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On the Production of Dissipation by
Interaction of Forced Oscillating Waves
in Fluid Dynamics

Aurélien Klak *

Abstract

In the context of some bidimensionnal Navier-Stokes model, we exhibit a family of exact
oscillating solutions {u.}. defined on some strip [0,7] x R? which does not depend on
€ €]0,1]. The exact solutions is described thanks to a complete expansions which reveal
a boundary layer in time ¢ = 0. The interactions of the various scales (1, 1/¢ and 1/¢?)
produce a macroscopic effect given by the addition of a diffusion. To justify the existence of
{ue}e, we need to perform various Sobolev estimates that rely on a refined balance between
the informations coming from the hyperbolic and parabolic parts of the equations.

Mathematics subject classification (2000): 35-XX, 76N17, 76M45
Keywords: Equations of mixed hyperbolic and parabolic type, oscillations, BKW Calculus, sta-
bility.

1 Introduction

In Section 1, we introduce the underlying equations and the functional framework. Then, we
state our main result.

1.1 The equations

The time and space variables are t € Ry and z := (z1,22) € R2. The state variables are the
density p € Ry and the two components u; and uy of the velocity of the fluid u := (uy,us) € R2.
Given a function u : R?> — R2, note as usual:

0 0
diVU:: 81U1+82'LL2, 61 = 87“, o 1= 87_11;2

In what follows, € €10, 1] is a parameter approaching zero. Introduce the dissipation:
Peu="(Plu,Plu) == pe* Ayju+ A e® Vdivu

where p, A € R% are fixed. Let h be some smooth periodic function with mean zero:

h:T-—>R, T:i=R/Z, heC®T;R), /h(e)dezo.
T

*Université de Rennes I, IRMAR, UMR 6625-CNRS,Campus de Beaulieu, 35042 Rennes, France, E.mail:
aurelien.klak@univ-rennesl.fr



Consider the following oscillation which is polarized on the second component:
F.(z) =%0,F?)(z) := ¢ 2 t(O,uag(,h (5_2x1)> , e €]0,1].

Our starting point is the study of a model based on two-dimensional compressible isentropic
equations of the Navier-Stokes type, as can be found in [3, 12], forced by the source term Fy :

Op +div(pu) =0, @ = (u1u1 U1u2>
O(pu) + divipu @ u) + Vp? = p(P.u— Fr) , Co\urug ugug )

where ~ the adiabatic constant is supposed to be larger than one. To obtain a quasi linear

system having a symmetric form, it is classical [13] to introduce the state variable p := g ¢

with C := 7771 Then, we have to deal with:
Op+u-Vp+Cpdivu =0, (1)
ou+u-Vu+CpVp="P.u—F..

Observe that: .
PAOR) — Fo =0,  he(z):= h(?;) . Veelo].

It follows that, for all € €]0, 1], the oscillation (0,0, h.) satisfies Equation (1).

Our aim is to consider the problem of the stability of such families of solutions. To this end,
at the initial time ¢ = 0, we modify (0,0, h.) by adding some perturbation. More precisely, we
start with:

Tl T2

X
(p7u1,u2)(0,1') _ (0707h) (?21> + (51/ Qo.e s M Ué,ea eM ”g,e)(??’ ?) (2)

where (v, M) € N? with v large enough and M > 7/2 (retain that v > M), whereas:

(q075,vé78,v§75)(0,y) € H*(T x R;R?), Y= % eR.

One effect of the above perturbation is to introduce a dependence on z5 € R (or y € R).
Despite the smallness of €” (and maybe M), when solving (1)-(2), we have to understand the
interactions that occur between the very fast oscillations in the direction z; (with wavelength
£2) and the fast variations in the transversal direction zy (with wavelength ). On this way, we
are faced with questions about turbulence, in the spirit of models proposed in [4, 5, 7].

