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Abstract

We study, in the semi-classical approximation, the convergence of the quantum density and the

quantum action, solutions to the Madelung equations, when the Planck constant h tends to 0. We

find two different solutions which depend to the initial density . In the first case where the initial

quantum density is a classical density ρ0(x), the quantum density and the quantum action converge

to a classical action and a classical density which satisfy the statistical Hamilton-Jacobi equations.

These are the equations of a set of classical particles whose initial positions are known only by the

density ρ0(x). In the second case where initial density converges to a Dirac density, the density

converges to the Dirac function which corresponds to a unique classical trajectory. Therefore

we introduce into classical mechanics non-discerned particles (case 1), which explain the Gibbs

paradox, and discerned particles (case 2). Finally we deduce a quantum mechanics interpretation

which depends on the initial conditions (preparation), the Broglie-Bohm interpretation in the first

case and the Schrödinger interpretation in the second case.
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I. INTRODUCTION

Quantum mechanics came to exist in 1900 with the introduction of the Planck constant

h = 6, 62 × 10−34m2 kg /s. Its value is very small and close to 0 in the units of classical

mechanics. But, ~ = h/2π =1 in the atomic units system (ua) used to represent the atomic

scale. What is the connection between quantum mechanics and classical mechanics? We will

particulary study the semi-classical approximation when the Planck constant tends towards

0. This approach usually presents two major difficulties:

- a mathematical difficulty to study the convergence of these equations,

- a conceptual difficulty: the particles are considered to be indistinguishable in quantum

mechanics and distinguishable in classical mechanics.

We will see how these two problems can be overcome.

Let us consider the wave function solution to the Schrödinger equation Ψ(x, t):

iℏ
∂Ψ

∂t
= −

ℏ
2

2m
△Ψ+ V (x, t)Ψ (1)

Ψ(x, 0) = Ψ0(x). (2)

With the variable change Ψ(x, t) =
√

ρ~(x, t) exp(iS
~(x,t)
~

), the quantum density ρ~(x, t) and

the quantum action S~(x, t) depend on the parameter ~. The Schrödinger equation can be

decomposed into Madelung equations1 (1926) which correspond to:

∂S~(x, t)

∂t
+

1

2m
(∇S~(x, t))2 + V (x, t)−

~
2

2m

△
√

ρ~(x, t)
√

ρ~(x, t)
= 0 (3)

∂ρ~(x, t)

∂t
+∇ · (ρ~(x, t)

∇S~(x, t)

m
) = 0 ∀(x, t) (4)

with initial conditions

ρ~(x, 0) = ρ~0(x) and S~(x, 0) = S~

0(x). (5)

The Madelung equations are mathematically equivalent to the Schrödinger equation if

the functions ρ~0(x) and S~

0(x) exist and are smooth. It will be physically the case if Ψ0(x)

is a wave packet.

In this paper we study the convergence of the density ρ~(x, t) and the action S~(x, t),

solutions to the Madelung equations when ~ tends to 0. Its convergence is subtle and remains

a difficult problem. We find, according to the assumptions on the initial probability density

ρ~0(x), two very different cases of convergence due to a different preparation of the particles.
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Definition 1 - A quantum system is prepared in the statistical semi-classical case if its

wave function satisfies the two following conditions

- its initial probability density ρ~0(x) and its initial action S~

0(x) are regular functions

ρ0(x) and S0(x) not depending on ~.

- its interaction with the potential field V (x, t) can be described classically. The simplest

case corresponds to particles in a vacuum with only geometric constraints.

It is the case of a set of particles that are non-interacting and prepared in the same way:

a free particles beam in a linear potential, an electronic or C60 beam in the Young’s slits

diffraction, an atomic beam in the Stern and Gerlach experiment.

Definition 2 - A quantum system is prepared in the determinist semi-classical case if

its wave function satisfies the two following conditions

- its initial probability density ρ~0(x) converges, when ~ → 0, to a Dirac distribution and

its initial action S~

0(x) is a regular function S0(x) not depending on ~.

- its interaction with the potential field V (x) can be described classically.

This situation occurs when the wave packet corresponds to a quasi-classical coherent state,

introduced in 1926 by Schrödinger2. The field quantum theory and the second quantification

are built on these coherent states3. The existence for the hydrogen atom of a localized wave

packet whose motion is on the classical trajectory (an old dream of Schrödinger’s) was

predicted in 1994 by Bialynicki-Birula, Kalinski, Eberly, Buchleitner et Delande4–6, and

discovered recently by Maeda and Gallagher7 on Rydberg atoms.

