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Abstract

This paper proposes a method to restore energy dispersive X-ray diffraction (EDXRD) spectra and to extract diffraction
peaks. It follows a maximum a posteriori approach using a physical model of the formation of the EDXRD data to remove
blur caused by both the detector and the coarse angular resolution of X-ray tube based EDXRD setup. It separates
peaks due to the diffraction by crystalline material from a countinuous background. Tested on real data (graphite and
NaCl), our algorithm acheived to detect diffraction peaks with a good precision (about 1 keV depending on the peak
position) even at high energy where very few photons were measured.
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1. Introduction

X-ray diffraction (XRD) has been successfully used for
many years to provide information about the crystalline
structure of samples using coherent scattering of photons
from an incident X ray beam. Powder X ray diffraction is
commonly used to identify unknown substances by com-
paring diffraction data against a database[1, 2]. It may
also be used to characterize heterogeneous solid mixtures
to determine relative abundance of crystalline compounds
and, when coupled with lattice refinement techniques such
as Rietveld refinement, can provide structural information
on unknown materials. Most diffractometers use angular
dispersive X ray diffraction (ADXRD) in angular disper-
sion of a diffracted monochromatic radiation is used, as it
provides more precise diffraction spectra(see [3] for a re-
view). As detailed in ref.[3] many deconvolution and pat-
tern fitting procedures were designed for ADXRD data.

However ADXRD presents some drawbacks as it re-
quires most of the times a rotation of the detector and
the sample. When no movement is possible in the setup
(e.g. as in security screening) or when crystalline structure
is dynamically changing (to monitor the change of lattice
parameters with pressure or temperature), one must use
Energy dispersive X ray diffraction (EDXRD) for which
the scattering angle is fixed. In EDXRD, a collimated
polychromatic beam of X-rays falls on the sample, and
the spectrum of the radiation scattered at a fixed angle θ
is analyzed. The spectrum thus obtained is material spe-
cific since it is linked to the atomic planar spacing (d) and
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to the radiation wavelength (λ) according to Bragg law:

2 d sin

(
θ

2

)
= nλ , (1)

where n is an integer. Using an ideal diffractometer with
perfect collimation and detectors, this diffraction spectrum
would be composed only of lines predicted from Bragg the-
ory.

As they provide intense radiation with known spec-
trum and polarization, most EDXRD experiments use syn-
chrotron radiation[4, 5]. Furthermore as angular aperture
of synchrotron light is very small, the blurring of the spec-
tra caused by the width of possible diffraction angles is
negligible compared to the blurring effect due to the de-
tector response[6]. As a consequence most pattern fit-
ting algorithms[7–9] are designed for EDXRD data with
synchrotron radiation and consider a spectraly invariant
Gaussian peak-shape function[6, 7].

However if synchrotron is an ideal source for EDXRD,
it is scarcely available and only X-ray tube can be used in
laboratory or for in situ applications. Angular aperture
of collimated X-ray source is quite large and consequently
geometric blurring effects result in a “smoothing out” of
the perfect line spectra into a less well resolved continu-
ous spectra[10]. Very tight collimation, whilst minimizing
this effect, would make inefficient use of the scattered flux
available and then drastically increase the acquisition time.

As geometric effect introduces an energy variant blur,
such EDXRD cannot be processed by existent algorithms
developed for ADXRD or EDXRD with synchrotron
source. In this paper we propose an inverse problem based
method for restoration of EDXRD diffraction spectra and
direct extraction of diffraction peaks from crystalline ma-
terial. It uses a physical model of the measurements de-
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Figure 1: Schematic view of a X ray diffraction setup and
notations used in the model.

scribed in section 3. Then in section 4, following an inverse
problem approach, we introduce some priors and define the
maximum a posteriori (MAP) solution which is estimated
(in Sec. 5) using a continuous optimization procedure. Fi-
nally, we apply our method for estimation of inter-planar
spacing of real EDXRD spectrum acquired in laboratory.

2. EDXRD setup and notation

As depicted in figure 1, the EDXRD setup consists of a
collimated poly-chromatic X-ray source and a collimated
spectroscopic detector D placed at nominal angle θ̄ of the
beam axis. The studied object O is at the center of the
diffractometer defined as the intersection of the scatter
collimator axis and the source collimator axis.

