertion 1. is a slightly modified version of the similarity principle stated in [9], Theorem 2.1, in the more general context of multiply connected domains, under the extra assumption that $w \in C^{\beta}\left(\overline{G_{2}}\right)$ for some $\beta \in(0,1)$. We provide here a quick proof for the reader's convenience.
Let $e: G_{2} \rightarrow \mathbb{R}$ be the solution of

$$
\begin{cases}\Delta e=0 & \text { in } G_{2}, \\ e=0 & \text { on } \mathbb{T}_{1}, \\ e=1 & \text { on } \mathbb{T}_{r_{0}} .\end{cases}
$$

Set

$$
a:=\int_{\mathbb{T}_{r_{0}}} \frac{\partial e}{\partial n} d \sigma
$$

where $\frac{\partial}{\partial n}$ stands for the normal derivative and $d \sigma$ for the surface measure on ∂G_{2}. By the Hopf lemma, $a>0$. Define

$$
c:=a^{-1}>0 .
$$

Consider the function ψ defined on ∂G_{2} by

$$
\begin{equation*}
\psi(z)=0 \text { if } z \in \mathbb{T}_{1}, \psi(z)=\alpha \text { if } z \in \mathbb{T}_{r_{0}} \tag{23}
\end{equation*}
$$

where $\alpha \in \mathbb{R}$ will be chosen later. Define also, for all $z \in G_{2}$,

$$
g(z)= \begin{cases}A(z)+B(z) \frac{\overline{w(z)}}{w(z)} & \text { if } w(z) \neq 0 \\ 0 & \text { if } w(z)=0\end{cases}
$$

Applying Theorem 4.5 in [9] with the function ψ given by (23) yields a function $\widetilde{w} \in C^{0, \gamma}\left(\overline{G_{2}}\right)$ for some $\gamma \leq 1-\frac{2}{q}$ (this follows from [14] and holds whenever w is measurable) such that $w=e^{\widetilde{w}} F$ where F is holomorphic in G_{2},

$$
\operatorname{Im} \widetilde{w}=0 \text { on } \mathbb{T}_{1}
$$

and

$$
\begin{aligned}
\operatorname{Im} \widetilde{w} & =\alpha+c \alpha \int_{\mathbb{T}_{r_{0}}} \frac{\partial e}{\partial n} d \sigma-4 \operatorname{Im} \iint_{G_{2}} g(\zeta) \partial e(\zeta) d \zeta \wedge d \bar{\zeta} \\
& =2 \alpha-4 \operatorname{Im} \iint_{G_{2}} g(\zeta) \partial e(\zeta) d \zeta \wedge d \bar{\zeta} \text { on } \mathbb{T}_{r_{0}} .
\end{aligned}
$$

Choosing α appropriately therefore gives $\operatorname{Im} \widetilde{w}=0$ on ∂G_{2}. Finally, since w satisfies (14) and \widetilde{w} is bounded in G_{2} by a constant only depending on A and B, F also satisfies (14).
Assertion 2. follows at once from assertion 1. and the fact that \widetilde{w} is continuous in $\overline{G_{2}}$. For assertion 3, in view of assertion 1, it is clearly enough to establish the conclusion for functions in $H^{p}\left(G_{2}\right)$. But this follows from (5) and the fact that the corresponding property holds for functions in $H^{p}(\mathbb{D})$ (Lemma 5.2.1 in [4]) and therefore also for functions in $H^{p}\left(\mathbb{C} \backslash r_{0} \overline{\mathbb{D}}\right)$, since

$$
w \in H^{p}\left(\mathbb{C} \backslash r_{0} \overline{\mathbb{D}}\right) \Leftrightarrow z \mapsto \overline{w\left(\frac{r_{0}}{\bar{z}}\right)} \in H^{p}(\mathbb{D}) .
$$

Finally, let $w \in G_{A, B}^{p}\left(G_{2}\right)$ satisfy the assumptions of assertion 4. Write $w=e^{\widetilde{w}} F$ as in assertion 1. Since \widetilde{w} is real-valued on ∂G_{2}, an easy computation shows that F satisfies the assumptions of Proposition 2.1.2. As a consequence, $F=0$ and $w=0$.