Another insight on the subject can be obtained by looking at (1) in the variables (6, y) € TxR.
Then, we are faced with a hyperbolic-parabolic system implying some singular (in ¢ €]0,1])
symmetric quasilinear part:

op +e? (W dp+eudyp) +Ce?p (Jou' +e0yu?) =0,
dut +e72 (u' Gpu' +eu? Oyut) + Ce 2 p dpp = Plu, (3)
Bpu? + 72 (ul dpu? + eu? dyu?) + Ce~'p dyp = P2u— F2,

and some viscosity which is degenerate on the density and becomes large when € — 0:

7’5 w = Pt‘flu _ l w (399u1 + 628yyu1) + Ae (899u1 + EaayUQ)
: Py 2 \ pu (Opou® + £20yyu?) + Ae (e0pyut + €20 u?) )



In this article, we show that (for v large enough and M > 7/2) the oscillating Cauchy problem
(1)-(2) is locally well posed in time. We prove (Theorem 1.4) the existence of a time T € R*,
independent of ¢ €]0, 1] with solutions (p.,ul,u?) = (¢” gc,eM v}, he + e v2) of (1)-(2) on the
interval [0, T]. We also exhibit (Propositions 1.1 and 1.2) a complete expansion as € approaches
0 for the expression (g.,v},v2). We find (in a sense to be specified later) that ¢. ~ ¢% and

€71 7¢g
ve 1= (v}, 0?) ~ 02 = (v, v92) with:
Nt1 N+1 ;
g2 (t,y,0 Z gty 0), oty 0) =) & (vi(t,yﬁ)Jrvk( Q,yﬂ)) (4)

k=0

These expansions reveal some time boundary layer at time ¢ = 0 (recorded at the level of the

contribution v,’; (7,-) which is exponentially decreasing with respect to the variable 7) together

with some mean evolution behaviour (described by v;). A noticeable aspect is the production
of some dissipation when looking at the transport equation (12) on v;j. The present approach
is not in the continuation of usual k — ¢ models [14]. But, in the same spirit, it confirms (and
justifies) that the interaction of oscillations can indeed be described at a macroscopic level by
the introduction of some turbulent viscosity.

1.2 The functional framework
1.2.1 Sobolev spaces
Here K denotes R, T x R or R?. Let o = (a1, a2) € N2. The length of « is |a| := a3 + ag. The
notation 9¢ is for the differential operator Jy" d;'.
- Given m € NU {400} and p € N* U {+o0}, recall that WP is:
WP .= {feLl(K); 8°f € L’(K), |a| <m}, H™ = Wm™?2,
When m € N, the space WP can be equipped with the following semi-norm and norm:
¥peNU{tool,  flle, == D 10l s M llwes =D £, , -
a€eN?, |a|l=m k=0

For s € Ry \ N, we can still define spaces W*P and H*® by interpolation theory.

- Let (m,n) € N? with n < m. Define the functional spaces:
wpm = { f; £ e CI(0, T W), i€ {0, n}}
H = {f; fe Oj([o,T];Hmfj), Vi€ {0,...,n}}, T € Ry U {400},
which can be seen as Banach spaces when provided with the norms:
[fllyygen := sup Z 107 £(t, Mlwm—ioe s [1F g == sup Z 107 £t )| grms -

te[0,T] =0 te[0,T] j=0

- In order to deal with functions f(¢,-) defined on Ry x K, which are exponentially decreasing
in the time ¢t € R, and which take their values in the Sobolev space H?, define:

t€[0,4+00]

- Finally, introduce £5° : ﬂ I IY Vo 0. ﬂ V%O and V7 : ﬂ V%’j where V € {H,W}.
jJEN jEN jEN



1.2.2 Families of functions

In this paragraph, we fix some ¢q €10, 1] and look at families of the type {f:}cc}0,c,]-

- Assume that f. € W™P(K) for all € €]0,¢0]. To control the size of f., we can use the
following weighted anisotropic semi-norm and norm:

m
VpeN U{tock,  felle,, = 3 10 el el =D I
' k=0

o .
k,p
(1,¢) a€eN?, |a|=m w

(1,8)

We will say that {f.}. is bounded in W(TS when:

I bwes == sup [ fellyms < +oo.
’ €€]0,e0] (1.e)

- Assume that f. € V7" for all € €]0,£0] where V =W or V = H. To control the size of f,
we can use the following norms:
[n/2] 4 [n/2] |
. 25 57 ) — 25 57 )
mon 1= SUP e fe(t, Myvm—i, S = sup e o fo(t, )| ym—i -
vp S Sup Z 127 0] f-(t, )] el e Z €% 0 12t -