Let’s suppose that we observe at angle θ̄ a pure crys-
talline powder sample under ideal conditions: using a
source with flat spectrum, a diffractometer with an infi-
nite angular resolution, a perfect detector without blur
or noise. Without any other spurious effects like Comp-
ton scattering, coherently scattered photons are detected
only at specific wavelengths related to the atomic inter-
planar spacing d of the observed material according to the
Bragg law. The ideal diffraction spectrum p(ξ) will thus be
composed of only few Bragg peaks specific of the material
crystalline structure.

Unfortunately, in practice, several effects alter the
EDXRD spectrum leading to erroneous detections by fur-

ther material identification algorithms. The purpose of
the method presented in this paper is to recover the ideal
diffraction spectrum p(ξ) from such altered measurements
y by means of an inverse problems approach. To this end,
we propose an linear modelization of the successive degra-
dations leading to the data y. Using matrix notation ( · is
matrix multiplication and × element wise multiplication),
this models writes:

y = B ·
[
t× (H · p+ g)

]
+ n , (2)

where:

H is the operator that models the blur caused by the
angular distribution of the system.

g is an additional baseline spectrum caused by the
amorphous part of the sample incoherent scattered
radiation and multiple scattering.

t accounts for the attenuation within the sample, the
non flat emission spectrum of the X ray tube and the
fluorescence of the anode and the collimators.

B is the blurring operator that models the finite energy
resolution of the detector.

n accounts for photon counting and detector noises.

This modelization and corresponding approximations are
detailled in the next section.

3. The direct problem: from perfect spectrum to

real measurements

3.1. Alterations caused by the setup

We suppose that the surface defined by the source fo-
cal spot and the detector active region are orthogonal to
the z axis at fixed depth of sz and dz respectively. As
described on figure 1 consider a triplet {s,o,d} composed
of three points s = [sx, sy, sz]

T on the source focal spot,
o = [ox, oy, oz]

T in the object and d = [dx, dy, dz]
T on the

active surface of the detector. For this triplet, the scatter-
ing angle θ is defined by:

θ = acos




〈
−→so .−→od

〉

∥∥−→so
∥∥
∥∥∥−→od

∥∥∥


 . (3)

Owing to the finite angular resolution of the setup, this
angle may be different from the nominal angle θ̄ defined
by our diffractometer. This is the cause of a blur on the
spectrum. Indeed, according to the Bragg’s law, a diffrac-
tion peak located at an energy ξ for the nominal angle θ̄
will be observed at the energy E for any angle θ according
to the following relation:

E = ξ
sin( θ̄2 )

sin( θ2 )
. (4)
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Conversely, for any angle θ, the measured intensity at the
energy E is proportional to the intensity of the nominal

diffraction spectrum p

(
E sin(θ/2)

sin(θ̄/2)

)
.

As consequence, after integration over the source focal
spot surface S, the object volume O and the active re-
gion of the detector D, the spectrum f(E) measured by a
perfect detector is:

f(E) =

∫∫

D

∫∫∫

O

∫∫

S

N(E, s,o)A(E, s,o,d)Cs(s,o) . . .

Cd(o,d)L(θ)G(s,o,d) p

(
E
sin(θ/2)

sin(θ̄/2)

)
ds do dd . (5)

where:

• N(E, s,o) is the number of photons of energy E emit-
ted during the acquisition by the point s of the X ray
source in the direction of o;

• A(E, s,o,d) accounts for the attenuation at energy E
between s and o and between o and d;

• Cs(s,o) and Cd(o,d) account for the obstruction by
the source collimator and the detector collimator re-
spectively:

Ci(a, b) =

{
0 if (ab) is obstructed by the collimator,
1 else,

(6)
with i = s and (a, b) = (s,o) or i = d and (a, b) =
(o,d)

• L(θ) is the Lorentz polarization factor[11];

• G(s,o,d) is a geometrical factor depending only on
distances between the setup elements:

G(s,o,d) =
1

∥∥−→so
∥∥2
∥∥∥−→od

∥∥∥
, (7)

In some cases, if the object is not too extended, it is pos-
sible to assume that Lorentz polarization and geometrical
factors are constant. In order to cope with such equation,
several simplifications are described in the next subsection.

3.2. Attenuation and source spectrum

The source is supposed to emit uniformly over the focal
spot and this emission is supposed to be isotropic. There-
fore, we can define N(E) the number of photons emitted
during the acquisition. When the source is an X ray tube,
the source spectrum N(E) is a bremsstrahlung spectrum
with fluorescence lines depending of the X ray tube anode.