The separation of deterministic and statistical semi-classical cases causes a strong reduc-

tion of the mathematical difficulties of the convergence study.

In section 2, we show how, in the statistical semi-classical case, the density ρ~(x, t) and the

action S~(x, t), solutions to the Madelung equations, converge, when the Planck constant

~ goes to zero, to a classical density and a classical action which satisfy the statistical

Hamilton-Jacobi equations. These are the equations of a set of classical particles whose

initial positions are known only by the density ρ0(x). Therefore we introduce non-discerned

particles into classical mechanics and the Broglie-Bohm interpretation of the statistical semi-

classical case.
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In section 3, we show how, in the determinist semi-classical case, the density ρ~(x, t)

and the action S~(x, t), solutions to the Madelung equations, converge, when the Planck

constant ~ goes to zero, to an unique classical trajectory and an action which satisfy the

determinist Hamilton-Jacobi equations. Therefore we introduce discerned particles into

classical mechanics and the Schrödinger interpretation of the determinist semi-classical case:

the wave function is then interpreted as the state of a single particle similar to a soliton.

II. CONVERGENCE IN THE STATISTICAL SEMI-CLASSICAL CASE

In the statistical semi-classical case, we have:

THEOREM 1 For particles in the statistical semi-classical case, the probability density

ρ~(x, t) and the action S~(x, t), solutions to the Madelung equations (3)(4)(5), converge,

when ~ → 0, to the classical density ρ(x, t) and the classical action S(x, t), solutions to the

statistical Hamilton-Jacobi equations:

∂S (x, t)

∂t
+

1

2m
(∇S(x, t))2 + V (x, t) = 0 (6)

S(x, 0) = S0(x). (7)

∂ρ (x, t)

∂t
+ div

(

ρ (x, t)
∇S (x, t)

m

)

= 0 ∀ (x, t) (8)

ρ(x, 0) = ρ0(x). (9)

We will demonstrate in the case where the wave function Ψ(x, t) at time t is written as

a function of the initial wave function Ψ0(x) by the Feynman formula:

Ψ(x, t) =

∫

F (t, ~) exp(
i

~
Scl(x, t;x0)Ψ0(x0)dx0

where F (t, ~) is an independent function of x and of x0 and where Scl(x, t;x0) is the classical

action min
u(s)

∫ t

0
L(x(s),u(s), s)ds, the minimum is taken over all trajectories x(s) with

velocity u(s) from x0 to x between 0 and t.

Feynman8 (p. 58) shows that the general paths integral formula is simplified in this form,

especially when the potential V (x, t) is a quadratic function in x.
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Let us consider the statistical semi-classical case where Ψ0(x) =
√

ρ0(x) exp(i
S0(x)

~
) with

ρ0(x) and S0(x) are non-dependent functions of ~. The wave function is written

Ψ(x, t) = F (t, ~)

∫

√

ρ0(x0) exp(
i

~
(S0(x0) + Scl(x, t;x0))dx0.

The theorem of the stationary phase shows that, if ~ tends towards 0, we have

Ψ(x, t) ∼ exp(
i

~
minx0(S0(x0) + Scl(x, t;x0)).

that is to say that the quantum action Sh(x, t) converges to the function

S(x, t) = minx0(S0(x0) + Scl(x, t;x0)). (10)

However, S(x, t) given by (10) is the solution to the Hamilton-Jacobi equation (6) with

the initial condition (7). This is a consequence of the principle of the least action and a

fundamental property of the minplus analysis we have developed9,10 following Maslov11.

Moreover, as the quantum density ρh(x, t) verifies the continuity equation (4) of the

Madelung equations, we deduce, since Sh(x, t) tends towards S(x, t), that ρh(x, t) converges

to the classical density ρ(x, t), which satisfies the continuity equation (8) of the statistical

Hamilton-Jacobi equations. We obtain both announced convergences.

This theorem will have major implications in classical and quantum mechanics. The

first one is to provide an interpretation of the classical particles which satisfy the statistical

Hamilton-Jacobi equations.

