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A GEOMETRIC DERIVATION OF THE LINEAR BOLTZMANN
EQUATION FOR A PARTICLE INTERACTING WITH A
GAUSSIAN RANDOM FIELD

SEBASTIEN BRETEAUX

ABsTrRACT. The linear Boltzmann equation is derived from a microscopic
quantum model of a particle interacting, in the weak coupling limit, with a
translation invariant and centered Gaussian random field. The result holds in
dimension d > 3 for initial states given as a pure families of states, in the sense
of semiclassical measures and an assumption about renewing the stochastic po-
tential is needed in order to force the asymptotic Markovian property, unlike
in the works of Erdés and Yau. This derivation uses an isomorphism between
the Hilbert space of square integrable function w.r.t. the random parameter
and the bosonic Fock space over L?(R?). The solutions for the microscopic
model are approximately coherent states with a parameter in the phase space,
providing a geometric viewpoint.

1. INTRODUCTION

The derivation of the linear Boltzmann equation has been studied for both clas-
sical and quantum microscopic models.

In the classical case the article [15] provided a derivation of the linear Boltzmann
equation for Green functions in the case of a Lorentz gas. Later the article [32]
presented a review of different classical microscopic models and of kinetic equations
obtained as limits of these models, with emphasis on the approximated Markovian
behaviour of the microscopic dynamics (some quantum models are also studied).
The article [6] gives a derivation of the linear Boltzmann equation for the density
of particles in the case of the Lorentz model.

In the quantum case, the weak coupling limit of a Fermi gas in a translation
invariant Gaussian potential (and other random potentials) is studied in [24]. Their
proofs make use of combinatorics and graphs technics. We are here interested in
the bosonic case. In this setting results of Erdés and Yau, and more recently of
Poupaud and Vasseur exist.

The article of Erdés and Yau [13]: differs from our work in several points.

e They need initial data in the WKB form h%/? f(hx) exp(%) for f and S
in the Schwartz class, whereas we can use any bounded pure (in the sense
of semiclassical measures) family of states in £] (L?(R?)).

e We need a renewal of the stochastics to get the Markovian behaviour,
whereas they don’t need this additional assumption.

e Our result holds in dimension d > 3 whereas they can handle d > 2.

2000 Mathematics Subject Classification. 82C10, (60K37, 81E, 81S, 81D30, 82B44, 82C40).
Key words and phrases. Processes in random environments, Quantum field theory, Coherent
states, Kinetic theory of gases.
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e They need a radial symmetry on V defined by V= \/5 and we don’t need
any symmetry.

e Our viewpoint is more geometric and their viewpoint is more combinatorial.

The article of Poupaud and Vasseur [28]: provides another derivation of
the linear Boltzmann equation. Their assumptions on the random potential
are different from ours. Indeed the potentials they consider are necessarily
almost everywhere bounded, and this is not the case for a Gaussian po-
tential. Thus there is no implication between our and their results. Note
nonetheless that they needed an assumption of renewal of their random
potential.

Setting and strategy. We are interested in the derivation of the linear Boltzmann
equation

Orpur (2, €) + 2800t (2, €) = /U(ﬁ,é’ﬁ(lﬁl2 =€) (e (@, ") = pe(x, €)) A€’

for a particle interacting with a translation invariant centered Gaussian random
field described by the Schrodinger equation

ihdwu = —Agu+ V! (z)u
(1.1)

ui—o = g € L*(R%C)

where the potential V" (z) depends on a random parameter w in a probability
space (2p,P). In the weak coupling limit the dependence of the random potential
with respect to h is

Vi =Vhy,

where h represent the ratio between the microscopic and macroscopic scale. We
will consider the limit h — 0. Note that the expression are the same for the case
of the weak density limit as we are considering a Gaussian random field.

We use the isomorphism between the Gaussian space L?(Qp,P;C) associated
with L2(R?;R) and the symmetric Fock space I'L.?(R?) associated with L?(R%; C)
(denoted by L?(R%)) given by

\/%:ég(fl)--@g(fn): S vV,

for f; in L2(R%R). (The general Gaussian random fields ®¢ and the Wick powers
are defined in Sections 4.2 and 4.3.) The field operator v/2® (f) then corresponds
to the multiplication by ®¢ (f) and with some assumptions we can write V,,(z) =
O (V(z—-)) for some function V. We will give more details on this correspondence
in Section 4. A useful reference on this subject is [31]. We can thus express the
Hamiltonian as in the Fock space as

—Ay 4 V210 (V (z— ) .

We can then approximate this equation by an explicitly solvable one whose solu-
tions are coherent states. The geometric idea behind the computations is then that
as the initial state is the coherent state whose parameter in the phase space is in
zero (the empty state) we can use this geometric information in the phase space at
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least for short times. The computations done with this solution allow us to recover
the dual linear Boltzmann equation for short times for the observables.
Some remarks.

Quantum field theory and geometry in phase space: Quantum field the-
ory allows us to see how geometry in phase space is involved. We use the
viewpoint of [1] but in a case that is not in the framework chosen by the
authors. Indeed we are not in a situation of mean field limit and the intro-
duction of a parameter € is an artifact that allows us to keep track of the
importance of the different terms.

No graphs: Unlike the work of Erdés and Yau we avoided the use of graphs
to try to keep a more geometric viewpoint. Yet we cannot reach times of
order 1 as they do.

Trotter-Kato: As we don’t get the approximate Markovian behaviour in a
satisfying way we need to introduce a renewal of the random potential. The
works [4, 3] deal in a more sophisticated manner with interactions defined
piecewise in time. Other Ansétze may give a better approximation of the
solution of the initial problem and give the Markovian behaviour of the
evolution.

Positivity and a prior: estimates: One of the important tools in our deriva-
tion of the linear Boltzmann equation is the use of a priori estimates to
show that we don’t lose too much mass in the measures during our approx-
imations. The mass conservation and positivity properties of the linear
Boltzmann equation then allow us to conclude.

Dimension and dispersion: Our result holds in dimension d > 3 as disper-
sion inequalities for the free Schrédinger group provide the time integrabil-
ity needed for some expressions. It may be possible to reach the limit case
of dimension d = 2.

Outline of the article. In Section 2 we describe the quantum model, state the main
result and give the structure of the proof. We then recall some facts about the
linear Boltzmann equation in Section 3. We specify the link between the Gaussian
random field and the symmetric Fock space in Section 4 and thus obtain a new
expression for the dynamics, and a candidate for an approximated dynamics. We
solve these approximated dynamics in Section 5. We use this explicit solution to
compute the measure of an observable for short times in Section 6. We control the
error done using this approximation in Section 7. And finally we glue together the
different pieces to achieve the proof in Section 8.

For the convenience of the reader we recall in the Appendices A, B and C some
results about stochastics, semiclassical measures and semigroups. The Appendix D
is devoted to small results we need about approximate identities.

2. MODEL AND RESULT

In this text the Hilbert spaces are always separable. The integer d > 1 denotes
the dimension of the space R%. Our result requires d > 3.

2.1. Rescaled quantum random field. Let G : R — R positive definite, such
that G = |[V|? with V € S (R%;R) and V! (), (w,z) € Qp x RY, the translation in-
variant centered Gaussian random field with mean zero and covariance hG (z — ).
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We consider the Schrodinger equation

ihOyuyw(x) = Hﬁut,w (x)
@1 { uow(z) = Yo(z) € L2

with the Hamiltonian
(2.2) H' = A, + V! (2) .

Let us fix a time T" and an integer N. Let t;, = kAt with At = % The dynamics
is defined piecewise in the intervals [t;_1,t;] by the Hamiltonians

Hh,wk - _Am + Vh,wk (‘T)

with independent random fields Vj ,, wr € 2. Thus we get, for an initial
data 1y € L2,

N _; At At
— e T Hhwn o Hhwon_y oL o= 15 Hi ey 7

— - e
SWN

Yr(z,on) = Gy at g Yo,
Withu_}k = (wl,...,wk) EQk:le-“XQk,H—Dk:P1X~-~X]P)k andLQ(Qk,]I_Dk)z
k
®j:1 Lz(QﬁPj)'

Definition 2.1. Let p be a normal state on £(L2), i.e. p € LT (L2) and Trp = 1.
We define

(2.4) pr = / emintne petitne dP(w),
Qp
h — o —1
(2.5) pN,At(wN) —GN,%@N PGN7%@N )
(2.6) Phine = /Q o a(@) APy (@)
N

2.2. The main result. Let b be a symbol in C§° (Ri(,ig)- The measure of the ob-
servable bV (hx, D,) in a normal state p is given by

Tr [bW (ha, D) p)

where the Weyl quantization is defined by

1 . / x+
W ha, Dy)u (x) = / / el@= Ly p L€ ) u(x')da’ d€.
(o D) = 5 | (h"5) ula’) da' dg

One can refer for example to [27] about the properties of the Weyl quantization.
Consider the dynamic given by Equations (2.1) and (2.2) with renewal as in
Equation (2.3), At = h®, N = N" = T/h®, a €]3,1].
We say that a family of states (p"), h € |0, ho] is pure if there is a measure fio
on R2% such that

oo (m2d : h W —
Vb € C5°(R3%), hli)r101+ Tr [p" 6" (ha, D,)| = /Ridg b dug .

We refer the reader to Appendix B and [8, 16, 17, 26, 1, 2] for general information
about semiclassical measures.
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Theorem 2.2. Assume that (p")nejo,no] is pure with po(RE x Rg*) =1. Then
Vb € O (R2%) , Jim T [ply o V{1, D)) = / b dpur
; H :

where pp = p—r with, fort € (0,T),
(2.7)
Oupae (0, €) + 26.0p e (2, €) = / (&) 6 (16> = 1€'1%) (e, &) — pe(, €)) A’
Ht=0 = [0
and o(¢,¢') = 27|V (€ - &)

Remark 2.3. The meaning of measures solving the linear Boltzmann Equation (2.7)
is specified in Section 3.
The result says that the family (p?v Ap) remains pure for every T (= NAt) as

)

soon as (p") is pure.

The justification of the choice of the scaling in the Weyl quantization is the fol-
lowing. Physically the parameter h is the quotient of the microscopic scale over
the macroscopic scale, either in time or in position. Thus if we consider an observ-
able b(X,Z) varying on a macroscopic scale, the corresponding observable on the
microscopic scale will be b(hz,§).

The scaling of the random field according to the covariance hG(z — '), is done
on a mesoscopic scale imposed by the kinetic regime (see Section 4.1).

Sketch of the Proof. Let pr in M(p?vA“ h €]0, ho[) (the set of semiclassical mea-
sures defined after extraction of subsequences, see Appendix B). We denote by B(t)
the flow associated with the Boltzmann equation (2.7) and B%(t) the flow associated
with the dual equation, see Section 3 for more details about B(t) and B%(t). For
any non-negative b in C§°(RZ x Rg*) we shall prove

(1) ngng* bdpr > liminf, Tr[p%,)m bW(hx, D,)] by the definition of 7,
(2) liminfp o Tr[pR o, 0" (ha, Dy)] > ngng* (BT(T)b)duo (see the remark

below),
(3) ngng* (BT(T)b) dpo = ngng* b d(B(T)uo) by the definition of B(T).

Taking this for granted, it implies the lower bound

[ vdur= [ @)
Rd xR* Rd xRE*

Since this inequality holds for any non-negative b in C§°(R% x Rg*) which is dense
in C3,(RE x RE*) with dual My(RE x RE*), we get
1 e rge 2 B(T)polga xrg- -

But we also have B(T) uo(RE x Rg*) = 1 from the properties of the linear Boltzmann

equation and pp(R% x Rg) < 1 from the properties of semiclassical measures. So,
necessarily,

pr (RE x RE) =1
pr(Rg x {0}¢) =0
and pr = B(T)po. Thus we have the result. (]
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Remark 2.4. The step

liminf Tr [ph A¢ 0" (ha, Dy)] > / (BT(T)b) dpuo
h—0 ’ Rd XRZL*

will be the technical part which requires various estimates for the quantum dynam-
ics of the whole system particle-random field.

To prove this result we consider first the case without renewal of the stochastics,
i.e. N =1 for short times in Sections 5, 6, 7 and then glue together the estimates
obtained this way N times for N “big” in Section 8. To simplify the problem of
finding estimates for short times we approximate the equation by a simpler one
which is solved and studied in Section 5. In Section 6, using the solution to the
approximated equation, we carry out explicit computations which give rise to the
different terms of the dual linear Boltzmann equation. Then we control the error
between the solutions of the approximated equation and the exact equation in
Section 7. All these computations are done within the framework of quantum field
theory. This allows us

e to use conveniently the geometric content of coherent states,
e to keep track of the different orders of importance of the different terms by
using the Wick quantization with a parameter .
For the reader’s convenience, we recall the correspondence between the stochastic
and Fock space viewpoints in Section 4.

Remark 2.5. Our initial data (ph)he]o,ho] are assumed to belong to £ L2 with

Trp" = 1. We will thus make estimates for states p in £ L2, with Trp = 1 with
constants independent of p.

3. THE LINEAR BOLTZMANN EQUATION

Information on the linear Boltzmann equation can be found in [10, 11, 30].