The attenuation between s, o and d follows the Beer-
Lambert law:

A(E, s,o,d) = exp

(
−

∫ o

s

µ(E, ℓ) dℓ−

∫ d

o

µ(E, ℓ) dℓ

)
,

(8)
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Figure 2: Schematic view of a X ray diffraction setup and
notations used in the model.

where µ(E, ℓ) is the linear attenuation of the material at
position ℓ at energy E. If the probed volume dimension
along the x and y axis are smaller than the morphological
structures in the observed object, it can be considered as
a succession of layers of different linear attenuation µi(E)
and thickness Li orthogonal to the z axis as depicted on
figure 2. Moreover, as the scattering angle θ and the an-
gular aperture of collimators α are sufficiently small, it is
possible to hold the classical small angle approximations
cos(θ) ≈ 1 and as proposed by Harding[12–14]. The at-
tenuation term thus simplifies to the transmission attenu-
ation:

A(E) = exp

(
−
∑

i

µi(E)Li

)
. (9)

With such approximations, the product t(E) =
N(E)A(E) represents the number of transmitted photons
which may be estimated using a spectroscopic detector
placed in transmission direction[12].

3.3. Model of the geometrical blur

As the transmitted spectrum t(E) depends only on the
energy, it can be factorized and removed from the integra-
tion in equation 5. As consequence, in this integral only
the term p

(
E sin(θ/2)

sin(θ̄/2)

)
depends on energy.
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experimental setup presented at sections 6.1 and 6.3

We define the kernel function h():

h

(
sin(θ̄/2)

sin(θ/2)

)
=

∫

Γ(θ)

Cs(s,o)Cd(o,d)L(θ)G(s,o,d) dℓ .

(10)
where Γ(θ) is the contour defined by ŝod = θ and dℓ an el-
ementary part of this contour. This function is a weighted
density where h

(
sin(θ̄/2)
sin(θ/2)

)
is length of the iso-contours de-

fined by ŝod = θ in the seven dimensions volume SOD.
These contours are weighted by the geometric, Lorentz po-
larization and collimators functions.

According to the Bragg law, two couples {E, θ} and
{E′, θ′} probing the same inter-planar spacing d are linked
by the equation 4. We thus have:

h

(
sin(θ̄/2)

sin(θ/2)

)
= h

(
E

ξ

)
. (11)

The geometric blurring effect caused by the configuration
of the setup can be therefore expressed by a simple integral
as we can rewrite equation 5:

f(E) = t(E)

∫
h

(
E

ξ

)
p(ξ)dξ . (12)

We recognize a Fredholm integral equation of the first kind.

Kernel numerical estimation. This equation cannot be an-
alytically solved and we proposed to use a Monte Carlo
integration to provide a good numerical estimation of it.
Monte Carlo should be less prone to artifacts than Rie-
mann sum proposed by Langford[10, 14]. This method
consists on picking randomly a large number of septuplet

{sx, sy, ox, oy, oz, dx, dy}. For each septuplet, if both col-
limator functions are equal to 1, we compute the angle θ
and the geometric and Lorentz polarization functions. The
density of sin(θ̄/2)

sin(θ/2) weighted by geometrical and Lorentz
polarization functions is then estimated using a Parzen-
Rosenblatt window method with an Epanechnikov window
REFS. An exemple of such histogram computed for exper-
imental conditions given at sections 6.1 and 6.3 is shown
on figure 3. This density presents an important negative
skewness and cannot be easily approximated by distribu-
tion functions classically used in ADXRD peak fitting al-
gorithms (such as Gaussian, Cauchy, Pearson. . . ) [3].

3.4. Background

During the acquisition, the detector measures not only
blurred diffraction peaks but also an additional baseline
spectrum. This spurious background g(E) level is caused
by amorphous parts of the sample, incoherent scattered
radiation and multiple scattering.

m(E) = t(E) (f(E) + g(E)) . (13)

3.5. Acquisition

The detector measures the number of photons in a dis-
crete number of energy channels. These measurements
y are inevitably corrupted by some noise n. There are
mainly three sources of noise:

• photon counting noise which follows a Poisson law,

• thermal noise which is a Gaussian noise,

• modelization noise which is use to take into account
approximations made to define the physical direct
model. We suppose this noise Gaussian.