Il

V(e

We will say that {f}. is bounded in V7" or in V' (711 ¢y When we have respectively:

. o= m,n < . s = m,n < .
£ = s Wl <00 Wl = s Ml < o0

Classical embedding : for s > 1 we have H*(T x R) — W%°(T x R) = L°°(T x R). When taking
into account the dependence on € €]0, 1], there is a loss of powers in . Retain here that:

ACERT; | fellpmmeny < C eV fellag,  xmy» Ve €10,e0]. (5)

1.2.3 Decomposition of a periodic function

Any function v € L?(T;R) can be decomposed as:
u(f) = (u) +u*(0), (uy eR,  u* € L*T;R), (u) = Tu ;:/u(a) do.
T

In what follows, given a symbol V € {W™P H5 W7"* H5. E5}, we will manipulate functions
f(t,0,y) € V(T x R). We will often decompose f into its mean and oscillating parts according
to

u(t,0,y) = (u) (t,y) + u*(t,0,y),
with,
H(ty) =101t y) = (f(t,-,y) € V/:=TD(T x R), (6a)
FH(t0,y) = f*(t,0,y) € V= (I -I)V(T x R). (6b)
To signal that we consider functions f(¢,6,y) which do not depend on 8 € T (IIf = f) or

whose mean value is zero (IIf = 0), we will use respectively (as above) the marks / and L. By
extension, when dealing with some operator P, we will note

P/ .=pi, PL:=P(I-T). (7)



Be careful, in the case of operators, the composition by IT and I — II is put on the right.

The derivative 9y acts in the sense of distributions on the space L?(T;R). We find:
K:i=kerdg={u=c;ceR}, K+ = (ker 9p)* = {u € L*(T;R); Tu =0} .

The action Jp has a (right) inverse 9, ' : K- — K+ N H(T;R) which is given by:
0 0
9y tu(0) ::/ u(s) ds—// u(s) dsdf, voeT.
0 TJo

1.3 Main statements
Since we impose v > M > 7/2, the equations on the components u! and u? can be considered
as being partially decoupled from the equation on p. Up to some extent, we can first deal with:
L1(2,qe,ve) == Ol + e h Oyl +eM72 (vl Opvl +evZopl) + C?" M2 g Opg. — Plo.,
Lo(e,qeve) == 02 +e P h Oy +e 2 0ph vl + M2 (vl g2 + e v2 9yv?)
+C M1, OyGe — 7352’05 ,
and then look at the remaining part as a transport equation on ¢, :
Lo(e,qe,ve) = Opqe +e " h Oyge + ™72 (vl Ogge +ev20yq.) + C M2 g (9pvl +20,02) .

In what follows, the results will be expressed in terms of the quantities ¢. and v.. Of course,
the expression

(psvuiaug):(5VQE75MU;7h+€MU§) (8)

is a solution of (3) if and only if:
L;i(e, g v:) = 0, vVje{0,1,2}. 9)

1.3.1 Construction of approximated solutions

We start by constructing approximated solutions for the system (9). The first step is to look
at the two last equations of (9), where the O(¢2¥~M™~2) <« 1 contributions (implying ¢.) are
neglected. Thus, we start by considering the system:

L5 (e,0:) = dpvl + e h dyvl + M2 (v) dpvl + e v2 dyul) — Plo., ~
L4(e,ve) = 2 + 7L h Oyv? + 72 9gh v}l + M2 (v} Ogv? + e v? Oyv2) — Plo..

Proposition 1.1. Fiz an integer M € N with M > 2. Choose any integer N € N and any decay
rate § €10, u[. Select any functions v € H®(T x R;R?) indexed by k € [0, N + 1]. There are
functions
vie (| HFE, vle&r, kelo,N+1]
TER?®.

such that the family {v®}. defined as indicated in (4) satisfies the following conditions:
i) At the initial time t = 0, the trace v2(0,-) is prescribed in the following way:

N+1

U?(070ay) = Z e Ulg(07y) (10)

k=0



it) For all time T € RY., for all m € N, the family {=V E‘;(s,v‘;)}s with j =1 o0rj=21s
bounded in 7—[7”37’50 in the sense that:

sup sup max [l L (e, ve +00. (11)

<
ec]o,1] tefo,r]  JE€{1.2} )HH’“(TxR)

Furthermore, the expression Ilv} is determined through an equation of the form:
1 - S
outlvy, — (1 + PR 1)?)) 0y, 110 = S (12)

where the source term Sy depends only on the CH with j <k —1.

