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A GEOMETRIC DERIVATION OF THE LINEAR BOLTZMANN

EQUATION FOR A PARTICLE INTERACTING WITH A

GAUSSIAN RANDOM FIELD

SÉBASTIEN BRETEAUX

Abstract. The linear Boltzmann equation is derived from a microscopic
quantum model of a particle interacting, in the weak coupling limit, with a
translation invariant and centered Gaussian random field. The result holds in
dimension d ≥ 3 for initial states given as a pure families of states, in the sense
of semiclassical measures and an assumption about renewing the stochastic po-
tential is needed in order to force the asymptotic Markovian property, unlike
in the works of Erdös and Yau. This derivation uses an isomorphism between
the Hilbert space of square integrable function w.r.t. the random parameter
and the bosonic Fock space over L2(Rd). The solutions for the microscopic
model are approximately coherent states with a parameter in the phase space,
providing a geometric viewpoint.

1. Introduction

The derivation of the linear Boltzmann equation has been studied for both clas-
sical and quantum microscopic models.

In the classical case the article [15] provided a derivation of the linear Boltzmann
equation for Green functions in the case of a Lorentz gas. Later the article [32]
presented a review of different classical microscopic models and of kinetic equations
obtained as limits of these models, with emphasis on the approximated Markovian
behaviour of the microscopic dynamics (some quantum models are also studied).
The article [6] gives a derivation of the linear Boltzmann equation for the density
of particles in the case of the Lorentz model.

In the quantum case, the weak coupling limit of a Fermi gas in a translation
invariant Gaussian potential (and other random potentials) is studied in [24]. Their
proofs make use of combinatorics and graphs technics. We are here interested in
the bosonic case. In this setting results of Erdös and Yau, and more recently of
Poupaud and Vasseur exist.

The article of Erdös and Yau [13]: differs from our work in several points.

• They need initial data in the WKB form hd/2f(hx) exp( iS(hx)h ) for f and S
in the Schwartz class, whereas we can use any bounded pure (in the sense
of semiclassical measures) family of states in L+

1 (L
2(Rd)).

• We need a renewal of the stochastics to get the Markovian behaviour,
whereas they don’t need this additional assumption.

• Our result holds in dimension d ≥ 3 whereas they can handle d ≥ 2.

2000 Mathematics Subject Classification. 82C10, (60K37, 81E, 81S, 81D30, 82B44, 82C40).
Key words and phrases. Processes in random environments, Quantum field theory, Coherent

states, Kinetic theory of gases.

1



A DERIVATION OF THE LINEAR BOLTZMANN EQUATION 2

• They need a radial symmetry on V defined by V̂ =
√
Ĝ and we don’t need

any symmetry.
• Our viewpoint is more geometric and their viewpoint is more combinatorial.

The article of Poupaud and Vasseur [28]: provides another derivation of
the linear Boltzmann equation. Their assumptions on the random potential
are different from ours. Indeed the potentials they consider are necessarily
almost everywhere bounded, and this is not the case for a Gaussian po-
tential. Thus there is no implication between our and their results. Note
nonetheless that they needed an assumption of renewal of their random
potential.

Setting and strategy. We are interested in the derivation of the linear Boltzmann
equation

∂tµt(x, ξ) + 2ξ.∂xµt(x, ξ) =

ˆ

σ(ξ, ξ′)δ(|ξ|2 − |ξ′|2)(µt(x, ξ′)− µt(x, ξ)) dξ
′

for a particle interacting with a translation invariant centered Gaussian random
field described by the Schrödinger equation

(1.1)

{
ih∂tu = −∆xu+ Vhω (x) u

ut=0 = ψh0 ∈ L2(Rd;C)

where the potential Vhω (x) depends on a random parameter ω in a probability
space (ΩP,P). In the weak coupling limit the dependence of the random potential
with respect to h is

Vhω =
√
hVω

where h represent the ratio between the microscopic and macroscopic scale. We
will consider the limit h → 0. Note that the expression are the same for the case
of the weak density limit as we are considering a Gaussian random field.

We use the isomorphism between the Gaussian space L2(ΩP,P;C) associated
with L2(Rd;R) and the symmetric Fock space ΓL2(Rd) associated with L2(Rd;C)
(denoted by L2(Rd)) given by

1√
n!

: ΦG(f1) · · ·ΦG(fn) : ↔ f1 ∨ · · · ∨ fn

for fj in L2(Rd;R). (The general Gaussian random fields ΦG and the Wick powers

are defined in Sections 4.2 and 4.3.) The field operator
√
2Φ (f) then corresponds

to the multiplication by ΦG (f) and with some assumptions we can write Vω(x) =
ΦG(V (x−·)) for some function V . We will give more details on this correspondence
in Section 4. A useful reference on this subject is [31]. We can thus express the
Hamiltonian as in the Fock space as

−∆x +
√
2hΦ (V (x− ·)) .

We can then approximate this equation by an explicitly solvable one whose solu-
tions are coherent states. The geometric idea behind the computations is then that
as the initial state is the coherent state whose parameter in the phase space is in
zero (the empty state) we can use this geometric information in the phase space at
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least for short times. The computations done with this solution allow us to recover
the dual linear Boltzmann equation for short times for the observables.
Some remarks.

Quantum field theory and geometry in phase space: Quantum field the-
ory allows us to see how geometry in phase space is involved. We use the
viewpoint of [1] but in a case that is not in the framework chosen by the
authors. Indeed we are not in a situation of mean field limit and the intro-
duction of a parameter ε is an artifact that allows us to keep track of the
importance of the different terms.

No graphs: Unlike the work of Erdös and Yau we avoided the use of graphs
to try to keep a more geometric viewpoint. Yet we cannot reach times of
order 1 as they do.

Trotter-Kato: As we don’t get the approximate Markovian behaviour in a
satisfying way we need to introduce a renewal of the random potential. The
works [4, 3] deal in a more sophisticated manner with interactions defined
piecewise in time. Other Ansätze may give a better approximation of the
solution of the initial problem and give the Markovian behaviour of the
evolution.

Positivity and a priori estimates: One of the important tools in our deriva-
tion of the linear Boltzmann equation is the use of a priori estimates to
show that we don’t lose too much mass in the measures during our approx-
imations. The mass conservation and positivity properties of the linear
Boltzmann equation then allow us to conclude.

Dimension and dispersion: Our result holds in dimension d ≥ 3 as disper-
sion inequalities for the free Schrödinger group provide the time integrabil-
ity needed for some expressions. It may be possible to reach the limit case
of dimension d = 2.

Outline of the article. In Section 2 we describe the quantum model, state the main
result and give the structure of the proof. We then recall some facts about the
linear Boltzmann equation in Section 3. We specify the link between the Gaussian
random field and the symmetric Fock space in Section 4 and thus obtain a new
expression for the dynamics, and a candidate for an approximated dynamics. We
solve these approximated dynamics in Section 5. We use this explicit solution to
compute the measure of an observable for short times in Section 6. We control the
error done using this approximation in Section 7. And finally we glue together the
different pieces to achieve the proof in Section 8.

For the convenience of the reader we recall in the Appendices A, B and C some
results about stochastics, semiclassical measures and semigroups. The Appendix D
is devoted to small results we need about approximate identities.

2. Model and result

In this text the Hilbert spaces are always separable. The integer d ≥ 1 denotes
the dimension of the space Rdx. Our result requires d ≥ 3.

2.1. Rescaled quantum random field. Let G : Rd → R positive definite, such
that Ĝ = |V̂ |2 with V̂ ∈ S

(
Rd;R

)
and Vhω (x), (ω, x) ∈ ΩP ×Rd, the translation in-

variant centered Gaussian random field with mean zero and covariance hG (x− x′).
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We consider the Schrödinger equation

(2.1)

{
ih∂tut,ω(x) = Hh

ωut,ω(x)

u0,ω(x) = ψ0(x) ∈ L2
x

with the Hamiltonian

(2.2) Hh
ω = −∆x + Vhω (x) .

Let us fix a time T and an integer N . Let tk = k∆t with ∆t = T
N . The dynamics

is defined piecewise in the intervals [tk−1, tk] by the Hamiltonians

Hh,ωk
= −∆x + Vh,ωk

(x)

with independent random fields Vh,ωk
, ωk ∈ Ωk. Thus we get, for an initial

data ψ0 ∈ L2
x,

(2.3) GN,∆t
h ,ω̄N

= e−i
∆t
h Hh,ωN e−i

∆t
h Hh,ωN−1 · · · e−i∆t

h Hh,ω1 ,

ψT (x, ω̄N ) = GN,∆t
h ,ω̄N

ψ0 ,

with ω̄k := (ω1, . . . , ωk) ∈ Ω̄k = Ω1×· · ·×Ωk, P̄k = P1×· · ·×Pk and L2(Ω̄k, P̄k) ≃⊗k
j=1 L

2(Ωj ,Pj).

Definition 2.1. Let ρ be a normal state on L(L2
x), i.e. ρ ∈ L+

1 (L
2
x) and Tr ρ = 1.

We define

ρht =

ˆ

ΩP

e−i
t
hHh,ω ρ ei

t
hHh,ω dP(ω) ,(2.4)

ρhN,∆t(ω̄N ) = GN,∆t
h ,ω̄N

ρG−1
N,∆t

h ,ω̄N
,(2.5)

ρhN,∆t =

ˆ

Ω̄N

ρhN,∆t(ω̄N ) dPN(ω̄N ) .(2.6)

2.2. The main result. Let b be a symbol in C∞0 (R2d
x,ξ). The measure of the ob-

servable bW (hx,Dx) in a normal state ρ is given by

Tr
[
bW (hx,Dx) ρ

]

where the Weyl quantization is defined by

bW(hx,Dx)u (x) =
1

(2π)d

ˆ

Rd
ξ

ˆ

Rd
x′

ei(x−x
′).ξb

(
h
x+ x′

2
, ξ
)
u(x′) dx′ dξ .

One can refer for example to [27] about the properties of the Weyl quantization.
Consider the dynamic given by Equations (2.1) and (2.2) with renewal as in

Equation (2.3), ∆t = hα, N = Nh = T/hα, α ∈] 34 , 1[.
We say that a family of states (ρh), h ∈ ]0, h0] is pure if there is a measure µ0

on R2d
x,ξ such that

∀b ∈ C∞0
(
R

2d
x,ξ

)
, lim
h→0+

Tr
[
ρh bW(hx,Dx)

]
=

ˆ

R2d
x,ξ

b dµ0 .

We refer the reader to Appendix B and [8, 16, 17, 26, 1, 2] for general information
about semiclassical measures.
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Theorem 2.2. Assume that (ρh)h∈]0,h0] is pure with µ0(R
d
x × Rd∗ξ ) = 1. Then

∀b ∈ C∞0
(
R

2d
x,ξ

)
, lim
h→0

Tr
[
ρhN,∆t b

W(hx,Dx)
]
=

ˆ

b dµT

where µT = µt=T with, for t ∈ (0, T ),
(2.7)


∂tµt(x, ξ) + 2ξ.∂xµt(x, ξ) =

ˆ

σ(ξ, ξ′) δ
(
|ξ|2 − |ξ′|2

)
(µt(x, ξ

′)− µt(x, ξ)) dξ
′

µt=0 = µ0

,

and σ(ξ, ξ′) = 2π|V̂ (ξ − ξ′)|2.
Remark 2.3. The meaning of measures solving the linear Boltzmann Equation (2.7)
is specified in Section 3.

The result says that the family (ρhN,∆t) remains pure for every T (= N∆t) as

soon as (ρh) is pure.
The justification of the choice of the scaling in the Weyl quantization is the fol-

lowing. Physically the parameter h is the quotient of the microscopic scale over
the macroscopic scale, either in time or in position. Thus if we consider an observ-
able b(X,Ξ) varying on a macroscopic scale, the corresponding observable on the
microscopic scale will be b(hx, ξ).

The scaling of the random field according to the covariance hG(x− x′), is done
on a mesoscopic scale imposed by the kinetic regime (see Section 4.1).

Sketch of the Proof. Let µT in M(ρhN,∆t, h ∈ ]0, h0[) (the set of semiclassical mea-

sures defined after extraction of subsequences, see Appendix B). We denote by B(t)
the flow associated with the Boltzmann equation (2.7) and BT(t) the flow associated
with the dual equation, see Section 3 for more details about B(t) and BT(t). For
any non-negative b in C∞0 (Rdx × Rd∗ξ ) we shall prove

(1)
´

Rd
x×Rd∗

ξ
bdµT ≥ lim infh→0 Tr[ρ

h
N,∆t b

W(hx,Dx)] by the definition of µT ,

(2) lim infh→0 Tr[ρ
h
N,∆t b

W(hx,Dx)] ≥
´

Rd
x×Rd∗

ξ
(BT (T )b) dµ0 (see the remark

below),
(3)
´

Rd
x×Rd∗

ξ
(BT (T )b) dµ0 =

´

Rd
x×Rd∗

ξ
b d(B(T )µ0) by the definition of B(T ).

Taking this for granted, it implies the lower bound
ˆ

Rd
x×Rd∗

ξ

b dµT ≥
ˆ

Rd
x×Rd∗

ξ

b d(B(T )µ0) .

Since this inequality holds for any non-negative b in C∞0 (Rdx × Rd∗ξ ) which is dense

in C0
∞(Rdx × Rd∗ξ ) with dual Mb(R

d
x × Rd∗ξ ), we get

µT |Rd
x×Rd∗

ξ
≥ B(T )µ0|Rd

x×Rd∗
ξ
.

But we also have B(T )µ0(R
d
x×Rd∗ξ ) = 1 from the properties of the linear Boltzmann

equation and µT (R
d
x × Rdξ) ≤ 1 from the properties of semiclassical measures. So,

necessarily,

µT
(
R
d
x × R

d∗
ξ

)
= 1

µT
(
R
d
x × {0}ξ

)
= 0

and µT = B(T )µ0. Thus we have the result. �
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Remark 2.4. The step

lim inf
h→0

Tr
[
ρhN,∆t b

W(hx,Dx)
]
≥
ˆ

Rd
x×Rd∗

ξ

(
BT (T )b

)
dµ0

will be the technical part which requires various estimates for the quantum dynam-
ics of the whole system particle-random field.

To prove this result we consider first the case without renewal of the stochastics,
i.e. N = 1 for short times in Sections 5, 6, 7 and then glue together the estimates
obtained this way N times for N “big” in Section 8. To simplify the problem of
finding estimates for short times we approximate the equation by a simpler one
which is solved and studied in Section 5. In Section 6, using the solution to the
approximated equation, we carry out explicit computations which give rise to the
different terms of the dual linear Boltzmann equation. Then we control the error
between the solutions of the approximated equation and the exact equation in
Section 7. All these computations are done within the framework of quantum field
theory. This allows us

• to use conveniently the geometric content of coherent states,
• to keep track of the different orders of importance of the different terms by

using the Wick quantization with a parameter ε.

For the reader’s convenience, we recall the correspondence between the stochastic
and Fock space viewpoints in Section 4.

Remark 2.5. Our initial data (ρh)h∈]0,h0] are assumed to belong to L+
1 L

2
x with

Tr ρh = 1. We will thus make estimates for states ρ in L+
1 L

2
x, with Tr ρ = 1 with

constants independent of ρ.

3. The linear Boltzmann equation

Information on the linear Boltzmann equation can be found in [10, 11, 30].
In this part suppose that σ ∈ C∞(Rdξ × Rdξ′ ;R) and σ ≥ 0.

3.1. The formal linear Boltzmann equation. Since all the objects we use are
diagonal in |ξ|, the following definitions will be convenient.
Notation: Let 0 < r < r′ < +∞ we define the Sobolev spaces

Hn [r, r′] = Hn
(
R
d
x ×Aξ [r, r

′] ;R
)

where Aξ[r, r
′] is the annulus {ξ, |ξ| ∈]r, r′[} in the variable ξ. When there is no

ambiguity we write Aξ for Aξ[r, r
′]. We also define L2[r, r′] = H0[r, r′].

Definition 3.1. The collision operator Q is defined for b ∈ L2[r, r′] by

(3.1) Qb = Q+b−Q−b ,

with

Q+b (x, ξ) =

ˆ

Rd
ξ′

b(x, ξ′)σ(ξ, ξ′) δ
(
|ξ|2 − |ξ′|2

)
dξ′ ,

Q−b (x, ξ) = b(x, ξ)

ˆ

Rd
ξ′

σ(ξ, ξ′) δ
(
|ξ|2 − |ξ′|2

)
dξ′ .

Remark 3.2. For a given ξ these integrals only involve the values of σ(ξ, |ξ|ω)
and b(x, |ξ|ω) for ω ∈ Sd−1.
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Definition 3.3. The linear Boltzmann equation is formally the equation
{

∂tf =
{
f, |ξ|2

}
+Qf

ft=0 = f0

and its dual equation is
{

∂tb = −
{
b, |ξ|2

}
+Qb = 2ξ.∂xb+Qb

bt=0 = b0
.

We will see in the next sections that the dual linear Boltzmann equation is solved
by a group (BT (t))t∈R of operators on C0

∞(Rdx ×Rd∗ξ ;R) and this defines by duality

a group (B(t))t∈R of operators on Mb(R
d
x × Rd∗ξ ;R).

3.2. Properties. We recall here the main properties of the dual linear Boltzmann
equation. (The arguments are the same as for the linear Boltzmann equation.)

Some standard notations and results about semigroups are given in Appendix C.
We begin by solving the dual linear Boltzmann equation in L2[r, r′] in the sense
of semigroups. We observe that 2ξ.∂x generates a strongly continuous contrac-
tion semigroup on L2[r, r′]. Since the operator Q is bounded on L2[r, r′] we get
that 2ξ.∂x + Q generates a semigroup (BT (t))t≥0 bounded by exp(t ‖Q‖L(L2[r,r′]))

and the associated domain is D(2ξ.∂x).

Proposition 3.4. Let 0 < r < r′ < +∞. The operator Q on Hn[r, r′] is well
defined and bounded, with

‖Q‖L(Hn[r,r′]) ≤ Cd sup
|α|≤n

‖∂ασ‖∞,A2
ξ[r,r

′] .

The group of (space-)translation (e2tξ.∂x)t preserves Hn[r, r′].

Proposition 3.5. Let 0 < r < r′ < +∞. The strongly continuous group (BT (t))t≥0
of infinitesimal generator 2ξ.∂x +Q preserves

(1) the Sobolev spaces Hn[r, r′], for n ∈ N,
(2) the set of functions with compact support,
(3) the set of infinitely differentiable functions with compact support in Rdx ×

Aξ[r, r
′], C∞0 (Rdx ×Aξ[r, r

′];R),
(4) the set of non-negative functions, for t ≥ 0.

Proof. For (1) we use Proposition 3.4.
For (2) we can use the Trotter approximation

BT (t) = lim
n→∞

(
e2

t
n ξ.∂xe

t
nQ
)n

,

the fact that Q is “local” in (x, |ξ|), and that the speed of propagation of the (space-)
translations is finite when ξ ∈ Aξ [r, r

′].
For (3) we use (1), (2) and

C∞0
(
R
d
x ×Aξ [r, r

′] ;R
)
=

∞⋂

n=0

Hn [r, r′]
⋂

{f, Supp f compact} .