For a channel j centered in Ej , the detector has a spectral
response b(j)(E) and the measurement yj in this channel
is:

yj =

∫
t(E) (f(E) + g(E)) b(j)(E)dE + nj , (14)

If the response is the same for all channels (b(j)(E) =
b(E − Ej)), the equation 14 is a convolution. In practice
the support of b(j)(E) is larger than the energy step be-
tween two consecutives channels, as consequence it causes
spectral blurring.

3.6. Discretization

Without loss of generality, the spectral distributions
t(E), g(E) and p(ξ) can be parametrized by a finite num-
ber of parameters by means of expansion onto a basis of
interpolation functions (REF). As the measurements y

are by definition discrete, it is natural to use the same
evenly spaced spectral grid GE = {Eℓ; ℓ = 1, . . . , NE} to
discretize t(E), g(E) and the spectral response functions
b(j)(E). In this case, there is no need to explicitly choose
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any particular basis of interpolation functions as far as it
has the properties required to make them suitable as in-
terpolation functions and it comes:

ti = t(Ei) (15)

gi = g(Ei) (16)

b
(j)
i = b(j)(Ei) (17)

For the parameter p(ξ) which is the one we want to
extract, more attention has to be paid on discretization.
It can be discretized on another spectral grid Gǫ = {ǫj ; j =
1, . . . , Nǫ} using the interpolation function vj(ǫ)

p(ξ) =
∑

j

pj vj(ξ− ǫj) . (18)

The grid Gǫ can be the same as GE but can also be more
finely discretized to perform super-resolution. Further-
more, it may not be necessary evenly spaced and can be
designed to be evenly spaced in the momentum transfer

space ( xj=ǫj
sin(θ̄/2)

h c ) or in the angle space for a given
energy Ē in order to be directly compared with a existing
database indexed in momentum transfer or in angle. In
this work, we choose to use the grid of the measurements:
Gǫ = GE (ǫj=Ej) and to define vj(ǫ) = v(ǫ) as uniform:

v(ǫ) =

{
1.
κ if −κ

2 ≤ ǫ < κ
2

0 otherwise,
(19)

where κ is the channel width of the detector.
Using such parametrization our discrete model writes:

yi =
∑

j

Bi,j tj

(
gj +

∑

k

Hj,k pk

)
+ ni . (20)

where the coefficients of Bi,j and Hj,k are:

Bi,j = b(i)(Ej) (21)

Hj,k =

∫

R+∗

h

(
Ej

E′

)
v(E′− ǫk) dE

′ . (22)

Equation 20 can be written using matrix notation and be-
comes the direct discrete:

y = B ·
[
t× (H · p+ g)

]
+ n . (23)

This equation defines our direct problem and thus can be
used in order to simulate the data. In practice filter re-
ponse b(i) remains the same for all channels and the convo-
lution matrix B can be fastly applied by means of a Fourier
transform. A simulation using this model with g = 0 and
p = 0 excepted at 30 keV, 80 keV and 140 keV is shown on
figure 4 for experimental conditions given at sections 6.1
and 6.3. On this figure, it can be clearly seen that the
spread of the peaks increases as their energy rises.

300

100

0 15050 100

In
te

ns
ity

 (a
.u

.)

Energy in keV

Figure 4: Total response of the setup for three peaks of equal inten-
sity placed at 30 keV, 80 keV and 140 keV.

4. The inverse problem:

The goal of the presented work is to estimate the diffrac-
tion peak distribution p from the data y according to the
model defined by equation 2. We suppose that the opera-
tors B and H are known and that a good estimation of t
is provided by measurements from a spectroscopic detec-
tor placed in transmission. However, even if it is not of
interest, we still have to estimate the background g jointly
with p (both of size N) from a data spectrum of size N .
This is a typical inverse problem, that can be solved in
a penalized likelihood or maximum a posteriori (MAP)
framework [15].

This is achieved by estimating the couple {p+, g+} that
minimizes the cost function ξ(f , g):

{p+, g+} = argmin
{p,g}

ξ(p, g), (24)

ξ(p, g) = Φ(p, g,y) + Ψ(p) + Θ(g), (25)

This cost function ξ(p, g) is the sum of three terms: a like-

lihood penalty Φ(p, g;y) ensuring the agreement between
the model defined by equation 2 and the data y, and two
regularization penalties Ψ(p) and Θ(g) introducing sub-
jective a priori knowledge about the diffraction peak dis-
tribution p and the background g respectively.