To complete v? into some approximated solution (¢%,v%) of the complete system (3), there
remains to identify the pressure component ¢¢. To this end, we are satisfied to solve directly
the transport equation Lo(e,q%,v%) = 0 where v? is adjusted as in Proposition 1.1. Since the
expression v? is a function of the scales of time ¢ and E%, that goes for ¢2(t,y,0) too. In what
follows, we will not need to precise the way by which ¢¢ depends on the different time scales (t,

t ot
Lh)
Proposition 1.2. The context is as in Proposition . Note {v®}. the family issued from the

Proposition 1.1. Select functions ¢y € H®(T x R;R?) indeved by k € [0, N + 1]. There are
functions q;, with:

{¢i}.e () #T°,  kelo,N+1],  e€]0,1]
TeRy

such that the expressions q¢ defined as indicated in (4) are solutions of the Cauchy problem:

N+1
Lo(z,q2v8) =0,  q40,0,y)=>_ " q)(0.y). (13)
k=0

Moreover, for all time T € R, for all m € N and for all k € [0, N + 1], the family {q}} is

bounded in ’H?(Ol o) in the sense that:

sup  sup  [lgi(t )l g (rm) < +o00- (14)
e€]0,1]  te[0,T) (1,€)

Coming back to £1 and Lo, we can now make the following statement.
Proposition 1.3. Select m, M, N, v € N satisfying:
M>2, m > 2 and 2—M-5/2—(m+1)—N >0. (15)

Note {v2}. and {q®}. the families obtained with Propositions and . Then, for all j € {1,2}, we
have:

7N a a
sup  sup N L, gt )| < oo,
c€l0,1]  tef0,T] | i(€6800) |y (TXR)



1.3.2 Existence and stability result

The parameter ¢ €]0,1] being fixed, the local in time well-posedness of the Cauchy problem
(1)-(2) is standard, with corresponding solutions

(peyus) = (7 g2, M vE o+ M o). (16)

It means that, for all € €]0, 1], there is a time T, € R (eventually shrinking to zero when ¢ goes
to zero) such that (¢¢,v¢) with v¢ := (v¢l,v¢?) is a solution of (9) on the time interval [0, 7]
with initial data as indicated at the level of (10) and (13).

Fix any R € N. We can always define on the strip [0,7%], two functions ¢ and v® through
the identity

(¢5,v8) = (¢¢,v2) + e (¢Ff 0] (17)

Two questions are solved below: the existence of exact solutions of (1)-(2) on a time interval
[0,7%] with T, € R% independent of £ €]0,1] and the production of controls on (¢, v*) showing
that (¢2,v?) gives indeed some good asymptotic description of (¢¢,v¢) on [0, T¢].

Theorem 1.4. [Existence and stability] Assume A\ < 4p. Let m, v, M, N, R € N satisfying
M>17/2 and Wy =min(2v —-M —-5/2—(m+3)—-R,N—-R)>0. (18)

Let T, the lifespan of the solution of the Cauchy problem (1)-(2). Then there exist T, > 0
and ecrie > 0 such that
Ve €]0,ecrit], Te>Te.

Furthermore, the approzimated solution *(q%,v%), constructed thanks to Propositions 1.1
and 1.2, is a relevant expansion for the exact solution *(q¢,v¢) (associated with '(p¢,u¢) threw
Equation (16)) in the sense that the remainder ' (qf*, vl), defined in (17), satisfies the following
statements.

i) The family {qf*}. is bounded in ’H?j(?;gc)

sup  sup qu(t,-)HHmH < 4o0. (19)
c€]0,e.] te[0,Te] (1)

ii) The families {v:F}. and {e v2f}. are bounded in HTT'ZZP:O:

sup  sup ’|1161R(t7~)HHm+3 < o0, sup  sup ||5v§R(t,-)||Hm+3 < 4o00. (20)

€€]0,e.] t€[0,T¢] e€]0,e.] t€[0,T¢]