For (4) we use both the Trotter approximation

BT (t) = lim
n→∞

(
e2

t
n ξ.∂xe

t
nQ+e−

t
nQ−

)n
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and the fact that e2
t
n ξ.∂x preserves the non-negative functions as a translation, e

t
nQ+

preserves the non-negative functions for t ≥ 0 because Q+ does, e−
t
nQ− preserves

the non-negative functions as a multiplication operator by a positive function. �

Since C∞0
(
Rdx ×Aξ;R

)
⊂ D (2ξ.∂x) we can give the following result.

Proposition 3.6. For every b0 ∈ C∞0
(
R
d
x ×Aξ;R

)
there exists a unique func-

tion bt = BT (t) b0 ∈ C1
(
R+;L2 [r, r′]

)
∩C0 (R+;D (2ξ.∂x)) such that for every t ∈ R,

{
∂tbt = 2ξ.∂xbt +Qbt

bt=0 = b0
.

Moreover ∀t ∈ R, bt ∈ C∞0
(
Rdx ×Aξ;R

)
. If b0 is non-negative, then ∀t ≥ 0, bt is

non-negative.

3.3. The linear Boltzmann equation. Notation: For X a locally compact,
Hausdorff space we denote by Mb(X ;R) the set of Radon measures and by C0

∞(X ;R)
the set of functions f on X such that for all ε > 0 there exists a compact Kf,ε such
that |f (x)| < ε outside of Kf,ε (i.e. the set of functions that vanish at infinity).

For a topological space X , locally compact and Hausdorff,

Mb (X ;R) =
(
C0
∞ (X ;R)

)′
.

Proposition 3.7. The semigroup (BT (t))t≥0 defined on C0
0(R

d
x × R

d∗
ξ ;R) can be

extended to a strongly continuous group on (C0
∞(Rdx×Rd∗ξ ;R), ‖·‖∞) and thus defines

by duality a (weak∗ continuous) group B(t) on Mb(R
d
x × Rd∗ξ ;R).

Proof. Using a partition of the unity, we can extend BT (t) to C∞(Rdx × Rd∗ξ ;R).

As BT (t) is positive, we have BT (t)(‖b‖∞± b) ≥ 0 for all b in C∞0 (Rdx×Rd∗ξ ;R) and
so ∥∥BT(t) b

∥∥
∞ ≤ ‖b‖∞ .

We can thus extend continuously BT (t) from C∞0 (Rdx×Rd∗ξ ;R) to C0
∞(Rdx×Rd∗ξ ;R).

�

Definition 3.8. The linear Boltzmann group (B(t)) is defined on Mb(R
d
x × Rd∗ξ )

by duality, let µ ∈ Mb(R
d
x × R

d∗
ξ ), then, for any t ∈ R,

∀b ∈ C0
∞
(
R
d
x × R

d∗
ξ

)
, 〈B(t)µ, b〉 =

〈
µ,BT (t)b

〉
.

3.4. A Trotter-type approximation. In this part we will prove a result in the
spirit of the approximation of Trotter

eA+B = lim
N→∞

(
eA/NeB/N

)N
.

Notation: For n ∈ N and b ∈ C∞0 (R2d
x,ξ), set

(3.2) Nn (b) := sup
|α|≤n

‖∂αb‖∞ .

Proposition 3.9. Let b ∈ C∞0 (R2d
x,ξ), T > 0 and n ∈ N. There are constants Cn,Q

and CT,b such that for all N ∈ N∗

Nn

(
eT (2ξ.∂x+Q)b−

(
e

T
NQe

T
N 2ξ.∂x

)N
b

)
≤ eT (2n+Cn,Q)CT,b

T 2

N
.
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Definition 3.10. LetQt ∈ L
(
L2 [r, r′]

)
be the operator defined byQt = et2ξ.∂xQe−t2ξ.∂x ,

i.e. Qt = Q+,t −Q− with

Q+,tb (x, ξ) =

ˆ

Rd
ξ′

σ(ξ, ξ′) δ
(
|ξ|2 − |ξ′|2

)
b(x− 2t(ξ′ − ξ), ξ′) dξ′

We also define Q−,t = Q− to have consistent notations in the sequel.
LetGQ(t, t0) be the dynamical system associated with the family (Qt) in C(R;L(L2[r, r′]))

given by {
∂tbt = Qt bt

bt=t0 = b0 ∈ L2
x,ξ

, bt = GQ (t, t0) b0 .

Note the relation

BT (t) = GQ(t, 0)e
2tξ.∂x = e2tξ.∂xGQ(0,−t) .

Lemma 3.11. For any n ∈ N, s ≥ 0 and b ∈ C∞0
(
Rdx ×Aξ [r, r

′]
)
, there exist

constants C1, and C2 depending on d, r and r′ such that

(1) Nn(Qb) ≤ C1 Nn(b),
(2) Nn((Q−Qt)b) ≤ C2 t(1 + 2 |t|)nNn+1(b),
(3) Nn(e

2tξ.∂xb) ≤ (1 + 2 |t|)nNn(b).

Proof. The first point is clear from the integral expression of Qb.
For the second point differentiate and estimate the integral formula for b (x− 2tξ, ξ)−

b (x, ξ), with |α| ≤ n,

∣∣∂α
(
b(x− 2tξ, ξ)− b(x, ξ)

)∣∣ ≤
ˆ t

0

∣∣∂α
(
2ξ.∂xb(x− 2sξ, ξ)

)∣∣ ds

≤ 2 |ξ| t (1 + 2t)
nNn+1(b) .

The last point results from
(
e2tξ.∂xb

)
(x, ξ) = b(x+ 2tξ, ξ). �

Definition 3.12. For b ∈ C∞0
(
Rdx ×Aξ [r, r

′]
)
, let

Nn(Q) = sup
b6=0

Nn(Qb)

Nnb
and Nn+1,n(s,Q−Qs) = sup

b6=0

Nn

(
(Q−Qs)b

)

s (1 + 2 |s|)nNn+1b
.

Lemma 3.13. Let b, b̃ ∈ C∞0
(
Rdx ×Aξ [r, r

′]
)
, then for all t ≥ 0,

etQb̃−GQ (t, 0) b = etQ
(
b̃− b

)
+

ˆ t

0

e(t−s)Q (Q−Qs)GQ (s, 0) b ds

and we have the estimate

Nn

(
etQb̃−GQ(t, 0)b

)

≤ etNnQNn(b̃ − b)

+ t2(1 + 2t)netNnQ sup
s∈[0,t]

{
Nn+1,n(s,Q−Qs)Nn+1

(
GQ(s, 0)

)}
Nn+1(b) .

Proof. The equality is clear once we have computed that both sides satisfy the
equation

∂t∆t = Q∆t + (Q−Qt)GQ(t, 0)b .

The inequality then follows from Lemma 3.11. �
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Proof of Proposition 3.9. We fixN and forget theN ’s in the notations concerning b̃.
We set bt = BT (t) b and define b̃t piecewise on [0, T ] by setting tk = kT

N , b̃tk =(
e

T
NQe

T
N 2ξ.∂x

)k
b0 and, for t ∈ [tk, tk+1[, b̃t = e(t−tk)Qe(t−tk)2ξ.∂x b̃tk . Let δk =

Nn

(
btk − b̃tk

)
; we get

e
T
NQe

T
N 2ξ.∂x b̃tk − e

T
N (2ξ.∂x+Q)btk = e

T
NQe

T
N 2ξ.∂x b̃tk −GQ

(
T
N , 0

)
e

T
N 2ξ.∂xbtk

and we can then use Lemma 3.13 to obtain

δk+1 ≤ e
T
NNnQ

(
1 + 2 TN

)n
δk +

(
T
N

)2 (
1 + 2 TN

)n
e

T
NNnQ

sup
s∈[tk,tk+1]

Nn+1,n

(
s− tk, Q−Qs−tk

)

sup
s∈[tk,tk+1]

Nn+1

(
GQ(s− tk, 0) e

T
N 2ξ.∂xbtk

)

≤ e
T
NNnQe2

nT
N δk +

(
T
N

)2
e

T
NNnQCN,T

where we defined

CN,T,b =
(
1 + 2 TN

)n
sup

s∈[0,T/N ]

Nn+1,n(s,Q−Qs)

sup
k∈{0,...,N−1}

sup
s∈[0,T/N ]

Nn+1

(
GQ(s, 0) e

− T
NQbtk+1

)
.

Then we get the recursive formula

δk+1 ≤ e
T
N (2n+NnQ) δk + CN,T,b

(
T
N

)2
e

T
NNnQ

so that

δN ≤ eT (2n+NnQ) CN,T,b
T 2

N .

The only thing remaining is to observe that CN,T,b ≤ CT,b, with

CT,b := (1 + 2T )
n

sup
s∈[0,T ]

Nn+1,n(s,Q−Qs) sup
sj∈[0,T ]

Nn+1

(
GQ(s1, 0) e

−s2Qbs3
)

and for a fixed T this quantity CT,b is finite, so that we get the result. �

4. From stochastics to the Fock space

The relation between Gaussian random processes and the Fock space is treated
in [31, 22], we recall some facts without proofs which clarify this relation.

4.1. Classical kinetic regime. In microscopic variable, consider a particle moving
among obstacles with a velocity v ∝ 1 and a distance of interaction R ∝ 1. During
a time T the particle sweeps a volume of order vTRd−1. In the kinetic regime it is
assumed that during a long microscopic time T = t/h with t ∝ 1 the macroscopic
time, the average particle encounters a number ∝ 1 obstacle.

We denote by ρ the density of obstacles and thus obtain ρ = 1/vTRd−1 ∝ h. To
get this density of obstacles we need the distance between two nearest obstacles to
be of order h−1/d.

Thus we consider a Schrödinger equation of the form

i∂Tψ = −∆xψ + Vhω(x)ψ
that is

ih∂tψ = −∆xψ + Vhω(x)ψ .
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Figure 4.1. Kinetic regime.

A translation invariant Gaussian random field of covariance G(x−x′), Ĝ = |V̂ |2
is V ∗Wω where Wω is the spatial white noise (see Appendix A) and V describes
the interaction potential. In the kinetic regime the obstacles are spread at the
mesoscopic scale h1/d. Only the white noise Wh

ω is rescaled (and not V ) according
to

∀ϕ ∈ S(Rd;R) ,
ˆ

ϕ(h1/dx)Wh
ω (x) dx =

ˆ

ϕ(x)Wω(x) dx ,

i.e. Wh
ω (x) = hWω(h

1/dx). Thus we get Vhω = hV ∗Wω(h
1/d·) and Gh = hG. See

Appendix A for more details.

4.2. General Gaussian random fields. We introduce a different viewpoint on
Gaussian random fields.

Definition 4.1. Let (ΩP,G,P) be a probability measure space. Let E be a (real)
vector space. A general random field indexed by E is a map Φ from E to the
random variables on ΩP, so that (almost everywhere)

Φ(v + w) = Φ(v) + Φ(w) , ∀v, w ∈ E ,

Φ(αv) = αΦ(v) , ∀α ∈ R, ∀v ∈ E .

Definition 4.2. Let HR be a real Hilbert space. The general centered Gaussian
random field indexed by HR is a random field ΦG indexed by HR so that

(1) G is the smallest σ-algebra for which all the ΦG(v), v ∈ HR are measurable,
(2) each ΦG(v) is a centered Gaussian random variable,
(3) E [ΦG(v)ΦG(w)] = 〈v, w〉 with 〈·, ·〉 the inner product on HR.

One can refer to [31] for the following two theorems.

Theorem 4.3. Let ΦG and Φ′G be two general centered Gaussian random field
indexed by HR on probability measure spaces (ΩP,G,P) and (Ω′

P
,G′,P′) respectively.

Then there exists an isomorphism between the two probability measure spaces so
that for every v ∈ HR, ΦG(v) corresponds to Φ′G(v) under the isomorphism.

Theorem 4.4. Let HR be a real Hilbert space. A general centered Gaussian random
field indexed by HR exists and it is unique (in the sense of the preceding theorem).

Proposition 4.5. Let G ∈ L1(Rd;R)∩FL1(Rd;C) positive definite, we can choose V ∈
L2(Rd;R) such that

Ĝ = |V̂ |2 .
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Then the Gaussian random field of mean zero and covariance Σ(x, y) = G(x − y)
is also the random field obtained as ΦG(τxV ) where ΦG is the general Gaussian
random field indexed by L2(Rd;R).

Proof. From Bochner’s theorem we deduce that Ĝ ∈ L1(Rd;C) has real positive

values. Thus we can set V̂ =
√
Ĝ. Then it suffices to prove that the covariance

function Σ(x, y) of ΦG(τxV ) is G(x− y).

Σ(x, y) = E [ΦG(τxV )ΦG(τyV )]

= 〈τx−yV, V 〉L2(Rd
x;R)

=
1

(2π)
d

〈
e−i(x−y).ξV̂ , V̂

〉
L2(Rd

ξ ;C)

= F−1
[
|V̂ |2

]
(y − x) . �

Remark 4.6. If we replace G by Gh = hG, the field
√
hΦG(τxV ) gives the expected

covariance function.

4.3. Wick powers.

Definition 4.7. Let f be a random variable with finite moments, for n ∈ N∗,
:fn: ∈ C[X ], the n-th Wick power of f is defined recursively by

:f0: = 1 , ∂X :fn: = n :fn−1: and Ẽ[ :fn: ] = 0 ,

where Ẽ : C[X ] → C is the linear map defined by Ẽ[Xn] = E[fn]. We still denote
by :fn: the random variable :fn: (f).

Remark 4.8. For the first terms we have

:f0: = 1 , :f1: = f − Ef , and :f2: = f2 − 2E[f ] f − E[f2] + 2E[f ]2 .

4.4. The isomorphism with the Fock space.

Definition 4.9. Let HC be a complex Hilbert space, ∨ the symmetric tensor prod-
uct, the symmetric Fock space over HC is

ΓHC =

+∞⊕

n=0

ΓnHC

where ΓnHC = H∨n
C

is the Hilbert completion for the norm inherited from the scalar
product over HC of the algebraic symmetric n-th power of HC, and the sum is also
the Hilbert completion of the algebraic sum. We denote by ΓFHC the algebraic
sum (but with a completed tensor product) we will eventually refer to this set as
the finite particle vectors. We define the empty state Ω = (1, 0, 0, . . . ) ∈ ΓHC. The
creation a∗(f) and annihilation a(f) operators are defined on ΓFHC by

• a∗(f)(g∨n) := (n+ 1)
1
2 f ∨ g∨n,

• a(f)(g∨n) := n
1
2 〈f, g〉 g∨n−1,

for f, g ∈ HC. The field operator Φ(f) = (a∗(f) + a(f))/
√
2 is then essentially

self-adjoint for ΓFHC is a dense set of analytic vectors and we still denote by Φ(f)
its closure.

One can refer to [31] for the following theorem.
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Theorem 4.10. Let HR be a real Hilbert space and HC its complexification. Let ΦG
the general centered Gaussian random field indexed by HR over a probability space (ΩP,G,P).
The symmetric Fock space ΓHC is unitarily equivalent to L2(ΩP,P;C) under a uni-
tary D : ΓHC → L2(ΩP,P;C) such that

• DΩ = 1,
• D ΓnHC = the closed subspace of L2(ΩP,P;C) generated by

{ : ΦG(f1) · · ·ΦG(fn): , fj ∈ HR} ,

• D
√
2Φ(f)D−1 = ΦG(f) for f ∈ HR, with ΦG(f) seen as a multiplication

operator on L2(ΩP,P;C),
• Df1 ∨ · · · ∨ fn = 1√

n!
: ΦG(f1) · · ·ΦG(fn): for f1, . . . , fn ∈ HR.

4.5. The expression of the dynamic in the Fock space. We will apply the
results of Section 4.4 with HR = L2(Rdy;R) and HC = L2(Rdy;C) = L2

y and get an
isomorphism

D : ΓL2
y → L2(ΩP,P) .

We set Ad{A}[B] = ABA−1 and for Hilbert spaces H and H′, TrH′ [A] denotes
the partial trace of an operator A on H⊗H′.

Note that with the stochastic presentation

ρhN,∆t =

ˆ

Ω̄N

ρhN,∆t(ω̄N ) dPN (ω̄N )

=

ˆ

Ω̄N

Ad
{
GN,∆t

h ,ω̄N

}
[ρ] dPN(ω̄N )

=

ˆ

ΩN

Ad
{
e−i

∆t
h Hh,ωN

}[
· · ·
ˆ

Ω1

Ad
[
e−i

∆t
h Hh,ω1

]
{ρ} dP(ω1) · · ·

]
dP(ωN)

=

ˆ

ΩN

Ad
{
e−i

∆t
h Hh,ωN

}[ˆ

Ω̄N−1

ρhN−1,∆t(ω̄N−1) dPN−1(ω̄N−1)
]
dP(ωN )

=

ˆ

ΩN

Ad
{
e−i

∆t
h Hh,ωN

}[
ρhN−1,∆t

]
dP(ωN ) .

The last integral can be expressed using a partial trace as
ˆ

e−i
∆t
h Hh,ωρei

∆t
h Hh,ω dP (ω)

=

ˆ

e−i
∆t
h Hh,ωρ1 (ω) 1 (ω) ei

∆t
h Hh,ω dP (ω)

= Tr
L2(ΩP,P)

[
ˆ ⊕

e−i
∆t
h Hh,ω dP (ω)ρ⊗ |1〉 〈1|

ˆ ⊕
ei

∆t
h Hh,ω′ dP (ω′)

]
.

The isomorphism

UG←F = IdL2
x
⊗D : L2

x ⊗ ΓL2
y → L2

x ⊗ L2 (ΩP,P)

is such that

U−1G←F

ˆ ⊕
e−i

∆t
h Hh,ω dP (ω)UG←F = e−i

∆t
h Hh ,

U−1G←F ρ⊗ |1〉 〈1|UG←F = ρ⊗ |Ω〉 〈Ω|
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with U−1G←F
´ ⊕

Hh,ω dP(ω)UG←F = Hh. And thus

Tr
L2(ΩP,P)

[
ˆ ⊕

e−i
∆t
h Hh,ω dP (ω) ρ⊗ |1〉 〈1|

ˆ ⊕
ei

∆t
h Hh,ω′ dP (ω′)

]

= Tr
ΓL2

y

[
e−i

∆t
h Hhρ⊗ |Ω〉 〈Ω| ei∆t

h Hh

]
.

The only thing left is to compute Hh, but U−1G←F
(
Vhω(x)×

)
UG←F = ΦG(τxV ). We

get that in the Fock space formalism

ρhN,∆t =

(
Tr
ΓL2

y

[
Ad
{
e−i

∆t
h Hh

}
[· ⊗ |Ω〉 〈Ω|]

])N
[ρ]

with Hh = U−1G←F Hh,ω UG←F = −∆x +
√
2hΦ(τxV ).

4.6. Existence of the dynamic. We will show that the dynamic of the system
is well defined and to do so we will show that the Hamiltonian is essentially self-
adjoint on a certain domain. We make use of Nelson’s commutator theorem which
can be found in [29]. Since we work with a fixed h > 0 the value of h will be
unimportant we take h = 1 in this section to clarify our exposition.