4.1. The likelihood penalty term

Assuming Gaussian noise, the likelihood penalty reads:

Φ(p, g) = rT ·W · r , (26)

with the residuals:

r = y −B ·
[
t× (H · p+ g)

]
, (27)
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and where the weighting matrix W is the inverse of the
covariance of the noise: W = C

−1
noise.

If the noise is uncorrelated, the weighting matrix is di-
agonal W = diag(w) and Eq. 26 simplifies to:

Φ(p, g) =
∑

i

wir
2
i , (28)

where 1/wi is the noise variance in the channel i. This
model can cope with non-stationary noise and can be used
to express confidence on measurements on each spectral
channel of the data. Since unmeasured data have infinite
variance, we can readily deal with missing (outside the
field of view) or bad channels as follows:

wi ≡

{
Var(yi)

−1 if yi is measured,
0 otherwise.

(29)

Except for very low detector noise, we can approximate
the total noise (Gaussian detector noise plus Poissonnian
signal noise) by a non stationary Gaussian noise [16]:

wi ≡

{ (
γmax(yi, 0) + σ2

i

)−1
if yi is measured,

0 otherwise,
(30)

where γ accounts for the quantization factor of the detector
and σ2

i is the variance of other approximately Gaussian
noise (for example read-out noise) in the channel i.

4.2. Priors

The most evident objective prior on interference func-
tions we can introduce is its positivity. Unfortunately this
constraint is not strong enough to lead to acceptable so-
lutions, and other a priori knowledge are needed. These
priors are introduced by the use of the regularization func-
tions Ψ(p) and Θ(g). As the diffraction peak distribution
p and the background g have very different a priori mor-
phological shape, these two functions are designed sepa-
rately.

Prior on the diffraction peaks distribution. Interference
function of a crystalline material is non-null only for val-
ues that correspond to the inverse of crystal inter-planar
spacing. The diffraction peak distribution p is then very
sparse. Recovery of sparse vectors has been extensively
studied in this last decade1. Donoho [17] has shown that
minimizing the ℓ1 norm of a vector p is the best convex
regularization function that favor sparsest solutions. Un-
fortunately, ℓ1 norm is not continuously derivable prevent-
ing fast convergence of our continuous optimization pro-
cedure. For that reason we use a continuously derivable
hyperbolic approximation defined by:

Ψ(p) =
∑

k

αk

[√
p2k + ε2 − ε

]
, (31)

where ε is very small (≈ 10−9) and αk are the so-called
hyper-parameters that may vary with the channel k.

1The website http://www.compressedsensing.com/ contains
many references about sparsity and compressive sensing.

Priors on the background. As we don’t have precise (i.e.
quantitative) information about the main effects that lead
its formation, we propose to introduce some smoothness
priors about the background g. The background regular-
ization function Θ(g) is thus a classical quadratic smooth-
ness regularization function defined by:

Θ(g) =
∑

k

βk(gk+1 − gk)
2 , (32)

where βk are channel varying hyper-parameters. This reg-
ularization function will act as a low pass filter which pre-
vent sharp changes of the interference function.

4.3. Hyper-parameters settings

αk and βk are the hyper-parameters that are used to
balance the influence of both priors and likelihood and
that have to be properly tuned. Unfortunately, as these
hyper-parameters are channel varying, we replace an esti-
mation problem with 2N parameters by another problem
of (2N − 1) hyper-parameters estimation. However, the
large number of hyper-parameters defined in this very gen-
eral scheme can be drasticly reduced according to simple
rules.

In this work, the parameter of interest is the diffraction
peak distribution p. Without informations about the ma-
terial nature, the probability of presence of a diffraction
peak is uniformly distributed over the channels. Unfortu-
nately, constant hyper-parameters αk and βk favor diffrac-
tion peaks at low energy. Indeed, as shown in figure 4, in
the data y, diffraction peaks at low energy are sharper
than those at high energy and a sharp peak has a higher
probability to be correlated with some noise realization
than a smooth one. The hyper-parameters αk have thus to
be tuned to enforce an uniform distribution of the diffrac-
tion peaks. Mimicking the L2 normalisation of atoms of
a dictionnary used in matching pursuit algorithms[18], we
propose a normalization of the hyper-parameter αk by the
L2 norm of the corresponding blurred peaks. It writes
thus:

αk = α

√√√√√
∑

i


∑

j

Bi,j Hj,k



2

, (33)

where α is a global hyper-parameter for diffraction peak
distribution regularization.