1.4 The context
1.4.1 Historical comments

Let N € N*. Consider the following scalar equation of evolution:
1 1
atfs‘i’g h(V)vrfs‘i’? Qfs = S(t,:z:,v), fE(t,I,V)ER (21)

where h : RV — RY is some smooth function, Q is some linear operator acting on L2, and
S(t,z,v) is some function depending on the variables (¢, z,v) € Ry x RNV x RY. The unknown
is the function f.(t,z,v). Depending on the choice of Q, the Equation (21) can be the neutron
equation [2], the Fokker-Planck equation [9] or the Boltzmann transport equation [15]. In this



context, it is well-known that the family {f.}.¢jo,1] has a weak limit , say fo as ¢ goes to 0.
In general, the expression fj satisfies an equation implying a drift-diffusion term of the form
—div,(DV,-) where D is some squared matrix depending on the data. The proofs of the
related statements rely strongly on the structure of the collision operator @ which is either a
bounded operator or a self-adjoint operator on some weighted version of L2.

When the operator is less regular or when there is a lack of symmetries [8], the convergence
concerns only the mean value p. with respect to v, called the density. For some function gg
satisfying adequate restrictions, we have:

0:(t,x) :== - fe(t,z,v) dv — oo(t, ) . (22)

When looking at the structure of £L* := *(L£{, L%), there is some analogy with (21). Indeed,
the expression £%(e,v.) can be decomposed into:

1 1
L%(g,v:) = Opve + - T ve + = Qu. + LL(e) v + M ENL(e,v.) (23)
with: o (~HOw 0 o (M0~ O
o (%h —uagg ’ T 0 h(f?y ’
10y — A9y (vl Ol +ev?o,t
LL(e) = <—>\89y —(p+eX)0yy )’ NL(e,ve) = vl 02 + 02 0yv? )

There are many analogies between (21) and (23). In both cases, the hierarchy with respect to
the negative powers of ¢ (namely 72, e~! and £°) is the same, with in factor operators sharing
analogous structures. Also, the mean value operation (v.) is when considering (23) what replaces
the integration with respect to v at the level of (22). However, there are two important differences
when comparing (21) and (23):

- The Equation (23) is a system (v. € R?). When dealing only with the singular part
e 1T +e72Q, this problem can be circumvented by first solving the equation on v} and then by
plugging the result into the equation on v2. However, once the influences of the contributions
LL or NL are incorporated, such strong decoupling is no more available. When dealing with
the full system (23), the discussion must necessarily take into account vectorial aspects.

- The operator Q of (23) is neither selfadjoint nor bounded (on L?). Up to some extent, it
can be viewed as a non selfadjoint perturbation of the selfadjoint action —pudgg I. Still, we can
compute the point spectrum op(Q) of Q : L?(T;R?) — H~2(T;R?). We find that:

op(Q) = {56((3; Q — 461 is not injective} = {un2; nEN}.

From the point of view of central variety theorems, the presence of a (point) spectral gap
between the eigenvalue 0 and the other (positive) eigenvalues indicates that there is a separation
between two types of behaviours in time, a slow one and a fast decaying one, for instance in the
spirit of [10, 15]. Of course, such a separation is due to the presence of —udgpg I inside Q. Again,
the influence of this dissipation term is what relates (21) and (23).

In other respects, singular systems like (23) have been studied in a purely hyperbolic context,
that is when p = A = 0. Then, the discussion is based on tools coming from supercritical
nonlinear geometric optics [1, 4, 0].

The asymptotic analysis of (23) under the assumptions retained here is clearly at the interface
of what is done in [2, 8, 15] and [1, 4, 6]. Nevertheless, it needs to develop a specific approach
which is the matter of the current contribution. In the next paragraph, we give a few indications
of our strategy.