In this part suppose that o € C* (Rg X Rg/; R) and ¢ > 0.
3.1. The formal linear Boltzmann equation. Since all the objects we use are
diagonal in [£], the following definitions will be convenient.
Notation: Let 0 < r < 7’ < 400 we define the Sobolev spaces

H"[r,r'] = H" (Ri x A¢ [r,7'];R)
where A¢[r,7’] is the annulus {&, |¢| €]r,r'[} in the variable £&. When there is no
ambiguity we write A¢ for A¢[r,7']. We also define L?[r,r’] = HO[r,7’].
Definition 3.1. The collision operator Q is defined for b € L?[r,r'] by
(3.1) Qb=Qib—Q b,
with

Qb8 = [

R

Qb =b(e,) [ ole&)a(Ief - |¢) de',

]Rg,

b(a, &) ol €6 ( € — 1€'f°) d¢’,

Remark 3.2. For a given ¢ these integrals only involve the values of o (¢, |¢|w)
and b(z, |¢| w) for w € S41,
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Definition 3.3. The linear Boltzmann equation is formally the equation

{ of = {£.1¢} +Qf
fi=0 = fo

and its dual equation is

{ Ob = — {b, |§|2} Qb= 26.8,b+ Qb
bi—o0 = bo

We will see in the next sections that the dual linear Boltzmann equation is solved
by a group (BT (t))ier of operators on C2 (RY x Rg*; R) and this defines by duality

a group (B(t)):er of operators on M (RE x Rg*; R).

3.2. Properties. We recall here the main properties of the dual linear Boltzmann
equation. (The arguments are the same as for the linear Boltzmann equation.)

Some standard notations and results about semigroups are given in Appendix C.
We begin by solving the dual linear Boltzmann equation in L?[r,7’'] in the sense
of semigroups. We observe that 2£.0, generates a strongly continuous contrac-
tion semigroup on L2[r,7']. Since the operator @ is bounded on L2[r,r'] we get
that 2£.0, + Q generates a semigroup (BT (t));>0 bounded by exp(t 19N z(z2prr1))
and the associated domain is D(2£.0;).

Proposition 3.4. Let 0 < r < 7' < +o00. The operator Q on H™[r,r'] is well
defined and bounded, with

1@leqirirry < Ca 1P 10°7 otz -

The group of (space-)translation (e2'$-9=), preserves H™[r,r'].

Proposition 3.5. Let 0 < r <1’ < +o00. The strongly continuous group (BT (t))¢>0
of infinitesimal generator 2£.0, + Q preserves
(1) the Sobolev spaces H™[r,r'], for n € N,
(2) the set of functions with compact support,
(3) the set of infinitely differentiable functions with compact support in R% x
Aﬁ [Tv T/]; Cgo(Rg X Aﬁ [T‘, T‘/];R),
(4) the set of non-negative functions, fort > 0.

Proof. For (1) we use Proposition 3.4.
For (2) we can use the Trotter approximation

n
BY(t) = lim (62%5"%6%@) ,

n—00

the fact that @ is “local” in (z, |£]), and that the speed of propagation of the (space-)
translations is finite when & € Ag [r, 7'].
For (3) we use (1), (2) and

C5° (RY x A¢ [r,7'];R) = ﬂ H"™ [r,r'] ﬂ {f, Supp f compact} .
n=0
For (4) we use both the Trotter approximation

n
BT(t) = hm (62%5.816%Q+67%Q7)

n—oo
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and the fact that e2% 5% preserves the non-negative functions as a translation, ew @+
preserves the non-negative functions for ¢ > 0 because @4 does, e~ w@- preserves
the non-negative functions as a multiplication operator by a positive function. [

Since C§° (RZ x A¢;R) C D (2£.0,) we can give the following result.

Proposition 3.6. For every by € C§° (R‘i X Ag;R) there exists a unique func-
tionby = BT (t) by € C* (R*; L2 [r,7’'])NCO (R D (2£.0,)) such that for everyt € R,
{ Orby = 2£.0.b + Qb
bi=o = bo '

Moreover ¥t € R, b, € C§° (Rg X Ag;R). If by is non-negative, then ¥t > 0, by is
non-negative.

3.3. The linear Boltzmann equation. Notation: For X a locally compact,

Hausdorff space we denote by M, (X; R) the set of Radon measures and by C2_(X; R)

the set of functions f on X such that for all € > 0 there exists a compact K. such

that |f (x)] < € outside of K. (i.e. the set of functions that vanish at infinity).
For a topological space X, locally compact and Hausdorff,

My (X:R) = (€% (X;R)) .

Proposition 3.7. The semigroup (BT (t));>0 defined on CJ(RY x Rg*;R) can be
extended to a strongly continuous group on (CO, (RZ ng*; R), ||-l.) and thus defines
by duality a (weak* continuous) group B(t) on My(RE x Rg*;R).

Proof. Using a partition of the unity, we can extend B (t) to C(RZ x ]Rg*;R).
As BT (t) is positive, we have BT (t)(||b]| ., £b) > 0 for all b in C§°(RZ x Rg*; R) and
o
1B7(1) ]| ., < [Ibll., -
We can thus extend continuously BT (t) from C§° (R x Rg*; R) to CO (RZ x Rg*; R).
O

Definition 3.8. The linear Boltzmann group (B(t)) is defined on M;(RZ x Rg*)
by duality, let p € My(R$ x RE*), then, for any ¢ € R,

vbeCl (RExRE),  (B(t)p,b) = (u, B"(t)b) .
3.4. A Trotter-type approximation. In this part we will prove a result in the

spirit of the approximation of Trotter

N
eATE = lim (eA/NeB/N> .
N—oco

Notation: For n € N and b € C5°(R2%), set
(3.2) N, (b) := sup [|0°b||, -

laf<n
Proposition 3.9. Let b € Cg° (Riflg), T >0 and n € N. There are constants C, q
and Cryp, such that for all N € N*
T2

N, (eT(QE_aIJrQ)b B (G%Qe%%.az)]\’ b) < eT(QnJrCn,Q)CT)bW .
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Definition 3.10. Let Q; € £ (L? [r,7']) be the operator defined by Q; = €269 Qe~126-9=
i.c. Qt = Q+,t — Qf with

Quab (@€ = [ a(€.€)B(1€ ~ ¢ ) bla = 26(¢ - .¢) e
RY,
We also define Q) ; = Q— to have consistent notations in the sequel.
Let Go(t,to) be the dynamical system associated with the family (Q;) in C(R; L(L?[r,']))
given by

atbt = Qt bt
by = Go (¢, to) by .

bt:t() = bo S Li,& ’
Note the relation
BT(t) = Go(t,0)e*5 % = e2-9:G (0, —t).

Lemma 3.11. For anyn € N, s > 0 and b € C§° (Rg x Ag [r,r’]), there exist
constants Cy, and Co depending on d, r and r' such that

(1) No(Qb) < Cy N, (b),
(2) No((Q — Q)b) < Cot(1 42 [t))™ Nyya (b),
(3) Non(e269:b) < (142 [t])" Ny (D).

Proof. The first point is clear from the integral expression of Qb.
For the second point differentiate and estimate the integral formula for b (x — 2t&, ) —
b(x,£), with |a] <n,
t
0% (b(z — 2t&,€) — b(x,€))| < / |07 (26.0,b(x — 25€,€))| ds
0
< 20t (14 28)" Npya (b) .
The last point results from (e*¢-%b)(z, &) = b(z + 2t&, €). O
Definition 3.12. For b € C§° (RZ x Ag [r,1']), let

No(@Q) e and Nyt1,n(s,Q — Q) = A 2 s Noib

Lemma 3.13. Let b, b € Cye° (R‘i x Ag [r, r’]), then for allt > 0,

t
et?h — Gg (t,0)b = '@ (I; - b) + / =92 (Q — Q) Gg (5,0) bds
0

and we have the estimate
N, (€'9b — Go(t, 0)b)
< eNnQ N (b — b)
+ 21+ 2t)"eMN 9 sup {Nag1.0(5,Q — Qo) Nuy1(Gq(5,0)) } Noyr (b) .

s€[0,t]

Proof. The equality is clear once we have computed that both sides satisfy the
equation

0Ay = QA+ (Q — Qi)Gg(t,0)b.
The inequality then follows from Lemma 3.11. O
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Proof of Proposition 3.9. We fix N and forget the N’s in the notations concerning b.
We set by = BT (t)b and define b; piecewise on [0,7] by setting t, = kWT, by, =

(e%Qe%Qf'az)k by and, for t € [ti,trs1],s by = e(t’tk)Qe(tftk)QE'afl;tk. Let 6, =
N, (btk — Btk); we get
e%Qe%%azgtk _ e%(%aﬁ@)btk — e%cze%zg.azgtk ~Gol(ZL, 0)6%25.«%%
and we can then use Lemma 3.13 to obtain
Srp1 < eFNQ (14 22)" 6+ (£)* (14 2L)" 7N
sup Nogin (s — th, @ — Qs—yy)
SE[tr,tr41]
sup  MN,i1 (GQ(S —tx,0) e 200 btk)
SE[tr,trq1]
< e%N"QGQ%(Sk + (%)QE%N"QCMT
where we defined

Cyrs=(1+2L)" sup Nop1a(s,Q— Q)
s€[0,T/N]

sup sup  MNpi1 (GQ(S, 0) e_%thHl) )
ke{0,....,N—1} s€[0,T/N]

Then we get the recursive formula
2
ki1 < e (2n+NL Q) Sk + CnTp (5) e TN Q

so that

2

T (2n+Nn Q) -
oy <e CNTHh R -

The only thing remaining is to observe that Cy 7, < Crp, with
Crpi=(14+2T7)" sup Npi1n(s,Q —Qs) sup Nui1(Go(s1,0)e *29b,,)
s€[0,T] s;€[0,T7]

and for a fixed 7" this quantity Cr is finite, so that we get the result. O

4. FROM STOCHASTICS TO THE FOCK SPACE

The relation between Gaussian random processes and the Fock space is treated
in [31, 22], we recall some facts without proofs which clarify this relation.

4.1. Classical kinetic regime. In microscopic variable, consider a particle moving
among obstacles with a velocity v o 1 and a distance of interaction R o 1. During
a time T the particle sweeps a volume of order vT'R?~!. In the kinetic regime it is
assumed that during a long microscopic time 7' = t/h with ¢ o« 1 the macroscopic
time, the average particle encounters a number 1 obstacle.

We denote by p the density of obstacles and thus obtain p = 1/vT R oc h. To
get this density of obstacles we need the distance between two nearest obstacles to
be of order h=1/4.

Thus we consider a Schrédinger equation of the form

O = —Agih + Vi (z)

that is
ihdyh = —Apih + V().
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\}fi/d

FIGURE 4.1. Kinetic regime.

A translation invariant Gaussian random field of covariance G(z — '), G = |V|?
is V « W, where W, is the spatial white noise (see Appendix A) and V describes
the interaction potential. In the kinetic regime the obstacles are spread at the
mesoscopic scale h'/¢. Only the white noise W/ is rescaled (and not V') according
to

Yo € S(Rd; R), /(p(hl/dx) Wf(:z:) dz = /(p(aj) W (z)dz,

i.e. Wl'(x) = hW,,(hY/%z). Thus we get V! = hV « W,,(h'/%.) and G" = hG. See
Appendix A for more details.

4.2. General Gaussian random fields. We introduce a different viewpoint on
Gaussian random fields.

Definition 4.1. Let (Qp, G,P) be a probability measure space. Let E be a (real)
vector space. A general random field indexed by E is a map ® from E to the
random variables on Qp, so that (almost everywhere)

D(v+w) =d(v) + P(w), Yo,w e E,
P(av) =ad(v), VaeR, Vve E.
Definition 4.2. Let Hgr be a real Hilbert space. The general centered Gaussian
random field indexed by Hpg is a random field @ indexed by Hg so that

(1) G is the smallest o-algebra for which all the ®¢(v), v € Hg are measurable,
(2) each @ (v) is a centered Gaussian random variable,
(3) E[®¢(v) Pg(w)] = (v,w) with (-,-) the inner product on Hp.

One can refer to [31] for the following two theorems.

Theorem 4.3. Let ¢ and D}, be two general centered Gaussian random field
indexed by Hr on probability measure spaces (Qp, G, P) and (Qp, G',P') respectively.
Then there exists an isomorphism between the two probability measure spaces so
that for every v € Hr, ®g(v) corresponds to @ (v) under the isomorphism.

Theorem 4.4. Let Hg be a real Hilbert space. A general centered Gaussian random
field indexed by Hg exists and it is unique (in the sense of the preceding theorem,).

Proposition 4.5. Let G € L'(R%; R)NFL' (R?; C) positive definite, we can choose V €
L?(R%R) such that
G=1V>.
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Then the Gaussian random field of mean zero and covariance X(z,y) = G(x — y)
is also the random field obtained as P (1, V) where g is the general Gaussian
random field indexed by L?(R%;R).

Proof. From Bochner’s theorem we deduce that G € LY(R%; C) has real positive

values. Thus we can set V = \/5 Then it suffices to prove that the covariance
function ¥(z,y) of g (7, V) is G(z — y).

E(z,y) =E[Qc(rV) Pa(ry V)]
= (Te—yV, V) 2 (asr)

_ ! (et 7')

d
L2(REC)

=F VP ). 0

Remark 4.6. If we replace G by G" = hG, the field vVhA®g (7, V) gives the expected
covariance function.

4.3. Wick powers.

Definition 4.7. Let f be a random variable with finite moments, for n € N*,
:f™ € C[X], the n-th Wick power of f is defined recursively by

% =1, Ox:f™ =n:f"% and E[:f™]=0,

where E : C[X] — C is the linear map defined by E[X"] = E[f"]. We still denote
by :f™ the random variable :f": (f).

Remark 4.8. For the first terms we have
fO% =1, if = f—Ef, and :f% = f2—2E[f] f — E[f2] + 2E[f]*.
4.4. The isomorphism with the Fock space.