A. Non-discerned particules in classical mechanics

The statistical Hamilton-Jacobi equations correspond to a set of independent classical

particles, in a potential field V (x, t), and for which we only know at the initial time the

probability density ρ0 (x) and the velocity v(x) = ∇S0(x,t)
m

.

Let us consider N particles that satisfy the statistical Hamilton-Jacobi equations. We

propose the following definition:

Definition 3 - N indentical particles, prepared in the same way, with the same initial den-

sity ρ0 (x), the same initial action S0(x), and evolving in the same potential V (x, t) are called

non-discerned.
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We refer to these particles as non-discerned and not as indistinguishable because, if their

initial positions are known, their trajectories will be known as well. Nevertheless, when one

counts them, they will have the same properties as the indistinguishable ones. Thus, if the

initial density ρ0 (x) is given, and one randomly chooses N particles, the N! permutations are

strictly equivalent and do not correspond to the same configuration as for indistinguishable

particles. This means that if X is the coordinate space of a non-discerned particle, the true

configuration space of N non-discerned particles is not XN but rather XN/SN where SN is

the symmetric group.

The introduction of these non-discerned particles into classical mechanics solves the con-

ceptual difficulty announced in the introduction; indiscernibility also exists in classical me-

chanics. These non-discerned particles in classical mechanics also give a simple solution

to the Gibbs paradox. This view is not new: it features particularly in Landé12 in 1965,

Leinaas et Myrheim13 in 1977 and more recently in Greiner14 in his book "Thermodynamics

and statistical mechanics".

B. Quantum trajectories of de Broglie-Bohm

In the statistical semi-classical case, the Madelung equations converge to statistical

Hamilton-Jacobi equations. The uncertainity about the position of a quantum particle

corresponds in this case to an uncertainity about the position of a classical particle, only

whose initial density has been defined. In classical mechanics, this uncertainity is

removed by giving the initial position of the particle. It would not be logical

not to do the same in quantum mechanics.

We assume that for the statistical semi-classical case, a quantum particle is not well

described by its wave function. One needs therefore to add its initial position and it becomes

natural to introduce the so-called de Broglie-Bohm trajectories. In this interpretation, its

velocity is given by15,16:

v~(x, t) =
1

m
∇S~(x, t). (11)

We have the classical property: if a system of particles with initial density ρ0(x) follows de

Broglie-Bohm trajectories defined by the velocity field v~(x, t), then the probability density

of those particles at time t is equal to ρ~(x, t), the square of the wave function. Using
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this velocity, the Heisenberg inequalities correspond to a dispersion relation position and

velocity between the different non-discerned particles. This shows that, in the statistical

semi-classical case, the Broglie-Bohm interpretation reproduces the predictions of standard

quantum mechanics.

Therefore, when ~ → 0, we deduce that v~(x, t) given from equation (11) converges to

the classical velocity v(x, t) = 1
m
∇S(x, t) and we obtain:

THEOREM 2 For particles in the statistical semi-classical case,when ~ → 0, the de

Broglie-Bohm trajectoires converge to the classical ones.

Figure 1 shows a simulation of the Broglie-Bohm’s trajectories in the Young slits experi-

ment of Jönsson17 where an electron gun emits electrons one by one through a hole with a

radius of a few micrometers. We are in a statistical semi-classical case where the electrons,

prepared similarly, are represented by the same initial wave function, but not by the same

initial position. In the simulation, these initial positions are randomly selected in the initial

wave packet. We have represented 100 possible quantum trajectories through one of two

slits: we do not show the trajectories of the electron when it is stopped by the first screen.
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FIG. 1: 100 Broglie-Bohm’s trajectories through one of two slits.

Figure 2 shows the 100 previous trajectories when the Planck constant is divided by 10,

7



100, 1000 and 10000 respectively. We obtain, when h tends to 0, the convergence of quantum

trajectories to classic trajectories.

−30 −20 −10 0 10 20 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cm

µm h/10

−30 −20 −10 0 10 20 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cm

µm h/100

−30 −20 −10 0 10 20 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cm

µm h/1000

−30 −20 −10 0 10 20 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cm

µm h/10000

FIG. 2: Zoom of the 100 previous trajectories when the Planck constant is divided by 10, 100, 1000

and 10000 respectively.

III. CONVERGENCE IN THE DETERMINIST SEMI-CLASSICAL CASE

The convergence study of the determinist semi-classical case is mathematically very diffi-

cult. We only study the example of a coherent state where an explicit calculation is possible.