6 Solving the Dirichlet problem for generalized analytic functions

The proof is divided in two steps: we first solve a different Dirichlet type problem, prescribing the analytic projection of the trace of the solution, from which we derive the conclusion of Theorem 3.1.

6.1 The analytic projection

We consider here a version of the analytic projection adapted to the case of the ring (see [7]). Given $\vec{\varphi}=\left(\varphi_{1}, \varphi_{2}\right) \in L^{p}\left(\mathbb{T}_{r_{0}}\right) \times L^{p}\left(\mathbb{T}_{1}\right)$, define, for all $z \in G_{2}$,

$$
\mathcal{C}(\vec{\varphi})(z):=\frac{1}{2 \pi} \int_{\mathbb{T}_{r_{0}}} \frac{\varphi_{1}(\zeta)}{\zeta-z} d \zeta+\frac{1}{2 \pi} \int_{\mathbb{T}_{1}} \frac{\varphi_{2}(\zeta)}{\zeta-z} d \zeta,
$$

where, in the first integral, $\mathbb{T}_{r_{0}}$ is described clockwise and \mathbb{T}_{1} is described counterclockwise. The function $\mathcal{C}(\vec{\varphi})$ is holomorphic in G_{2} and actually belongs to the Hardy space $H^{p}\left(G_{2}\right)$. It therefore has a non tangential limit at almost every point of ∂G_{2}, and we set

$$
P_{+}(\vec{\varphi}):=\left(\left.\operatorname{tr} \mathcal{C}(\vec{\varphi})\right|_{\mathbb{T}_{r_{0}}},\left.\operatorname{tr} \mathcal{C}(\vec{\varphi})\right|_{\mathbb{T}_{1}}\right) .
$$

Note that P_{+}is $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$-bounded.

6.2 The Dirichlet problem for generalized analytic functions with prescribed analytic projection

Our first step towards Theorem 3.1 is the solution of the Dirichlet problem for generalized analytic functions with prescribed analytic projection:
Theorem 6.2.1. Let $p \in(1,+\infty)$. For all $g \in H^{p}\left(G_{2}\right)$, there exists a unique $w \in G_{A, B}^{p}\left(G_{2}\right)$ such that

$$
\begin{equation*}
P_{+}(\operatorname{tr} w)=\left(\left.\operatorname{tr} g\right|_{\mathbb{T}_{r_{0}}},\left.\operatorname{tr} g\right|_{\mathbb{T}_{1}}\right) . \tag{24}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\|w\|_{G_{A, B}^{p}\left(G_{2}\right)} \leq C_{p}\|g\|_{H^{p}\left(G_{2}\right)} . \tag{25}
\end{equation*}
$$

Proof: the argument is inspired by the one of Theorem 4.4.1.1 in [4]. Consider the operator T defined, for all $w \in L^{p}\left(G_{2}\right)$ and all $z \in G_{2}$ by

$$
T w(z):=\iint_{G_{2}} \frac{w(\zeta)}{\zeta-z} d \zeta \wedge d \bar{\zeta}
$$

Define also, for all $f \in L^{p}(\mathbb{C})$ and all $z \in \mathbb{C}$,

$$
\breve{T} f(z):=\iint_{G_{2}} \frac{f(\zeta)}{\zeta-z} d \zeta \wedge d \bar{\zeta} .
$$

We claim:
Proposition 6.2.1. 1. The operator T is bounded from $L^{p}\left(G_{2}\right)$ to $W^{1, p}\left(G_{2}\right)$ and compact on $L^{p}\left(G_{2}\right)$. Moreover, for all $w \in L^{p}\left(G_{2}\right)$,

$$
\begin{equation*}
\bar{\partial}(T w)=w \tag{26}
\end{equation*}
$$

2. The operator \breve{T} is bounded from $L^{p}(\mathbb{C})$ to $W_{\text {loc }}^{1, p}(\mathbb{C})$.
3. Let $w \in L^{p}\left(G_{2}\right)$ and $g \in H^{p}\left(G_{2}\right)$. Assume that

$$
w=g+T(A w+B \bar{w}) .
$$

Then there exists $p_{0}>2$ such that $A w+B \bar{w} \in L^{p_{0}}\left(G_{2}\right)$ and

$$
\begin{equation*}
\|A w+B \bar{w}\|_{L^{p_{0}}\left(G_{2}\right)} \leq C\|g\|_{H^{p}\left(G_{2}\right)} \tag{27}
\end{equation*}
$$