Definition 4.9. Let H¢ be a complex Hilbert space, V the symmetric tensor prod-
uct, the symmetric Fock space over Hc is

—+oo

I'He = @ TnHe

n=0
where I',, He = H{™ is the Hilbert completion for the norm inherited from the scalar
product over Hc of the algebraic symmetric n-th power of Hc, and the sum is also
the Hilbert completion of the algebraic sum. We denote by I'rHc the algebraic
sum (but with a completed tensor product) we will eventually refer to this set as
the finite particle vectors. We define the empty state Q = (1,0,0,...) € T'H¢. The
creation a*(f) and annihilation a(f) operators are defined on I'pHc by

« a*()(g"") = (n+1)2f Vg,
o a(f)(g"") =n (f,9)g" ",
for f, g € Hc. The field operator ®(f) = (a*(f) + a(f))/V2 is then essentially
self-adjoint for T'pHc is a dense set of analytic vectors and we still denote by ®(f)
its closure.
One can refer to [31] for the following theorem.
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Theorem 4.10. Let Hg be a real Hilbert space and Hc its complexification. Let ¢

the general centered Gaussian random field indexed by Hg over a probability space (kp, G, P).
The symmetric Fock space T'Hc is unitarily equivalent to L?(Qp,P; C) under a uni-

tary D : THc — L*(Qp, P; C) such that

[ ] DQ g 1,
e DI, Hc = the closed subspace of L?(Qp,P;C) generated by
{:®c(f1)-- Pa(fn):, fj € Hr},

e D\2O(f) D™ = dg(f) for f € Hr, with ®(f) seen as a multiplication
operator on L?(Qp,P;C),

¢ DAV -V fo = S @a(f) R (fu): for fro..., fu € Ha
4.5. The expression of the dynamic in the Fock space. We will apply the

results of Section 4.4 with Hg = L*(R};R) and He = L?*(R%;C) = L2 and get an
isomorphism

D:TL} — L*(Qp,P).

We set Ad{A}[B] = ABA~! and for Hilbert spaces H and H’, Try[A] denotes
the partial trace of an operator A on H @ H'.
Note that with the stochastic presentation

p’]ﬁ,m:/i P ac(@n) dPy (@)

QN

= /QAd {GN,%@N}[P] dPn(wn)

= /Q]éd{e_i%th’wN}[-~-/QiAd [e_i%Hh’WI]{p}dP(wl)-“} dP(wy)

= /gAd {e*i%H*"W}[/Q pljiffl,At(wal)dPNfl(wal)} dP(wn)

AN

= [ Ad{e ¥ Hnan ok 4] dP(wn).
QN

The last integral can be expressed using a partial trace as
/e_i%Hh’“pei%H’““ dP (w)

At

= /e_i%Hh’“pl (W) 1 (w) " n Hrw dP (w)

52} 53]
= Tr U e*i%deP(w)p®I1><ll/ e st dP (W) |

L2(Qp,P)

The isomorphism
Uger =1dr2 @ D: L2@TL, — L2 ® L (Qp, P)
is such that
1 ® i At o1 i At [
Ul [ e 0 d () Ugep = e 811,

Uglpp® 1) (1| Uger = p@ |Q) (]
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with UL, [ Hy, o dP(w) Uger = Hy. And thus

©® ©®
[/ e_i%Hh’“dP(w)p®|1><1|/ ei%H’W’d]P’(w')}

= T [ ¥ p @) (e
rr2

Tr
L2(Qp,P)

The only thing left is to compute Hy,, but UE:}—F (Vﬁ(m)x) Ucer = Pq(r V). We
get that in the Fock space formalism

N
Pheae = (Tr [Ad {3 L @ 10) <Q|J}> f

rL2
with Hy, = U5} p Hy o Uger = — Ay + V2RO (7, V).
4.6. Existence of the dynamic. We will show that the dynamic of the system
is well defined and to do so we will show that the Hamiltonian is essentially self-
adjoint on a certain domain. We make use of Nelson’s commutator theorem which

can be found in [29]. Since we work with a fixed h > 0 the value of h will be
unimportant we take h = 1 in this section to clarify our exposition.

Theorem 4.11. Let N’ be a self-adjoint operator with N' > 1. Let H be a sym-
metric operator with domain D’ which is a core for N'. Suppose that:

(1) For some C; >0 and all w € D',
[Hul < Cy[Nul|,
(2) For some Cy >0 and all w € D',

2
[(Hu, N'u) — (N'u, Hu)| < Cs HN’l/QuH :

Then H is essentially self-adjoint on D' and its closure is essentially self-adjoint
on any other core for N'.

Let D" := C5°(R%) @8 I'p L2 be the domain of both
N =1d- A, + N,
H= —A, +V20(1V)
where
e —A, denotes the operator —A, ® IdpLg,
e N denotes the operator Id 2z ® N with N the number operator on FLfJ and
e ®x(7.V) denotes the operator defined on L*(R%;TL2) ~ L*(R?) ® T'L2 by
2 (md. 72 2(Rd. 172
L*(R%T'Ly) — L*(R% T'Ly)
u— (r.V)u
with [®(7.V)u](x) := [®(7.V)][u(x)].
We still denote by N’ the closure of the essentially self-adjoint operator N’ defined

on D’'. Then D’ is a core for this operator. We remark that N’ > I on D’ and thus
also on D (N') as D' is a core for N'.

Proposition 4.12. Suppose that V belongs to H?(R?). Then the Hamiltonian H
satisfies the hypotheses of Theorem J.11.
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Proof. Let uw € D', then

VN + lu’

1Hulagrrs < | -Actllzzors + 2Vl raersy’

< @ +2[VIL) IN'ull 2 g2
which is the first estimate. We also observe that in the sense of quadratic forms
[H,N'| =V2[®(1.V),-A, + N| ,
= V20 (1.VV) .V, + V28 (1 AV) + (a* (1.V) — a (1.V))
so that

[(Hu, N'u) — (N"u, Hu)|
2
< (V2IVVIL + VEIAV | + 21V 2 [N/

which is the second estimate. O

5. AN APPROXIMATED EQUATION AND ITS SOLUTION

5.1. The scaling for field operators. The € parameter is an intermediate scale
which allows to easily identify the graduation in Wick powers. It will in the end be
adjusted with respect to h. Let (D.f) (y) = %2f (£) and

Hiye = Ad{ldpz € TD.} [Hy] = A, @ I, +V2ho («=2V (2 = £)) .

We now introduce some definitions and notations that will be useful to deal with
the Wick quantization and the scaled versions of our objects in the Fock space.

5.2. The second quantization. The method of second quantization is exposed in
the books [5, 7], an introduction to quantum field theory and second quantization
can be found in [14]. The series of articles [18, 19, 20, 21] uses this framework with
a small parameter to handle classical or mean field limits by developing the Hepp
method [23]. We will use the notation and framework of [1, 2] to handle the second
quantization with a small parameter. For the convenience of the reader we expose
briefly this framework. We also recall some formulae in Appendix E.1.

Most of our operators on the Fock space will arise as Wick quantizations of
polynomials.

Definition 5.1. Let (#,(-,-)) be a complex Hilbert space (the scalar product is
C-antilinear with respect to the left variable). The symmetric tensor product is
denoted by V. The polynomials with variable in H are the finite linear combinations
of monomials @ : H — C of the form

Q(2) = (2V1,02"7)

where p,q € N, Q € L (H'P,H"9) and (-,-) denotes the scalar product on H"9.
The set of such polynomials is denoted by P (H).
The symmetric Fock space associated to H is

+oo
I'H=r.n
n=0
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with T',H = HV" the completed n-th symmetric power of H and the sum is com-
pleted, the set of finite particle vectors I' pH is defined as the Fock space but with
an algebraic sum.

The Wick quantization of a polynomial is defined as the linear combination of
the Wick quantizations of its monomials, and for a monomial Q we define Q" :
I'rH — I'rH as the linear operator such that

QY| =1y 4oy () Vnin—ptq) ria (Q\/Ide,p) 7

(n—p)!
€ L(HY™ HYPTPHI)
The field operators ®.(f) (f € H) are defined as the closure of the essentially

self-adjoint operators ((z, f) + (f, 2))"“* /v/2.
The Weyl operators are then defined by W (f) = exp(i®.(f)). The empty state Q

is (1,0,0,...) and the coherent states are defined as E(f) = W(gf) Q.

Proposition 5.2. For any Q € P(H), Q¥ is closable and the domain of its
closure contains

{W(f)o, o elri, feH}.

Definition 5.3. For a self-adjoint operator A on H, the self-adjoint operator dT. (A)
is defined by

dr.(A)| =enAVIdy !

D(ayvmalg
—c(AQIdy @ - QIdy + - +Idy ® - @ Idy ® A)
and for a unitary U on H, the unitary operator I'(U) on I'H is defined by
PO)|yun =U"=U®---@U
and thus T'(e"4) = exp (£ dI.(A4)).

5.3. Space translation in the fields and Fourier transform. We introduce a
notation for an object X = (X1,...,X,) with d components, like ¢ € R?, D, =
(Ozys -, 0z,) or dT'(Dy),
X2 =X+ 4+ X2,
We would rather have a field operator with no dependence in x. Then we recall
that e~ Pv = 7, and thus

I\(eiam.Dy) Hh7€I\(e—i8;E.Dy)
-2 _ 2442 —d/2 [hy (_¥
D2 —2D,.dL.(D,) + dI(D,)? + V2, < by (—1)

where we use an e-dependent operator dI’.. After a conjugation by the Fourier
transform in both the particle and the field variables we get

Hh,s = 5'2 —dIL(26.m) + dFs(n)'2 + ﬁq)s(fh,s)
with fp, o(n) = ad/z\/gf/(—an), ie. Hy . = Wik with

Qne(2) =62+ (2, (en® = 26m) 2) + (2,02)° + 2R (2, fue) -
When we neglect the quartic part (z, 772>'2 and thus get another polynomial
Zf)f (2) =¢&2 + <z, (an'2 - 2§.n) z> + 2R (2, fne)
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we can solve explicitly the evolution associated with the Hamiltonian
HPP = QPP Wik = ¢2 4 dL (en® — 26m) + V2. (fr.c) -
Definition 5.4. Let p € £, (L2), then we define

= Ad {e_iﬁH’“E } [p@projQ],  pi** = Ad {efiﬁHZ’pf} [p® proj Q] ,
po=Ad{e e A @ projQ] B = Ad{ Y 5 @ proj ]
pt—FTLl;pt, pi“pp*FTLl;p

This definition is consistent with the previous one given for p! as pl' = p‘%t and
the dilatation acts only in the Fock space part of L7 @ T'L?.

5.4. The approximated equation and its solution.
5.4.1. Results.
Definition 5.5. Let ¢ € LZ. We define
\i/h,s,t = it g 1/30 and \Ilzpft — T ® o .
We will show three results in this section.

Proposition 5.6. We have

h,e,t

WHE = e T W (L) Q@ o

with zper = —i f(f emiE (" 725'5’7)]“;175 ds and wp . = & + fg R (zs, freyd
We have an estimate on the size of z;.

Proposition 5.7. There exists a constant Cq q depending only on G and the di-

mension d such that
ht B
Il el < Coaf 2etrzr

We also have an estimate on the error on W, when considering Wy??.

Proposition 5.8. Let Ty > 0. There exists a constant Cr, q,a such that for t <

T07
ht _
< CTO,G d ( E ) h 1 .

5.4.2. A transformation. First we get rid of the quadratic part (i.e. dT%).
Definition 5.9. Let

X t 2idFE 2_o app 2'LdFE 2_9 app
Wyet=c¢ e (e gn)‘I’h,s,t and ‘I’hat =e'et (e En)\Ph,a,t-

yoP

hst

Proposition 5.10. Then U, (resp. \ilgpp) 1s solution of the equation
iéat\i’h et = QhW;Ck‘i’h et
(Tesp ia(?t\l/hpft = szp Wick WP, ) with the initial condition \I/h et=0 = § (resp.

\Ijlflzpspt 0 Q) and Qh,a,t('z) = 2§R<27 fh,a,t>+<zv 772>' (resp. Ql}lzz,)gpt(z) = 2§R<27 fh,a,t>)
with fh,s,t — ¢it("n?-26.em) fhe
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Proof. Indeed
ia&t\i/t = ie@t [eiég.zei% dFE(En‘2_2£-n)\i/t:|

o A Wick .
— eicé 2615 dr (en *~2¢.m) [2% (2, 1)+ (2, nz>'2}

2

= {2% <Z 6“(“"2*25'”)f> + (2 772>'2} WK e itar.(en®~26)
e,

And we can proceed analogously with \ilfp P 0

5.4.3. The classical movement associated with the approximated equation. The clas-
sical movement is the solution to the equation

{ Z.8%2}1,5,15 = ai@h,s,t (2h,5,t) = fh,s,t

(5.1) -
Zh,et = 0

7.€.
b t S5 (.2, .2
Ppes = —i/ Fresds = —i/ eiE(Fn?=2en) £ g
0 0

With this simpler dynamics the translation of Proposition 5.7 is the following.

Proposition 5.11. There exists a constant Cq,q depending only on G and the

dimension d such that
- | ht B
|||77|V2h,€,t||L% S CG,d ?81/2 V.