Theorem 4.11. Let N ′ be a self-adjoint operator with N ′ ≥ 1. Let H be a sym-
metric operator with domain D′ which is a core for N ′. Suppose that:

(1) For some C1 > 0 and all u ∈ D′,

‖Hu‖ ≤ C1 ‖N ′u‖ ,
(2) For some C2 > 0 and all u ∈ D′,

|〈Hu,N ′u〉 − 〈N ′u,Hu〉| ≤ C2

∥∥∥N ′1/2u
∥∥∥
2

.

Then H is essentially self-adjoint on D′ and its closure is essentially self-adjoint
on any other core for N ′.

Let D′ := C∞0 (Rd)⊗alg ΓFL
2
y be the domain of both

N ′ = Id−∆x +N,

H = −∆x +
√
2Φ(τ·V )

where

• −∆x denotes the operator −∆x ⊗ IdΓL2
y
,

• N denotes the operator IdL2
x
⊗N with N the number operator on ΓL2

y and

• ΦF (τ·V ) denotes the operator defined on L2(Rd; ΓL2
y) ≃ L2(Rd)⊗ ΓL2

y by

L2(Rd; ΓL2
y) → L2(Rd; ΓL2

y)

u 7→ Φ(τ·V )u

with [Φ(τ·V )u](x) := [Φ(τxV )][u(x)].

We still denote by N ′ the closure of the essentially self-adjoint operator N ′ defined
on D′. Then D′ is a core for this operator. We remark that N ′ ≥ I on D′ and thus
also on D (N ′) as D′ is a core for N ′.

Proposition 4.12. Suppose that V belongs to H2(Rd). Then the Hamiltonian H
satisfies the hypotheses of Theorem 4.11.
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Proof. Let u ∈ D′, then

‖Hu‖L2
x⊗ΓL2

y
≤ ‖−∆xu‖L2

x⊗ΓL2
y
+ 2 ‖V ‖L2

∥∥∥
√
N + 1u

∥∥∥
L2

x⊗ΓL2
y

,

≤ (1 + 2 ‖V ‖L2) ‖N ′u‖L2
x⊗ΓL2

y

which is the first estimate. We also observe that in the sense of quadratic forms

[H,N ′] =
√
2 [Φ (τ·V ) ,−∆x +N ] ,

=
√
2Φ (τ·∇V ) .∇x +

√
2Φ (τ·∆V ) + (a∗ (τ·V )− a (τ·V ))

so that

|〈Hu,N ′u〉 − 〈N ′u,Hu〉|

≤
(√

2 ‖∇V ‖L2 +
√
2 ‖∆V ‖L2 + 2 ‖V ‖L2

)∥∥∥N ′1/2u
∥∥∥
2

which is the second estimate. �

5. An approximated equation and its solution

5.1. The scaling for field operators. The ε parameter is an intermediate scale
which allows to easily identify the graduation in Wick powers. It will in the end be
adjusted with respect to h. Let (Dεf) (y) = ε−d/2f

(
y
ε

)
and

Hh,ε = Ad
{
IdL2

x
⊗ ΓDε

}
[Hh] = −∆x ⊗ IΓy +

√
2hΦ

(
ε−d/2V

(
x− y

ε

))
.

We now introduce some definitions and notations that will be useful to deal with
the Wick quantization and the scaled versions of our objects in the Fock space.

5.2. The second quantization. The method of second quantization is exposed in
the books [5, 7], an introduction to quantum field theory and second quantization
can be found in [14]. The series of articles [18, 19, 20, 21] uses this framework with
a small parameter to handle classical or mean field limits by developing the Hepp
method [23]. We will use the notation and framework of [1, 2] to handle the second
quantization with a small parameter. For the convenience of the reader we expose
briefly this framework. We also recall some formulae in Appendix E.1.

Most of our operators on the Fock space will arise as Wick quantizations of
polynomials.

Definition 5.1. Let (H, 〈·, ·〉) be a complex Hilbert space (the scalar product is
C-antilinear with respect to the left variable). The symmetric tensor product is
denoted by ∨. The polynomials with variable in H are the finite linear combinations
of monomials Q : H → C of the form

Q (z) =
〈
z∨q, Q̃z∨p

〉

where p, q ∈ N, Q̃ ∈ L (H∨p,H∨q) and 〈·, ·〉 denotes the scalar product on H∨q.
The set of such polynomials is denoted by P (H).

The symmetric Fock space associated to H is

ΓH =

+∞⊕

n=0

ΓnH
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with ΓnH = H∨n the completed n-th symmetric power of H and the sum is com-
pleted, the set of finite particle vectors ΓFH is defined as the Fock space but with
an algebraic sum.

The Wick quantization of a polynomial is defined as the linear combination of
the Wick quantizations of its monomials, and for a monomial Q we define QWick :
ΓFH → ΓFH as the linear operator such that

QWick
∣∣
H∨n = 1[p,+∞)(n)

√
n!(n−p+q)!
(n−p)! ε

p+q
2

(
Q̃
∨

IdH∨n−p

)
,

∈ L
(
H∨n,H∨n−p+q

)
.

The field operators Φε(f) (f ∈ H) are defined as the closure of the essentially

self-adjoint operators (〈z, f〉+ 〈f, z〉)Wick
/
√
2.

The Weyl operators are then defined byW (f) = exp(iΦε(f)). The empty state Ω

is (1, 0, 0, . . . ) and the coherent states are defined as E(f) =W
(√

2
iε f
)
Ω.

Proposition 5.2. For any Q ∈ P(H), QWick is closable and the domain of its
closure contains

{W (f)φ, φ ∈ ΓFH, f ∈ H} .
Definition 5.3. For a self-adjoint operatorA on H, the self-adjoint operator dΓε(A)
is defined by

dΓε(A)|
D(A)∨n,alg = εnA ∨ Id∨n−1H

= ε (A⊗ IdH ⊗ · · · ⊗ IdH + · · ·+ IdH ⊗ · · · ⊗ IdH ⊗A)

and for a unitary U on H, the unitary operator Γ(U) on ΓH is defined by

Γ(U)|H∨n = U∨n = U ⊗ · · · ⊗ U

and thus Γ(eitA) = exp
(
it
ε dΓε(A)

)
.

5.3. Space translation in the fields and Fourier transform. We introduce a
notation for an object X = (X1, . . . , Xd) with d components, like ξ ∈ Rd, Dx =
(∂x1 , . . . , ∂xd

) or dΓ(Dy),

X .2 := X2
1 + · · ·+X2

d .

We would rather have a field operator with no dependence in x. Then we recall
that e−ix.Dy = τx and thus

Γ
(
eiεx.Dy

)
Hh,ε Γ

(
e−iεx.Dy

)

= D.2
x − 2Dx. dΓε(Dy) + dΓε(Dy)

.2 +
√
2Φε

(
ε−d/2

√
h
εV
(
− y
ε

))

where we use an ε-dependent operator dΓε. After a conjugation by the Fourier
transform in both the particle and the field variables we get

Ĥh,ε = ξ.2 − dΓε(2ξ.η) + dΓε(η)
.2 +

√
2Φε(fh,ε)

with fh,ε(η) = εd/2
√

h
ε V̂ (−εη), i.e. Ĥh,ε = QWick

h,ε with

Qh,ε (z) = ξ.2 +
〈
z,
(
εη.2 − 2ξ.η

)
z
〉
+ 〈z, ηz〉.2 + 2ℜ 〈z, fh,ε〉 .

When we neglect the quartic part 〈z, ηz〉.2 and thus get another polynomial

Qapph,ε (z) = ξ.2 +
〈
z,
(
εη.2 − 2ξ.η

)
z
〉
+ 2ℜ 〈z, fh,ε〉
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we can solve explicitly the evolution associated with the Hamiltonian

Ĥapp
h,ε = Qapp,Wick

h,ε = ξ.2 + dΓε
(
εη.2 − 2ξ.η

)
+
√
2Φε (fh,ε) .

Definition 5.4. Let ρ ∈ L1

(
L2
x

)
, then we define

ρt = Ad
{
e−i

t
εHh,ε

}
[ρ⊗ projΩ] , ρ

app
t = Ad

{
e−i

t
εH

app
h,ε

}
[ρ⊗ projΩ] ,

ρ̂t = Ad
{
e−i

t
ε Ĥh,ε

}
[ρ̂⊗ projΩ] , ρ̂

app
t = Ad

{
e−i

t
ε Ĥ

app
h,ε

}
[ρ̂⊗ projΩ] ,

ρεt = Tr
ΓL2

x

ρt , ρε,appt = Tr
ΓL2

x

ρ
app
t .

This definition is consistent with the previous one given for ρht as ρht = ρεε
h t

and

the dilatation acts only in the Fock space part of L2
x ⊗ ΓL2

y.

5.4. The approximated equation and its solution.

5.4.1. Results.

Definition 5.5. Let ψ0 ∈ L2
x. We define

Ψ̂h,ε,t = e−i
t
ε Ĥh,εΩ⊗ ψ̂0 and Ψ̂apph,ε,t = e−i

t
ε Ĥ

app
h,ε Ω⊗ ψ̂0 .

We will show three results in this section.

Proposition 5.6. We have

Ψ̂apph,ε,t = e−i
ωh,ε,t

ε W
(√

2
iε zh,ε,t

)
Ω⊗ ψ̂0

with zh,ε,t = −i
´ t

0 e
−i sε (ε2η.2−2ξ.εη)fh,ε ds and ωh,ε,t = tξ2 +

´ t

0 ℜ 〈zs, fh,ε〉ds.
We have an estimate on the size of zt.

Proposition 5.7. There exists a constant CG,d depending only on G and the di-
mension d such that

‖|η|ν zh,ε,t‖L2
η
≤ CG,d

√
ht

ε
ε1/2−ν .

We also have an estimate on the error on Ψ̂t when considering Ψ̂appt .

Proposition 5.8. Let T0 > 0. There exists a constant CT0,G,d such that for ht
ε ≤

T0, ∥∥∥Ψ̂h,ε,t − Ψ̂apph,ε,t

∥∥∥ ≤ CT0,G,d

(
ht

ε

)2

h−1 .

5.4.2. A transformation. First we get rid of the quadratic part (i.e. dΓε).

Definition 5.9. Let
˜̂
Ψh,ε,t = ei

t
ε ξ

.2

ei
t
ε dΓε(εη.2−2ξ.η)Ψh,ε,t and

˜̂
Ψapph,ε,t = ei

t
ε ξ

.2

ei
t
ε dΓε(εη.2−2ξ.η)Ψapph,ε,t .

Proposition 5.10. Then
˜̂
Ψt (resp.

˜̂
Ψappt ) is solution of the equation

iε∂tΨ̃h,ε,t = Q̃Wick
h,ε Ψ̃h,ε,t

(resp. iε∂t
˜̂
Ψapph,ε,t = Q̃app,Wick

h,ε
˜̂
Ψapph,ε,t) with the initial condition

˜̂
Ψh,ε,t=0 = Ω (resp.

˜̂
Ψapph,ε,t=0 = Ω) and Q̃h,ε,t(z) = 2ℜ〈z, f̃h,ε,t〉+〈z, ηz〉.2 (resp. Q̃apph,ε,t(z) = 2ℜ〈z, f̃h,ε,t〉)
with f̃h,ε,t = ei

t
ε (ε

2η.2−2ξ.εη)fh,ε.
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Proof. Indeed

iε∂t
˜̂
Ψt = iε∂t

[
ei

t
ε ξ

.2

ei
t
ε dΓε(εη.2−2ξ.η)Ψ̂t

]

= ei
t
ε ξ

.2

ei
t
ε dΓε(εη.2−2ξ.η)

[
2ℜ 〈z, f〉+ 〈z, ηz〉.2

]Wick

Ψ̂t

=
[
2ℜ
〈
z, eit(εη

.2−2ξ.η)f
〉
+ 〈z, ηz〉.2

]Wick

ei
t
ε ξ

.2

ei
t
εdΓε(εη.2−2ξ.η)Ψ̂t

= Q̃Wick
t

˜̂
Ψt .

And we can proceed analogously with Ψ̃appt . �

5.4.3. The classical movement associated with the approximated equation. The clas-
sical movement is the solution to the equation

(5.1)

{
i∂tz̃h,ε,t = ∂z̄Q̃h,ε,t (z̃h,ε,t) = f̃h,ε,t

z̃h,ε,t = 0

i.e.

z̃h,ε,t = −i
ˆ t

0

f̃h,ε,s ds = −i
ˆ t

0

ei
s
ε (ε

2η.2−2ξ.εη)fh,ε ds .

With this simpler dynamics the translation of Proposition 5.7 is the following.

Proposition 5.11. There exists a constant CG,d depending only on G and the
dimension d such that

‖|η|ν z̃h,ε,t‖L2
η
≤ CG,d

√
ht

ε
ε1/2−ν .

Proof. We compute ‖|η|ν z̃h,ε,t‖2L2
η

‖|η|ν z̃h,ε,t‖2L2
η
=

ˆ t

0

ˆ t

0

ˆ

Rd
η

ei
s−s′

ε (ε2η.2−2ξ.εη) |η|2ν |fh,ε(η)|2 dη ds ds′

A change of variable η′ = εη − ξ gives
ˆ

Rd
η

ei
s−s′

ε (ε2η.2−2ξ.εη) |η|2ν |fh,ε(η)|2 dη

= ε−2ν
h

ε
e−i

s−s′

ε ξ.2
ˆ

Rd
η

ei
s−s′

ε η.2 |η + ξ|2ν Ĝ(η + ξ) dη

as fh,ε(η) = εd/2
√

h
ε V̂ (−εη) and h

ε Ĝ(εη) ε
d = |fh,ε(η)|2.

For s 6= s′
∣∣∣∣
ˆ

Rd
η

ei
s−s′

ε (ε2η.2−2ξ.εη) |η|2ν |fh,ε(η)|2 dη
∣∣∣∣

=

(
πε

s′ − s

)d/2
ε−2ν

h

ε

∥∥∥F
(
η 7→ |η + ξ|2ν Ĝ(η + ξ)

)∥∥∥
L1

=

(
πε

s′ − s

)d/2
ε−2ν

h

ε

∥∥∥F
(
η 7→ |η|2ν Ĝ(η)

)∥∥∥
L1
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is uniformly bounded by CG ε
−2ν h

ε . The squared norm ‖|η|ν z̃appt ‖2L2
η

is then bounded

by

‖|η|ν z̃h,ε,t‖2L2
η
≤ CG

h

ε
ε−2ν

ˆ t

0

ˆ t

0

min

{(
πε

s′ − s

)d/2
, 1

}
ds ds′

≤ CG
h

ε
ε−2ν

[
πd/2εd/2

ˆ

|s−s′|≥2δ,s,s′∈[0,t]

dsds′

(s′ − s)
d/2

+ 2
√
2tδ

]

≤ CG
h

ε
ε−2ν

[
πd/2εd/22d/42

√
2t

2

d− 2
δ1−d/2 + 2

√
2tδ

]

which is optimal when δ = ε. This achieves the proof. �

Remark 5.12. The same estimate holds for zt with a similar proof.

5.4.4. Resolution of the approximated solution and comparison with the exact solu-
tion.

Proposition 5.13. The solution to the equation

iε∂tΨ̃
app
h,ε,t = Q̃app,Wick

h,ε Ψ̃apph,ε,t

with initial data Ψ̃apph,ε,t=0 = Ω is

Ψ̃apph,ε,t = e−i
ω̃h,ε,t

ε W
(√

2
iε z̃h,ε,t

)
Ω

with ω̃h,ε,t =
´ t

0 ℜ
〈
z̃h,ε,s, f̃h,ε,s

〉
ds.

Proof. Indeed let us apply iε∂t to the term on the right hand side:

iε∂te
−i ω̃t

ε W
(√

2
iε z̃t

)
Ω

=

(
∂tω̃ − iε

iε

2
ℑ
〈√

2
iε z̃t,−

√
2
ε f̃t

〉
+ iεiΦ

(
−
√
2
ε f̃t

))
e−i

ωt
ε W

(√
2
iε z̃t

)
Ω

=
(
∂tω̃ −ℑ

〈
1
i z̃t, f̃t

〉
+
√
2Φ(f̃t)

)
˜̂
Ψappt

since 1
t 〈ϕ, [W (z + tu)−W (z)]ψ〉 −−−→

t→0

〈
ϕ,
[
− iε

2 ℑ〈z, u〉+ iΦ(u)
]
W (z)ψ

〉
. �

We then compare Ψ̃t and Ψ̃appt .

Proposition 5.14. Let ∆
˜̂
Ψh,ε,t =

˜̂
Ψh,ε,t − ˜̂

Ψapph,ε,t and ∆Q̃t (z) = 〈z, ηz〉.2, then

∆
˜̂
Ψh,ε,t = − i

ε

ˆ t

0

e−i
t−s
ε Q̃Wick

h,ε ∆Q̃Wick ˜̂Ψapph,ε,s ds .

Proof. It suffices to remark that

iε∂t∆
˜̂
Ψt = Q̃Wick∆

˜̂
Ψt +∆Q̃Wick ˜̂Ψappt

and that the integral expression satisfies the same differential equation. �

Proposition 5.15. The difference ∆
˜̂
Ψh,ε,t can be controlled as

∥∥∥∆˜̂
Ψh,ε,t

∥∥∥ ≤ 1

ε

ˆ t

0

∥∥∥∆Q̃Wick ˜̂Ψapph,ε,s

∥∥∥ ds = 1

ε

ˆ t

0

∥∥∥∆Q̃Wick E(z̃h,ε,s)
∥∥∥ ds .
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Proposition 5.16. Let T0 > 0. There exists a constant CT0,G,d such that for
ht
ε ≤ T0, ∥∥∥∆Q̃Wick E

(
z̃apph,ε,t

)∥∥∥ ≤ CT0,G,d
ht

ε
.

Proof. We make use of the relation valid for coherent states

〈
E(z̃h,ε,t),

(
∆Q̃Wick

)∗
∆Q̃WickE(z̃h,ε,t)

〉
=

Wick

Symb
((

∆Q̃Wick
)∗
∆Q̃Wick

)
(z̃h,ε,t) .

Since

Wick

Symb

(((
〈z, ηz〉.2

)Wick
)2)

=
(
〈z, ηz〉.2

)2
+ 4ε (〈z, ηz〉 . 〈ηz|) (|ηz〉 . 〈z, ηz〉) + 2ε2

(
〈ηz|.⊗2

)(
|ηz〉.⊗2

)
,

using Proposition 5.11, we obtain that

∥∥∥∆Q̃Wick E(z̃h,ε,t)
∥∥∥
2

≤ CT0,G,d

((
ht

ε

)4

+ 4ε

(
ht

ε

)2
ht

ε2
+ 2ε2

(
ht

ε2

)2
)

which gives the result for ht
ε ≤ T0. �

Proposition 5.17. Let T0 > 0. There exists a constant CT0,G,d such that for
ht
ε ≤ T0,

∥∥∥∆˜̂
Ψh,ε,t

∥∥∥ ≤ 1

ε

ˆ t

0

∥∥∥∆Q̃Wick E(z̃h,ε,t)
∥∥∥ ds

≤ CT0,G,d h
−1
(
ht

ε

)2

.

6. Measure of an observable at a mesoscopic scale for the

approximated dynamics

6.1. Result. In this section we make the connection with the linear Boltzmann
equation.

Let b be a symbol in C∞0 (R2d
x,ξ) and ρ ∈ L+

1 L
2
x, Tr ρ = 1. The measure of the

observable bW (hx,Dx) in the state ρ is denoted by

m(b, ρ) = Tr
[
bW(hx,Dx) ρ

]
.