1.4.2 Heuristic description

Our analysis of £ is based on a discrete Fourier decomposition with respect to 8 € T. We can

expand h as well as v =! (v!,v?) into Fourier Series:

h = th ekl vj:Zvi ekl je{1,2}.
kEzZ* kEZ
Introduce the following linear map:
I : L2(T;R?) — L2(T;R?)

v="0vv?) — (vo,vo — Z he pt kT me).
keZ*

The application Il is clearly a projector onto the kernel of Q. Retain that:
Moll=1II, ML>=kerQ, dim (kerQ)=2.

e a e To understand the action of the several operators in £ defined in (23), a first approach
is to consider the simplified equation:

e +e2Q0.=0,  5:(0,0) =Y 5 (0) e (24)
kEZ
The corresponding solution ¥, = (3}, 92) involves components 9 which can be put in the form
i t ) t .
L(t) :Zvi(t 8—2) et T= je{1,2}.
kEZ

For k = 0, we find that o§(¢,7) = 94(0) and:

~ ~ . — —1 ~ . — —1 ~ —up3T
a(t,7) = 03(0) — i Z hp ™ pt 0 (0) + i Z hp ™t p Tt Ol (0) e
peEL* pEL*
The second (constant) term in @Z(¢,7) is in general non zero and it comes from contributions
inside @ (0,-) which are polarized according to (I — II) L2. Thus, even if 9.(0,-) presses only
on the positive point spectrum, the corresponding solution o. is not necessarily exponentially
decreasing in time. We can see here a first effect of the nonselfadjoint part inside Q.
For k € Z*, noting X := {p € Z*;p # k,p # 2k}, we have 9, (t,7) = 0.(0) e~ PE’T and:

02(t,7) = —ihp p Lk 1~1( )—2ikh2k@ k(o)Te—ﬂsz
1

+1i Z hy ™t (p—2k)~ p(O) emnlk—p)y’T _ 4 Z hy ™t (p—2k)~ v,i_p(()) emHkT
pEN y peERN
+ [02(0) + i by =L kT B (0)] emrRT

By bringing together all constant terms (in 7) inside an expression vj (¢, ) which here does not
depend on t, these formulas fit with a decomposition like (4).

e b e Next, consider the more elaborated model:
O+ T+ 2Q0:=0,  5(0,y,0) = 0(0,y) ™. (25)
kEZ

One can expect that the intermediate singular term =17 produces the scaling t/e. However,
such an effect does not appear here. On the one hand, the contributions polarized according to
(I —TI) L? are mainly handled as in paragraph a. On the other hand, the II L? parts disappear
by a combination of two arguments:



- Due to the relation fT hh'df = 0, we can use the following algebraic identity:
MoToll=0. (26)

- We can absorb the extra term (I — ﬁ)Tﬁ through some ellipticity inside Q. Indeed, in what
follows, we seek . as an expansion of the form . = ¥y + e¥; + O(¢?). Assuming that
Uy = 19y € ker Q, we can observe that:

(I-M) (e T +e2Q) (0o +etn) = et [(I-I)TMi + (I — QU — ) o] + O(1) .
Now, the idea is to adjust #; conveniently in order to remove the O(¢~!) contribution.

In practice, the implementation of these arguments must be done with care because the
different terms which come into play are more tangled than what is indicated above.

Note that a normal form approach (in the spirit of [6]: meaning to change @ into (I +eM)v
for some well adjusted operator M), can be tried to get rid of 7. However, such a method seems
not to succeed. There are always remaining O(e~1) terms and, all things considered, to deal
with the actual diagonal form of 7 appears to be more suitable.

e c o Finally, consider the full system (23). Our aim is to describe the asymptotic behaviour
of the family {v.}. on a time scale of the order ¢ ~ 1. To this end, we have to understand the
O(1) contributions brought by the singularity e=! 7 +e~2 Q. This singular term is a perturbation
of the self adjoint operator Qq := e 2udggl. This perturbation is of two types.

- The interactions (at order one) between Qg and e~!7T turns out to be the source of some
creation of diffusion. The mechanism is similar to the one met in the drift-diffusion phe-
nomena. Moreover, Qy 4+ e 'T is a diagonal operator. The components of the velocity
are decoupled and the discussion deals more with scalar arguments than with vectorial
arguments.

- We perturb Qp 4+~ 17T by (8(g)h 8
also induced some strong coupling at order 0 between the two components of the velocity.
One aspect of the construction is to prove that this strong coupling do not disrupt the
production of dissipation. The discussion has to take into account vectorial aspects and
one issue is to match the initial data between the slow profile v2 and the fast profile v/.

at order 0. A first effect is that Q is not selfadjoint. It

Moreover, we have to determine the effects of £L£ and AL which are of two types. First,
the presence of £L£ and N L reinforces the coupling. Secondly, it induces nonlinear interactions
which are delicate to deal with. In particular, in the critical case M = 2, it becomes necessary
to exhibit transparency phenomena in order to achieve the analysis.