2
Proof. We compute |||n]” zh7€,t||L%

t ot ,
- 2 ;S5—S 2,2 __
)" Zneelss = / / / el = (=) |2 g )2 dids ds’
" o Jo JRd

A change of variable ' = en — £ gives

cs—s’ 2 .2 . 2 2
[ e e gl an
RTI

h  s—s . el R
e / S € G+ €) dy
Rd

n

as fio() = =472/ 2V (~en) and & Glen) et = | o).
For s # ¢

cs—s’ 2.2 . 2 2
[ e e e g
R'ﬂ

- (= )d/ﬁ |7 (0 1+ € Gtn + ©)|

s’ —s

-(75) " e ew)

s’ —s

1

Lt
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is uniformly bounded by C; e =2 2. The squared norm |[|[n|” Z"* I3 12 1s then bounded
by

v h _ ot TE /2
Il7] Zh,a,t”iz < CGEE 2”/ / mln{(s/ s) ,1 5 dsds’
g 0o Jo -

< CGEE_2U 7Td/2€d/2/ dsds’ ——s t+ 2V/2t6
€ |s s/\>25ss €[0,t] (S/—S)

<ol [ d/2 d/22d/42ft 61 d/2+2ft6}
e

which is optimal when é = . This achieves the proof. O
Remark 5.12. The same estimate holds for z; with a similar proof.

5.4.4. Resolution of the approximated solution and comparison with the exact solu-
tion.

Proposition 5.13. The solution to the equation

_ app,Wick g app
Zsat h a t Qh,a \I/h,a,t

with initial data \Ilzpft o= is
©Op et ~
B, = o (5, 0

with ‘Dh,s,t = fot §R <5h7575, f~h1575> dS.
Proof. Indeed let us apply icd; to the term on the right hand side:
ieoreHw(Lz) 0

- (atw—%<- f>+fq>( )) garr
since 1 (i, [W(z + tu) — W(2)] ) = (o, [-5S(z,u) + i®(u)| W(2)y). O
We then compare ¥; and Wi,

Proposition 5.14. Let A\i!;w_-,t = \i/;w_-)t — \ifzzzt and AQ, (2) = (=, nz)'2, then

~ . t ~
~ (3 ct—s AWick ~ AL A
—1 Wick . \J,app
AV, = _5/0 e Yhe T AQ \I/h)&s ds.

Proof. Tt suffices to remark that
ie0, AW, = QWIF AT, + AQWW’“\IJ“””

and that the integral expression satisfies the same differential equation. 0

Proposition 5.15. The difference A\ilhysﬁt can be controlled as

< L ("0 s Awi
HA\IJhyi,t / HAQka\IJaPP g / HAQchk E(gh,s,s) ds.
0
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Proposition 5.16. Let Ty > 0. There exists a constant C7r, ¢.q such that for
% < TO)

AWick sapp ht
HAQ E(Zh,a,t) H < OToyG,d? .

Proof. We make use of the relation valid for coherent states
Wick

<E(2h,s,t>; (AQWiCk)*AQWiCkE(2h7E,t>> _ Symb( (AQka)*AQka) (2h,5,t) )

Since

Syrb ((<<Z,m>»2>wm)2)

2 . .
— ( (z,mz) 2) +4e ((z nz).<772|)(|nz).<z,772>)+2£2(<772|®2)(|nz) ®2),
5.11, we obtain that

2 ht\* ht\? ht B\ 2
<Cr,c.d <<?> + 4e (?> = + 22 <€_2> )

which gives the result for 2 ? <Tp. O

using Proposition

HAQWick E(Gh.cs)

Proposition 5.17. Let Ty > 0. There exists a constant Cr, ¢4 such that for
ht

= < TO)

e =

X 1 [t ~ 117
[adned] <2 [ ]aQ7 e B as
0

ht
< CTO,Gdh_ ( Z )

6. MEASURE OF AN OBSERVABLE AT A MESOSCOPIC SCALE FOR THE
APPROXIMATED DYNAMICS

6.1. Result. In this section we make the connection with the linear Boltzmann
equation.
Let b be a symbol in C§° (Ri‘fg) and p € LTL2, Trp = 1. The measure of the

observable bW (hx, D,) in the state p is denoted by
m(b, p) = Tr [bW(hzzr, Dy)p] .

Proposition 6.1. Let b be a symbol in C°(RE x Rg*) and p € LTL2, Trp <1
such that the kernel of p = Ad{F}[p] has a bounded support. Let o € [0,1].
Introduce the symbol by = e!Qe?*¢-% b where Q is the collision operator introduced in
Equation 3.1 with here o/(£,&') = 2nG(&' =€) = 2n|V (€ —&')|>. When h® < bt <1,
the inequality

b, ) > (b ) — £

d/2—1

then holds with Eg = Cy,, 12 <% +h+ [h (%)71} + h“(d’o‘)> for some con-

stant Cy,, > 0 and p (d, o) > 0.

Remark 6.2. This result also holds with b a symbol in C§° (]Rg*; C). The proof is the
same as for Proposition 6.1, with the symplectic Fourier transform F7 replaced by
the usual Fourier transform. The special case when b (&) = b1(|¢|?) is of particular
interest and the symbol b; in the previous statement does not depend on t.
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Proposition 6.1 is a by-product of the following stronger result.

Proposition 6.3. Let b, € Cl(R;D(Rié)) such that for some R > 1, and for
all s, Suppgbs C Br — Bp-1. Let p € LIL2, Trp < 1 such that the kernel
of p=Ad{F,}[p] has a bounded support. Then

m(bse. o7

.
> m(b, p) — é/o m(z’s()sbs —ih {bs, &2} + ihQ,%bs,pgvapp) ds — &g.

Remark 6.4. The conservation of the support in £ is important and will be provided
by the properties of the dual linear Boltzmann equation in the application of this
proposition.

Proof that Proposition 6.3 implies Proposition 6.1. Since one can make mistakes
between the notations of those two propositions we use notations with tildes, b
for Proposition 6.1 and without tildes for Proposition 6.3. Thus we want

b="bn , bt =b.

€

Denote by G (t, o) the dynamical system associated with (—2¢.9, — Q—+), given by

Oby = (—2£.0, — Q_4) b -
o ( 5 Q t) ' ) bt - G(t,to) bO .
bt:t[) = bO

To have a vanishing term for b in the integral we require by, /. = é(%, 0)b, so that
with by, Je = G (0, —%)I;, we will get the expected result. The only thing remaining
to prove is G(0, —t) = e!Qe€-9x Tt is equivalent to show that

e2t8:0: 3 (t,0) = e 1@
which is clear by derivation and using that Q, = e!?¢:% Qe 1269 O

6.2. Expression of the measure of an observable for the approximated
equation. We carry out an explicit computation using only the approximated
equation. We recall (see Proposition 5.13) that the solution of the approximated

equation with initial data WP = ¢y ®€Q is (after translation and Fourier transform)

3
~a ~ 7Z-wh,,5,t
\phf)f,t =0 (e ‘ W(ngiat) Q
with 2,0, = —i [ e 2 (17 2) g dsand w, = 24 [ R (2n.cs, fre) ds and fi o () =

ad/Q\/gf/(—an).

Definition 6.5. Let o(X1,X2) = &.22 — 1.6 (X = (x5,&) € Ri‘fg) be the
standard symplectic form on Riflg.
Let X' = (2/,¢') € Riflg, the Weyl operators on L2 are defined by

. ! W . ’ . ’ 4
= (77O (h, Dy) = 0o X) T (aiD) _ i€ et D),

their Fourier transform is denoted by 75 := Ad {F,} [7].
The symplectic Fourier transform F° is defined on L? (Riflg; C) by

Fob(X) = /R2d e_iU(X’X/)b(X’)dX’



A DERIVATION OF THE LINEAR BOLTZMANN EQUATION 22
with dX = dX/(2m)%.

Proposition 6.6. Let b be a symbol in Cg°(R2%) and p € LT L2, Trp <1, then

7 aapp // ]__U _d[w]4 vzhE lv,pala Ah(fz,fl) A(ﬁl,fz)dfl d§2 dr

with

(6.1) [w] = wp' — wp

(6.2) [el, = [l + (9] 2
(63) (Pl = lef 7,5 =1,2
(6.4) [0, Pa]y = <Zfzaei””'€"251> :

Remark 6.7. From e®%-A 7l e=ie2-X — ¢ieAPe 71 and taking A as the spectral pa-
rameter of dI.(D,),

I\(eiam.Dy) Tl}; F(e—iam.Dy) _ I\(eipm»aDy) 7_1};

and after conjugating with the Fourier transforms, we obtain
Ad{(Fr @ TF,) T (e Pr)} [7p] = T(eP==") 7.

Proof. As bW (hx,D,) = [ Fob(P)7pdP, we have for p € LT

m(b, p) = /f”b(P)Tf[T;; p|dP.
By translating and Fourier transforming we get the expression
m(b, p;P?) = / Fob(P) Tr[pPPT (= =m) #15] AP
We conclude with the Lemma 6.8 below. O

Lemma 6.8. The kernel Kp of the operator Trrrz [P{PPT(eP=m)] on LF is

€1 &2
h,e,t “hiet

Kp(€1,62) = o752 ey, ga)e 22 (e Pt Pt e
Proof. Using p® [ (Q = [ [ p(&1, &) |92) (2] d& d&s we get

app P -EN
o [pi"" T (=]

52 52
= Tr / / B(z
Ph R IR
and by the rules of calculus on coherent states we obtain
Kp(&,&) =e™" (51,52)< (2%)
:e—iwfl*w? N S e e SN Gty

which is the result of the Lemma. O

ipg-en &1
zh,,s,t>)

E(}?)

wfl 52
e e p(6, &) A&y A&l (e ”’”")]

61 62

D(e =) |B(:f) )
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Definition 6.9. For j = {,},—, + we define

mi = [ FTHPY T () o P
P

where the operators @7; p are defined by their kernels, according to the notations
of Equations (6.1), (6.2), (6.3) and (6.4),

(6.5) ih gy p(61,&) = 7p(€2,61) O [w]

(6.6) ih /3 5.p(&5) = 1’3(52,51)&% i=1,2,
(6.7) ih . p(&1,6) = i0; [l 7582, 1),

(6.8) ih et pley) = i0 el Ph(E2,6), 5 =1,2,
(6.9) ih oy p(&1,&2) = 104 [0, Paly 71 (E2,&1)

The indexes {, }, — and + were chosen to recall the terms of the linear Boltzmann
equation, {,} corresponding to {£2,-}, + to Q4 and — to Q_.

Proposition 6.10. Let b; € C}(R;C§° (R2d ), then the equality
icdym(be, ;") = m(iediby, p; ") 4 ih (myy —m_ +my.)
holds.
Remark 6.11. Later we will put each of those terms m; in the form
my = mles, 057) + A,
where A; denotes a small error term.

Proof of Proposition 6.10. Indeed

iedym(b, pp ")

= ///P5 . [F7ie0ib(P) + F7b(P) {0; [w] —i0; [¢]; + 10 [¢, Day}]

Heltlely —lepaly g

em 5 tp(&, &) p&r, &) dé dE aP

and so it suffices to prove the following lemma. O

Lemma 6.12. For j ={,}, —, +, the formula

%[wH[vJ]l [e,pa]o

Tr [p¢"" T(e™=*") / i (P, &,62) e p(&1,&2) d&r d&
holds.

Proof. Indeed
Tr [y T (e'<") o} p]

- / b1, &) (BGE)

// (€1, 60) e R i p e ) dey des.

wfl _ .82

I'(eP=<m) ‘E(zfl)> e T =

”(Z{](Pa 51 5 52) dgl d§2
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6.3. Two estimates. We will need several times these estimates to get rid of the
term I'(eP=*¢") and then control small errors on the operators Ap.

Proposition 6.13. Let o/p be a P-dependent family of operators in L(Lg). Then

_ a i ht -
(py~* |Tr [p{P (D(eP= <) — Id) @p]| < — sup (P) * Pl 212
€ pecRr2d £

and
FIb(P) T [p{*" (T(e= ") — 1d) «/p|dP
R2¢
ht k —k
< —||(- 7 2\ .
< 7 [0 Fn), s ) el oz

This can be proved in two steps.

Remark 6.14. It suffices to prove this property with p = |1) (1| with a ¢ with
bounded support as any p € EIFL?C, Trp =1 can be decomposed as

p="3 A lus) (v
Jj=0
with positive A;’s and >, A; =1, and

Supp 5 (£,€') C B3,  Vj, Suppvy; C Bas .

Lemma 6.15. Let o/p be a P-dependent family of operators in E(L%) and U be a
normed vector in Lg ® I‘L%. Then

‘Tr [proj 1\ (r (eipz'sn) —Id) «!pr] ‘ < H (r (eipz'sn) —Id) \iJH H”Q{PHL(LE) .

Lemma 6.16. There exists a constant Cgq,q which depends only on G and d such
that
ht

P =) — Jyarp
H Id) h,e,t

’ < CG d
Proof. The calculus rules on coherent states give

2
H lpm 577 . Id) \I]app _ SU.p HE P 8772}51 ) — E(zlgz,s,t)

1
= sgp2 (1 — cos (5 <€sz Enzi,g,tv Zlgzst>))

ht\ 2
<CGd<E> ;

where the last inequality is obtained using |1 —cost| < t?/2 and the estimates
on ||zl O

’ 2

Proposition 6.17. Let &p be a P-dependent family of operators in E(Lg) and p
be a state on Lg ® FL%. Then for any integer k (with possibly infinite quantities)

/ Fb(P)|Tr [p &pl|dP
R2d

< || Fo

su ke H .
Ly pH P £(r2)
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6.4. The transport term my ;. The result of this section is the following.