Proposition 6.1. Let b be a symbol in C∞0 (Rdx × R
d∗
ξ ) and ρ ∈ L+

1 L
2
x, Tr ρ ≤ 1

such that the kernel of ρ̂ = Ad {Fx} [ρ] has a bounded support. Let α ∈ [0, 1[.
Introduce the symbol bt = etQe2tξ.∂xb where Q is the collision operator introduced in
Equation 3.1 with here σ(ξ, ξ′) = 2πĜ(ξ′− ξ) = 2π|V̂ (ξ− ξ′)|2. When hα ≤ ht

ε ≤ 1,
the inequality

m(b, ρε,appt ) ≥ m
(
b ht

ε
, ρ
)
− E6

then holds with E6 = Cb,µ
ht
ε

(
ht
ε + h+

[
h
(
ht
ε

)−1]d/2−1
+ hµ(d,α)

)
for some con-

stant Cb,µ > 0 and µ (d, α) > 0.

Remark 6.2. This result also holds with b a symbol in C∞0 (Rd∗ξ ;C). The proof is the
same as for Proposition 6.1, with the symplectic Fourier transform Fσ replaced by
the usual Fourier transform. The special case when b (ξ) = b1(|ξ|2) is of particular
interest and the symbol bt in the previous statement does not depend on t.
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Proposition 6.1 is a by-product of the following stronger result.

Proposition 6.3. Let bs ∈ C1(R;D(R2d
x,ξ)) such that for some R > 1, and for

all s, Suppξ bs ⊂ BR − BR−1 . Let ρ ∈ L+
1 L

2
x, Tr ρ ≤ 1 such that the kernel

of ρ̂ = Ad {Fx} [ρ] has a bounded support. Then

m
(
b ht

ε
, ρε,appt

)

≥ m(b, ρ)− i

ε

ˆ t

0

m
(
iε∂sbs − ih

{
bs, ξ

.2
}
+ ihQ−ht

ε
bs, ρ

ε,app
s

)
ds− E6 .

Remark 6.4. The conservation of the support in ξ is important and will be provided
by the properties of the dual linear Boltzmann equation in the application of this
proposition.

Proof that Proposition 6.3 implies Proposition 6.1. Since one can make mistakes
between the notations of those two propositions we use notations with tildes, b̃
for Proposition 6.1 and without tildes for Proposition 6.3. Thus we want

b̃ = b ht
ε
, b̃ ht

ε
= b .

Denote by G̃ (t, t0) the dynamical system associated with (−2ξ.∂x −Q−t)t given by
{

∂tbt = (−2ξ.∂x −Q−t) bt
bt=t0 = b0

, bt = G̃(t, t0) b0 .

To have a vanishing term for b in the integral we require bht/ε = G̃(htε , 0)b, so that

with b̃ht/ε = G̃(0,−ht
ε )b̃, we will get the expected result. The only thing remaining

to prove is G̃(0,−t) = etQe2tξ.∂x . It is equivalent to show that

e2tξ.∂xG̃ (t, 0) = e−tQ ,

which is clear by derivation and using that Qt = et2ξ.∂xQe−t2ξ.∂x . �

6.2. Expression of the measure of an observable for the approximated

equation. We carry out an explicit computation using only the approximated
equation. We recall (see Proposition 5.13) that the solution of the approximated
equation with initial data Ψappt=0 = ψ0⊗Ω is (after translation and Fourier transform)

Ψ̂apph,ε,t = ψ̂0 (ξ) e
−i

ω
ξ
h,ε,t
ε W

(√
2
iε z

ξ
h,ε,t

)
Ω

with zh,ε,t = −i
´ t

0
e−i

s
ε (ε

2η.2−2ξ.εη)fh,ε ds and ωt = tξ2+
´ t

0
ℜ 〈zh,ε,s, fh,ε〉ds and fh,ε(η) =

εd/2
√

h
ε V̂ (−εη).

Definition 6.5. Let σ(X1, X2) = ξ1.x2 − x1.ξ2 (Xj = (xj , ξj) ∈ R2d
x,ξ) be the

standard symplectic form on R2d
x,ξ.

Let X ′ = (x′, ξ′) ∈ R2d
x,ξ, the Weyl operators on L2

x are defined by

τhX′ =
(
e−iσ(·,X

′)
)W

(hx,Dx) = e−iσ(·,X
′)

W
(hx,Dx) = ei(ξ

′·hx−x′·Dx) ,

their Fourier transform is denoted by τ̂hP := Ad {Fx}
[
τhP
]
.

The symplectic Fourier transform Fσ is defined on L2(R2d
x,ξ;C) by

Fσb (X) =

ˆ

R2d

e−iσ(X,X
′)b (X ′)d̄X ′
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with d̄X = dX/(2π)d.

Proposition 6.6. Let b be a symbol in C∞0 (R2d
x,ξ) and ρ ∈ L+

1 L
2
x, Tr ρ ≤ 1, then

m(b, ρε,appt ) =

˚

Fσb(P ) e−
i[ω]+[ϕ]1−[ϕ,px]2

ε τ̂hP (ξ2, ξ1) ρ̂(ξ1, ξ2) dξ1 dξ2 d̄P

with

[ω] = ωξ1t − ωξ2t(6.1)

[ϕ]1 = [ϕ]1,1 + [ϕ]1,2(6.2)

[ϕ]1,j =
1

2
|zξjt |2 , j = 1, 2(6.3)

[ϕ, px]2 =
〈
zξ2t , e

ipx·εηzξ1t
〉
.(6.4)

Remark 6.7. From eiεx.λ τhP e
−iεx.λ = eiελ.px τhP and taking λ as the spectral pa-

rameter of dΓε(Dy),

Γ(eiεx.Dy ) τhP Γ(e−iεx.Dy ) = Γ(eipx·εDy ) τhP

and after conjugating with the Fourier transforms, we obtain

Ad
{
(Fx ⊗ ΓFy) Γ(eiεxDy )

} [
τhP
]
= Γ(eipx·εη) τ̂hP .

Proof. As bW (hx,Dx) =
´

Fσb(P ) τhP d̄P , we have for ρ ∈ L+
1

m(b, ρ) =

ˆ

Fσb(P )Tr
[
τhP ρ

]
d̄P .

By translating and Fourier transforming we get the expression

m(b, ρε,appt ) =

ˆ

Fσb(P )Tr
[
ρ̂
app
t Γ(eipx·εη) τ̂hP

]
d̄P .

We conclude with the Lemma 6.8 below. �

Lemma 6.8. The kernel KP of the operator TrΓL2
η
[ρ̂appt Γ(eipx·εη)] on L2

ξ is

KP (ξ1, ξ2) = e−i
ω
ξ1
h,ε,t

−ω
ξ2
h,ε,t

ε ρ̂(ξ1, ξ2)e
− 1

2ε

(
|zξ1h,ε,t|2−|z

ξ2
h,ε,t|2+2〈zξ2h,ε,t,e

ipx·εηz
ξ1
h,ε,t〉

)
.

Proof. Using ρ̂⊗ |Ω〉 〈Ω| =
´ ⊕
ξ1

´ ⊕
ξ2
ρ̂(ξ1, ξ2) |Ω〉 〈Ω|dξ1 dξ2 we get

Tr
ΓL2

η

[
ρ̂
app
t Γ(eipx·εη)

]

= Tr
ΓL2

η

[
ˆ ⊕

Rd
ξ1

ˆ ⊕

Rd
ξ2

∣∣∣E(zξ1t )
〉〈

E(zξ2t )
∣∣∣ e−i

ω
ξ1
t
ε ei

ω
ξ2
t
ε ρ̂(ξ1, ξ2) dξ1 dξ2Γ(e

ipx·εη)

]

and by the rules of calculus on coherent states we obtain

KP (ξ1, ξ2) = e−i
ω
ξ1
t −ω

ξ2
t

ε ρ̂ (ξ1, ξ2)
〈
E(zξ2t )

∣∣∣ Γ(eipx·εη)
∣∣∣E(zξ1t )

〉

= e−i
ω
ξ1
t −ω

ξ2
t

ε ρ̂ (ξ1, ξ2) e
−
∣

∣

∣
z
ξ1
t

∣

∣

∣

2
/2ε−

∣

∣

∣
z
ξ2
t

∣

∣

∣

2
/2ε+ 1

ε

〈

z
ξ2
t ,eipx·εηz

ξ1
t

〉

which is the result of the Lemma. �
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Definition 6.9. For j = {, } ,−,+ we define

mj =

ˆ

R2d
P

Fσb(P )Tr
[
ρ̂
app
t Γ(eipx·εη)Aj,P

]
d̄P

where the operators Aj,P are defined by their kernels, according to the notations
of Equations (6.1), (6.2), (6.3) and (6.4),

ihA{,},P (ξ1, ξ2) = τ̂hP (ξ2, ξ1) ∂t [ω] ,(6.5)

ihA{,},j,P (ξj) = τ̂hP (ξ2, ξ1) ∂tω
ξj
t , j = 1, 2 ,(6.6)

ihA−,P (ξ1, ξ2) = i∂t [ϕ]1 τ̂
h
P (ξ2, ξ1) ,(6.7)

ihA−,j,P (ξj) = i∂t [ϕ]1,j τ̂
h
P (ξ2, ξ1) , j = 1, 2 ,(6.8)

ihA+,P (ξ1, ξ2) = i∂t [ϕ, px]2 τ̂
h
P (ξ2, ξ1)(6.9)

and A{,} = A{,},1 − A{,},2, A− = A−,1 + A−,2.

The indexes {, }, − and + were chosen to recall the terms of the linear Boltzmann
equation, {, } corresponding to

{
ξ2, ·

}
, + to Q+ and − to Q−.

Proposition 6.10. Let bt ∈ C1(R; C∞0 (R2d
x,ξ)), then the equality

iε∂tm(bt, ρ
ε,app
t ) = m(iε∂tbt, ρ

ε,app
t ) + ih

(
m{,} −m− +m+

)

holds.

Remark 6.11. Later we will put each of those terms mj in the form

mj = m(cj , ρ
ε,app
t ) + ∆j

where ∆j denotes a small error term.

Proof of Proposition 6.10. Indeed

iε∂tm(b, ρε,appt )

=

˚

P,ξ1,ξ2

[Fσiε∂tb(P ) + Fσb(P ) {∂t [ω]− i∂t [ϕ]1 + i∂t [ϕ, px]2}]

e−
i[ω]+[ϕ]1−[ϕ,px]2

ε τ̂hP (ξ2, ξ1) ρ̂(ξ1, ξ2) dξ1 dξ2 d̄P

and so it suffices to prove the following lemma. �

Lemma 6.12. For j = {, }, −, +, the formula

Tr
[
ρ̂
app
t Γ(eipx·εη)Aj,P

]
=

¨

Aj(P, ξ1, ξ2) e
− i[ω]+[ϕ]1−[ϕ,px]2

ε ρ̂(ξ1, ξ2) dξ1 dξ2

holds.

Proof. Indeed

Tr
[
ρ̂
app
t Γ(eipx·εη)Aj,P

]

=

¨

ρ̂(ξ1, ξ2)
〈
E(zξ2t )

∣∣∣ Γ(eipx·εη)
∣∣∣E(zξ1t )

〉
e−i

ω
ξ1
t −ω

ξ2
t

ε Aj(P, ξ1, ξ2) dξ1 dξ2

=

¨

ρ̂(ξ1, ξ2) e
− i[ω]+[ϕ]1+[ϕ,px]2

ε Aj(P, ξ1, ξ2) dξ1 dξ2 .

�
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6.3. Two estimates. We will need several times these estimates to get rid of the
term Γ(eipx·εη) and then control small errors on the operators AP .

Proposition 6.13. Let AP be a P -dependent family of operators in L(L2
ξ). Then

〈P 〉−k
∣∣Tr
[
ρ̂
app
t

(
Γ(eipx·εη)− Id

)
AP

]∣∣ ≤ ht

ε
sup
P∈R2d

〈P 〉−k ‖AP ‖L(L2
ξ)

and
∣∣∣∣∣

ˆ

R2d
P

Fσb(P )Tr
[
ρ̂
app
t

(
Γ(eipx·εη)− Id

)
AP

]
d̄P

∣∣∣∣∣

≤ ht

ε

∥∥∥〈·〉k Fσb
∥∥∥
L1

P

sup
P

〈P 〉−k ‖AP ‖L(L2
ξ)
.

This can be proved in two steps.

Remark 6.14. It suffices to prove this property with ρ = |ψ〉 〈ψ| with a ψ̂ with
bounded support as any ρ ∈ L+

1 L
2
x, Tr ρ = 1 can be decomposed as

ρ =
∑

j≥0
λj |ψj〉 〈ψj |

with positive λj ’s and
∑

j λj = 1, and

Supp ρ̂ (ξ, ξ′) ⊂ B2
M ⇔ ∀j, Supp ψ̂j ⊂ BM .

Lemma 6.15. Let AP be a P -dependent family of operators in L(L2
η) and Ψ̂ be a

normed vector in L2
ξ ⊗ ΓL2

η. Then
∣∣∣Tr
[
proj Ψ̂

(
Γ
(
eipx·εη

)
− Id

)
AP

]∣∣∣ ≤
∥∥∥
(
Γ
(
eipx·εη

)
− Id

)
Ψ̂
∥∥∥ ‖AP ‖L(L2

ξ)
.

Lemma 6.16. There exists a constant CG,d which depends only on G and d such
that ∥∥∥

(
Γ(eipx·εη)− Id

)
Ψ̂apph,ε,t

∥∥∥ ≤ CG,d
ht

ε
.

Proof. The calculus rules on coherent states give
∥∥∥
(
Γ(eipx·εη)− Id

)
Ψ̂apph,ε,t

∥∥∥
2

= sup
ξ

∥∥∥E
(
eipx·εηzξh,ε,t

)
− E

(
zξh,ε,t

)∥∥∥
2

= sup
ξ

2

(
1− cos

(1
ε
ℑ
〈
eipx.εηzξh,ε,t, z

ξ
h,ε,t

〉))

≤ CG,d

(
ht

ε

)2

,

where the last inequality is obtained using |1− cos t| ≤ t2/2 and the estimates
on ‖zt‖. �

Proposition 6.17. Let EP be a P -dependent family of operators in L(L2
ξ) and ρ̂

be a state on L2
ξ ⊗ ΓL2

η. Then for any integer k (with possibly infinite quantities)
∣∣∣∣∣

ˆ

R2d
P

Fσb(P ) |Tr [ρ̂EP ]|d̄P
∣∣∣∣∣ ≤

∥∥∥〈·〉k Fσb
∥∥∥
L1

P

sup
P

∥∥∥〈P 〉−k EP

∥∥∥
L(L2

ξ)
.
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6.4. The transport term m{,}. The result of this section is the following.

Proposition 6.18. Let ρ ∈ L+
1 L

2
x, Tr ρ ≤ 1 and b ∈ C∞0 (R2d

x,ξ) such that Supp ρ̂(ξ, ξ′) ⊂
B2
R , and Suppξ b ⊂ BR for some R > 0 then

m{,} = m
(
−
{
b, ξ.2

}
, t
)
+∆{,}

with |∆{,}| ≤ CG,R,b (
ht
ε + h+ ( εt )

d/2).

It is a consequence of the following more accurate result.

Proposition 6.19. Suppose the hypotheses of Proposition 6.18 are satisfied and
keep the same notations. The term ∆1 can be decomposed as

∆{,} =
3∑

j=1

∆{,},j

with, for some integer k,

(1)
∣∣∆{,},1

∣∣ ≤ 2htε ‖ 〈·〉
k Fσb‖L1

P
O
(
1 + h+ [h(htε )

−1]d/2−1
)
,

(2)
∣∣∆{,},2

∣∣ ≤
(
‖Fσb‖L1

P
+ ‖ 〈·〉k Fσb‖L1

P

)
O
(
h+ ( εt )

d
2−1
)
,

(3)
∣∣∆{,},3

∣∣ ≤ ht
ε ‖Fσ{b, ξ.2}‖L1

P
.

Remark 6.20. The operator A{,},P is actually

A{,},P =
1

ih

[
τ̂hP , ∂tω×

]
.

Remark 6.21. We can introduce a cutoff function χR ∈ C∞0 (Rdξ) such that χR(BR) =

{1}, χR(Rdξ −BR+1) = {0} and χR(R
d
ξ) ⊂ [0, 1].

This result will be proved by considering successively every error term. These
error terms ∆{,},j, j = 1, 2, 3 are given by the following approximation process

(where we write shortly BW for BW (−hDξ, ξ)).

m{,} =
ˆ

P

Fσb(P )Tr

[
ρ̂
app
t Γ(eipx·εη)

1

ih

[
τ̂hP , ∂tω×

]]
d̄P

=

ˆ

P

Fσb(P )Tr

[
ρ̂
app
t Γ(eipx·εη)

1

ih

[
τ̂hP , χR∂tω×

]]
d̄P

=

ˆ

P

Fσb(P )Tr

[
ρ̂
app
t

1

ih

[
τ̂hP , χR∂tω×

]]
d̄P +∆{,},1

= Tr

[
ρ̂
app
t

1

ih

[
bW , χR∂tω×

]]
d̄P +∆{,},1

= −Tr
[
ρ̂
app
t {b , χRξ.2}W

]
d̄P +

2∑

j=1

∆{,},j

=

ˆ

P

Fσ
(
− {b , ξ.2}

)
(P )Tr

[
ρ̂
app
t τ̂hP

]
d̄P +

2∑

j=1

∆{,},j
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=

ˆ

P

Fσ
(
− {b , ξ.2}

)
(P )Tr

[
ρ̂
app
t Γ(eipx·εη) τ̂hP

]
d̄P +

3∑

j=1

∆{,},j

= m
(
− {b , ξ.2}, t

)
+

3∑

j=1

∆{,},j .

The quantities ∆{,},j are defined by

∆{,},1 =

ˆ

P

Fσb(P ) Tr

[
ρ̂
app
t

(
Γ(eipx·εη)− Id

) 1

ih

[
τ̂hP , χR∂tω×

]]
d̄P ,

∆{,},2 = Tr

[
ρ̂
app
t

1

ih

(
[b , χR∂tω×]− h

i

{
b , χRξ

.2
}W
)]

d̄P ,

∆{,},3 =

ˆ

P

Fσ
(
− {b , ξ.2}

)
(P ) Tr

[
ρ̂
app
t

(
Id− Γ(eipx·εη)

)
τ̂hP
]
d̄P .

We will use the structure of ∂tω:

Proposition 6.22. The time derivative of ω is given by

∂tωh,ε,t = ξ.2 − hℑ
ˆ t/ε

0

ˆ

Rd
η

eis(η
.2−2ξ.η)Ĝ(η) dη ds .