This example will enable to understand the convergence in the determinist semi-classical case

and the difference with the statistical semi-classical case.

For the two dimensional harmonic oscillator, V (x) = 1
2
mω2x2, coherent states are built18

from the initial wave function Ψ0(x) which corresponds to the density and initial action :

ρ~0(x) = (2πσ2
~
)−1e

− (x−x0)
2

2σ2
~ and S0(x) = S~

0(x) = mv0 · x (12)
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with σ~ =
√

~

2mω
. Here, v0 and x0 are still constant vectors and independant from ~, but

σ~ will tend to 0 as ~.

For this harmonic oscillator, the density ρ~(x, t) and the action S~(x, t),solutions to the

Madelung equations (3)(4)(5) with initial conditions (12), are equal to 18:

ρ~(x, t) =
(

2πσ2
~

)−1
e
− (x−ξ(t))2

2σ2
~ and S~(x, t) = +m

dξ(t)

dt
· x + g(t)− ~ωt (13)

where ξ(t) is the trajectory of a classical particle evolving in the potential V (x) = 1
2
mω2x2,

with x0 and v0 as initial position and velocity and g(t) =
∫ t

0
(−1

2
m(dξ(s)

ds
)2 + 1

2
mω2ξ(s)2)ds.

Because we have 2V (ξ(s)) = md2ξ(s)
ds2

· ξ(s), it yields the following theorem:

THEOREM 3 - When ~ → 0, the density ρ~(x, t) and the action S~(x, t) converge to

ρ(x, t) = δ(x− ξ(t)) and S(x, t) = m
dξ(t)

dt
· x+ g(t) (14)

where S(x, t) and the trajectory ξ(t) are solutions to the determinist Hamilton-Jacobi equa-

tions:
∂S (x, t)

∂t
|
x=ξ(t) +

1

2m
(∇S(x, t))2|

x=ξ(t) + V (x)|
x=ξ(t) = 0 ∀t ∈ R

+ (15)

dξ(t)

dt
=

∇S(ξ(t), t)

m
∀t ∈ R

+ (16)

S(x, 0) = mv0 · x and ξ(0) = x0. (17)

Therefore, the kinematic of the wave packet converges to the single harmonic oscillator one

described by ξ(t). Because this classical particle is completely defined by its initial conditions

x0 and v0, it can be considered as a discerned particle.

When ~ → 0, the "quantum potential" Q~(x, t) = − ~
2

2m

△√
ρ√
ρ

= ~ω − 1
2
mω2(x − ξ(t))2

tends to Q(x, t) = −1
2
mω2(x − ξ(t))2. It is then zero on the trajectory (x = ξ(t)).

It is then possible to consider, unlike the statistical semi-classical case, that the wave

function can be viewed as a single quantum particle. The determinist semi-classical case is

in agreement with the Copenhagen interpretation of the wave function which contains all

the information on the particle.

A. Interpretation for the determinist semi-classical case

In the determinist semi-classical case, the Broglie-Bohm interpretation is not relevant

mathematically unlike the statistical semi-classical case. Other assumptions are possible. A
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natural interpretation is the one proposed by Schrödinger 2 in 1926 for the coherent states

of the harmonic oscillator. In Schrödinger interpretation, the quantum particle in the

determinist semi-classical case is a spatially extended particle, represented by a wave packet

whose center follows the classical trajectory. In this interpretation, the velocity in each point

of the wave function is given by20–23:

v~(x, t) =
1

m
∇S~(x, t) +

~

2m
∇ ln ρ~(x, t)× k, (18)

where k is the unit vector parallel to the particle spin vector. This spin current

~

2m
∇ρ~(x, t) × k corresponds to Gordon’s current when one changes from Dirac’s equation

to Pauli’s equation and after that to Schrodinger’s equation22. This current is important

because it allows to revisit quantum mechanics at small scales, in particular Compton’s wave-

length as in the Foldy and Wouthuysen transformation24. Using this velocity, the Heisenberg

inequalities correspond to a dispersion relation position and velocity between the different

points of the extended particle.

For the coherent states of the harmonic oscillator in two dimensions, the velocity field

(18) is equal to:

v~(x, t) = v(t) + Ω× (x − ξ(t)) (19)

with Ω = ωk. They behave as extended particles which have the same evolution as spinning

particles in two dimensions. But this can not be generalized easily in three dimensions. It

seems that it is not possible to consider in three dimensions the particle as a solid in motion.