Proposition 6.18. Letp € L] L2, Trp <1 andb € C§° (Ri‘flg) such that Supp p(&, &) C
B}%z , and Supp; b C B for some R > 0 then

myy =m(—{b,€%},1) + Ag
with [Ary] < Ca.rp (B + b+ (£)772).
It is a consequence of the following more accurate result.

Proposition 6.19. Suppose the hypotheses of Proposition 6.18 are satisfied and
keep the same notations. The term Ay can be decomposed as

3
Ay = Apy,

j=1
with, for some integer k,
(1) [A | <22 () Foblpy O (14 h+ [p(2)=1)2/27),
@) [Agy2l < (IF0l, + 1 F Foblly ) O (h+ (5)F7),
(3) [A¢ya| < ZIF7{0, €} -

Remark 6.20. The operator <7 1 p is actually
Ayp =~ (75, Quwx]
{.},P ih Py Ut .

Remark 6.21. We can introduce a cutoff function xr € C§° (Rg) such that xr(Bgr) =
{1}, xr(R{ = Br+1) = {0} and xr(R{) C [0,1].

This result will be proved by considering successively every error term. These
error terms Ay 5, j = 1,2,3 are given by the following approximation process
(where we write shortly BW for BW (—hDg,¢)).

o _Aa D - 1 ..
m{)}:/P]: b(P)TI‘ ptppF(epz 577)% [Tﬁ,&th}}dp

o
= [ Foby e [ enen) L xaduox]ap
P L 2

[ 1
:/}"’b(P)Tf i — [?ﬁ,xRath]]dP+A{,},1
P L

~app 1
=Tr |:ptpp E [bW ,XRatWX}:| dpP + A{,},l

2
= —Tr [ (b xne 2}V AP + 3 Agy,

Jj=1

2
B /Pf“( — {0, €2} (P)Tr [ 7B]AP + 3 Ay

Jj=1
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3

= [ F 0 P e a0 Ay,

Jj=1

3
=m(—{b, &7t + > Ay,
j=1
The quantities Ay, ; are defined by

: 1
Agya = /P F7b(P) Tr {ﬁ?pp (D(e==") = 1d) — [%};,xRath]]dP,
~app 1 h W
Apye =T |p" = [0, xrowx] = = {b,xr¢?} " ) AP,

A{,},3:/PJ”"(—~{b,§'2})(P) Tr [p§#P (Id — T(eP==")) 73] dP .

We will use the structure of d;w:

Proposition 6.22. The time derivative of w is given by
ter 2 .
Owwn et = &2~ h%/ / eis(n _25'")(?(17) dnds.
o Jrd

Proof. Differentiating w with respect to t,
6twh,a t = 5'2 +R <Z}€ et In €>

- +8%/Rd [ ) 1y P asett o2 g

which is the result once we replace f, . by its expression in terms of V, use G = |V|2
and make a change of variable. 0

o

Lemma 6.23. We have, for some integer k,

(7B X ROswh e, X] = %{eia(P’X)aXR€2}W(—hD&§) + hO( (PY*h+ (%)

and in particular || [i']’é, XRath}

MW

k
Remark 6.24. We use in this proposition that G € L..

Proof of Lemma 6.23. We split the commutator in three parts

(75, XrOwwx] = [ﬁ@aXR(f)f'z —hg1(§) + hia (55) X]

with

01(6) == xr(©)S lim //R (07 =26m) () iy ds,

M—~+oco

Ri(u, &) :== xr(§)S  lim // s(n?—-26n) G(n)dnds.
Rd

M—~+oc0

The biggest part, in &2, gives the only relevant contribution

h . Weyl
[7;1]37XR§'2><] = 3 {ew(P’X)7XR§'2><} ! + <P>k On=o (h2) .
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One of the other parts can be estimated without using the commutator structure

1178, B (29Xl g(n2) < 2178 cn) 1 Ba (2 €) x|l e

:

since

. . ~ . . 2 d/2 . o 22
/ ezs(n 2_25,17) G(T/) d77 _ e—zsg 2 / G(x) e—zm,g (_ﬂ-) ezd&gnszem dx
R4 Rd

n x

and thus

Since ¢ is in C3° (Rg) we can apply the symbolic calculus

g (9] = = {20 g9 (“hDe 6 + 0002 (P)F)

where for some integer k,
, w
{2 e} hnee

which concludes the proof of the lemma. O

= (P)* On0(1),
L(L2)

We can then estimate the three error terms A{ﬁ}ﬁj.

Proof of 1 in Proposition 6.19. It is a result of Proposition 6.13 and the estimate
of

|75 s xrOwwh .+ X] Hc(Lg)

of the lemma. O

Proof of 2 in Proposition 6.19. The second error term can be expressed as

o N 1 R h R oW
AL}J - R?Dd]: b(P) Tl“[ptpp E([TI];7XR8tWh,a,tX} - ;{T‘g,XRf 2} )}C{P

so that the lemma and Proposition 6.17 give the estimation.
Proof of 8 in Proposition 6.19. It is an application of Proposition 6.13. O

6.5. The collision terms m_ and m4.

Proposition 6.25. Let b € C°(RY x Rg*) and p € LTL2, Trp < 1 such that for
some R >0, Suppg b C Br — By i and Supp p(§, &) C By. Then

ms =m(Q++(b),t) + Ay

and for any o € [0,1], there are constants p = pu(d, ) > 0 and Crp.G.d,au > 0,
such that for h® < % <1,

|AL] < CR,b,G,M(g + h“) .
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Definition 6.26. For { > 0, 7“6}RamdP€Rpm per Set
1 ¢
¢ ——
K = 2

(6)=2r [ G+ )3l — ) an,
() = %/Rd G(n) K (1 — 26.m) dny,

c%)t(:v, &) =2r 9 G'(n) ei"(P’(_Qt"’_"))IiC(n'2 —2¢&m)dn
n

Associate with these functions the operators Q, Qiﬂf defined by
Q_(b) = cb,
QL) =D,

&= [ FHP)O G, (o 0)ap,

for b € cgo(Rg X Rg*).
Proposition 6.27. Ford > 3, and h® < % <1,

my = / Fob(P) Tr [pPPT(e?==") oty p|dP

m(Q+.¢(b +ZA:I:k

with

[Asa| < 2Cymax{||G| s, |Gl } 570l s,
|Ai,2| S Coz,B,u,G,th;

|AL 3] < O'Niay(b) Ca,,0 for v €10,1],
Bai < H| Qe )

for some v, B> 0 with ¢ = hP.

This result will be proved in the next paragraphs by considering successively all
the error terms. These error terms Ay ;, j = 1,...,4 are given by the following
approximation process (where we write shortly BY for BW (—hDg, £))

my = / Fob(P) Tr [p{" T(e=<") ofs p|dP

/]:U Aappv(zfi p]dP—‘rAi 1

:/wwwﬂwﬂﬁﬁ<)}W+ZAm

j=1
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— ~app
_Tr{pt (ihr }—i—g Ay

3
= [ 7 @) P T [ hap + 3 A,

j=1
4
= [ Fo @t () T [T AP+ Y A
Jj=1
4
= m(Quueb t) + Y Ay
j=1
The error terms Ay ; are thus given by
(6.10) Auy = / Foh PP (TP =n) — 1d) s p]dP,
©1)  Aea= [ FEE)T[p (- (S pe )" fap,
w

(6.12) Ais=Tr { app (Qi b Qtﬁb) ] ,
(6.13) Aiy= / F2(Qq nb)(P) T [p27" (Id — T (¢ 1)) #h] dP |

since 71 = (ei“(P"))W,
(o u b)" = » Fob(P) (. pe ")) " ap,
P

and the same relation holds without ¢ and

/]—" (Qu.1b)(P) Tr [P T(=1) #4]dP = m(Qy 1 bit)

The term A4 4 can be estimated right away using Proposition 6.13.

29

6.5.1. Computation of the operators a/+ p. We recall that the operators <7y p
and &/_ ; po/ = o/ 1 + &/_ o are defined in Equations (6.5), (6.6), (6.7), (6.8),

(6.9) by their kernels
A p(&1,&) = A 1.p(&1) + G 2,p(E2),
ihol5.p(&) = 8( al?) 6, =12,
ih ot p(&1.&2) = 0, [p. paly 75 (E2,61) -
Thus we need to compute 9 (3 |zh '.o?) and 9 [p, ],

Lemma 6.28. The time derivative of §|zp.c.|? is given by

t/e ) , R
) (3|zh,5,t|2) [ [T e G asa.
2 re Jo
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Proof. For z; = Ote_Z 2t ?-2¢ an)fh <ds with f, - () = Ed/z\/7V —en),
T, 2 _
Oy B |2¢]7 ) =R 21024
RY
and 0;z; = —ieﬂé(52 *—2¢.en) fh,e- A simple computation gives

<) | fe(n)]? ds dp

o, (%wz) %/R/

_hm/Rd/ s(n?=26m) G(p) ds dy

which is the expected result. 0

Lemma 6.29. The time derivative of [¢,pz]y is given by

O [0, Pa)y = /Rd/ etPenis(n?—261.m) ,—it (0 ~262.m) ds G(n) dn

+ h/ / oiPa i (2 —261.m) ,—is(n? —262.m) 44 G(n)d
re Jo

Proof. Two analogous terms appear in this computation

oy = sy
n
= <zf2,eipm'8"8tzfl> + <8tzf2,eip”'8"zfl> .
L2 L2
n n
Consider the first one:

<6tzfQ , e”’z"i”zfl>
L2
n

t
_ <ez‘;(5277»2—2&2.817)]%87eipm'f-:n/ e’ ?(8 n?—2¢;. an)fh ds>
0
t
- / / Pt (B -26en) =it (T =26en) g ()2 dy
re Jo ’
t/e
Rd Jo

With analogous computations we get the result for the second one. O

Proposition 6.30. The operators o/_ ; can be expressed as
t/e o, .
A 1p= / / o %(ezs(" 725'"))>< G(n)dsdn,
rd Jo

tle 0 s R
%—,2,P = / / %(ew(n _25'77)) X of'Ifé G(n) dsdn.
]Rd
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Proof. From the definition of &7_ ; p in terms of their kernel, we get

2
ih ot 1p—wp [6t< ‘g‘)x],
ihat op=i {at (5’ ‘ ) }OTP

Lemma 6.28 yields the result. 0

Consider now the term o7, .

Proposition 6.31. The operators </ j can be expressed as

t/e , . o N
AL qp= / / e_w(P’@?"’"))%}@ o e_w(" 2_25'77)6'(77) dnds,
0 R4

t/e
JZ{JF 0 p = / efia(P,(2§n,n))eis(n-272£.n) ° ]i;é( )dn ds.
o o Jre
Proof. Lemma 6.29 allows us to write

Ay1p= / / etPeno—it(m?=26m) o #ho pis(n?—2¢m) G(n)dnds,
Rd

t/e N
Ay 2 p —/ / giPene=is(n?~26m) ol oel it (n?-26m) G(n)dnds.
]Rd

Since
e2item o f]f; _ 6—21'%17577721@ o 621'%5-77
7;}}; o 6721525.77 _ 6721%1)5776721%25.77 TII;,
we get
t/E . t -t .2 ~
Apaw= [ [ P o )02 G agds,
0 d
t/E ; t T .2 A
Jz{+721p = / / eiZU(P’(an’n))el(Eis) (77 725'77) o AI}; G(T]) d7’] ds
0 R¢
and with a change of variable we obtain the expected result. O

Thus we get six different terms (four for the &7_ terms due to the real parts and
two for the o7, terms) with a very similar structure. In order to avoid repeating
analogous calculations several times we introduce the following notations.

Notation: Set (by writing shortly BY for BY (—hDg, ¢))

(614) JZ{F} (5) = /d G(n) eﬂlia' 7:;__7; o 67“21.5(77»2725'77) d’[]7
R
(615) %}j(s) = /Rd é(n) e,ulw 7,(h —pa2em,pe) e*#m’sn’ dn,
~ U w d,,7
6.16 @ :/ O (o115 gio(P)
(6.16) =] G ( ) e
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(617) JZ{;(S) = / G’(n) ellfli&e‘u2is(n~2,2§n) o 721}; d777
Ry
A i o isn2
(6.18) '%lzi(s) = - G(n) e T&z+u22sn7ps)e#2 "dn,
n
N . W dn
6.19 w2C — / G(n eh1iF i (P;:) . 7
( ) “ Rd ( ) ( ) C_ ol (77.2 _ 25',,7)

with 6 = ¢ (P, (—2h§77, —77)). The terms py, po are chosen to adapt to the cases
of the terms m.
More precisely, for j = 1, 2, the previous quantities become

Ly i
5 /0 (%,1(5) + JZ70,—1(5)) ds,
t/e
Ay j = "2{1]1(5) ds.
0

Ay

We will first show that the operators Cfé are good approximations of the op-

erators &; = Ot/s /;(s) ds if the parameter ¢ is well chosen. We use the opera-

tors (f/a Hji(s) ds as an intermediate step.
Then we study the limit of the operators %”5, with a distinction between the
cases m_ and m.

6.5.2. Estimate of the error terms Ay ;.
Proposition 6.32. For d > 3, the inequality

8] < L Cmax{[Gllus, |G } 1F7D
holds.

Proof. The term Ay ; was defined in Equation (6.10). This inequality follows from
Propositions 6.13 and 6.33 below since s — min{1,s~ %2} is integrable on Rt
for d > 3. O

Proposition 6.33. The families of operators </ (s) = 4&75(8) satisfy
17(3)] a2y < Camas{[[Gll1a. |G} minm {1,572}

Proof. By a uniform estimate of Equations (6.14), (6.17) we get
|7, = CallGllss.