4. The operator $w \mapsto w-T(A w+B \bar{w})$ is an isomorphism from $L^{p}\left(G_{2}\right)$ onto itself.
5. For all $w \in G_{A, B}^{p}\left(G_{2}\right)$,

$$
\begin{equation*}
w=\mathcal{C}(\operatorname{tr} w)+T(A w+B \bar{w}), \text { a.e. in } G_{2} . \tag{28}
\end{equation*}
$$

6. If $w \in G_{A, B}^{p}\left(G_{2}\right)$ and $P_{+}(\operatorname{tr} w)=0$ a.e. on ∂G_{2}, then $w(z)=0$ for all $z \in G_{2}$.

The proof of this proposition will be given in Appendix A. Relying on the conclusions of Proposition 6.2.1, let us conclude the proof of Theorem 6.2.1. Proposition 6.2.1, assertion 4, yields a function $w \in L^{p}\left(G_{2}\right)$ such that

$$
w=g+T(A w+B \bar{w}) .
$$

Since g is holomorphic in G_{2}, assertion 1. in Proposition 6.2.1 shows that $\bar{\partial} w=A w+B \bar{w}$. Moreover, since $g \in H^{p}\left(G_{2}\right)$, it follows from item 3 in Proposition 6.2.1 that $A w+B \bar{w} \in L^{p_{0}}$ for some $p_{0}>2$ with estimate (27), and therefore $T(A w+B \bar{w}) \in W^{1, p_{0}}\left(G_{2}\right) \subset L^{\infty}\left(G_{2}\right)$, with

$$
\|T(A w+B \bar{w})\|_{L^{\infty}\left(G_{2}\right)} \leq C\|g\|_{H^{p}\left(G_{2}\right)}
$$

As a consequence, $w \in G_{A, B}^{p}\left(G_{2}\right)$ and (25) holds. Formula (28) now shows that $g=\mathcal{C}(\operatorname{tr} w)$ and therefore $\left(\left.\operatorname{tr} g\right|_{\mathbb{T}_{0}},\left.\operatorname{tr} g\right|_{\mathbb{T}_{1}}\right)=P_{+}(\operatorname{tr} w)$. Uniqueness of w follows from assertion 6. in Proposition 6.2.1.

6.3 Solution of the Dirichlet problem for generalized analytic functions

Let us conclude the proof of Theorem 3.1, arguing as for the proof of Theorem 4.4.1.2 in [4]. Define $\mathcal{T}: G_{A, B}^{p}\left(G_{2}\right) \rightarrow L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$ by

$$
\mathcal{T} w=\left(\left.\operatorname{Re} \operatorname{tr} w\right|_{\mathbb{T}_{r_{0}}},\left.\operatorname{Im} \operatorname{tr} w\right|_{\mathbb{T}_{1}}\right) .
$$

The operator \mathcal{T} is bounded from $G_{A, B}^{p}\left(G_{2}\right)$ to $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$, and the conclusion of Theorem 3.1 exactly means that \mathcal{T} is an isomorphism from $G_{A, B}^{p}\left(G_{2}\right)$ onto $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$.

In order to establish this fact, we define an operator \mathcal{S} from $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$ to $G_{A, B}^{p}\left(G_{2}\right)$ in the following way. For all $\vec{\psi}=\left(\psi_{1}, \psi_{2}\right) \in L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$, Proposition 2.1.1 yields the unique function $g \in H^{p}\left(G_{2}\right)$ such that

$$
\begin{cases}\operatorname{Re} \operatorname{tr} g=\psi_{1} & \text { on } \mathbb{T}_{r_{0}}, \\ \operatorname{Im} \operatorname{tr} g=\psi_{2} & \text { on } \mathbb{T}_{1},\end{cases}
$$

with

$$
\begin{equation*}
\|g\|_{H^{p}\left(G_{2}\right)} \leq C\left(\left\|\psi_{1}\right\|_{L^{p}\left(\mathbb{T}_{r_{0}}\right)}+\left\|\psi_{2}\right\|_{L^{p}\left(\mathbb{T}_{1}\right)}\right) . \tag{29}
\end{equation*}
$$