Furthermore, the background regularization Θ(g) favors
smooth background. As a peak at high energy is smooth,
the hyper-parameters βk must be tuned to enforce a back-
ground smoother than diffraction peaks everywhere in the
spectrum and to enforce an uniform distribution of the
distribution peaks.

βk = β
1∑

i [∇ (H−,i)]
2
k

, (34)

where H−,i means the i-th column of H and ∇ is the finite
difference operator. β is a global hyper-parameter for the
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background regularization. This normalization of βk en-
sure that the regularization function Θ(g) gives the same
penalty for all peaks wherever their position is in the spec-
trum. Finaly only two hyper-parameters β and α have to
be tuned for the reconstruction.

5. Algorithm summary

In our framework, the reconstruction of the diffraction
peak distribution p and the background g corresponds to
the determination of the couple {p+, g+} that minimizes
the objective criterion defined in Eq. 25. The optimal re-
constructed diffraction peak distribution depends on the
particular values of the hyper-parameters α and β. Choos-
ing their optimal values is difficult and it is done for now
by trials and errors. However, for future automatic hyper-
parameters estimation, the L-curve method[19] or Stein
unbiased risk estimator [20] seems suitable, but this de-
serves an extensive study which is out of the scope of this
paper.

To minimize the criterion defined in Eq. 25., we use
the VMLM-B (Variable Metric with Limited Memory-
Bounded) algorithm [21] which is a limited memory vari-
ant of the variable metric method with BFGS updates [22].
This algorithm can further account for bound constraints
on the parameters. We make use of this feature to enforce
positivity of p and g. This algorithm has proved its ef-
fectiveness for image reconstruction and only requires the
computation of the penalty function being minimized and
its gradient. The memory requirement is a few times the
size of the problem.

6. Results

In this section, we illustrate the performance of the pro-
posed algorithm using real data. Two crystalline materials
with well known inter-planar spacing (since [23, 24]) are
used in these experiments: NaCl and graphite.

6.1. Experimental setup

Schematic representation of the experimental setup is
shown in figure 5. The sample is illuminated by a 140 kV
tungsten anode X-ray tube operated at 280µA and placed
at 36.7 cm from the sample. Its focal spot is 1mm wide.
The incident X-ray beam is collimated by a tungsten slit of
0.2mm in width, 8mm in height and 8 cm in length. This
source collimator is placed 18.4 cm away from the focal
spot.

The scattered photons are detected with an high pu-
rity germanium (HPGe) detector oriented at θ̄ = 4.26◦

and placed 24 cm from the sample. The detector colli-
mator located in front of the detector is a slit of 8mm in
height and 8 cm in length. This slit has a width of 0.02mm
on the detector side and 0.2mm on the other side. The
spectral response function of the HPGe detector energy
b is supposed to be a Gaussian with a full width at half

x
y

z

Scatter detector

Source

Sample

θ = 4.26°

27 cm

24 cm

19 cm

Figure 5: Schematic view of the setup used in the exper-
iments.

maximum (FWHM) of 0.4 keV. It is supposed to be con-
stant on the whole energy range considered in these exper-
iments: b(j) = b. We consider every photon detected in
NL = 1818 energy channels of the detector between 15 keV
and 160 keV (sampling step size of 80 eV). With such
a couple source/detector the range of the probed inter-
planar spacing is beetwen 0.2 nm−1 and 2.4 nm−1. The
exposure time is set at 600 s, for each spectra to have a
good counting statistic.

In both experiments, the matrix H is computed accord-
ing to the equation 22 using these setup parameters and
the approximative shape of the sample. Without trans-
mission detector, the source spectrum was approximated
by a Birch and Marshall[25] semi empirical spectrum for a
tungsten anode 160 kV source. For the attenuation spec-
trum we use the theoretical attenuation of the samples.