£(L2)

In order to obtain the part of the estimate with the dependence in s, we use the
formula

o= o, (06}

2
£(L¢) ol z=lell z=1
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We can then compute, for 1, ¢ € L2,

(.27 (s) >

Joy e
Jy

1
/ 1/}9;90u0 W)ddt?,

where we defined, for 6 € R,

it 2h oe—uziS(n‘2—25~n)Qp> dn
3

SEH

PU(E), e — s (2 —2¢€. n)<p(§)>nd§

ma

=

oo = [ et )6 dy,

v = [ €™ Gn) 1 ve) diy.
We first compute

p (9+u2 2s€+p (2hSP§ *Pz))2

Piio (€) = (ﬁ)d/z ‘ i (9)

where we used the formula

/efiznefanz dT] _ (Z)d/z 6712/4a
a

with a = pois and © = — (6 + p22s€ + p1 (2hspe — pz)) and so for a fixed 6

T /2
- < |- .
||<Pu,9||L§ > (s) ||90||L§

We now observe that in L' (Rg; £L(LZ))

[ enm ity

50 that [sll a2y < Ca Gl [l And finally

< 2G| 1.

L (REL(L2))

1
(2m)"
N\ d/2
< CallGllgs (Z) 7 lelze 12

and we obtain the desired result ||JZfﬁ(S)||L(L§) < Ca |G s—d/2 0

(¢, i (s) )| <

”U’GHLI(Rg;Lg) ”Sﬁﬁ,eHLm(Rg;Lg)

6.5.3. Estimate of the error terms A4 5.

Proposition 6.34. Let a € |0,1]. There are constants 8 = (d,«a) € 10,1[, v =
v(d,a) €10,1[ and C = C(e, B,v,d, G) > 0 such that, for h* < % <1, and ¢ =h",

A o] < || () Fobl| O
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In order to prove this result we use Proposition 6.17 and thus control

t/e
/ o (s)ds — €°
0

We first give an abstract result and then show that our cases fit within this frame-
work.

L(L2)

Proposition 6.35. For M, t, ¢ such that 1 < M < t. Suppose given (< (s))s>0,
(B(5))s>0 and (€°)o<c<1 three families of operators in L(L?) (also dependent on h
and P = (pg.pe)) such that for some constants Cor, Cor 3, Cpw, independent
Of h7 E? t’ P7 M7 C7

(1) ||.;z¥(s)||£(L§) < Cymin{l,s™ 42},

(2) 17(5) ~ H(6)] c(z2) < Cor b e,

(3) rem(z, &) = Symbweyl(foM B(s)e ¢*ds — €°) satisfies for some k =

k(d) € N,
M

k
o 02 crell,z, < Cae (P (—) oM

| ¢

Then, for CM >1,
t
1) | o ()4l < dzcd

t _
) IS o7 (s) ds = 3" (5) dsll cquzy < 25 Cor M
( ) dependmg on d,

vl

7

M
_¢s 9 .
||/ A (s) (1 —e S )d$||£(L§) < §Cd<1/2 ifd=3
0

< 5Cw(|log(lifd =4

N

< Cutygy iaz

(<50,CH%  ifd>3),
(4) [ fo" (o (s) = B(s)) e ds| p(rz) < $Cur,mhC2Ipe],
(5) for some integer k = k(d),

M
/ B(s)e ¢ ds — €°
0

M\
< CapCaw (P)F (—) e M

£(L?)
(6) Let % > he, ¢ = h? with B € ] [ and B+ a < 1,~and v = V(d,a,ﬁ) <
min{(1-a) (§ —1),5(d), 1-25} with 33, 8) = 8/2, (4, 8) = B and 3(d >

5,8) = 8 we have
/é;z/(s)ds—%C
0

with C = C(v, o, 8,Cos, Coyz, Cape).

< Ch"
£(r)

Proofs of 1 and 2. By integration of the first assumed estimate and using 1 < M <
L for 2.
g

O



A DERIVATION OF THE LINEAR BOLTZMANN EQUATION 35

Proof of 3. By integration of the first assumed estimate, using 1—e~%* < (s for (s <
land 1 —e %5 <1 for (s > 1,

/OM (1 — efcs) min {1, sfd/2} ds

1 1/¢ " +o0
gc/ sds+g/ sl—fds+/ s~2 s, ifd = 3,4,
0 1 1/¢
1 “+o00 "
gc/ sds+g/ si72ds, ifd>5,
0 1
which brings the result. O

Proof of 4. We control ||/ (s) — ‘%(S)HL(LE) using the second assumption and use

M +oo
/ se %% ds < CiQ/ ue “du.
0 0

O
Proof of 5. The known estimates for pseudo-differential operators give
|7 (=hDe, €)|| < Cr.x Z Ha;frHLOO(RM)
|a| <Ny
< Cqp sup |[09¢rl, . .
s 0] e
This and the third hypothesis imply the result. 1

Proof of 6. We would like to choose the (h-dependent) parameters M and ¢ such
that the quantity

¢

with (€ (3,¢) = V<, C(4,¢) = ¢ |log¢l, C(d > 5,¢) = ¢), is small when h tends to 0
and M not too big. We choose hM/ = h* and ¢ = h® with B+a < 1, o, 8 > 0 so
that the previous quantity is smaller than

A=) ($-1) 4 pBd.B) 4 p1-28 | p—k(1—a+p) exp (— (hﬂ+a—1))

(with 3(3,8) = /2, B(4,8) = = and 3(d >5,8) = 8 ). In order to get a small

quantity it suffices to require 8 < % Then we get an error term whose size is

controlled by h¥(@:8), 0

k
M™% 4+ {(d,¢)+h¢2+ (%> =M

Proposition 6.36. The families of operators </ (s) = JZ{F{(S), B(s) = %’fz(s) and
¢C = ‘Kg’c satisfy the hypotheses of Proposition 6.35 with

Co = Camax{||G|| 11, |Gl } . Corm = ||l11G] ., Cae = |V G,

for some integer k.

Proof of 1. See Proposition 6.33. O
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Proof of 2. We show the result for ﬁ%ﬁl and ﬂé, the proof can be adapted to the

case of szpf and @% We observe that
~h H2182€.m __ —m2isnhpe ~h
TP © (e X) =€ TP—(1u22sn,0)
and

. . w

Thus we obtain the estimation

o (ers2emx) — (el (PR enaisan) <—hDg,5>H < hslallpe]
£(L?)

Since the Weyl symbol of %’}2(5) is
1/ é(n) ei#15eiU(P>X)e*#ziS(fTZ*QE-n) dn
2 S

n

we finally get

I3 5) = B3| 0 < Bsloel [ Gito) g
and this concludes the proof. 0
Proof of 3. The Weyl symbol of fOM %}7(3) e ¢ ds is

Weyl M
Symb/ %}7(5) e %% ds
0

. M
_ (;(,7) oh116 i (PX) e~ h2is(n?—26m)—Cs an
—hai (1 = 28m) = (| |

RS
Weyl 1,
= Symb %" 4+ rem
with
A o (PX)e—HziM(ﬁ’2—2E-n)—CM
rem(@,§) = — [ Gln) et : dn.
‘ Rd pai (n? = 26.0) +¢

The remainder term r¢ 5 is in the symbol class S(1), and for k& = k(d), the operator
norm HTZVM(—hDg, f)H can be controlled by
’ ey
sup (|09 cre M|, oo -
o<k H £'¢ Hsz

Thus we consider

o ercan(e O] < [ Gl () (M )" e
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for some k = k(d). The same proof holds for %%(s) and ‘55’9 O
6.5.4. Estimate of the error term A_ 3.

Proposition 6.37. Let b € C§° (Ri‘)’lg) with Suppg b C Br — By/g for some R > 1.
Let v €]0,1[. There exists a constant Cg p~ > 0 such that, for all { >0,

|A_ 3| < ONE(B)Ca b,y
for some integer k = k (d) big enough.
Proof. We recall that
~AQ C w
A g="Tr [pt“’ (@b -@b) (~hDe¢ - dw))}
so that

w
Acal <] (@60 @0)" (hDeg—arm)

L(L2®TL2)
< C.aNk (Qc_b - Q,b)

for some integer k big enough. By recalling QC_ (b) = ¢S band Q_(b) = cb it is then
sufficient to prove that

sup  sup |0 (¢¢ =) (©)] < Chiyc.rC”
la|<k£€[R™1,R]

This is a consequence of the Lemma 6.38 below. O

Lemma 6.38. For any integer k and y in [0, 1], there exists a positive constant Cy ~.q,c
such that for ¢ €10, (o[

sup  sup |0 (¢ =) (©)] < Crya.rC” -
le|<k[¢l€[R™T,R]

Proof. With k¢, ¢, ¢¢ introduced in Definition 6.26, ¢¢ — ¢ can be expressed as
(=€) = [ Gt 26n)an— [ G-+ n)d(inP =) an.
n n

We express the first integral as

G (=92 =N an= [ [ oo ()mi(e? = raras

RS
= / few * 16 (62) dw
Sd—1
and fe,(r) = %r¥ g(& + /1w) 119, 1o0(r). The partial derivative

1 a2
O, few(r) = §7°d2 D¢, 9(€ + Vrw) 1o, ool (1)

has the same form as the function f¢. Then we observe that

e, (few * K8 — few) (1€1%)
= [(0¢, few) * K¢ — Oe, few) (1€17) + [0r(few * K¢ — few)] (1€7) 2¢;
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so that by doing successive derivations it suffices to deal only with quantities of the
form

OF (02 few + 1 = 0 fe)

which are in fact of the form OF ( f*rS — f) with f satisfying the hypotheses of
Proposition D.2 uniformly in w so that we get the expected control, by integration
over w. O

6.5.5. Estimate of the error term A4 3.

Remark 6.39. Throughout this section we will make definitions that are dependent

on the value of % This will not be a problem as long as % < 1 which will be

satisfied with our choice of € = ¢ (h) > h.

Proposition 6.40. Let b € C§° (Ri‘fg) with Suppe b C Br — By/g for some R > 1.
Let v €]0,1[. There exists a constant Cq g > 0 such that, for all { >0,

Ay 3] < (T Nk(b) Co.ry
for some integer k = k (d) big enough.
Proof. We recall that
o w
A+73 =Tr |: PP (Q+ ntO— Q.hh?tb) (_thag - dFE(n)):|
so that

w
Aval < (@ b= @ 8) (D6~ ar(a)

L(L2®TL2)
< deNk(QJr htb Qy ne b)

for some integer k = k (d) big enough.
Thus we boil down to prove that for any integer £ > 0 there is a constant C, »,G, >
0 such that for any ¢ > 0

Nk(Q+ b —Q ub) < Cryay Ni(b) (7.

But we have a convenient expression for Q e

QY nb(z,6) =21 /Rd G(n)b(x — 2ghm§ =) k(% = 26.27) dny

= / GE—mb (ﬂc—2 hé +2- hnn) “(n* —2€.m) dn

RN

with @, (z,&,7) =0 for r <0, and for r > 0,

A ht ht
(6.20) (@, 6,7) = G = Viw) bw — 2—€ 4+ 2= V1w, vrw) /27
defined for w € S~ ! and z, ¢ € R?. We also have a convenient expression for @ ey
in terms of ¢,,,

Qb @& =7 [ pulw.6?)dw

sd-
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The conclusion is then given by Lemma 6.41. O

Lemma 6.41. For any v € |0, 1[, uniformly in w € SE1,
Nk(/ﬂ{* @w(xagvr) HC(T - 52) dr — @W(I,€,§'2)) S Ok,G,’y C’Y .
Proof. The integral can be expressed as a convolution product

/ ol 67) RS (r — £2)dr = (pla,€,) % £) (€2)

-

Since the derivation behaves well with the difference, i.e.
020 ((pu(@,6, ) # K)(E?) = pul(@,6,€7) = Y car 2217 167
a/)6/7,yl
(0207 07 ) (.6, 1) (€)= (020 0 o) (w667
it suffices to apply Proposition D.1. (I
7. COMPARISONS OF THE MEASURES OF AN OBSERVABLE AT A MESOSCOPIC
SCALE FOR THE ORIGINAL AND APPROXIMATED DYNAMICS
Proposition 7.1. Let b € C§° (Ri‘)ig), p € L1L2 andt >0,
m(b, p7) = Tr [B"(= hDg, & — dT(n)) py]
m(b, p; ") = Tr [BY(— hDg, € — dT-(n)) pi*] .

cll)?iﬁnition 7.2. Let b € C°(R2%), p € L1L2 a state, t > 0 and x € C5°(R2%) we
efine

m(b, p,t, x) = Tr [x(dL=(n)) 8"(— hDg, & — dL-(n)) x(dT=(n)) P,
m®? (b, p,t,x) = Tr [x(dT(n)) b"(— hD¢, & — dT(n)) x(dlx(n)) p**] .

Proposition 7.3. Let b be a symbol in C3° (Ri‘fg) with positive values such that Suppg b C
Br—Byg for some R >0, p € LTL2 with Tr'p <1 and for j = 1,2, x; € C°(RY)
with values in [0,1], x;(Bun,) = {1} for My = 3R and with x2(R? — Bgry1) = {0}.
There is a constant Crp .y, o (Which does not depend on p) such that

m(b7 pt) — m“PP (b7 (pxz)?pp) > _87
with Ey=E7 1+ E7 9+ E7 5 and py, = x2(Da) px2(Dx).

ht\® ht\*
£7=CRbox1.x2 <h+ (?> h3% 4 (?) h +56> .