Define now $w:=\mathcal{S}\left(\psi_{1}, \psi_{2}\right)$ as the unique function $w \in G_{A, B}^{p}\left(G_{2}\right)$ (given by Theorem 6.2.1) such that $P_{+}(\operatorname{tr} w)=\left(\left.\operatorname{tr} g\right|_{\mathbb{T}_{0}},\left.\operatorname{tr} g\right|_{\mathbb{T}_{1}}\right)$. Recall also that

$$
\begin{equation*}
\|w\|_{G_{A, B}^{p}\left(G_{2}\right)} \leq C\|g\|_{H^{p}\left(G_{2}\right)} \tag{30}
\end{equation*}
$$

Thus, (29) and (30) show that \mathcal{S} is continuous. It is plain to see that \mathcal{S} is one-to-one on $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$. Moreover, let $w \in G_{A, B}^{p}\left(G_{2}\right)$. If $g=\mathcal{C}(\operatorname{tr} w)$, one has $g \in H^{p}\left(G_{2}\right)$ and $P_{+}(\operatorname{tr} w)=\operatorname{tr} g$. Setting $\varphi_{1}=\left.\operatorname{Re} \operatorname{tr} g\right|_{\mathbb{T}_{r_{0}}}$ and $\varphi_{2}=\left.\operatorname{Im} \operatorname{tr} g\right|_{\mathbb{T}_{1}}$, one has $\mathcal{S}\left(\varphi_{1}, \varphi_{2}\right)=w$, which shows that \mathcal{S} is onto. Therefore, \mathcal{S} is an isomorphism from $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$ onto $G_{A, B}^{p}\left(G_{2}\right)$. To check that \mathcal{T} is an isomorphism from $G_{A, B}^{p}\left(G_{2}\right)$ onto $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$, it is therefore enough to check that $\mathcal{A}:=\mathcal{T} \circ \mathcal{S}$ is an isomorphism from $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$ onto itself.
The operator \mathcal{A} is $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$-bounded. Moreover, formula (28) yields that, for all $\vec{\psi} \in L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$, one has

$$
\mathcal{A} \vec{\psi}=\vec{\psi}+\mathcal{B} \vec{\psi}
$$

where

$$
\mathcal{B} \vec{\psi}:=\left(\left.\operatorname{Re} \operatorname{tr}(T(A w+B \bar{w}))\right|_{\mathbb{T}_{r_{0}}},\left.\operatorname{Im} \operatorname{tr}(T(A w+B \bar{w}))\right|_{\mathbb{T}_{1}}\right)
$$

and $w:=\mathcal{S}(\vec{\psi})$. If $g:=\mathcal{C}(\operatorname{tr} w),(28)$ shows that $w=g+T(A w+B \bar{w})$ and item 3. in Proposition 6.2.1 therefore yields that $A w+B \bar{w} \in L^{p_{0}}\left(G_{2}\right)$ for some $p_{0}>2$ and

$$
\|A w+B \bar{w}\|_{L^{p_{0}}\left(G_{2}\right)} \leq C\|g\|_{H^{p}\left(G_{2}\right)} \leq C\left(\left\|\psi_{1}\right\|_{L^{p}\left(\mathbb{T}_{r_{0}}\right)}+\left\|\psi_{2}\right\|_{L^{p}\left(\mathbb{T}_{1}\right)}\right)
$$

so that $T(A w+B \bar{w}) \in W^{1, p_{0}}\left(G_{2}\right)$ and

$$
\|T(A w+B \bar{w})\|_{W^{1, p_{0}}\left(G_{2}\right)} \leq C\left(\left\|\psi_{1}\right\|_{L^{p}\left(\mathbb{T}_{r_{0}}\right)}+\left\|\psi_{2}\right\|_{L^{p}\left(\mathbb{T}_{1}\right)}\right) .
$$