This is the main difficulty in the Schrödinger interpretation: does the particle exist within

the wave packet? We think that this reality can only be defined at the scale where the

Schrödinger equation is the effective equation. Some solutions are nevertheless possible at

smaller scales25,26, where the quantum particle is not represented by a point but is a sort of

elastic string whose gravity center follows the classical trajectory ξ(t).

B. Interpretation for the non semi-classical case

The Broglie-Bohm and Schrödinger interpretations correspond to the semi-classical ap-

proximation. But there exist situations where the semi-classical approximation is not

valid. It is in particular the case of state transitions for a hydrogen atom. Indeed, since

Delmelt’experiment27 in 1986, the physical reality of individual quantum jumps has been
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fully validated. The semi-classical approximation, where the interaction with the potential

field can be described classically, is not possible anymore and it is necessary to electromag-

netic field quantization since the exchanges are done photon by photon.

In this situation, the Schrödinger equation cannot give a deterministic interpretation and

the statistical Born interpretation is the only valid one.

These three interpretations are not new, as Einstein points out in one of his last articles

(1953), "Elementary reflexion concerning the quantum mechanics foundation" in a homage

to Max Born:

"The fact that the Schrödinger equation associated to the Born interpretation does not

lead to a description of the "real states" of an individual system, naturally incites one to find

a theory that is not subject to this limitation. Up to now, the two attempts have in common

that they conserve the Schrödinger equation and abandon the Born interpretation. The first

one, which marks de Broglie’s comeback, was continued by Bohm.... The second one,

which aimed to get a "real description" of an individual system and which might be

based on the Schrödinger equation is very late and is from Schrödinger himself. The general

idea is briefly the following : the function ψ represents in itself the reality and it is

not necessary to add it to Born’s statistical interpretation.[...] From previous considerations,

it results that the only acceptable interpretation of the Schrödinger equation is the statis-

tical interpretation given by Born. Nevertheless, this interpretation doesn’t give the "real

description" of an individual system, it just gives statistical statements of entire systems."

What is new is to consider that these interpretations depend on the preparation of the

particles.

Thus, it is because de Broglie and Schrödinger keep the Schrödinger equation that Ein-

stein, who considers it as fundamentaly statistical, rejected each of their interpretations.

Einstein thought that it was not possible to obtain an individual deterministic behav-

ior from the Schrödinger equation. It is the same for Heisenberg who developped matrix

mechanics and the second quantization from this example.

This doesn’t mean that one has to renounce determinism and realism, but rather that

Schrödinger’s statistical wave function does not permit, in that case, to obtain an individual

behavior.
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IV. CONCLUSION

The study of the convergence of the Madelung equations when ~ → 0, has encouraged

us to introduce the concept of non-discerned and discerned particles in classical mechanics

and has given us the three following results:

- In the statistical semi-classical case the quantum particles converge to classical non-

discerned ones verifying the statistical Hamilton-Jacobi equations. The wave function is not

sufficient to represent the quantum particles. One needs to add it to the initial positions,

as for classical particles, in order to describe them completely. Then, the Broglie-Bohm

interpretation is relevant.

- In the determinist semi-classical case the quantum particles converge to classical

discerned ones verifying the determinist Hamilton-Jacobi equations. The Broglie-Bohm

interpretation is not relevant because the wave function is sufficient to represent the

particles as in the Copenhagen interpretation. However, one can make a realistic and deter-

ministic assumption such as the Schrödinger interpretation.

- In the case where the semi-classical approximation is not valid anymore, as in

the transition states in the hydrogen atom, the two interpretations are wrong as claimed by

Heisenberg. Consequently, Born’s statistical interpretation is the only possible inter-

pretation of the Schrödinger equation. This doesn’t mean that it is necessary to abandon

determinism and realism, but rather that the Schrödinger wave function doesn’t allow, in

that case, to obtain an individual behavior of a particle. An individual interpretation needs

to use creation and annihilation operators of the quantum Field Theory.

Therefore, as Einstein said, the situation is much more complex than de Broglie and

Bohm thought.

Each founding father of quantum mechanics held a piece of the truth; but the overgener-

alization of their different truths has led to incompatible interpretations!
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