We shall prove it in three steps:
(1) m(b7 Pt) - m(b7 sz 9 ta Xl) Z _5717
&Er1=Ch,

(2) m(b7 pX27t7 Xl) - mapp(ba pX27t7 Xl) > _5725

ht\? ht\?
=i () o (2.
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(3) mapp(b, pX2at7 Xl) - m(bv (pxz)?pp) > _57.3’
Era=E+Ch.

7.1. Step 1: Introduction of cutoffs. We introduce cutoff functions both on
the state p and the Wick observable b (—hDg, & — dT<(n)).

Proposition 7.4. Let b € Cgo(Ri‘fg) non-negative such that Supp,b C Bgr for
some R > 0, p € EfLi, Trp < 1, and, for j = 1,2, x5 € Cgo(Rf) with values
in [0,1] and x;(Bu;) = {1} for some M; > 0. Then there is a constant Cyy, .
such that

m(b7 pt) 2 m(bu pxzatu Xl) - 571
with €7 1 = Cyxy xo b and py, = x2(Dz) 0 po x2(Dy).

Proof. Using the functional calculus for the self-adjoint operator dI'. () and since
b(z,§ = A) = x2(§) bz, € — A) x1(A) x2(£)
> x2(6) " b(w, & = A) x1 (V) £ x2(6) = Coxnah
holds uniformly in A\, we can write
b (= hDg, & — dI(n))

> x2(€) 0 b™(— hDg, & — dIu(n)) x1(dT=(n)) © X2(€) = Chr xa -
And thus

> Tr [b"(— hDg, & — dL-(n)) x1(dT(n)) Pxay) — Cooanal
since [H,, x2] = 0. O

7.2. Step 2: Comparison between truncated solutions.

Proposition 7.5. Let b be a symbol in C§° (Ri‘flg) with positive values, p € Ef‘Li,
Trp <1 and x € C°(RY) with values in [0,1], and x(Bar) = {1} for some M > 0,
then there is a constant Cqp, such that

|m(b7 P ta X) - mapp(bv P ta X)| S 872
with £, = Canu ((4)*h2/2 4+ (22)"h72).
We will need the following number estimate.

Lemma 7.6. Let z/AJo S Lg be a normed vector. We have, for Vi = \ifh,&t =

h,e,t
it ~ “a _itfarp ~
e Mo @Q or U, = TP, = T 0

t ht -
’ < Cq <\/§+ \/ §?HG|L1> .

Proof of the Lemma. Indeed let us define v, = || (e + N.)/20¥||. Then

iedy (1) = (W, [-(fu ), Ne] )

H (e+ NE)l/Q \ilgl,&t
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with fpe = \/gad/QV(an) since ¢ and dT';(n) commute with N.. Using N. = dI.(1),
we get

[as(fh,s)a dI.(1)] = i0s [F(eiss) as(fh,s) F(eiiss)} |5:0
= Q¢ (th,s) .
The other term of the commutator can be computed analogously (but a.(-) is C-

antilinear whereas a’(-) is C-linear). Introducing this relation into the differential
equation and taking the modulus, we get

ac(efe) B[ + |

0. ()| < = ] ac(esne) W)

But

it < 2 (@t N
as(f':fh,s) t —Hsfhﬁ”Lg triVex¢ )

|
|

Using ||G]| .1 = b f;w||%27 we finally get a differential inequality for the function ;

2670yt < |ic0r (7)) < v/ 2eh|G|L1ye -

Dividing by 2¢v; and integrating in time, we obtain the expected result

h -
Ve < Yo+ 1y 2_||GHL1 )
g

since v9 = Cgv/z. U

~ull2 - -
a2(efue) B < Nl (¥ e+ No) )

Set

(7.1) by = b( = hD¢,§ — dT=(n)) x(dT(n)) -

We want to control the error when we consider Tr [b, p;*"] instead of Tr [by p,] i.e.
we want to control Tr [by u,] with

app

(7.2) Ut = Py — Py

Since

iedp, = [He, p,]
iedipy™ = [H., pi™"] — [He — HZPP, pi™”]

the difference u; is solution of the differential equation
iedyue = [He,ug) — [dTe(n)? — e dIL(n?), py?]
= [(6 = anm)* ue + [@c(fne), ]
= [d(m)? = edL (), py™"]
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with initial data u;—¢ = 0. We thus get an integral expression for Tr [b, w],

Tr [by ue] = — é/ot Tr [bx [({ - dFE(n))Q,uSH ds

. t
+- / Tr [by [dL:(n)” — € dT=(n?), p3#7]] ds
0

ot
i
= [ b () ) ds
0
Remark 7.7. Let H be a Hilbert space. If A, B € L(H) and C € £1(H), then

Tr[A[B,C]] = Tr[[A, B] ] .

Lemma 7.8. There exists a constant C' independent of x such that for b, and u;
defined by Equations (7.1) and (7.2),

(1) |2 o { v {(g_dra(n))2,uhas}} ds| <2 [! el ds < CEL,
(2) %fo Tr [by [dTe(n)? — edlL(n?), p®P]] ds = 0,

@) [T 00 wllas] < €252 (VE 4+ /3/2).
Proof of 1. Let us introduce y1 = y in order to handle only bounded operators:
Tr [by [(&—dr( ) u]]
= Tr by (dT(n) [ (¢ = (), w |
= Tr [by (AT (m) (€ — ar:(m)” us |
e[ X,m(dr( D= dr(m)’] u]

= T (L) {80, €2}~ e, L)

=7 |2 y(ar ) (26.) (- D, € - an () u} .

We can then estimate the initial trace by

o (e~ aro*])
< h||x(dL:(n)) (26.0) (— hDg, € — dL.( Hw@m lusllz, r2ere

<Ch HUSH£1L§®FL$]

and a time integration brings

%/;TY [bx [(ﬁ—drg(n))Q,usH ds| < Cg /tlusllgl ds.

Then we use that both p, and pi¥" have the same initial value py®projQ with py =
Z] Aj [¥0,5) (Yo,51, ZJ Aj=Trp, Aj 20, [[¢o,5]] = 1 to write

P = Z)‘j loe.5) (psl pit? = Z)\ }spt Cdp
J
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and then ug = 37, A, (|Wey = VI N(Wa| = [P (W7 — Wiy]) and
app ht?
HutHﬁng = 22)‘j H\I/tﬁj -V || < 08—2.
J

This and the integral above yield the result. O
Proof of 2. Let x1 = ¥,
Tr [by [dTe(n)? — e dTe(n?) s]]
= Tr [by [x1(dT=(n)) (dT<(n)? — e dT=(n?)) , us] ]
= Tr [[x1(dT(n)) (dT-(n)? — e dT-(1%)) , by us]
=0

since

[Xl(drs (7)) (drs(n)2 - Edrs(772)) abx] =0. O
Proof of 3. We have, with r, = U, — \ifgpp,
Tr [bx [q)s(fh,s) ,us]] = <T5| [bx , (I)s(fh,s)] ‘¢/S> + <¢/pr| [bx ) q)s(fh,s)] |TS> .
Taking the modulus we obtain
ITr oy [0 (fie)  wsll] < C il || @2 (fne) ©

+ |I7s

1|2
+ClIn

£) by e

qu .

and we observe that

@ (fre) TE|| < | frell

[CEARE %

and

H(I)a(fh,a)bx v ’ < C | fuell? H(E'i‘Ng)1/2 it

and thus

T o (02 ] < €l 206 (VE+ 5 el

by our number estimate. An integration then gives

t3h 1/2 h o .
i HGH Vet i/ 5o lIGll

which is the expected estimate. 0

! / T by [0 ()l ds| <

3

7.3. Step 3: Release of the truncation on the symbol.

Proposition 7.9. Let b be a symbol in C§° (Ri‘fg) with positive values, such that Supp, b C
Br — By/g for some R > 1, p € LTL2, Trp < 1, with the support of p in BIQ?/le

and x € Cg°(RY) with values in [0,1], x(Bsr) = {1}. There is a constant Crp
such that

mP (b, p,t,x) —m(b, pi™") > E7 5
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with
Ey9=E+ CRripxh
ol (h_h ()]
e\ € €
Proof. We can restrict the proof to the case of p = [1) (v| with ¢ € L2 since p is

trace class, then p, = [WoP)(U?P|. We also define a positive symbol b; € C§° (R¢)
such that Suppb; C [R72, R?] and b1 (£2) > b(z,&). Then

d/2—1
1 prlda) o hw(d,a)) + Crpxh.

m(b, p;"") = m*P (b, p, t,X)
=Tr [bW(_ hDﬁvg - dl—‘a(n)) (1 - X(dl—‘a(n))) bt]
= Tr |(1 = x(dT(n)))"/? B (=hDe, € — dT.(n)) (1 = x (dT: (m)))'/” b,
<ot (€ - ar?)” (@ - xan) o + o
=T [b}Y (€ = dLa(n)®) (1= x(@T(m) bYY ((€ — dTe(n)?) 2] + O(h)
with WIPP(¢) = Lo, (1€]) T§PP(€) and Supp by € [R™2, R?]. Then we decompose
PP =110 ,2m) (1€) WP + Lo a1 /2,20 (16]) W77
= G

With A = b]"( (¢ — dIL(n))®) (1= x(dlx(n))) bY( (£ — dLe(1))?) > 0 we have the
estimate

o [a i) (i

| <omafoiy) (viy

} 4+ 2Tr [A ‘@ggp> <@g}g’

For the first term,
T [b1? (6 = dn(m) ) (1 = x(ar () b1 (¢ — ar() *) [gme ) (e

= T [1/2m,2m (1€1) B (€ — dT-(m)*) (1 = x(@T- ()
}

b (6 = dr(m) ) 1 oo (D) W55 (B30
since |¢] € [1/2R,2R], |¢ —dT.(n)| < R implies |dI.(n)| < 3R and x(Bsr) = {1}.
For the second term,

T [b17 (6 = () ) (1 = x(dL () 03 (€ = ar(n) *) [ ) { bty
<o ol (- ar () weyr) (227

since 1 — x(dT'<(n)) < Id. Then we use the computation of the evolution of a
symbol of |£[? in the case of the approximated equation as in Remark 6.2 to get

=0
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that, since by = by (|¢|?) it is unchanged under the evolution, and
2. -
o [0 (e anon?)” o) (o |
- N2 - .
< T b} (6 —anm)?) " [do @ @) (doz © Q|| + &

< Tr [b‘fv(f'2)2 ’1/;0,2 ® Q> <1&0,2 ® QH + &
<&

since Supp b1 N Supp 1/3072 = (. O

8. THE DERIVATION OF THE BOLTZMANN EQUATION FOR THE MODEL

Proposition 8.1. Let b € (230(}1{{575) with Suppe b C Br — By/r. Let p a state
and T > 0.

o h _ T >
lim inf (m(b, pi,a,) —m (B'(T) b, p)) = 0
for a fized o € ]2,1[, At = At(h) = h™ and N(h) At(h) =T.

Proof. We define for k € N, At > 0, by ar = (eAth2At5'aw)k b. We begin by looking
to one step of evolution with eA*Qe2AtE. 0z O

Lemma 8.2. With b, = e'?e?*¢-92b, and the hypotheses of Proposition 8.1,

m(b, pins) — m(bac, p)
d
> —C(h+h™32(A)3 + (AR ™2 + At(At + b+ (h/At) 2 + ).

Proof. We recall that p%, = piAt/h so that with % = At, from Section 7,

m(ba pgt) - m(ba (pX2)prp)

=m(b,p;) = m(b, (pxo)7 ™)
WNS . am  (hENA y Bt Dt 421
—C (h+(?) h +(?) W+ = (T ht (/1) +h“))

> —C(h + 032 (AL? 4 (AR + At(AL+ b+ (h/ A 4 h“))

Y

and from Section 6 also used with % = At we get

m(b7 (pxz)i,app) - m(btvpxz) > _56 > _87

and this term will be in particular controlled if we control the previous one. Fi-
nally from the conservation of the support in £ of the symbol by the approximated
Boltzmann equation we get

m(btvp)m) - m(btvp) > _O(hoo)

for y2 a cutoff function chosen so that x2(Bgr) = {1}.
Thus we fix, for j = 1,2, two cutoff functions x; € C5°(R$) with values in [0, 1],
x;j(Ba,) = {1} for My = 3R and M, = 1 and with y»(R? — Bgy1) = {0} .
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Then we can iterate this N(h) times and we get the estimation

m(b, P?\z(h),am/h) —m(bn,at, p)
3 d
>_CN (h +hT2 (A + (AL B2 + At(VAE+ b+ (/A1) 2 + h“))

with NAt =T and h* < 2 = At <1 for some « € |1/2,1[. Thus we can choose
At = % = h® and thus N = Th™“. Then we get the estimate
m (b, pneat/n) — m(bn,at, p)
> _CTh™ (h + h30m3/2 4 pla=2 4 pa (h"‘/2 4 h 4 pmed/2=1) h“))
> —CTop0 (1),
for o €]2,1[. Finally it suffices to prove that
}ngbm(bzv(h),m(h), p) = m(br, p)

which is true since the estimates of Proposition 3.9 prove that, for some con-
stant C' > 0, [|by,ac — b7l 12 < - O

APPENDIX A. STOCHASTICS
We recall some results about Gaussian random fields that can be found in [25, 31].