As a consequence, and since $W^{1, p_{0}}\left(G_{2}\right) \subset C^{0, \gamma}\left(\overline{G_{2}}\right)$ with $\gamma:=1-\frac{2}{p_{0}}$, the operator \mathcal{B} is bounded from $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$ to $C^{0, \gamma}\left(\mathbb{T}_{r_{0}}\right) \times C^{0, \gamma}\left(\mathbb{T}_{1}\right)$, and is therefore compact on $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$. Since, by Proposition 2.2.1, assertion $4, \mathcal{T}$, and therefore \mathcal{A}, are injective on $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$, it follows that \mathcal{A} is actually an isomorphism from $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$ onto itself. Thus, \mathcal{T} is an isomorphism from $G_{A, B}^{p}\left(G_{2}\right)$ onto $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$, which yields the existence and the uniqueness of w. Finally, (20) follows from the boundedness of \mathcal{T}^{-1}.

7 Solution of the Dirichlet problem for the conjugated Beltrami equation

We establish now Theorem 4.1. Define

$$
\sigma:=\frac{1-\nu}{1+\nu},
$$

and note that, because of (8), there exist $0<c<C$ such that $c \leq \sigma(z) \leq C$ for almost every $z \in G_{2}$. Set $\psi_{1}=\varphi_{1} \sigma^{1 / 2} \in L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right)$ and $\psi_{2}=\varphi_{2} \sigma^{-1 / 2} \in L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$. Theorem 3.1 yields the unique function $w \in G_{0, B}^{p}\left(G_{2}\right)$ such that

$$
\begin{cases}\operatorname{Re}(\operatorname{tr} w)=\psi_{1} & \text { a.e. on } \mathbb{T}_{r_{0}}, \\ \operatorname{Im}(\operatorname{tr} w)=\psi_{2} & \text { a.e. on } \mathbb{T}_{1} .\end{cases}
$$

If $f:=\frac{w+\nu \bar{w}}{\sqrt{1-\nu^{2}}}$, then $f \in H_{\nu}^{p}\left(G_{2}\right)$ and, as in the proof of Theorem 4.4.2.1 in [4], satisfies (21) and (22). Uniqueness of f follows from Proposition 2.2.2, assertion 3.