Proof. Differentiating ω with respect to t,

∂tωh,ε,t = ξ.2 + ℜ
〈
zξh,ε,t, fh,ε

〉

= ξ.2 + ℜ
ˆ

Rd
η

i

ˆ t

0

e−i
s
ε (ε

2η.2−2ξ.εη) |fh,ε(η)|2 dsei
t
ε (ε

2η.2−2ξ.εη) dη

which is the result once we replace fh,ε by its expression in terms of V̂ , use Ĝ = |V̂ |2
and make a change of variable. �

Lemma 6.23. We have, for some integer k,

[
τ̂hP ,χR∂tωh,ε,t×

]
=
h

i

{
eiσ(P,X), χRξ

2
}W

(−hDξ, ξ) + hO
(
〈P 〉k h+

(ε
t

) d
2−1 )

.

and in particular
∥∥[τ̂hP , χR∂tω×

]∥∥
L(L2

ξ)
≤ 〈P 〉kO(h).

Remark 6.24. We use in this proposition that G ∈ L1
x.

Proof of Lemma 6.23. We split the commutator in three parts

[
τ̂hP , χR∂tω×

]
=

[
τ̂hP , χR(ξ)ξ

.2 − hg1(ξ) + hR1

(
t

ε
, ξ

)
×
]

with

g1(ξ) := χR(ξ)ℑ lim
M→+∞

ˆ M

0

ˆ

Rd
η

eis(η
.2−2ξ.η) Ĝ(η) dη ds ,

R1(u, ξ) := χR(ξ)ℑ lim
M→+∞

ˆ M

u

ˆ

Rd
η

eis(η
.2−2ξ.η) Ĝ(η) dη ds .

The biggest part, in ξ.2, gives the only relevant contribution

[
τ̂hP , χRξ

.2×
]
=
h

i

{
eiσ(P,X), χRξ

.2×
}Weyl

+ 〈P 〉kOh→0

(
h2
)
.
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One of the other parts can be estimated without using the commutator structure
∥∥[τ̂hP , R1

(
t
ε , ξ
)
×
]∥∥
L(L2

ξ)
≤ 2

∥∥τ̂hP
∥∥
L(L2

ξ)

∥∥R1

(
t
ε , ξ
)
×
∥∥
L∞

ξ

≤ C
(ε
t

) d
2−1

since
ˆ

Rd
η

eis(η
.2−2ξ.η) Ĝ(η) dη = e−isξ

.2

ˆ

Rd
x

G(x) e−ix.ξ
(2π
|s|
)d/2

eid sign s
π
4 e

x2

2is dx

and thus ∣∣∣∣∣

ˆ

Rd
η

eis(η
.2−2ξ.η) Ĝ(η) dη

∣∣∣∣∣ ≤
(2π
|s|
)d/2

‖G‖L1 .

Since g1 is in C∞0 (Rdξ) we can apply the symbolic calculus

[
τ̂hP , hg1(ξ)×

]
=
h2

i

{
eiσ(P,X) , g1(ξ)

}W
(−hDξ, ξ) +O

(
h2 〈P 〉k

)

where for some integer k,
∥∥∥∥
{
eiσ(P,X) , g1(ξ)×

}W
(−hDξ, ξ)

∥∥∥∥
L(L2

ξ)

= 〈P 〉kOh→0(1) ,

which concludes the proof of the lemma. �

We can then estimate the three error terms ∆{,},j .

Proof of 1 in Proposition 6.19. It is a result of Proposition 6.13 and the estimate
of ∥∥[τ̂hP , χR∂tωh,ε,t×

]∥∥
L(L2

ξ)

of the lemma. �

Proof of 2 in Proposition 6.19. The second error term can be expressed as

∆{,},2 =

ˆ

R2d
P

Fσb(P ) Tr
[
ρ̂
app
t

1

ih

([
τ̂hP , χR∂tωh,ε,t×

]
− h

i

{
τ̂hP , χRξ

.2
}W)]

d̄P

so that the lemma and Proposition 6.17 give the estimation. �

Proof of 3 in Proposition 6.19. It is an application of Proposition 6.13. �

6.5. The collision terms m− and m+.

Proposition 6.25. Let b ∈ C∞0 (Rdx × Rd∗ξ ) and ρ ∈ L+
1 L

2
x, Tr ρ ≤ 1 such that for

some R > 0, Suppξ b ⊂ BR −B1/R and Supp ρ̂(ξ, ξ′) ⊂ B2
R. Then

m± = m(Q±,t(b), t) + ∆±

and for any α ∈ [0, 1[, there are constants µ = µ(d, α) > 0 and CR,b,G,d,α,µ > 0,

such that for hα ≤ th
ε ≤ 1,

|∆±| ≤ CR,b,G,µ

(ht
ε

+ hµ
)
.
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Definition 6.26. For ζ > 0, r ∈ R and P ∈ R2d
px,pξ

, set

κζ(r) =
1

π

ζ

r2 + ζ2
,

c(ξ) = 2π

ˆ

Rd
η

Ĝ(η + ξ) δ(η.2 − ξ.2) dη ,

c
ζ(ξ) = 2π

ˆ

Rd
η

Ĝ(η)κζ(η.2 − 2ξ.η) dη ,

c
ζ
P,t(x, ξ) = 2π

ˆ

Rd
η

Ĝ(η) eiσ(P,(−2tη,−η))κζ(η.2 − 2ξ.η) dη .

Associate with these functions the operators Q±, Qζ±,t defined by

Q−(b) = c b ,

Qζ−(b) = c
ζ b ,

Qζ+,tb(x, ξ) =

ˆ

R2d
P

Fσb(P ) eiσ(P,X)
c
ζ
P,t(x, ξ)d̄P ,

for b ∈ C∞0 (Rdx × Rd∗ξ ).

Proposition 6.27. For d ≥ 3, and hα ≤ ht
ε ≤ 1,

m± =

ˆ

P

Fσb(P ) Tr
[
ρ̂
app
t Γ(eipx·εη)A±,P

]
d̄P

= m(Q±,t(b), t) +
4∑

k=1

∆±,k

with

• |∆±,1| ≤ ht
ε Cdmax

{
‖Ĝ‖L1, ‖G‖L1

}
‖Fσb‖L1

P
,

• |∆±,2| ≤ Cα,β,ν,G,dh
ν ,

• |∆±,3| ≤ ζγNk(d)(b)Cd,G,C,γ for γ ∈ ]0, 1[,

• |∆±,4| ≤ ht
ε

∥∥Fσ
(
Q±,ht

ε
(b)
)∥∥
L1

P

for some ν, β > 0 with ζ = hβ.

This result will be proved in the next paragraphs by considering successively all
the error terms. These error terms ∆±,j , j = 1, . . . , 4 are given by the following
approximation process (where we write shortly BW for BW (−hDξ, ξ))

m± =

ˆ

Fσb(P ) Tr
[
ρ̂
app
t Γ(eipx·εη)A±,P

]
d̄P

=

ˆ

Fσb(P ) Tr [ρ̂appt A±,P ]d̄P +∆±,1

=

ˆ

Fσb(P ) Tr
[
ρ̂
app
t

(
c
ζ
±,P e

iσ(P,·))W ]d̄P +

2∑

j=1

∆±,j

= Tr
[
ρ̂
app
t

(
Qζ±,ht

ε

b
)W ]

+

2∑

j=1

∆±,j
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= Tr
[
ρ̂
app
t

(
Q±,ht

ε
b
)W ]

+

3∑

j=1

∆±,j

=

ˆ

Fσ
(
Q±,ht

ε
b
)
(P ) Tr

[
ρ̂
app
t τ̂hP

]
d̄P +

3∑

j=1

∆±,j

=

ˆ

Fσ
(
Q±,ht

ε
b
)
(P ) Tr

[
ρ̂
app
t Γ(eipx·εη) τ̂hP

]
d̄P +

4∑

j=1

∆±,j

= m
(
Q±,ht

ε
b, t
)
+

4∑

j=1

∆±,j .

The error terms ∆±,j are thus given by

∆±,1 =

ˆ

Fσb (P )Tr
[
ρ̂
app
t

(
Γ(eipx·εη)− Id

)
A±,P

]
d̄P ,(6.10)

∆±,2 =

ˆ

Fσb (P )Tr
[
ρ̂
app
t

(
A±,P −

(
c
ζ
±,P e

iσ(P,·))W)]d̄P ,(6.11)

∆±,3 = Tr

[
ρ̂
app
t

(
Qζ±,ht

ε

b−Q±,ht
ε
b
)W ]

,(6.12)

∆±,4 =

ˆ

Fσ
(
Q±, ht

ε
b
)
(P ) Tr

[
ρ̂
app
t

(
Id− Γ

(
eipx·εη

))
τ̂hP
]
d̄P ,(6.13)

since τ̂hP =
(
eiσ(P,·)

)W
,

(
Qζ±,ht

ε

b
)W

=

ˆ

R2d
P

Fσb(P )
(
c
ζ
±,P e

iσ(P,·))W d̄P ,

and the same relation holds without ζ and
ˆ

P

Fσ
(
Q±,ht

ε
b
)
(P ) Tr

[
ρ̂
app
t Γ(eipx·εη) τ̂hP

]
d̄P = m

(
Q±,ht

ε
b, t
)
.

The term ∆±,4 can be estimated right away using Proposition 6.13.

6.5.1. Computation of the operators A±,P . We recall that the operators A±,P
and A−,j,PA− = A−,1 + A−,2 are defined in Equations (6.5), (6.6), (6.7), (6.8),
(6.9) by their kernels

A−,P (ξ1, ξ2) = A−,1,P (ξ1) + A−,2,P (ξ2) ,

ihA−,j,P (ξj) = i∂t

(
1
2

∣∣zξjh,ε,t
∣∣2
)
τ̂hP (ξ2, ξ1) , j = 1, 2 ,

ihA+,P (ξ1, ξ2) = i∂t [ϕ, px]2 τ̂
h
P (ξ2, ξ1) .

Thus we need to compute ∂t(
1
2 |z

ξj
h,ε,t|2) and ∂t [ϕ, px]2.

Lemma 6.28. The time derivative of 1
2 |zh,ε,t|2 is given by

∂t

(
1

2
|zh,ε,t|2

)
= hℜ

ˆ

Rd
η

ˆ t/ε

0

eis(η
.2−2ξj .η) Ĝ(η) ds dη .



A DERIVATION OF THE LINEAR BOLTZMANN EQUATION 30

Proof. For zt = −i
´ t

0
e−i

s
ε (ε

2η.2−2ξ.εη)fh,ε ds with fh,ε (η) = εd/2
√

h
ε V̂ (−εη),

∂t

(
1

2
|zt|2

)
= ℜ
ˆ

Rd
η

z̄t∂tzt

and ∂tzt = −ie−i tε (ε2η.2−2ξ.εη)fh,ε. A simple computation gives

∂t

(
1

2
|zt|2

)
= ℜ
ˆ

Rd
η

ˆ t

0

ei
t−s
ε (ε2η.2−2ξ.εη) |fh,ε(η)|2 ds dη

= hℜ
ˆ

Rd
η

ˆ t/ε

0

eis(η
.2−2ξ.η) Ĝ(η) ds dη

which is the expected result. �

Lemma 6.29. The time derivative of [ϕ, px]2 is given by

∂t [ϕ, px]2 = h

ˆ

Rd
η

ˆ t/ε

0

eipx·ηeis(η
.2−2ξ1.η)e−i

t
ε (η

.2−2ξ2.η) ds Ĝ(η) dη

+ h

ˆ

Rd
η

ˆ t/ε

0

eipx·ηei
t
ε (η

.2−2ξ1.η)e−is(η
.2−2ξ2.η) ds Ĝ(η) dη .

Proof. Two analogous terms appear in this computation

∂t [ϕ, px]2 = ∂t

〈
zξ2t , e

ipx·εηzξ1t
〉
L2

η

=
〈
zξ2t , e

ipx·εη∂tz
ξ1
t

〉
L2

η

+
〈
∂tz

ξ2
t , e

ipx·εηzξ1t
〉
L2

η

.

Consider the first one:
〈
∂tz

ξ2
t , e

ipx·εηzξ1t
〉
L2

η

=

〈
ei

t
ε (ε

2η.2−2ξ2.εη)fh,ε, e
ipx·εη

ˆ t

0

ei
s
ε (ε

2η.2−2ξ1.εη)fh,ε ds

〉

=

ˆ

Rd
η

ˆ t

0

eipx·εηei
s
ε (ε

2η.2−2ξ1.εη)e−i
t
ε (ε

2η.2−2ξ2.εη) ds |fh,ε (η)|2 dη

= h

ˆ

Rd
η

ˆ t/ε

0

eipx·ηeis(η
.2−2ξ1.η)e−i

t
ε (η

.2−2ξ2.η) dsĜ (η) dη .

With analogous computations we get the result for the second one. �

Proposition 6.30. The operators A−,j can be expressed as

A−,1,P =

ˆ

Rd
η

ˆ t/ε

0

τ̂hP ◦ ℜ
(
eis(η

.2−2ξ.η))× Ĝ(η) ds dη ,

A−,2,P =

ˆ

Rd
η

ˆ t/ε

0

ℜ
(
eis(η

.2−2ξ.η))× ◦τ̂hP Ĝ(η) ds dη .
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Proof. From the definition of A−,j,P in terms of their kernel, we get

ihA−,1,P = iτ̂hP ◦
[
∂t

(
1

2

∣∣∣zξt
∣∣∣
2
)
×
]
,

ihA−,2,P = i

[
∂t

(
1

2

∣∣∣zξt
∣∣∣
2
)
×
]
◦ τ̂hP .

Lemma 6.28 yields the result. �

Consider now the term A+.

Proposition 6.31. The operators A+,j can be expressed as

A+,1,P =

ˆ t/ε

0

ˆ

Rd
η

e−iσ(P,(2
t
εη,η))τ̂hP ◦ e−is(η.2−2ξ.η)Ĝ(η) dη ds ,

A+,2,P =

ˆ t/ε

0

ˆ

Rd
η

e−iσ(P,(2
t
εη,η))eis(η

.2−2ξ.η) ◦ τ̂hP Ĝ(η) dη ds .

Proof. Lemma 6.29 allows us to write

A+,1,P =

ˆ t/ε

0

ˆ

Rd
η

eipx·ηe−i
t
ε (η

.2−2ξ.η) ◦ τ̂hP ◦ eis(η.2−2ξ.η) Ĝ(η) dη ds ,

A+,2,P =

ˆ t/ε

0

ˆ

Rd
η

eipx·ηe−is(η
.2−2ξ.η) ◦ τ̂hP ◦ ei tε (η.2−2ξ.η) Ĝ(η) dη ds .

Since

e2i
t
ε ξ.η ◦ τ̂hP = e−2i

t
εpξη τ̂hP ◦ e2i tε ξ.η ,

τ̂hP ◦ e−2i tε 2ξ.η = e−2i
t
εpξηe−2i

t
ε 2ξ.η ◦ τ̂hP ,

we get

A+,1,P =

ˆ t/ε

0

ˆ

Rd
η

e−iσ(P,(2
t
εη,η))τ̂hP ◦ e−i( t

ε−s)(η.2−2ξ.η) Ĝ(η) dη ds ,

A+,2,P =

ˆ t/ε

0

ˆ

Rd
η

e−iσ(P,(2
t
εη,η))ei(

t
ε−s)(η.2−2ξ.η) ◦ τ̂hP Ĝ(η) dη ds

and with a change of variable we obtain the expected result. �

Thus we get six different terms (four for the A− terms due to the real parts and
two for the A+ terms) with a very similar structure. In order to avoid repeating
analogous calculations several times we introduce the following notations.

Notation: Set (by writing shortly BW for BW (−hDξ, ξ))

A
1
~µ (s) =

ˆ

Rd
η

Ĝ(η) eµ1iσ̃ τ̂hP ◦ e−µ2is(η.2−2ξ.η) dη ,(6.14)

B
1
~µ(s) =

ˆ

Rd
η

Ĝ(η) eµ1iσ̃ τ̂h(px−µ22sη,pξ)
e−µ2isη

.2

dη ,(6.15)

C
1,ζ
~µ =

ˆ

Rd
η

Ĝ(η)
(
eµ1iσ̃eiσ(P,·)

)W dη

ζ + µ2i (η.2 − 2ξ.η)
,(6.16)



A DERIVATION OF THE LINEAR BOLTZMANN EQUATION 32

A
2
~µ (s) =

ˆ

Rd
η

Ĝ(η) eµ1iσ̃eµ2is(η.2−2ξ.η) ◦ τ̂hP dη ,(6.17)

B
2
~µ(s) =

ˆ

Rd
η

Ĝ(η) eµ1iσ̃ τ̂h(px+µ22sη,pξ)
eµ2isη

.2

dη ,(6.18)

C
2,ζ
~µ =

ˆ

Rd
η

Ĝ(η)
(
eµ1iσ̃eiσ(P,·)

)W dη

ζ − µ2i (η.2 − 2ξ.η)
,(6.19)

with σ̃ = σ
(
P,
(
−2h tεη,−η

))
. The terms µ1, µ2 are chosen to adapt to the cases

of the terms m±.
More precisely, for j = 1, 2, the previous quantities become

A−,j =
1

2

ˆ t/ε

0

(
A
j
0,1(s) + A

j
0,−1(s)

)
ds ,

A+,j =

ˆ t/ε

0

A
j
1,1(s) ds .

We will first show that the operators C
ζ
~µ are good approximations of the op-

erators A~µ =
´ t/ε

0 A~µ(s) ds if the parameter ζ is well chosen. We use the opera-

tors
´ t/ε

0 B~µ(s) ds as an intermediate step.

Then we study the limit of the operators C
ζ
~µ , with a distinction between the

cases m− and m+.

6.5.2. Estimate of the error terms ∆±,1.

Proposition 6.32. For d ≥ 3, the inequality

|∆±,1| ≤
ht

ε
Cdmax

{
‖Ĝ‖L1 , ‖G‖L1

}
‖Fσb‖L1

P

holds.

Proof. The term ∆±,1 was defined in Equation (6.10). This inequality follows from

Propositions 6.13 and 6.33 below since s 7→ min{1, s−d/2} is integrable on R+

for d ≥ 3. �

Proposition 6.33. The families of operators A (s) = A
j
~µ (s) satisfy

‖A (s)‖L(L2
ξ)

≤ Cdmax
{
‖Ĝ‖L1 , ‖G‖L1

}
min

{
1, s−d/2

}
.

Proof. By a uniform estimate of Equations (6.14), (6.17) we get

∥∥∥A j
~µ (s)

∥∥∥
L(L2

ξ)
≤ Cd‖Ĝ‖L1 .

In order to obtain the part of the estimate with the dependence in s, we use the
formula ∥∥∥A j

~µ (s)
∥∥∥
L(L2

ξ)
= sup
‖ψ‖

L2
ξ
=‖ϕ‖

L2
ξ
=1

∣∣∣
〈
ψ,A j

~µ (s)ϕ
〉∣∣∣ .
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We can then compute, for ψ, ϕ ∈ L2
ξ,

〈
ψ,A j

~µ (s)ϕ
〉

=

ˆ

Rd
η

〈
ψ, Ĝ(η) eiµ1σ̃ τ̂hP ◦ e−µ2is(η.2−2ξ.η)ϕ

〉
ξ
dη

=

ˆ

Rd
ξ

〈
Ĝ(η) τ̂h−Pψ(ξ), e

µ1iσ̃e−µ2is(η.2−2ξ.η)ϕ(ξ)
〉
η
dξ

=

ˆ

Rd
θ

〈ψθ, ϕ~µ,θ〉ξ
1

(2π)d
dθ ,

where we defined, for θ ∈ Rdθ,

ϕ~µ,θ =

ˆ

eiθηeµ1iσ̃e−µ2is(η.2−2ξ.η)ϕ(ξ) dη ,

ψθ =

ˆ

eiθη Ĝ(η) τ̂h−P ψ(ξ) dη .