In this article, we propose (Proposition 1.3) and we justify (Theorem 1.4) a complete expan-
sion for the family {vc}.. It is the occasion to analyze precisely the linear features and the non
linear aspects alluded above.

1.4.3 Heuristic arguments for the energy estimates

The variable (¢, vf) can be interpreted as the solution of the linearized operator £ at ‘(q2,v?)
perturbed by some small non-linear terms (when v and M are large enough). It can still be
interpreted as the solution of the linearized equation of System (3) at point *(0,0, h)+ (" ¢%, eMv?)

10



(perturbed b some small non-linear terms). To underline the difficulties to obtain estimates on

a strip independent of ¢ we only consider estimates over (pf,u!) solution the linearized system

(3) at point (0,0, h(0)):
Opt  +ethoyp; =S,
dult  +e ' ho,ult —Plut =5y, (27)
O e o + e ph ult | PPl =5,

for some sources S := (Sp, S1,S52) in H®(T x R; R3). It is a parabolic-hyperbolic system sin-
gular in €.

Purely hyperbolic approach. We first consider that 4 = A = 0 so that the dissipation
vanishes. We perform classical L2-estimates on Equation (27). We obtain:

[ (p2,ud) () > S eCEtt sup, S|l 2, with Ce < C (L4 dphl|r~).

75]

Yet, it indicates that classical energy estimates only provide a control over the solution for time
of order €2. In particular for bounded time the solution can exponentially increase with the
time t.

Furthermore, let us consider the singular transport equation:

v + eh(9)0yv =0, V), = V0 -

The solution is explicit v(t,0,y) = vo(#,y — e *th(f)). In particular each time we differentiate
with respect to 6, we loss a power of . Thus, classical Sobolev space are not well suited for
the control of this family of solutions. We have to introduce anisotropic Sobolev spaces (defined
page 4) for both the velocity and the pressure.

Parabolic-hyperbolic approach. To go further in time, we have to consider the dissipation.
The operator P is positive and satisfies some coercive estimates. There exists a positive constant
¢ such that for any function f € H'(T x R),

veeo1), —(Pfof) 2 e (e 00f e mamy + 100 ooy ) = () (28)
It has two consequences.

- At fixed €, we should obtain a regularization of the solution. The velocity u is in LfHel,y
(see Inequality (101)). This is the reqularization phenomena.

- Considering the dependency in €, the dissipation should also absorb some singular terms.
First the squared term can be estimated as follows:

-1

e llet ph vt v dody| < et (|h)|F e |[0L]|72 + |6 Dpvl||32) -

TxR

Thus it only seems to be singular of order one (in €) instead of being singular of order two
(in €). Furthermore it is also desingularizes the singular transport. We can obtain estimates
over the velocity in the classical Sobolev spaces whereas the pressure is still estimated in
the anisotropic Sobolev spaces. It indicates that the estimates over the velocity and the
pressure have to be done separately.

11



Here, the addition of the parabolic aspect in the discussion still does not allow us to obtain
a control over (pf,u’) for time of order one. Some additional arguments are required.

Singular change of unknowns. To keep on desingularizing the term ¢ ~20,h uée we consider
the change of unknowns:

¢ =q, ul=ulf, w=cut
The system (27) becomes:
opt  +e tho,pt =50,
outt +etho,ult -Qlut =5y, (29)
ot e tho,ut + e tophult —Q%ut =eS,.

where the operator Q. is defined in Equation (97). We can notice that:
- The term e~20phult is desingularized into e 19phul.

- However, the dissipation is turns into the operator Q.. It can no longer satisfies Inequality
(28). Assuming p is large enough, it is still true (c.f. Lemma 3.5).

Thus performing the same estimates for system (29) as the one done in the previous case should

lead to a control over (g%, u%) in L2-norm for time of order one (¢ = 1).

€

Conclusion. In Section 3, we justify that those heuristic arguments work for the complete
System (94). Some technical arguments must be added to deal with the complete System (94).
Indeed, it is obviously nonlinear and the pressure and the velocity are coupled. Nonlinear terms
has to be studied carefully.