A Appendix: Proof of the properties of some operators

Proof of Proposition 6.2.1: the proofs of assertions 1. and 2. are identical to the corresponding ones in the case of the disk (see assertion 4. in Proposition 5.2.1 in [4]).
Let us now turn to point 3 . We first check that $A w+B \bar{w} \in L^{p_{0}}\left(G_{2}\right)$ for some $p_{0}>2$. The Hölder inequality yields that $A w+B \bar{w} \in L^{r}\left(G_{2}\right)$ with $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$.
Assume first that $p>\frac{2 q}{q-2}$. In that case, $r>2$, and we are done.
Assume now that $p=\frac{2 q}{q-2}$, so that $r=2$. Then $T(A w+B \bar{w}) \in W^{1,2}\left(G_{2}\right) \subset L^{t}\left(G_{2}\right)$ for all $t<+\infty$. As a consequence, since $g \in L^{s}\left(G_{2}\right)$ for all $s \in(1,2 p)$ (Proposition 2.2.1, item 3.), $w \in L^{s}\left(G_{2}\right)$ for all $s \in(1,2 p)$. Since $\lim _{s \rightarrow 2 p} \frac{1}{q}+\frac{1}{s}=\frac{1}{q}+\frac{1}{2 p}=\frac{1}{r}-\frac{1}{2 p}<\frac{1}{2}$, there exists $s \in(1,2 p)$ such that $\frac{1}{p_{0}}:=\frac{1}{q}+\frac{1}{s}<\frac{1}{2}$. Thus, $A w+B \bar{w} \in L^{p_{0}}\left(G_{2}\right)$.
Assume finally that $p<\frac{2 q}{q-2}$, so that $r<2$. Then $T(A w+B \bar{w}) \in W^{1, r}\left(G_{2}\right) \subset L^{r^{*}}\left(G_{2}\right)$ with $\frac{1}{r^{*}}=\frac{1}{r}-\frac{1}{2}$. Since furthermore $p>\frac{q}{q-2}$ by assumption (9), one has $r^{*}>2 p$, so that again $w \in L^{s}\left(G_{2}\right)$ for all $s \in(1,2 p)$. Therefore, for all $s \in(1,2 p)$, if $\frac{1}{p_{0}}=\frac{1}{q}+\frac{1}{s}$, one has $A w+B \bar{w} \in L^{p_{0}}\left(G_{2}\right)$. Since $\frac{1}{q}+\frac{1}{2 p}=\frac{1}{r^{*}}-\frac{1}{2 p}+\frac{1}{2}<\frac{1}{2}$, one concludes as before.
We will now establish (27) and assertion 4. simultaneously, making use of the following notation: for any function u on G_{2}, denote by \breve{u} its extension by 0 outside G_{2}.
Define $T_{1}(w):=T(A w+B \bar{w})$ for $w \in L^{p}\left(G_{2}\right)$, and observe first that T_{1} is compact on $L^{p}\left(G_{2}\right)$. Indeed, since $A, B \in L^{q}\left(G_{2}\right)$ and $w \in L^{p}\left(G_{2}\right), A w+B \bar{w} \in L^{r}\left(G_{2}\right)$ with $r=\frac{p q}{p+q}$. It follows from assertion 1 that T_{1} is bounded from $L^{p}\left(G_{2}\right)$ to $W^{1, r}\left(G_{2}\right)$, and this space is always compactly embedded in $L^{p}\left(G_{2}\right)$. Indeed, this is immediate when $r \geq 2$, and if $r<2$, this follows from the fact that $p<r^{*}:=\frac{2 r}{2-r}$ since $q>2$.
To prove that $I-T_{1}$ is an isomorphism from $L^{p}\left(G_{2}\right)$ onto itself, it is therefore enough to check that it is one to one. Let $w \in L^{p}\left(G_{2}\right)$ such that $w=T_{1} w=T(A w+B \bar{w})$. Assertion 3 shows that $A w+B \bar{w} \in L^{p_{0}}\left(G_{2}\right)$ for some $p_{0}>2$. Set now $u=\breve{T}(A w+B \bar{w}) \in W_{l o c}^{1, p_{0}}(\mathbb{C})$.
It holds in the sense of distributions that

$$
\begin{equation*}
\bar{\partial} u=A w+B \bar{w}=\breve{A} u+\breve{B} \bar{u} \quad \text { a.e. in } \mathbb{C} . \tag{31}
\end{equation*}
$$

In addition, $u(z)$ clearly goes to 0 when $|z|$ goes to $+\infty$. It now follows from the generalized Liouville theorem [2, Prop. 3.3] that $u=0$, therefore $w=0$.
Coming back to assertion 3., if $w=g+T(A w+B \bar{w})$, with $w \in L^{p}\left(G_{2}\right)$ and $g \in H^{p}\left(G_{2}\right) \subset L^{p}\left(G_{2}\right)$, one deduces from assertion 4 . that $w=\left(I-T_{1}\right)^{-1} g$, which yields

$$
\|w\|_{L^{p}\left(G_{2}\right)} \leq C\|g\|_{L^{p}\left(G_{2}\right)} .
$$

Estimate (27) follows. Indeed, when $p>\frac{2 q}{q-2}>2$,

$$
\|A w+B \bar{w}\|_{L^{r}\left(G_{2}\right)} \leq C\|w\|_{L^{p}\left(G_{2}\right)} \leq C\|g\|_{L^{p}\left(G_{2}\right)} \leq C\|g\|_{H^{p}\left(G_{2}\right)},
$$

with $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$. When $p=\frac{2 q}{q-2}$, one has, for all $t<+\infty$,
$\|T(A w+B \bar{w})\|_{L^{t}\left(G_{2}\right)} \leq C\|T(A w+B \bar{w})\|_{W^{1,2}\left(G_{2}\right)} \leq C\|A w+B \bar{w}\|_{L^{2}\left(G_{2}\right)} \leq C\|w\|_{L^{p}\left(G_{2}\right)} \leq C\|g\|_{L^{p}\left(G_{2}\right)}$, and since