We first compute

ϕ~µ,θ (ξ) =
(π
s

)d/2
ei
(θ+µ22sξ+µ1(2hspξ−px))

2

4µ2s ei
π
4 dϕ (ξ)

where we used the formula
ˆ

e−ixηe−aη
2

dη =
(π
a

)d/2
e−x

2/4a

with a = µ2is and x = − (θ + µ22sξ + µ1 (2hspξ − px)) and so for a fixed θ

‖ϕ~µ,θ‖L2
ξ
≤
(π
s

)d/2
‖ϕ‖L2

ξ
.

We now observe that in L1(Rdθ ;L(L2
ξ))

∥∥∥∥
ˆ

eiθη Ĝ(η) τ̂h−P dη

∥∥∥∥
L1(Rd

θ ;L(L2
ξ))

≤ (2π)
d ‖G‖L1

so that ‖ψθ‖L1(Rd
θ ;L

2
ξ)

≤ Cd ‖G‖L1 ‖ψ‖L2
ξ
. And finally

|〈ψ,A~µ (s)ϕ〉| ≤
1

(2π)
d
‖ψθ‖L1(Rd

θ ;L
2
ξ)
‖ϕ~µ,θ‖L∞(Rd

θ ;L
2
ξ)

≤ Cd ‖G‖L1

(π
s

)d/2
‖ϕ‖L2

ξ
‖ψ‖L2

ξ

and we obtain the desired result ‖A~µ(s)‖L(L2
ξ)

≤ Cd ‖G‖L1 s−d/2 . �

6.5.3. Estimate of the error terms ∆±,2.

Proposition 6.34. Let α ∈ ]0, 1]. There are constants β = β(d, α) ∈ ]0, 1[, ν =
ν(d, α) ∈ ]0, 1[ and C = C(α, β, ν, d,G) > 0 such that, for hα ≤ th

ε ≤ 1, and ζ = hβ,

|∆±,2| ≤ ‖ 〈·〉k Fσb‖L1Chν .
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In order to prove this result we use Proposition 6.17 and thus control∥∥∥∥∥

ˆ t/ε

0

A (s) ds− C
ζ

∥∥∥∥∥
L(L2

ξ)

.

We first give an abstract result and then show that our cases fit within this frame-
work.

Proposition 6.35. For M , t, ε such that 1 ≤ M ≤ t
ε . Suppose given (A (s))s≥0,

(B(s))s≥0 and (C ζ)0<ζ<1 three families of operators in L(L2
ξ) (also dependent on h

and P = (px,pξ)) such that for some constants CA , CA ,B, CB,C , independent
of h, ε, t, P,M, ζ,

(1) ‖A (s)‖L(L2
ξ)

≤ CA min
{
1, s−d/2

}
,

(2) ‖A (s)− B(s)‖L(L2
ξ)

≤ CA ,Bhs |pξ|,
(3) rζ,M (x, ξ) := SymbWeyl(

´M

0
B(s) e−ζs ds − C ζ) satisfies for some k =

k(d) ∈ N,

sup
|α|≤k

∥∥∂αx,ξrζ,M
∥∥
L∞

x,ξ

≤ CB,C 〈P 〉k
(
M

ζ

)k
e−ζM .

Then, for ζM ≥ 1,

(1) ‖
´ t/ε

0 A (s) ds‖L(L2
ξ)

≤ d
d−2CA ,

(2) ‖
´ t/ε

0 A (s) ds−
´M

0 A (s) ds‖L(L2
ξ)

≤ 2
d−2CAM

1−d
2 ,

(3) depending on d,

‖
ˆ M

0

A (s)
(
1− e−ζs

)
ds‖L(L2

ξ)
≤ 9

2
CA ζ

1/2 if d = 3

≤ 3

2
CA ζ |log ζ| if d = 4

≤ CA ζ
d+ 2

2d− 4
if d ≥ 5

(≤ 5CA ζ
1/2 if d ≥ 3) ,

(4) ‖
´M

0 (A (s)− B(s)) e−ζs ds‖L(L2
ξ)

≤ 1
2CA ,Bhζ

−2|pξ|,
(5) for some integer k = k(d),

∥∥∥∥∥

ˆ M

0

B(s) e−ζs ds− C
ζ

∥∥∥∥∥
L(L2

ξ)

≤ Cd,k′CB,C 〈P 〉k
(
M

ζ

)k
e−ζM .

(6) Let ht
ε ≥ hα, ζ = hβ with β ∈

]
0, 12
[

and β + α < 1, and ν = ν(d, α, β) <

min{(1−α)
(
d
2 − 1

)
, β̃(d), 1−2β} with β̃(3, β) = β/2, β̃(4, β) = β and β̃(d ≥

5, β) = β we have
∥∥∥∥∥

ˆ
t
ε

0

A (s) ds− C
ζ

∥∥∥∥∥
L(L2

ξ)

≤ Chν

with C = C(ν, α, β, CA , CA B, CBC ).

Proofs of 1 and 2. By integration of the first assumed estimate and using 1 ≤M ≤
t
ε for 2. �
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Proof of 3. By integration of the first assumed estimate, using 1−e−ζs ≤ ζs for ζs ≤
1 and 1− e−ζs ≤ 1 for ζs ≥ 1,

ˆ M

0

(
1− e−ζs

)
min

{
1, s−d/2

}
ds

≤ ζ

ˆ 1

0

s ds+ ζ

ˆ 1/ζ

1

s1−
d
2 ds+

ˆ +∞

1/ζ

s−d/2 ds , if d = 3, 4,

≤ ζ

ˆ 1

0

s ds+ ζ

ˆ +∞

1

s1−
d
2 ds , if d ≥ 5 ,

which brings the result. �

Proof of 4. We control ‖A (s)− B(s)‖L(L2
ξ
) using the second assumption and use

ˆ M

0

se−ζs ds ≤ ζ−2
ˆ +∞

0

ue−u du .

�

Proof of 5. The known estimates for pseudo-differential operators give
∥∥rW (−hDξ, ξ)

∥∥ ≤ C1,k

∑

|α|≤Nk

∥∥∂αx,ξr
∥∥
L∞(R2d)

≤ C2,k sup
|α|≤Nk

∥∥∂αx,ξr
∥∥
L∞(R2d)

.

This and the third hypothesis imply the result. �

Proof of 6. We would like to choose the (h-dependent) parameters M and ζ such
that the quantity

M1−d
2 + ζ̃ (d, ζ) + hζ−2 +

(
M

ζ

)k
e−ζM ,

with (ζ̃ (3, ζ) =
√
ζ, ζ̃ (4, ζ) = ζ |log ζ|, ζ̃ (d ≥ 5, ζ) = ζ), is small when h tends to 0

and M not too big. We choose hM = hα and ζ = hβ with β + α < 1, α, β > 0 so
that the previous quantity is smaller than

h(1−α)(
d
2−1) + hβ̃(d,β) + h1−2β + h−k(1−α+β) exp

(
−
(
hβ+α−1

))

(with β̃ (3, β) = β/2, β̃ (4, β) = β− and β̃ (d ≥ 5, β) = β ). In order to get a small
quantity it suffices to require β < 1

2 . Then we get an error term whose size is

controlled by hν(d,α,β). �

Proposition 6.36. The families of operators A (s) = A
j
~µ (s), B(s) = B

j
~µ(s) and

C ζ = C
j,ζ
~µ satisfy the hypotheses of Proposition 6.35 with

CA = Cdmax
{
‖Ĝ‖L1 , ‖G‖L1

}
, CA ,B =

∥∥|·| Ĝ
∥∥
L1 , CB,C =

∥∥〈·〉k Ĝ
∥∥
L1 ,

for some integer k.

Proof of 1. See Proposition 6.33. �
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Proof of 2. We show the result for A 1
~µ and B1

~µ, the proof can be adapted to the

case of A 2
~µ and B2

~µ. We observe that

τ̂hP ◦
(
eµ2is2ξ.η×

)
= e−µ2isηhpξ τ̂hP−(µ22sη,0)

and (
eiσ(P,X)eµ2is2ξ.η

)W
(−hDξ, ξ) = τ̂h(px−µ22sη,pξ)

.

Thus we obtain the estimation∥∥∥∥τ̂hP ◦
(
eµ2is2ξ.η×

)
−
(
eiσ(P,X)eµ2is2ξ.η

)W
(−hDξ, ξ)

∥∥∥∥
L(L2

ξ)

≤ hs |η| |pξ|

Since the Weyl symbol of B1
~µ(s) is

1

2

ˆ

Rd
η

Ĝ(η) eiµ1σ̃eiσ(P,X)e−µ2is(η.2−2ξ.η) dη

we finally get

∥∥A 1
~µ (s)− B

1
~µ(s)

∥∥
L(L2

ξ)
≤ hs |pξ|

ˆ

Rd
η

Ĝ(η) |η| dη

and this concludes the proof. �

Proof of 3. The Weyl symbol of
´M

0
B1
~µ(s) e

−ζs ds is

Weyl

Symb

ˆ M

0

B
1
~µ(s) e

−ζs ds

=

ˆ

Rd
η

Ĝ(η) eµ1iσ̃eiσ(P,X)

[
e−µ2is(η.2−2ξ.η)−ζs

−µ2i (η.2 − 2ξ.η)− ζ

]M

0

dη

=
Weyl

SymbC
1,ζ
~µ + rζ,M

with

rζ,M (x, ξ) = −
ˆ

Rd
η

Ĝ(η) eµ1iσ̃eiσ(P,X) e
−µ2iM(η.2−2ξ.η)−ζM

µ2i (η.2 − 2ξ.η) + ζ
dη .

The remainder term rζ,M is in the symbol class S(1), and for k = k(d), the operator

norm
∥∥∥rWζ,M (−hDξ, ξ)

∥∥∥
L(L2

ξ)
can be controlled by

sup
|α|≤k

∥∥∂αx,ξrζ,M
∥∥
L∞

x,ξ

.

Thus we consider
∣∣∂αx,ξrζ,M (x, ξ)

∣∣ ≤
ˆ

Rd
η

Ĝ(η) 〈P 〉k (M 〈η〉)k 1

ζk+1
e−ζM dη

≤ 〈P 〉k
(
M

ζ

)k+1

e−ζM
ˆ

Rd
η

Ĝ(η) 〈η〉k dη .

This yields the result∥∥∥∥∥

ˆ M

0

B
1
~µ(s) e

−ζsds− C
1,ζ
~µ

∥∥∥∥∥
L(L2

ξ)

≤ 〈P 〉k
(
M

ζ

)k
e−ζM

ˆ

Rd
η

Ĝ(η) 〈η〉k dη ,
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for some k = k(d). The same proof holds for B2
~µ(s) and C

2,ζ
~µ . �

6.5.4. Estimate of the error term ∆−,3.

Proposition 6.37. Let b ∈ C∞0 (R2d
x,ξ) with Suppξ b ⊂ BR − B1/R for some R > 1.

Let γ ∈ ]0, 1[. There exists a constant CG,b,γ > 0 such that, for all ζ > 0,

|∆−,3| ≤ ζγNk(b)CG,b,γ

for some integer k = k (d) big enough.

Proof. We recall that

∆−,3 = Tr

[
ρ̂
app
t

(
Qζ−b−Qb

)W
(−hDξ, ξ − dΓε(η))

]

so that

|∆−,3| ≤
∥∥∥∥
(
Qζ−b−Q−b

)W
(−hDξ, ξ − dΓε(η))

∥∥∥∥
L(L2

ξ⊗ΓL2
η)

≤ Ck,dNk

(
Qζ−b−Q−b

)

for some integer k big enough. By recalling Qζ−(b) = c
ζ b and Q−(b) = c b it is then

sufficient to prove that

sup
|α|≤k

sup
ξ∈[R−1,R]

∣∣∂αξ
(
c
ζ − c

)
(ξ)
∣∣ ≤ Ck,γ,G,Rζ

γ .

This is a consequence of the Lemma 6.38 below. �

Lemma 6.38. For any integer k and γ in [0, 1[, there exists a positive constant Ck,γ,G,C
such that for ζ ∈ ]0, ζ0[

sup
|α|≤k

sup
|ξ|∈[R−1,R]

∣∣∂αξ
(
c
ζ − c

)
(ξ)
∣∣ ≤ Ck,γ,G,Rζ

γ .

Proof. With κζ , c, cζ introduced in Definition 6.26, cζ − c can be expressed as

(
c
ζ − c

)
(ξ) =

ˆ

Rd
η

Ĝ(η)κζ(η.2 − 2ξ.η) dη −
ˆ

Rd
η

Ĝ(ξ + η) δ
(
|η|2 − |ξ|2

)
dη .

We express the first integral as

ˆ

Rd
η

Ĝ(η)κζ
(
(η − ξ).2 − ξ.2

)
dη =

ˆ

Sd−1

ˆ

Rρ

fξ,ω (r) κ
ζ(ξ.2 − r) dr dω

=

ˆ

Sd−1

fξ,ω ∗ κζ(ξ.2) dω

and fξ,ω(r) := 1
2r

d−2
2 g(ξ +

√
rω) 1[0,+∞[(r). The partial derivative

∂ξjfξ,ω(r) =
1

2
r

d−2
2 ∂ξjg(ξ +

√
rω) 1[0,+∞[(r)

has the same form as the function fξ. Then we observe that

∂ξj
(
fξ,ω ∗ κζ − fξ,ω

)(
|ξ|2

)

=
[
(∂ξjfξ,ω) ∗ κζ − ∂ξjfξ,ω

] (
|ξ|2

)
+
[
∂r(fξ,ω ∗ κζ − fξ,ω)

] (
|ξ|2

)
2ξj
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so that by doing successive derivations it suffices to deal only with quantities of the
form

∂kr

(
∂βξ fξ,ω ∗ κζ − ∂βξ fξ,ω

)

which are in fact of the form ∂kr
(
f ∗ κζ − f

)
with f satisfying the hypotheses of

Proposition D.2 uniformly in ω so that we get the expected control, by integration
over ω. �

6.5.5. Estimate of the error term ∆+,3.

Remark 6.39. Throughout this section we will make definitions that are dependent
on the value of th

ε . This will not be a problem as long as th
ε ≤ 1 which will be

satisfied with our choice of ε = ε (h) ≫ h.

Proposition 6.40. Let b ∈ C∞0 (R2d
x,ξ) with Suppξ b ⊂ BR − B1/R for some R > 1.

Let γ ∈ ]0, 1[. There exists a constant CG,R,γ > 0 such that, for all ζ > 0,

|∆+,3| ≤ ζγ Nk(b)CG,R,γ

for some integer k = k (d) big enough.

Proof. We recall that

∆+,3 = Tr

[
ρ̂
app
t

(
Qζ

+,ht
ε

b −Q+,ht
ε
b
)W

(−hDξ, ξ − dΓε(η))

]

so that

|∆+,3| ≤
∥∥∥∥
(
Qζ

+,ht
ε

b−Q+,ht
ε
b
)W

(−hDξ, ξ − dΓε(η))

∥∥∥∥
L(L2

ξ⊗ΓL2
η)

≤ Ck,dNk

(
Qζ

+,ht
ε

b−Q+,ht
ε
b
)

for some integer k = k (d) big enough.
Thus we boil down to prove that for any integer k ≥ 0 there is a constantCk,b,G,γ >

0 such that for any ζ > 0

Nk

(
Qζ

+,ht
ε

b−Q+,ht
ε
b
)
≤ Ck,G,γ Nk(b) ζ

γ .

But we have a convenient expression for Qζ
+,ht

ε

Qζ
+,ht

ε

b(x, ξ) = 2π

ˆ

Rd
η

Ĝ(η) b
(
x− 2

t

ε
hη, ξ − η

)
κζ(η.2 − 2ξ.η) dη

= 2π

ˆ

Rd
η

Ĝ(ξ − η) b
(
x− 2

t

ε
hξ + 2

t

ε
hη, η

)
κζ(η.2 − 2ξ.η) dη

= π

ˆ

S
d−1
ω

ˆ

R
+
r

ϕω(x, ξ, r)K
ζ(r − ξ.2) dr dω ,

with ϕω(x, ξ, r) = 0 for r ≤ 0, and for r ≥ 0,

(6.20) ϕω(x, ξ, r) = Ĝ(ξ −√
rω) b

(
x− 2

ht

ε
ξ + 2

ht

ε

√
rω,

√
rω
)
rd/2−1

defined for ω ∈ Sd−1 and x, ξ ∈ Rd. We also have a convenient expression forQ+,ht
ε
b

in terms of ϕω ,

Q+,ht
ε
b (x, ξ) = π

ˆ

S
d−1
ω

ϕω(x, ξ, ξ
.2) dω .
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The conclusion is then given by Lemma 6.41. �

Lemma 6.41. For any γ ∈ ]0, 1[, uniformly in ω ∈ Sd−1ω ,

Nk

(ˆ

R
+
r

ϕω(x, ξ, r)κ
ζ (r − ξ.2) dr − ϕω(x, ξ, ξ

.2)
)
≤ Ck,G,γ ζ

γ .

Proof. The integral can be expressed as a convolution product
ˆ

Rr

ϕω(x, ξ, r)κ
ζ (r − ξ.2) dr =

(
ϕ(x, ξ, ·) ∗ κζ

)
(ξ.2) .

Since the derivation behaves well with the difference, i.e.

∂αx ∂
β
ξ

((
ϕω(x, ξ, ·) ∗ κζ

)
(ξ.2)− ϕω(x, ξ, ξ

.2)
)
=

∑

α′,β′,γ′

cα′,β′,γ′2|γ′|ξγ′×
[((

∂α
′

x ∂
β′

ξ ∂
γ′

r ϕω
)
(x, ξ, ·) ∗ κζ

)
(ξ.2)−

(
∂α

′

x ∂
β′

ξ ∂
γ′

r ϕω
)
(x, ξ, ξ.2)

]
,

it suffices to apply Proposition D.1. �

7. Comparisons of the measures of an observable at a mesoscopic

scale for the original and approximated dynamics

Proposition 7.1. Let b ∈ C∞0 (R2d
x,ξ), ρ ∈ L1L

2
x and t ≥ 0,

m(b, ρεt ) = Tr
[
bW
(
− hDξ, ξ − dΓε(η)

)
ρ̂t

]
,

m(b, ρε,appt ) = Tr
[
bW
(
− hDξ, ξ − dΓε(η)

)
ρ̂
app
t

]
.

Definition 7.2. Let b ∈ C∞0 (R2d
x,ξ), ρ ∈ L1L

2
x a state, t ≥ 0 and χ ∈ C∞0 (R2d

x,ξ) we
define

m(b, ρ, t, χ) = Tr
[
χ
(
dΓε(η)

)
bW
(
− hDξ, ξ − dΓε(η)

)
χ
(
dΓε(η)

)
ρ̂t

]

mapp(b, ρ, t, χ) = Tr
[
χ
(
dΓε(η)

)
bW
(
− hDξ, ξ − dΓε(η)

)
χ
(
dΓε(η)

)
ρ̂
app
t

]
.