6.2. NaCl

The NaCl used was held in a thin walled polyethylene
cylinder of 1 cm diameter and 2 cm in height. The scat-
tering measurements are presented on figure 6. Several
comments can be made on these data and we can notice:

• a continuous background that is higher for low energy,

• four peaks that may be produced by diffraction at
50 keV, 59 keV, 83 keV and 102 keV,

• two peaks at 59.7 keV and 67 keV that are caused by
tungsten fluorescence,

• a very broad peak between 30 keV and 40 keV which
may be due to the scattering of the plastic cylinder.
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Figure 6: Measurements on a NaCl sample.
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Figure 7: NaCl diffraction spectrum (in black) with the coresponding
estimated background g × t (in dashed light gray) and diffraction
peaks p (in dark gray).

This peak is too broad to be caused by scattering of
crystalline materials.

These data were processed using the proposed algorithm
with hyper parameters α = 0.05 and β = 10. The source
spectrum was supposed to follow the Birch and Marshall
synthetic spectrum and we use the theoretical attenuation
of a 1 cm thick NaCl cube. Estimated diffraction peak
distribution p and background g are shown on figure 7.

As expected the estimated background g fits the broad
peak between 30 keV and 40 keV but not the next peak
as 50 keV which is a diffraction peak. As the background
plotted on figure 7 is the product g × t, the peaks about
58 keV and 67 keV correspond to the Tungsten fluorescence
lines.

The diffraction peak distribution p shows six peaks. The
positions of the centroid of these peaks are presented in
the table 1. They can be compared with the theoreti-
cal diffraction peak positions estimated for θ̄ = 4.26◦ us-
ing inter-planar spacing measured by Swanson[26] (from

15050 100
Energy in keV

400

200

0
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un
ts

Figure 8: NaCl diffraction spectrum (in black) and its model (in light
gray) computed using estimated vectors p and g

Theory (from [26]) Estimation
hkl d in Å I/Imax E at θ̄ = 4.26◦ peak position

in % in keV in keV
111 3.258 13 51.20 50.75
200 2.821 100 59.13 59.42

false 64.10
220 1.994 55 83.65 83.54
311 1.701 2 98.06 ND
222 1.628 15 102.45 101.85
400 1.410 6 118.29 ND
331 1.294 1 128.90 ND
420 1.261 11 132.27 131.29
422 1.1515 7 144.85 ND
511 1.0855 1 153.66 ND

Table 1: Estimated diffraction peak position (shown on Fig. 7) com-
pared to position for θ̄ = 4.26◦ estimated using inter-plannar spacing
measurements from from [26]. false is for false detection and ND for
non detection. The theoretical position of the peaks have been esti-
mated for θ̄ = 4.26◦
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ASTM card 5-0628). Every peaks present a very accurate
position compared to the Swanson estimation with an error
smaller than 1 keV. The last detected peak (at 131.29 keV)
presents the higher positioning error which can be ex-
plained by the relatively small number of photons mea-
sured around this energy. The five diffraction peaks that
were not detected, are the five peaks with the lower rela-
tive intensity (< 10%) in the measurements of Swanson.
A small peak has been falsely detected at 64.1 keV. This
false detection may be due to the tungsten fluorescence
line Kβ at 67.25 keV. Indeed, as we use only a very coarse
estimation of both source spectrum and material attenua-
tion, the magnitude of these rays may be under-estimated,
and their residuals may be explained as a scattering line
by our algorithm. This problem of too coarse estimation
of source spectrum and material attenuation is responsible
for the misestimation of peak magnitude. Furthermore as
the presented method is for powder diffraction, multiplic-
ity and texture (prefered orientation of crystal) may affect
measured relative intensity. As consequence, only peak’s
positions can be used for material identification and not
relative intensity.

The figure 8 shows the model of the data computed with
estimated solutions p and g. This model shows a good
accordance with the data estiblishing the validity of our
linear model of the formation of EDXRD data. However,
it can be noticed that the model is always lower than data
around the diffraction peaks. This under estimation can
be explained by a too coarse estimation of the setup ge-
ometry that has lead to an over estimation of the angular
dispersion giving thus too broad diffraction peaks.

6.3. Graphite

The graphite used in this experiment was a 4 cm thick
piece of about 2 cm in width and height. This large size of
the sample is responsible for quite broad scattering peaks
in the scattering measurements. This EDXRD diffrac-
tion spectrum is presented on figure 9. Data were pro-
cessed using the proposed algorithm with hyper parame-
ters α = 4.10−3 and β = 5. We use the theoretical atten-
uation of a 4 cm thick graphite piece. The results of the
algorithm is plotted on figure 10 and the model of the data
computed with estimated solutions p and g is plotted on
figure 11. This figure shows the accordance between the
model and the data. The estimated locations of diffraction
peaks are shown in the table 2 and can be compared with
“theoretical” peaks position estimated using inter-planar
spacing measurements given by ASTM card 12-212 [27].