$$
\|g\|_{L^{s}\left(G_{2}\right)} \leq C\|g\|_{H^{p}\left(G_{2}\right)}
$$

for all $s \in(1,2 p),(27)$ follows. Finally, when $p<\frac{2 q}{q-2}$,

$$
\|T(A w+B \bar{w})\|_{L^{r^{*}}\left(G_{2}\right)} \leq C\|T(A w+B \bar{w})\|_{W^{1, r}\left(G_{2}\right)} \leq C\|A w+B \bar{w}\|_{L^{r}\left(G_{2}\right)} \leq C\|w\|_{L^{p}\left(G_{2}\right)},
$$

and one concludes similarly.
For assertion 5., consider now $w \in G_{A, B}^{p}\left(G_{2}\right)$. By assertion 1., $\bar{\partial}(w-T(A w+B \bar{w}))=0$ in the sense of distributions, so that the function $w-T(A w+B \bar{w})$ is holomorphic in G_{2}, and therefore belong to $W_{l o c}^{1, r}\left(G_{2}\right)$ for all $r \in(1,+\infty)$. Since $T(A w+B \bar{w}) \in W^{1, r}\left(G_{2}\right)$, we obtain $w \in W_{l o c}^{1, r}\left(G_{2}\right)$ for all $r \in(1,+\infty)$. For all $\varepsilon>0$, the Cauchy-Green formula therefore yields
$w(z)=\frac{1}{2 \pi i} \int_{\mathbb{T}_{r_{0}+\varepsilon}} \frac{w(\zeta)}{\zeta-z} d \zeta+\frac{1}{2 \pi i} \int_{\mathbb{T}_{1-\varepsilon}} \frac{w(\zeta)}{\zeta-z} d \zeta+T\left((A w+B \bar{w})_{\left.G_{G_{2, \varepsilon}}\right)}(z), \quad r_{0}+\varepsilon<|z|<1-\varepsilon\right.$,
with

$$
\begin{equation*}
G_{2, \varepsilon}:=\left\{z \in \mathbb{C} ; r_{0}+\varepsilon<|z|<1-\varepsilon\right\} . \tag{32}
\end{equation*}
$$

Letting $\varepsilon \rightarrow 0$ in (32), and using (16) for the two first terms and dominated convergence and assertion 1. for the third one, we obtain (28).
Finally, for point 6., assume that $w \in H^{p}\left(G_{2}\right)$ and $P_{+}(\operatorname{tr} w)=0$ a.e. on ∂G_{2}. The function $\mathcal{C}(\operatorname{tr} \mathrm{w})$ is in $H^{p}\left(G_{2}\right)$ and its trace vanishes on ∂G_{2}, which entails that it is zero in G_{2}. Formula (28) therefore yields that $w=T(A w+B \bar{w})$, which in turn, by assertion 4., shows that $w=0$.

B Appendix: Proof of some properties of functions in $H^{p}\left(G_{2}\right)$

Proof of Proposition 2.1.1: we argue similarly as in [8], Theorem 2.2. For all $k \in \mathbb{Z}$, define

$$
u_{1, k}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} u_{1}\left(r_{0} e^{i \theta}\right) e^{-i k \theta} d \theta \text { and } v_{2, k}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} v_{2}\left(e^{i \theta}\right) e^{-i k \theta} d \theta .
$$

The proof of Theorem 2.2 in [8] shows that, if a function g satisfying the conclusions of Proposition 2.1.1 exists, then one has $g(z)=\sum_{k \in \mathbb{Z}} a_{k} z^{k}$ in G_{2}, with

$$
\begin{equation*}
a_{k}:=2 \frac{r_{0}^{k} u_{1, k}+i v_{2, k}}{r_{0}^{2 k}+1} . \tag{33}
\end{equation*}
$$