Proposition 7.3. Let b be a symbol in C∞0 (R2d
x,ξ) with positive values such that Suppξ b ⊂

BR−B1/R for some R > 0, ρ ∈ L+
1 L

2
x with Tr ρ ≤ 1 and for j = 1, 2, χj ∈ C∞0 (Rdλ)

with values in [0, 1], χj(BMj ) = {1} for M1 = 3R and with χ2(R
d −BR+1) = {0}.

There is a constant CR,b,χ1,χ2 (which does not depend on ρ) such that

m(b, ρt)−mapp
(
b, (ρχ2)

app
t

)
≥ −E7

with E7 = E7.1 + E7.2 + E7.3 and ρχ2 = χ2(Dx) ρχ2(Dx).

E7 = CR,b,χ1,χ2

(
h+

(
ht

ε

)3

h−3/2 +

(
ht

ε

)4

h−2 + E6

)
.

We shall prove it in three steps:

(1) m(b, ρt)−m(b, ρχ2 , t, χ1) ≥ −E7.1,

E7.1 = Ch ,

(2) m(b, ρχ2 , t, χ1)−mapp(b, ρχ2 , t, χ1) ≥ −E7.2,

E7.2 = Cb,R,χ1

((
ht

ε

)3

h−3/2 +

(
ht

ε

)4

h−2
)
,
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(3) mapp(b, ρχ2 , t, χ1)−m(b, (ρχ2)
app
t ) ≥ −E7.3,

E7.3 = E6 + Ch .

7.1. Step 1: Introduction of cutoffs. We introduce cutoff functions both on
the state ρ and the Wick observable bW (−hDξ, ξ − dΓε(η)).

Proposition 7.4. Let b ∈ C∞0 (R2d
x,ξ) non-negative such that Suppξ b ⊂ BR for

some R > 0, ρ ∈ L+
1 L

2
x, Tr ρ ≤ 1, and, for j = 1, 2, χj ∈ C∞0 (Rdλ) with values

in [0, 1] and χj(BMj ) = {1} for some Mj > 0. Then there is a constant Cb,χ1,χ2

such that

m(b, ρt) ≥ m(b, ρχ2 , t, χ1)− E7.1
with E7.1 = Cb,χ1,χ2h and ρχ2 = χ2(Dx) ◦ ρ ◦ χ2(Dx).

Proof. Using the functional calculus for the self-adjoint operator dΓε (η) and since

b(x, ξ − λ) ≥ χ2(ξ) b(x, ξ − λ)χ1(λ)χ2(ξ)

≥ χ2(ξ) ♯
h b(x, ξ − λ)χ1(λ) ♯

h χ2(ξ)− Cb,χ1,χ2h

holds uniformly in λ, we can write

bW
(
− hDξ, ξ − dΓε(η)

)

≥ χ2(ξ) ◦ bW
(
− hDξ, ξ − dΓε(η)

)
χ1(dΓε(η)) ◦ χ2(ξ)− Cb,χ1,χ2h .

And thus

m(b, ρt) = Tr
[
bW
(
− hDξ, ξ − dΓε(η)

)
ρ̂t

]

≥ Tr
[
bW
(
− hDξ, ξ − dΓε(η)

)
χ1(dΓ(η)) ρ̂χ2 t

]
− Cb,χ1,χ2h

since [Hε, χ2] = 0. �

7.2. Step 2: Comparison between truncated solutions.

Proposition 7.5. Let b be a symbol in C∞0 (R2d
x,ξ) with positive values, ρ ∈ L+

1 L
2
x,

Tr ρ ≤ 1 and χ ∈ C∞0 (Rdλ) with values in [0, 1], and χ(BM ) = {1} for some M > 0,
then there is a constant CG,b,χ such that

|m(b, ρ, t, χ)−mapp(b, ρ, t, χ)| ≤ E7.2
with E7.2 = CG,b,χ

((
ht
ε

)3
h−3/2 +

(
ht
ε

)4
h−2

)
.

We will need the following number estimate.

Lemma 7.6. Let ψ̂0 ∈ L2
ξ be a normed vector. We have, for Ψ̂♯h,ε,t = Ψ̂h,ε,t =

e−i
t
ε Ĥ ψ̂0 ⊗ Ω or Ψ̂♯h,ε,t = Ψ̂apph,ε,t = e−i

t
ε Ĥ

app
h,ε ψ̂0 ⊗ Ω,

∥∥∥(ε+Nε)
1/2

Ψ̂♯h,ε,t

∥∥∥ ≤ Cd

(
√
ε+

√
t

2

ht

ε
‖Ĝ‖L1

)
.

Proof of the Lemma. Indeed let us define γt = ‖(ε+Nε)
1/2Ψ̂♯t‖. Then

iε∂t
(
γ2t
)
=
〈
Ψ̂♯t, [Φε(fh,ε), Nε] Ψ̂

♯
t

〉
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with fh,ε =
√

h
ε ε
d/2V̂ (εη) since ξ and dΓε(η) commute with Nε. Using Nε = dΓε(1),

we get

[aε(fh,ε), dΓε(1)] = i∂s
[
Γ(eiεs) aε(fh,ε) Γ(e

−iεs)
]∣∣
s=0

= aε(εfh,ε) .

The other term of the commutator can be computed analogously (but aε(·) is C-
antilinear whereas a∗ε(·) is C-linear). Introducing this relation into the differential
equation and taking the modulus, we get

∣∣iε∂t
(
γ2t
)∣∣ ≤ 1√

2

∥∥∥Ψ̂♯t
∥∥∥
(∥∥∥aε(εfh,ε) Ψ̂♯t

∥∥∥+
∥∥∥a∗ε(εfh,ε) Ψ̂♯t

∥∥∥
)
.

But
∥∥∥aε(εfh,ε) Ψ̂♯t

∥∥∥
2

≤ ‖εfh,ε‖2L2
ξ

〈
Ψ̂♯t, NεΨ̂

♯
t

〉
,

∥∥∥a∗ε(εfh,ε) Ψ̂♯t
∥∥∥
2

≤ ‖εfh,ε‖2L2
ξ

〈
Ψ̂♯t, (ε+Nε) Ψ̂

♯
t

〉
.

Using ‖Ĝ‖L1 = h
ε ‖fh,ε‖2L2

ξ
, we finally get a differential inequality for the function γt

2εγt∂tγt ≤
∣∣iε∂t

(
γ2t
)∣∣ ≤

√
2εh‖Ĝ‖L1γt .

Dividing by 2εγt and integrating in time, we obtain the expected result

γt ≤ γ0 + t

√
h

2ε
‖Ĝ‖L1 ,

since γ0 = Cd
√
ε. �

Set

(7.1) bχ = b
(
− hDξ, ξ − dΓε(η)

)
χ(dΓε(η)) .

We want to control the error when we consider Tr [bχ ρ
app
t ] instead of Tr [bχ ρt] i.e.

we want to control Tr [bχ ut] with

(7.2) ut = ρt − ρ
app
t .

Since

iε∂tρt = [Hε,ρt]

iε∂tρ
app
t = [Hε,ρ

app
t ]− [Hε −Happ

ε ,ρappt ]

the difference ut is solution of the differential equation

iε∂tut = [Hε, ut]−
[
dΓε(η)

2 − ε dΓε(η
2),ρappt

]

=
[(
ξ − dΓε(η)

)2
, ut

]
+ [Φε(fh,ε), ut]

−
[
dΓε(η)

2 − ε dΓε(η
2),ρappt

]



A DERIVATION OF THE LINEAR BOLTZMANN EQUATION 42

with initial data ut=0 = 0. We thus get an integral expression for Tr [bχ ut],

Tr [bχ ut] =− i

ε

ˆ t

0

Tr
[
bχ

[(
ξ − dΓε(η)

)2
, us

]]
ds

+
i

ε

ˆ t

0

Tr
[
bχ
[
dΓε(η)

2 − ε dΓε(η
2),ρapps

]]
ds

− i

ε

ˆ t

0

Tr [bχ [Φε(fh,ε), us]] ds .

Remark 7.7. Let H be a Hilbert space. If A, B ∈ L(H) and C ∈ L1(H), then

Tr [A [B ,C]] = Tr [[A ,B]C] .

Lemma 7.8. There exists a constant C independent of χ such that for bχ and ut
defined by Equations (7.1) and (7.2),

(1)
∣∣∣ 1ε
´ t

0
Tr
[
bχ

[(
ξ − dΓε(η)

)2
, uh,ε,s

]]
ds
∣∣∣ ≤ h

ε

´ t

0
‖uh,ε,s‖L1

ds ≤ C h2t3

ε3 ,

(2) 1
ε

´ t

0
Tr
[
bχ
[
dΓε(η)

2 − ε dΓε(η
2) ,ρapp

]]
ds = 0,

(3)
∣∣∣ 1ε
´ t

0 Tr [bχ [Φε(fh,ε) , us]] ds
∣∣∣ ≤ C t3h3/2

ε7/2

(√
ε+

√
t
2

√
ht
ε

)
.

Proof of 1. Let us introduce χ1 ≻ χ in order to handle only bounded operators:

Tr
[
bχ

[(
ξ − dΓε(η)

)2
, us

]]

= Tr
[
bχ χ1(dΓε(η))

[(
ξ − dΓε(η)

)2
, us

]]

= Tr
[
bχ

[
χ1(dΓε(η))

(
ξ − dΓε(η)

)2
, us

]]

= Tr
[[
bχ , χ1(dΓε(η))

(
ξ − dΓε(η)

)2]
us

]

= Tr

[
χ(dΓε(η))

h

i

{
b(x, ξ), ξ2

}(
− hDξ, ξ − dΓε(η)

)
us

]

= Tr

[
h

i
χ(dΓε(η)) (2ξ.b)

(
− hDξ, ξ − dΓε(η)

)
us

]
.

We can then estimate the initial trace by
∣∣∣Tr

[
bχ

[(
ξ − dΓε(η)

)2
, us

]] ∣∣∣
≤ h

∥∥χ(dΓε(η)) (2ξ.b)
(
− hDξ, ξ − dΓε(η)

)∥∥
LL2

ξ⊗ΓL2
η
‖us‖L1L2

ξ⊗ΓL2
η

≤ Ch ‖us‖L1L2
ξ⊗ΓL2

η

and a time integration brings
∣∣∣∣
1

ε

ˆ t

0

Tr
[
bχ

[(
ξ − dΓε(η)

)2
, us

]]
ds

∣∣∣∣ ≤ C
h

ε

ˆ t

0

‖us‖L1
ds .

Then we use that both ρ̂t and ρ̂
app
t have the same initial value ρ0⊗projΩ with ρ0 =∑

j λj |ψ0,j〉 〈ψ0,j |,
∑

j λj = Tr ρ, λj ≥ 0, ‖ψ0,j‖ = 1 to write

ρt =
∑

j

λj |ϕt,j〉 〈ϕt,j | , ρ
app
t =

∑

j

λj
∣∣ϕappt,j

〉 〈
ϕappt,j

∣∣ ,
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and then ut =
∑
j λj

(
|Ψt,j −Ψappt,j 〉〈Ψt,j | − |Ψappt,j 〉〈Ψappt,j −Ψt,j |

)
and

‖ut‖L1L2
ξ
≤ 2

∑

j

λj
∥∥Ψt,j −Ψappt,j

∥∥ ≤ C
ht2

ε2
.

This and the integral above yield the result. �

Proof of 2. Let χ1 ≻ χ,

Tr
[
bχ
[
dΓε(η)

2 − ε dΓε(η
2) , us

]]

= Tr
[
bχ
[
χ1(dΓε(η))

(
dΓε(η)

2 − ε dΓε(η
2)
)
, us
]]

= Tr
[[
χ1(dΓε(η))

(
dΓε(η)

2 − ε dΓε(η
2)
)
, bχ
]
us
]

= 0

since [
χ1(dΓε(η))

(
dΓε(η)

2 − ε dΓε(η
2)
)
, bχ
]
= 0 . �

Proof of 3. We have, with rs = Ψ̂s − Ψ̂apps ,

Tr [bχ [Φε(fh,ε) , us]] = 〈rs| [bχ ,Φε(fh,ε)]
∣∣Ψ̂s
〉
+
〈
Ψ̂apps

∣∣ [bχ ,Φε(fh,ε)] |rs〉 .
Taking the modulus we obtain

|Tr [bχ [Φε(fh,ε) , us]]| ≤ C ‖rs‖
∥∥∥Φε(fh,ε) Ψ̂s

∥∥∥+ ‖rs‖
∥∥∥Φε(fh,ε) bχΨ̂s

∥∥∥

+ ‖rs‖
∥∥∥Φε(fh,ε) b∗χΨ̂apps

∥∥∥+ C ‖rs‖
∥∥∥Φε(fh,ε) Ψ̂apps

∥∥∥

and we observe that
∥∥Φε(fh,ε)Ψ♯s

∥∥ ≤ ‖fh,ε‖
∥∥∥(ε+Nε)

1/2 Ψ̂♯s

∥∥∥

and ∥∥∥Φε(fh,ε) bχ Ψ̂♯s
∥∥∥
2

≤ C ‖fh,ε‖2
∥∥∥(ε+Nε)

1/2
Ψ̂♯s

∥∥∥
2

and thus

|Tr [bχ [Φε(fh,ε) , us]]| ≤ C ‖rs‖
√
h

ε
‖Ĝ‖L1

(√
ε+

s√
2
‖fh,ε‖L2

ξ

)

by our number estimate. An integration then gives
∣∣∣∣
1

ε

ˆ t

0

Tr [bχ [Φε(fh,ε) , us]] ds

∣∣∣∣ ≤ C
t3h3/2

ε7/2
‖Ĝ‖1/2L1

(
√
ε+ t

√
h

2ε
‖Ĝ‖L1

)

which is the expected estimate. �

7.3. Step 3: Release of the truncation on the symbol.

Proposition 7.9. Let b be a symbol in C∞0 (R2d
x,ξ) with positive values, such that Suppξ b ⊂

BR − B1/R for some R > 1, ρ ∈ L+
1 L

2
x, Tr ρ ≤ 1, with the support of ρ̂ in B2

R+1

and χ ∈ C∞0 (Rdλ) with values in [0, 1], χ(B3R) = {1}. There is a constant CR,b,χ
such that

mapp(b, ρ, t, χ)−m(b, ρappt ) ≥ E7.3
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with

E7.3 = E6 + CR,b,χh

= C
ht

ε


ht
ε

+ h+

[
h

(
ht

ε

)−1]d/2−1
+ hν(d,α) + hγβ(d,α)


+ Cr,b,χh .

Proof. We can restrict the proof to the case of ρ = |ψ〉 〈ψ| with ψ ∈ L2
x since ρ is

trace class, then ρ̂t = |Ψ̂appt 〉〈Ψ̂appt |. We also define a positive symbol b1 ∈ C∞0 (Rdξ)

such that Supp b1 ⊂ [R−2, R2] and b1(ξ
2) ≥ b(x, ξ). Then

m(b, ρappt )−mapp(b, ρ, t, χ)

= Tr
[
bW
(
− hDξ, ξ − dΓε(η)

)
(1− χ(dΓε(η))) ρ̂t

]

= Tr
[
(1− χ(dΓε(η)))

1/2 bW (−hDξ, ξ − dΓε(η)) (1− χ (dΓε (η)))
1/2

ρ̂t

]

≤ Tr

[
bW1

(
(ξ − dΓε(η))

.2
)2

(1− χ(dΓε(η))) ρ̂t

]
+O(h)

= Tr
[
bW1

(
(ξ − dΓε(η))

.2
)
(1− χ(dΓε(η))) b

W
1

(
(ξ − dΓε(η))

.2
)
ρ̂t

]
+O(h)

with Ψ̂appt (ξ) = 1[0,M ](|ξ|) Ψ̂appt (ξ) and Supp b1 ⊂ [R−2, R2]. Then we decompose

Ψ̂appt = 1[1/2R,2R](|ξ|) Ψ̂appt + 1[0,M ]\[1/2R,2R](|ξ|) Ψ̂appt

= Ψ̂appt,1 + Ψ̂appt,2 .

With A = bW1
(
(ξ − dΓε(η))

.2 ) (1− χ(dΓε(η))) b
W
1

(
(ξ − dΓε(η))

.2 ) ≥ 0 we have the
estimate

Tr
[
A
∣∣∣Ψ̂appt

〉〈
Ψ̂appt

∣∣∣
]
≤ 2Tr

[
A
∣∣∣Ψ̂appt,1

〉〈
Ψ̂appt,1

∣∣∣
]
+ 2Tr

[
A
∣∣∣Ψ̂appt,2

〉〈
Ψ̂appt,2

∣∣∣
]
.

For the first term,

Tr
[
bW1

(
(ξ − dΓε(η))

.2
)
(1− χ(dΓε(η))) b

W
1

(
(ξ − dΓ(η))

.2
) ∣∣∣Ψ̂appt,1

〉〈
Ψ̂appt,1

∣∣∣
]

= Tr
[
1[1/2R,2R](|ξ|) bW1

(
(ξ − dΓε(η))

.2
)
(1− χ(dΓε(η)))

bW1

(
(ξ − dΓε(η))

.2
)
1[1/2R,2R](|ξ|)

∣∣∣Ψ̂appt,1

〉〈
Ψ̂appt,1

∣∣∣
]

= 0

since |ξ| ∈ [1/2R, 2R], |ξ − dΓε(η)| ≤ R implies |dΓε(η)| ≤ 3R and χ(B3R) = {1}.
For the second term,

Tr
[
bW1

(
(ξ − dΓε(η))

.2
)
(1− χ(dΓε(η))) b

W
1

(
(ξ − dΓ(η)).2

) ∣∣∣Ψ̂appt,2

〉〈
Ψ̂appt,2

∣∣∣
]

≤ Tr

[
bW1

(
(ξ − dΓε (η))

.2
)2 ∣∣∣Ψ̂appt,2

〉〈
Ψ̂appt,2

∣∣∣
]

since 1 − χ(dΓε(η)) ≤ Id. Then we use the computation of the evolution of a
symbol of |ξ|2 in the case of the approximated equation as in Remark 6.2 to get
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that, since b1 = b1(|ξ|2) it is unchanged under the evolution, and

Tr

[
bW1

(
(ξ − dΓε(η))

.2
)2 ∣∣∣Ψ̂appt,2

〉〈
Ψ̂appt,2

∣∣∣
]

≤ Tr

[
bW1

(
(ξ − dΓε(η))

.2
)2 ∣∣∣ψ̂0,2 ⊗ Ω

〉〈
ψ̂0,2 ⊗ Ω

∣∣∣
]
+ E6

≤ Tr
[
bW1 (ξ.2)2

∣∣∣ψ̂0,2 ⊗ Ω
〉〈

ψ̂0,2 ⊗ Ω
∣∣∣
]
+ E6

≤ E6
since Supp b1 ∩ Supp ψ̂0,2 = ∅. �

8. The derivation of the Boltzmann equation for the model

Proposition 8.1. Let b ∈ C∞0 (R2d
x,ξ) with Suppξ b ⊂ BR − B1/R. Let ρ a state

and T > 0.

lim inf
h→0

(
m(b, ρhN,∆t)−m

(
BT (T ) b, ρ

))
≥ 0

for a fixed α ∈
]
3
4 , 1
[
, ∆t = ∆t(h) = hα and N(h)∆t(h) = T .