Definition A.1. Let (Qp,G,P) be a probability space. A real-valued random
field (Vo (%)) (w,2) e xre 18 @ Gaussian random field if for all finite choices of 1, ...,z €
R (Vy(z1), ..., Vo(zk)) is an R* valued Gaussian random variable. To each such
Gaussian process we can associate a mean function p(z) = E[V(z)] (x € R?) and
a covariance function X (z,2') = E[V(2)V(z')] (z, ' € RY). A Gaussian random
field is translation invariant if its covariance function X (x, 2’) only depends on the
difference z—2', i.e. if there is a function G : RY — R such that %(x,2') = G(x—2").

Definition A.2. A function ¥ : R? x R — R is symmetric if for all z, 2’ €
R Y(z,2') = S(a/,x). It is positive definite if for all zy,...,2;, € R? and

all gla---;&k S ]R,
k k
DD &S (i w)E > 0.

i=1 j=1
A function G : R? — R is positive definite if ¥ (z,2") = G (z — 2') is positive
definite.

Theorem A.3. Given an arbitrary function p: R? — R, and a symmetric, positive
definite function ¥ : R x R? — R, there exists a Gaussian random field V (x) with
mean [ and covariance Y.

See [25] for a proof of Theorem A.3.

Theorem A.4 (Bochner). A function G : R? — R is the Fourier transform of a
positive bounded Borel measure on R? if and only if it is continuous and positive
definite.

See [31] and the references therein for Bochner’s theorem.
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Theorem A.5 (Minlos). A function ¢ : S(R?) — C is the Fourier transform
o) = [ ew(=ilf. 1) du(T)
S’'(R4)

of a cylinder set measure u on S'(R?) if and only if

(1) ¢(0) =1,
(2) [ c(f) is continuous in the strong topology,
(3) for any f1,..., fn € S(RY) and zy,...,2, € C,

Z ZiZjC(fi - fj) Z 0.
i,j=1

See [31] and the references therein for Minlos’ theorem.

Definition A.6. We consider the probability space (S’(R%), i) (the o-algebra is
the one generated by the cylinder sets) where u is the measure obtained by Minlos’
theorem with the positive definite function

c(f) = exp(_%>'

The white noise is the random variable on (S’ (R?), ) with values in S’ (R?)
defined by W, = w.

Remark A.7. Since ||f|\2L2 = (f(x1),0(x1 — x2) f(x2)) we have (in a weak sense)
E[W(Il)W(.IQ)] = 5(171 — .IQ) .

Proposition A.8. Let G : R — R positive definite, such that G = |‘A/|2 with V €
S(R%R).  The translation invariant centered Gaussian random field of covari-
ance G(x —a') is V, =V « W, where W, is the white noise.

Remark A.9. Bochner’s theorem justifies the form we choose for the function G as
the positivity of the Fourier transform is natural for a covariance function.

Proof. After testing with elements in S(R?) the following calculations hold. The
mean of V x W, (z) is zero:

E[V « W, (z)] = /V(:v o) E[W,(21)] a1 = 0
and its covariance is
EV(z)V(z")] = E[/ V(z —x1) W(x1) V(2" — 22) W(x2) day das]

:/V(x—xl)V(x’—Il)dxl
=VxV(—)(x—2)

and F (V « V (=) = |V|2, so that we get the expected covariance. O
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APPENDIX B. SEMICLASSICAL MEASURES

Semiclassical measures (and microlocal defect measures) have been studied among
others in [8, 16, 17, 26]. We recall here some results. The first theorem can be found
in [8].

Theorem B.1. Let (uy) be a sequence of L2 such that u, — u weakly. For all real
sequence (hy) such that hy, — 0, there exist a subsequence (ug, ) of the sequence (uy)
and a measure i € My (R2%) such that for all b € C5°(R2%),

lim (b(hg, z, Dy)ug,, , ug, ) :/ bdu.
R

n—+400 2d
x,€

Definition B.2. The measure p above is called a semiclassical measure (or Wigner
measure) associated with the sequence (uy). If there is uniqueness of the “limit
measure” the sequence (ug) is said pure and we note {u} = M (ug).

This result holds in the case of a family of states (pn)nejo,no), -6 Pn € L2,
Tl“ph =1.

Theorem B.3. Let (pn)nejo,ho]s o > 0 be a family of states on L2. There exist a
sequence hy, — 0 and a measure | € M+(Ri‘f5) such that

Vb e CP(R2%),  lim Tr [ (he,x, Da)pn, ] = / bdpu.
S n——+o0o Rit,is

Proof. We first take an arbitrary sequence (hy) such that hy — 0. Then we
can define positive numbers (Mg ;); x>0 and normed vectors (uy, ;) of L2 such that
> Ay = Land pp, =37, A jluk,j)(uk, ;| We can extract from each sequence (up, ; )k
a subsequence that converges weakly to a vector u; (JJu;|| <1). A diagonal extrac-
tion enables those convergences to occur simultaneously. The sequence obtained
this way is still denoted by (uy ;).

Theorem B.1 applies to each sequence (uy ;) and yields measures p; such that
for well chosen subsequences hy,,, Ak, ; — A; and

. 1%% o
ngr}rloo Tr [b" (hy,x, Dy) |uk;) (ur, ;|| = /de b dy; .
o€
Again we apply a diagonal extraction argument to obtain these convergences simul-
taneously, and we stick with the notations uy j, Ar ; for the extracted objects. We
observe that |lu;|| <1 and > A; < 1. We can thus sum these relations to get

kgrfoo Z)\kJ Tr [bW (hkx, Dm) |u;w> <ukn)j” = /ng b d(z )\jﬂj)
J ,

which is the expected result with p = Zj Ajlbg- O

APPENDIX C. GENERAL RESULTS ON SEMIGROUPS

Some references about semigroups of operators in Banach spaces are [12, 9, 11].
In this appendix X represents a (real or complex) Banach space.

Definition C.1. A strongly continuous semigroup on X is a mapping G : Rt —
L (X), such that

(1) Vt,s >0, G(t+s)=G(t)G(s), G(0)=1I,
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(2) G(-)x is continuous for all z € X.
The infinitesimal generator A of G(-) is defined by

pA) = {wex,3mm CWE=2l gy, Gz
h—0t h h—0t h

Proposition C.2. Let G be a strongly continuous semigroup on X with infinites-
imal generator (A, D(A)). Then D(A) is dense in X and A is a closed operator.

See [9] for a proof of Proposition C.2.
Notation C.3. For M > 0 and w in R, we denote by G(M,w) the set of all strongly

continuous semigroups G such that

VE>0, [|G(H)]pox) < Me'.
Theorem C.4 (A perturbation result). Let (A, D(A)) be the infinitesimal gener-
ator of a strongly continuous semigroup in G(M,w) and B € L(X). Then (A +

B, D(A)) is the infinitesimal generator of a strongly continuous semigroup in G(M,w+

M[Bl|£(xy)-
See [11, 12] for a proof of Theorem C.4.

Theorem C.5 (Trotter). Let A;, j = 1,...,k be the infinitesimal generators of
continuous semigroups G; € G(Mj,w;). If N¥_; D(A;) is dense in X and
Vne N, [(Galt) Galt) - Gu(t)) o, < Mem™

and if there exists p such that Rp > w, (pI — (A1 + As+---+ Ag))X is dense in X
then

Ay + Ag + -+ Ay
is the infinitesimal generator of a continuous semigroup in G (M, w).
In such a situation the semigroup G generated by Ay + A + -+ - + A satisfies

Vee X, G(t)r= lim [Gl(%) Gg(%) Gk(%)}nx

n—r00

with a uniform convergence on the bounded intervals [0,T], with T > 0.

See [11] for a proof of Theorem C.5.

APPENDIX D. LEMMAS ABOUT AN APPROXIMATE IDENTITY

For ¢ >0, and 7 € R, let k¢(r) = %

7242
Proposition D.1. Let f be a function in the Schwartz class. Then for any v €
10,1[, a constant C., > 0 exists such that

V¢ > 0, [[f # 5 = fl] pe Smax {[[flloe I/} C-¢7-
Proof. We use the formula
1
f(ro+ Cr) = £(ro) + Cr [ (a4 scr) ds
0

so that we have both

|f(ro+¢r) = f(ro)l < 2| fll »
[f(ro+¢r) = fro)l < [Ifll Crs
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and the interpolation of those two results gives, for v € [0, 1],
[f(ro +¢r) = fro)| < 2max{[|fllc, 1f I} ¢ Ir|™ -
So, for v € [0, 1],

dr

16 = ) 2 | < max 7 17060

which is the expected result. O

Proposition D.2. Let f: R, = R continuous, vanishing on R™, such that f|R*+
is in C*°(RY) and rapidly decreasing towards +0c. Let 0 < rmin < Tmax- Then, for
any 7y € 10, 1], there is a constant Cy such that

Haﬁ [f € — f]

Proof. We choose A and Ar such that 0 < A < Ar < ryin/2. Let fi = x1f
and fo = (1 — x1) f with x1 a C* decreasing function such that
xi(r)=1 if r<A/2
=0 if A<r.

<007

‘ ["min,Tmax]

L

Then f = fl + fQ and
¢ — ¢ ¢
XY f g/jéaoli +f257*LlFL .

The second term is the easiest to handle since 9% (fax£¢) = (9F f2) = k¢ and
Proposition D.1 can be applied to get

@k 12) = ¢ =m0k foll o < O (1557 ] + 108V ) €

We now recall that we are only interested in 7 € [Fmin, "max] With 0 < rmin < Fmax
when evaluating 0% (f * x¢). We insert another cutoff function y» € D (R) such
that
X2 (1) = 0ifr < rpin — 2Ar
=1ifrpm — Ar <7 < 7rpax + AT
= 0if rmax + 2Ar < 1.

Then fi % k¢ = f1 % x2k¢ + f1 % (1 — x2) k¢ and our hypotheses on the supports give

Supp { f1 * (1 — x2) &} C Supp f1 + Supp (1 — x2)
CR— [rmin — Ar + A, rmax + A7) .

= 0 and we can restrict our-

[Pmin,Tmax]

Since A < Ar we obtain [f1 * (1 — x2) ¢
selves to the computation of

XQIQ< .

f

More precisely we want to estimate

L

[Tmin7Tmax]

[
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since x20 = 0 and thus fi oo x20 = 0. But the same considerations hold for the

supports of the derivatives. Thus it is sufficient to observe that we have the control
k k
[0, 08 Gean) | < Il 19" (eam)
<lfillp Cro _ sup |0FK¢]

T2>Tmin—24A7
where the sup can be controlled by C'¢( with C only dependent on our choice of Ar
and 7y, as
= (ir = Q"+ (ir+ O

e

207 kS (1) = i*K!

Consequently
or | - 6] <C
‘ |1 g1 e X2H fi e x2 ] ¢
and this ends the proof. 1

APPENDIX E. FORMULAE

E.1. Symmetric Fock space. For f, g in a complex Hilbert space H,
a=(f) = (£, 2", az(f) = (=, )",

[ac(f),ac(9)] = 0, [aZ(f),aZ(g)] =0, [ac(f),aZ(g)] = (f,9),
O.(f) = (ac(f) +aZ(f))/V2, |

W(f) = expi®e(f), W(f) W(g) = e T3VIW(f + ),

B(f) =w(£1)|9).

E.2. Fourier transforms. Usual Fourier transform
Foru € L2, v € L2,

Frou(§) = / e Cy(z)de and F,lu(z) = / e Sy () dg
R R4
x 3
with d¢ = d¢/ (2m)%.
Symplectic Fourier transform
For b € L*(R%;C), P = (ps,pe), o(P, P') = pe.pl, — Du-Pg>

Fob(P) = / e PP (PP’ and (F7)T' = F°
R2d

with dP’ = dP’/ (27)".

E.3. Weyl quantization.
o 7, = (efio(~,X’))W (h,Dy) = o—io (. X)W (haDy) _ i€ ha—a'Dy)
o = Furl Fyl = e i€ hDeta"0)

o ThoTh = e2ho(X1,X2)T§1+ mg(xl,x2)7_§27,§1

A ~ i ~ 1 A ~
° 7-}17-}2 — ezho’(X1,X2)T;L(1+X2 — eth(X1,X2)7_;1(2T;L(1

X, =€
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Ay, A, i, 23 bW (hz, Ds), Weyl quantization, 4
o, B €0 31 : f™:, n-th Wick power, 12

Aﬁ 13“ . QWick Wick quantization, 16

a* (f), a(f), creation, annihilation . 17

operator, 12
B (t), linear Boltzmann group, 8

q
¢, ¢, Cpis 28

Q% Q5. 28

Q, Q—, Q4+, collision operator, 6

Q+, approximated collision operator, 9

CY (X;R), continuous functions vanishing
at infinity, 8

ax, 22
A{.y.}, 25
Ay, A, 27

d (f), field operator, 12

D, (f), field operator, 16

I'H, I'nH, T'rH, Fock space, 15
T(U), 16

dr': (A), 16

F?, symplectic Fourier transform, 21

general centered Gaussian random field, 11

He, 15
r7app
IA{h,s , 17
Hc, 16

Uy, WOPP 17
kS, 28

m (b, p), 20
my. .y, Mg, m—, 23
My, (X; R), Radon measures, 8

N (b), 8

Wt 17
fw], 22

[So}ly 22
[507171}27 22
(92p, G, P), probability space, 46

V! (x) random field, 3

o (&¢),6
p?v p,]if,At (“_)N)v p?{’,At’ 4

A € app  sapp €,app
Pts Pts Pts Py y Py 7p757 ) 17

Tryy, partial trace, 13
W (f), Weyl operator, 16
T)h(, Weyl operator, 21
%1’3, Weyl operator, 21
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