This already proves uniqueness of g.
Recall now that, according to Theorem 2.3 in [8], for all functions $f_{1} \in L_{\mathbb{R}}^{2}\left(\mathbb{T}_{r_{0}}\right)$ and $g_{2} \in L_{\mathbb{R}}^{2}\left(\mathbb{T}_{1}\right)$, there exists a unique holomorphic function w in G_{2} such that $\operatorname{Re} w=f_{1}$ on $\mathbb{T}_{r_{0}}$ and $\operatorname{Im} w=g_{2}$ on \mathbb{T}_{1}. If the operator S is defined by $w=S\left(f_{1}, g_{2}\right)$, Theorem 2.5 in [8] shows that S can be written as

$$
S\left(f_{1}, g_{2}\right)=\left(\mathcal{H}_{0} f_{1}+\widehat{A} f_{1}+\widehat{B} g_{2}, \mathcal{H}_{0} g_{2}+\widehat{C} f_{1}+\widehat{D} g_{2}\right)
$$

where \mathcal{H}_{0} stands for the usual Hilbert transform and $\widehat{A}, \widehat{B}, \widehat{C}$ and \widehat{D} are linear integral operators with analytic kernels. This shows that S extends to an $L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$-bounded operator. Given now $u_{1}, v_{2} \in L_{\mathbb{R}}^{p}\left(\mathbb{T}_{r_{0}}\right) \times L_{\mathbb{R}}^{p}\left(\mathbb{T}_{1}\right)$, set $\left(u_{2}, v_{1}\right)=S\left(u_{1}, v_{2}\right)$ and

$$
\vec{\psi}:=\left(u_{1}+i u_{2}, v_{1}+i v_{2}\right) .
$$

Define now

$$
g:=\mathcal{C}(\vec{\psi})
$$

Since $\vec{\psi} \in L^{p}\left(\mathbb{T}_{r_{0}}\right) \times L^{p}\left(\mathbb{T}_{1}\right)$, the function g belongs to $H^{p}\left(G_{2}\right)$ and the definition of $\vec{\psi}$ yields that (6) and (7) hold.
Proof of Proposition 2.1.2: it is an immediate corollary of Proposition 2.1.1.
Acknowledgements: the authors would like to thank the referee for useful and interesting remarks.

References

[1] L. Ahlfors, Lectures on quasiconformal mappings, Wadsworth and Brooks/Cole Advanced Books and Software, Monterey, CA, 1987.
[2] K. Astala, L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math. (2) 16, no. 1, 265-299, 2006.
[3] L. Baratchart, Y. Fischer, J. Leblond, Dirichlet problem and generalized Hardy classes in multiply connected domains, in preparation.
[4] L. Baratchart, J. Leblond, S. Rigat, E. Russ, Hardy spaces of the conjugate Beltrami equation, J. Funct. Anal. 259, 384-427, 2010.
[5] L. Bers, The Theory of Pseudoanalytic Functions, Lecture Notes, New York Univ., New York, 1953.
[6] L. Bers, L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno internazionale sulle equazioni derivate e parziali, Cremonese, Roma, 111-138, 1954.
[7] P. L. Duren, Theory of H^{p} spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London, 1970.
[8] M. A. Efendiev, W. L. Wendland, Nonlinear Riemann-Hilbert problems with Lipschitzcontinuous boundary data: doubly connected domains, Proc. R. Soc. Lond. A 459, 945-955, 2003.
[9] M. A. Efendiev, W. L. Wendland, Nonlinear Riemann-Hilbert problems for generalized analytic functions, Funct. approx. 40, 2, 185-208, 2009.
[10] Y. Fischer, Approximation dans des classes de fonctions analytiques généralisées et résolution de problèmes inverses pour les tokamaks, Thèse de l'Université de Nice SophiaAntipolis, 2011.
[11] F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford, 1966.
[12] G. M. Goluzin, Geometric theory of functions of one complex variable, A. M. S., 1969.
[13] M. V. Keldysh, On the problem of conformal mapping of multiply connected domains onto canonical domains (in Russian), Russ. Math. Surveys 6, 90-119, 1939.
[14] I. N. Vekua, Generalized Analytic Functions, Pergamon Press, Oxford, 1962.

[^0]: *Helmholtz Center Munich, Institute of Biomathematics and Biometry, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany. E-mail: messoud.efendiyev@helmholtz-muenchen.de
 ${ }^{\dagger}$ Université Paul Cézanne, Faculté des Sciences et Techniques de Saint-Jérôme, Avenue Escadrille Normandie-Niémen, 13397 MARSEILLE Cedex 20, France, and LATP, CNRS, UMR 6632. E-mail: emmanuel.russ@univ-cezanne.fr