On figure 10, we can see that seven diffraction peaks
are detected. Most of them (excepted the highest peak
at 49.11 keV) were difficult to distinguish on the data
(figure 9), in particular for those at energy higher than
120 keV where very few photons (< 5) are detected in
a single channel. Only the three fainter peaks were not
detected. Furthermore, the Kα line of the tungsten (at
58.9 keV) is not identified as a diffraction peak. The high-
est peak at 49.11 keV (hkℓ : 002) has two visible harmonics
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Figure 9: EDXRD measurements on a Graphite sample.
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Figure 10: Graphite diffraction spectrum (in black) with the core-
sponding estimated background g × t (in dashed light gray) and
diffraction peaks p (in dark gray).
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Figure 11: Graphite diffraction spectrum (in black) and its model
(in dashed light gray) computed using estimated vectors p and g
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Theory (from [27]) Estimation
hkl d in Å I/Imax E at θ̄ = 4.26◦ peak position

in % in keV in keV
002 3.370 100 49.49 49.11
100 2.132 2 78.23 77.66
101 2.036 3 81.92 80.69
102 1.800 1 92.66 ND
004∗ 1.682 8 99.16 98.50
103 1.541 2 108.24 104.76
110 1.232 6 135.34 133.58
112 1.155 2 144.41 ND

006∗ - 105 1.120 2 148.92 149.47
201 1.050 2 158.85 ND

Table 2: Estimated and theoretical position of graphite diffraction
peaks shown on figure 10, in keV. ∗ denotes two harmonics of
the peak at 49.11 keV. false is for false detection and ND for non
detection.

at 98.50 keV (hkℓ : 004) and 149.47 keV (hkℓ : 006). The
baseline of the diffraction spectrum is well fitted by the
smooth background term g.

7. Discussion

In this study we described a numerical method to re-
store energy dispersive X-ray diffraction data and to ex-
tract diffraction peaks. It is based on an inverse problem
approach. It uses a linear direct model derived from an
analysis of the formation of the data and the causes of
diffraction peaks blurring. Using a continuous optimiza-
tion technique, it then estimates the “perfect” diffraction
spectrum that best reproduces the data according to the
model and some additional priors. These priors are the
sparsity of the crystalline diffraction spectrum and the
smoothness of the baseline spectrum.

The level of influence of the priors are tuned using
two hyper-parameters. In the present work the hyper-
parameters were set by trials and error for each spectrum.
The setting of hyperparameters can be tedious and conse-
quently it will be necessary to find an automatic method
for routine use of this method. A further study will be
necessary to determine whether existing hyper-parameters
setting methods (L-curve[19], GCV[28], SURE[20]. . . ) can
be used or whether a specific method has to be defined.

This method was tested on real diffraction spectra of
known crystalline materials: NaCl and graphite. Com-
putation time were approximately equal to acquisition
time (several minutes). On both materials, the presented
method was able to extract precisely diffraction peaks even
at high energy where the number of detected photons per
channel is low (<10). These real results clearly assess two
facts: (i) the direct model is correct as it provides good fits
of the data and (ii) the priors effectively provide satisfying
solutions.

As attenuation and source spectra were only coarsely
estimated, the estimated relative magnitude of the diffrac-

tion peaks is uninformative for material identification and
only peaks location could be used. This coarse estimation
is also responsible of false detections around fluorescence
line of the tungsten. These drawback should be attenu-
ated by the simultaneous acquisition of the transmission
spectrum that should give (in the small angle approxima-
tion) a better estimation of the attenuation times source
spectrum.

The other sticking point of the presented method is the
necessity to have at least a coarse estimation of the shape
of the sample to compute the blurring kernel h(). A way to
bypass this shape estimation step is to directly calibrate
this kernel h() using the measurements as it is done in
image blind deconvolution algorithm[29].

A natural extension of this “inverse problem” is the re-
construction of a 3D volume using an array of detectors
and the estimation of a whole 3D crystalline material as
we proposed in[30].
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