Proof. We define for k ∈ N, ∆t > 0, bk,∆t =
(
e∆tQe2∆tξ.∂x

)k
b. We begin by looking

to one step of evolution with e∆tQe2∆tξ.∂x . �

Lemma 8.2. With bt = etQe2tξ.∂xb, and the hypotheses of Proposition 8.1,

m(b, ρh∆t)−m(b∆t, ρ)

≥ −C
(
h+ h−3/2(∆t)3 + (∆t)4h−2 +∆t

(
∆t+ h+ (h/∆t)

d
2−1 + hµ

))
.

Proof. We recall that ρh∆t = ρεε∆t/h so that with ht
ε = ∆t, from Section 7,

m(b, ρh∆t)−m
(
b, (ρχ2)

h,app
∆t

)

= m(b, ρεt )−m
(
b, (ρχ2)

ε,app
t

)

≥ −C
(
h+

(ht
ε

)3
h−3/2 +

(ht
ε

)4
h−2 +

ht

ε

(ht
ε

+ h+ (ε/t)d/2−1 + hµ
))

≥ −C
(
h+ h−3/2(∆t)3 + (∆t)4h−2 +∆t

(
∆t+ h+ (h/∆t)d/2−1 + hµ

))

and from Section 6 also used with ht
ε = ∆t we get

m
(
b, (ρχ2)

ε,app
t

)
−m(bt, ρχ2) ≥ −E6 ≥ −E7

and this term will be in particular controlled if we control the previous one. Fi-
nally from the conservation of the support in ξ of the symbol by the approximated
Boltzmann equation we get

m(bt, ρχ2)−m(bt, ρ) ≥ −O(h∞)

for χ2 a cutoff function chosen so that χ2(BR) = {1}.
Thus we fix, for j = 1, 2, two cutoff functions χj ∈ C∞0 (Rdλ) with values in [0, 1],

χj(BMj ) = {1} for M1 = 3R and M2 = 1 and with χ2(R
d −BR+1) = {0} .
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Then we can iterate this N(h) times and we get the estimation

m
(
b, ρεN(h),ε∆t/h

)
−m(bN,∆t, ρ)

≥ −CN
(
h+ h−

3
2 (∆t)3 + (∆t)4h−2 +∆t

(√
∆t+ h+ (h/∆t)

d
2−1+ hµ

))

with N∆t = T and hα ≤ ht
ε = ∆t ≤ 1 for some α ∈ ]1/2, 1[. Thus we can choose

∆t = th
ε = hα and thus N = Th−α. Then we get the estimate

m
(
b, ρN,ε∆t/h

)
−m(bN,∆t, ρ)

≥ −CTh−α
(
h+ h3α−3/2 + h4α−2 + hα

(
hα/2 + h+ h(1−α)(d/2−1) + hµ

))

≥ −CToh→0 (1) ,

for α ∈] 34 , 1[. Finally it suffices to prove that

lim
h→0

m
(
bN(h),∆t(h), ρ

)
= m(bT , ρ)

which is true since the estimates of Proposition 3.9 prove that, for some con-
stant C > 0, ‖bN,∆t − bT ‖LL2

x
≤ C

N . �

Appendix A. Stochastics

We recall some results about Gaussian random fields that can be found in [25, 31].

Definition A.1. Let (ΩP,G,P) be a probability space. A real-valued random
field (Vω(x))(ω,x)∈ΩP×Rd is a Gaussian random field if for all finite choices of x1, . . . , xk ∈
Rd, (Vω(x1), . . . ,Vω(xk)) is an Rk valued Gaussian random variable. To each such
Gaussian process we can associate a mean function µ(x) = E[V(x)] (x ∈ Rd) and
a covariance function Σ (x, x′) = E[V(x)V(x′)] (x, x′ ∈ Rd). A Gaussian random
field is translation invariant if its covariance function Σ (x, x′) only depends on the
difference x−x′, i.e. if there is a function G : Rd → R such that Σ(x, x′) = G(x−x′).
Definition A.2. A function Σ : Rd × Rd → R is symmetric if for all x, x′ ∈
Rd, Σ(x, x′) = Σ(x′, x). It is positive definite if for all x1, . . . , xk ∈ Rd and
all ξ1, . . . , ξk ∈ R,

k∑

i=1

k∑

j=1

ξiΣ(xi, xj)ξj ≥ 0 .

A function G : Rd → R is positive definite if Σ (x, x′) = G (x− x′) is positive
definite.

Theorem A.3. Given an arbitrary function µ : Rd → R, and a symmetric, positive
definite function Σ : Rd ×Rd → R, there exists a Gaussian random field V (x) with
mean µ and covariance Σ.

See [25] for a proof of Theorem A.3.

Theorem A.4 (Bochner). A function G : Rd → R is the Fourier transform of a
positive bounded Borel measure on Rd if and only if it is continuous and positive
definite.

See [31] and the references therein for Bochner’s theorem.
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Theorem A.5 (Minlos). A function c : S(Rd) → C is the Fourier transform

c(f) =

ˆ

S′(Rd)

exp(−i〈f, T 〉) dµ(T )

of a cylinder set measure µ on S ′(Rd) if and only if

(1) c(0) = 1,
(2) f 7→ c (f) is continuous in the strong topology,
(3) for any f1, . . . , fn ∈ S(Rd) and z1, . . . , zn ∈ C,

n∑

i,j=1

zizjc(fi − fj) ≥ 0 .

See [31] and the references therein for Minlos’ theorem.

Definition A.6. We consider the probability space (S ′(Rd), µ) (the σ-algebra is
the one generated by the cylinder sets) where µ is the measure obtained by Minlos’
theorem with the positive definite function

c(f) = exp

(
−‖f‖2L2

4

)
.

The white noise is the random variable on
(
S ′
(
R
d
)
, µ
)

with values in S ′
(
R
d
)

defined by Wω = ω.

Remark A.7. Since ‖f‖2L2 = 〈f(x1), δ(x1 − x2)f(x2)〉 we have (in a weak sense)

E[W (x1)W (x2)] = δ(x1 − x2) .

Proposition A.8. Let G : Rd → R positive definite, such that Ĝ = |V̂ |2 with V̂ ∈
S(Rd;R). The translation invariant centered Gaussian random field of covari-
ance G(x− x′) is Vω = V ∗Wω where Wω is the white noise.

Remark A.9. Bochner’s theorem justifies the form we choose for the function G as
the positivity of the Fourier transform is natural for a covariance function.

Proof. After testing with elements in S(Rd) the following calculations hold. The
mean of V ∗Wω(x) is zero:

E[V ∗Wω(x)] =

ˆ

V (x− x1)E[Wω(x1)] dx1 = 0

and its covariance is

E[V(x)V(x′)] = E
[ˆ

V (x− x1)W (x1)V (x′ − x2)W (x2) dx1 dx2
]

=

ˆ

V (x− x1)V (x′ − x1) dx1

= V ∗ V (−·) (x− x′)

and F (V ∗ V (−·)) = |V̂ |2, so that we get the expected covariance. �
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Appendix B. Semiclassical Measures

Semiclassical measures (and microlocal defect measures) have been studied among
others in [8, 16, 17, 26]. We recall here some results. The first theorem can be found
in [8].

Theorem B.1. Let (uk) be a sequence of L2
x such that uk ⇀ u weakly. For all real

sequence (hk) such that hk → 0, there exist a subsequence (ukn) of the sequence (uk)
and a measure µ ∈ M+(R

2d
x,ξ) such that for all b ∈ C∞0 (R2d

x,ξ),

lim
n→+∞

〈b(hknx,Dx)ukn , ukn〉 =
ˆ

R2d
x,ξ

b dµ .

Definition B.2. The measure µ above is called a semiclassical measure (or Wigner
measure) associated with the sequence (uk). If there is uniqueness of the “limit
measure” the sequence (uk) is said pure and we note {µ} = M(uk).

This result holds in the case of a family of states (ρh)h∈]0,h0], i.e. ρh ∈ L+
1 L

2
x,

Tr ρh = 1.

Theorem B.3. Let (ρh)h∈]0,h0], h0 > 0 be a family of states on L2
x. There exist a

sequence hk → 0 and a measure µ ∈ M+(R
2d
x,ξ) such that

∀b ∈ C∞0 (R2d
x,ξ) , lim

n→+∞
Tr
[
bW (hknx,Dx)ρhk

]
=

ˆ

R2d
x,ξ

b dµ .

Proof. We first take an arbitrary sequence (hk) such that hk → 0. Then we
can define positive numbers (λk,j)j,k≥0 and normed vectors (uk,j) of L2

x such that∑
j λk,j = 1 and ρhk

=
∑
j λk,j |uk,j〉〈ukn,j |. We can extract from each sequence (uk,j)k

a subsequence that converges weakly to a vector uj (‖uj‖ ≤ 1). A diagonal extrac-
tion enables those convergences to occur simultaneously. The sequence obtained
this way is still denoted by (uk,j).

Theorem B.1 applies to each sequence (uk,j)k and yields measures µj such that
for well chosen subsequences hkn , λkn,j → λj and

lim
n→+∞

Tr
[
bW (hknx,Dx) |uk,j〉 〈ukn,j|

]
=

ˆ

R2d
x,ξ

b dµj .

Again we apply a diagonal extraction argument to obtain these convergences simul-
taneously, and we stick with the notations uk,j , λk,j for the extracted objects. We
observe that ‖uj‖ ≤ 1 and

∑
λj ≤ 1. We can thus sum these relations to get

lim
k→+∞

∑

j

λk,j Tr
[
bW (hkx,Dx) |uk,j〉 〈ukn,j |

]
=

ˆ

R2d
x,ξ

b d
(∑

λjµj

)

which is the expected result with µ =
∑

j λjµj . �

Appendix C. General results on semigroups

Some references about semigroups of operators in Banach spaces are [12, 9, 11].
In this appendix X represents a (real or complex) Banach space.

Definition C.1. A strongly continuous semigroup on X is a mapping G : R+ →
L (X), such that

(1) ∀t, s ≥ 0, G(t+ s) = G(t)G(s) , G (0) = I,
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(2) G(·)x is continuous for all x ∈ X .

The infinitesimal generator A of G(·) is defined by

D(A) =

{
x ∈ X , ∃ lim

h→0+

G(h)x− x

h

}
, Ax = lim

h→0+

G(h)x− x

h
.

Proposition C.2. Let G be a strongly continuous semigroup on X with infinites-
imal generator (A,D(A)). Then D(A) is dense in X and A is a closed operator.

See [9] for a proof of Proposition C.2.

Notation C.3. For M > 0 and ω in R, we denote by G(M,ω) the set of all strongly
continuous semigroups G such that

∀t ≥ 0, ‖G(t)‖L(X) ≤Meωt .

Theorem C.4 (A perturbation result). Let (A,D(A)) be the infinitesimal gener-
ator of a strongly continuous semigroup in G(M,ω) and B ∈ L(X). Then (A +
B,D(A)) is the infinitesimal generator of a strongly continuous semigroup in G(M,ω+
M ‖B‖L(X)).

See [11, 12] for a proof of Theorem C.4.

Theorem C.5 (Trotter). Let Aj, j = 1, . . . , k be the infinitesimal generators of
continuous semigroups Gj ∈ G(Mj , ωj). If ∩kj=1D(Aj) is dense in X and

∀n ∈ N, ‖(G1(t)G2(t) · · ·Gk(t))n‖L(X) ≤Menωt

and if there exists p such that ℜp > ω, (pI − (A1 +A2 + · · ·+Ak))X is dense in X
then

A1 +A2 + · · ·+Ak

is the infinitesimal generator of a continuous semigroup in G (M,ω).
In such a situation the semigroup G generated by A1 +A2 + · · ·+Ak satisfies

∀x ∈ X, G(t)x = lim
n→∞

[
G1

( t
n

)
G2

( t
n

)
· · · Gk

( t
n

)]n
x

with a uniform convergence on the bounded intervals [0, T ], with T > 0.

See [11] for a proof of Theorem C.5.

Appendix D. Lemmas about an approximate identity

For ζ > 0, and r ∈ R, let κζ(r) = 1
π

ζ
r2+ζ2 .

Proposition D.1. Let f be a function in the Schwartz class. Then for any γ ∈
]0, 1[, a constant Cγ > 0 exists such that

∀ζ > 0,
∥∥f ∗ κζ − f

∥∥
L∞

≤ max {‖f‖∞ , ‖f ′‖∞}Cγζγ .
Proof. We use the formula

f(r0 + ζr) = f(r0) + ζr

ˆ 1

0

f ′(r0 + sζr) ds

so that we have both

|f(r0 + ζr) − f(r0)| ≤ 2 ‖f‖∞ ,

|f(r0 + ζr) − f(r0)| ≤ ‖f ′‖∞ ζr ,
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and the interpolation of those two results gives, for γ ∈ [0, 1],

|f(r0 + ζr) − f(r0)| ≤ 2max{‖f‖∞ , ‖f ′‖∞} ζγ |r|γ .
So, for γ ∈ [0, 1[,

∣∣∣∣
ˆ

R

[f(r0 + ζr) − f(r0)]
dr

r2 + 1

∣∣∣∣ ≤ max {‖f‖∞ , ‖f ′‖∞}Cγζγ

which is the expected result. �

Proposition D.2. Let f : Rr → R continuous, vanishing on R−, such that f |
R

+
∗

is in C∞(R+
∗ ) and rapidly decreasing towards +∞. Let 0 < rmin < rmax. Then, for

any γ ∈ ]0, 1[, there is a constant Cf,γ such that
∥∥∥∂kr

[
f ∗ κζ − f

]∣∣
[rmin,rmax]

∥∥∥
L∞

≤ Cγζ
γ .

Proof. We choose A and ∆r such that 0 < A < ∆r < rmin/2. Let f1 = χ1f
and f2 = (1− χ1) f with χ1 a C∞ decreasing function such that

χ1(r) = 1 if r ≤ A/2

= 0 if A ≤ r .

Then f = f1 + f2 and

f ∗ δζ = f1 ∗
E′,C∞

κζ + f2 ∗
S,L1

κζ .

The second term is the easiest to handle since ∂kr
(
f2 ∗ κζ

)
=
(
∂kr f2

)
∗ κζ and

Proposition D.1 can be applied to get

∥∥(∂kr f2
)
∗ κζ − π∂kr f2

∥∥
L∞

≤ Cγ

(∥∥f (k)
2

∥∥
∞ +

∥∥f (k+1)
2

∥∥
∞

)
ζγ .

We now recall that we are only interested in r ∈ [rmin, rmax] with 0 < rmin < rmax

when evaluating ∂kr
(
f ∗ κζ

)
. We insert another cutoff function χ2 ∈ D (R) such

that

χ2 (r) = 0 if r ≤ rmin − 2∆r

= 1 if rmin −∆r ≤ r ≤ rmax +∆r

= 0 if rmax + 2∆r ≤ r .

Then f1 ∗κζ = f1 ∗χ2κ
ζ + f1 ∗ (1− χ2)κ

ζ and our hypotheses on the supports give

Supp
{
f1 ∗ (1− χ2) κ

ζ
}
⊂ Supp f1 + Supp (1− χ2)

⊂ R− [rmin −∆r +A, rmax +∆r] .

Since A < ∆r we obtain
[
f1 ∗ (1− χ2)κ

ζ
]∣∣

[rmin,rmax]
= 0 and we can restrict our-

selves to the computation of

f1 ∗
E′,C∞0

χ2κ
ζ .

More precisely we want to estimate
∥∥∥∥∂kr

(
f1 ∗
E′,C∞0

χ2uζ

)∣∣∣
[rmin,rmax]

∥∥∥∥
L∞
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since χ2δ = 0 and thus f1 ∗
E′,E′

χ2δ = 0. But the same considerations hold for the

supports of the derivatives. Thus it is sufficient to observe that we have the control∥∥∥f1 ∗
L1,C∞0

∂kr
(
χ2κ

ζ
) ∥∥∥

L∞

≤ ‖f1‖L1

∥∥∂k
(
χ2κ

ζ
)∥∥
L∞

,

≤ ‖f1‖L1 Cχ2 sup
r≥rmin−2∆r

∣∣∂kκζ
∣∣

where the sup can be controlled by Cζ with C only dependent on our choice of ∆r
and rmin as

2∂kκζ (r) = ikk!
− (ir − ζ)

k+1
+ (ir + ζ)

k+1

(r2 + ζ2)
k+1

.

Consequently ∥∥∥∥∂kr
[
f1 ∗
E′,C∞0

χ2κ
ζ − f1 ∗

E′,E′
χ2δ
]∣∣∣

[rmin,rmax]

∥∥∥∥
L∞

≤ Cζ

and this ends the proof. �

Appendix E. Formulae

E.1. Symmetric Fock space. For f, g in a complex Hilbert space H,

• aε(f) = 〈f, z〉Wick
, a∗ε(f) = 〈z, f〉Wick

,
• [aε(f) , aε(g)] = 0, [a∗ε(f) , a

∗
ε(g)] = 0, [aε(f) , a

∗
ε(g)] = ε 〈f, g〉,

• Φε(f) =
(
aε(f) + a∗ε(f)

)
/
√
2,

• W (f) = exp iΦε(f), W (f)W (g) = e−
iε
2 ℑ〈f,g〉W (f + g),

• E(f) =W
(√

2
iε f
)
|Ω〉.

E.2. Fourier transforms. Usual Fourier transform
For u ∈ L2

x, v ∈ L2
ξ,

Fxu(ξ) =
ˆ

Rd
x

e−ix.ξ u(x) dx and F−1x v(x) =

ˆ

Rd
ξ

eix.ξ v(ξ) d̄ξ

with d̄ξ = dξ/ (2π)d.
Symplectic Fourier transform
For b ∈ L2(R2d

P ;C), P = (px, pξ), σ(P, P
′) = pξ.p

′
x − px.p

′
ξ,

Fσb(P ) =

ˆ

R2d
x,ξ

e−iσ(P,P
′) b(P ′)d̄P ′ and

(
Fσ
)−1

= Fσ

with d̄P ′ = dP ′/ (2π)d.

E.3. Weyl quantization.

• τhX′ =
(
e−iσ(·,X

′)
)W

(hx,Dx) = e−iσ(·,X
′)W (hx,Dx) = ei(ξ

′·hx−x′·Dx)

• τ̂hX′ = FxτhX′F−1x = e−i(ξ
′·hDξ+x

′·ξ)

• τhX1
τhX2

= e
i
2hσ(X1,X2)τhX1+X2

= eihσ(X1,X2)τhX2
τhX1

• τ̂hX1
τ̂hX2

= e
i
2hσ(X1,X2)τ̂hX1+X2

= eihσ(X1,X2)τ̂hX2
τ̂hX1
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ω (x) random field, 3

σ (ξ, ξ′), 6
ρht , ρ

h
N,∆t (ω̄N ) , ρhN,∆t, 4

ρt, ρ̂t, ρ
ε
t , ρ

app
t , ρ̂

app
t , ρ

ε,app
t , 17

TrH, partial trace, 13

W (f), Weyl operator, 16
τhX , Weyl operator, 21
τ̂hP , Weyl operator, 21

bW (hx,Dx), Weyl quantization, 4
: fn : , n-th Wick power, 12
QWick, Wick quantization, 16
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