As indicated, the pressure is expected to be controlled in anisotropic Sobolev spaces whereas
the velocity is estimated in the classical Sobolev spaces. Thus it indicates that we have to deal
with the problem of the velocity and the pressure separately. However those variables are coupled

by the term
C€2V7M7R72

SO a0y (a + <)’

in Equation (94). The constant v has to be large enough so that the pressure does not interfere
too much with the velocity. Of course an other issue is that the pressure is only estimated in the
anisotropic Sobolev spaces. We can go back to the classical Sobolev spaces using the equivalence
of norms (92). It has a cost in power of e for each derivatives to estimate. It explains why we
lose (m + 3) precision in the definition of w,, (see Equation (18)).

1.4.4 Contents

What follows is divided in two main parts: Section 2 and Section 3.

The Section 2 is devoted to the construction of the approximated solutions (¢, vZ). The first
step is to show the Proposition 1.1.

- In this purpose, the paragraph 2.1 deal with the velocity field v2, that is with the equation
L£4(g,v%) = O(eN). The limit case M = 2 is special because in this situation the non linear
terms can interfere at leading order.

12



- In the paragraph 2.1.5, we are able to exhibit the control (11).

The pressure component ¢¢ is incorporated at the level of subsection 2.2. Then, the complete
construction of (¢%,v?) can be achieved in the form of Proposition 1.3.

The Section 3 is concerned with energy estimates. We first state the Proposition of control
of the velocity and the pressure. In particular we deduce estimates stated in the Theorem 1.4.
In the subsection 3.1, we look at the equations £; and L. To this end, we crucially need the
properties brought by the dissipation. In the Subsection 3.2, we inject the informations which
have been obtained at the level of £y. By this way, we can deduce controls concerning the
pressure component.

2 Construction of the approximated solutions

We recall that M is assume to be larger than 2. This section is dedicated to the proof of
Propositions 1.1, 1.2 and 1.3.

2.1 Approximated velocity

In this Section, we construct an approximated velocity. Since M > 2, it follows that non linear
effects are present. We are forced to work with the two time scales ¢t and ¢~2¢ together. We
construct expansions,

N+1 ¢ N+1 ¢
’U;(tvyvo) = Z 6k ’Uli(tayaa) ) Ug(?ayaa) = Z U}{(?ayag) ) (30)
k=0 k=0

and plug the expression v2 + v/ into £ at the level of (4). We obtain:
Oi(t,.) +e L hoyui(t,.) + M2 (’U;S(t, D0pVE (L, ) + ev23(t, )0y vi (¢, )
+e721(0,0ph vl (t,.)) — Pevi(t,.)
+e7 200l (t)e%, ) + e thoyul (t)2, ) + M2 ol (t/€2,.) gl (t/<2,))
+ ML ()€, ) 0yl (t/€2,) + €72 1 (0,0phvld (t/€%,.)) — Pl (t/€2,))
+ M2 (025 (¢, )0pvl (t/€2,.) + ev2e(t, ) Oy0! (t/<%,)))
+ M2l (8%, ) gui(t,.) + M 0 (¢, ) Dyvi(t,.). (31)
Fix any time T' € R’ . Define
L%(g,05) = 0w + e hoyu + M2 (vésagvg + Ev?sayv‘;) +e721(0,0h U;S) — ’ﬁgvj . (32)
Recall that v/ € E5° is assumed to be exponentially decreasing with respect to 7 € R4. Since
e = 0((€2/H)™) = 0(eN),  V(t,N)€]o,T] x N,

when looking at the Equation (31) for times ¢ €0, T] with in view a precision of the size O(e"),
all terms involving v/ can be neglected. Now, the idea is simply to extend this (relaxed) smallness
requirement on the whole interval [0, T]. Briefly, we seek v? so that

L%(e,08) = 0@EY),  te]0,T]. (33)
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The Equation (33) can be completed with some initial data

N+1

vi(0,0,y) = v(0,y) = Y F0i°(0,y). (34)
k=0

Clearly, it suffices to specify v0 to determine what is v3(t,-) for t € [0, T], by solving the Cauchy
problem (33)-(34). Now, in order to select v:® conveniently, we have to take into account what
happens for small times, in a boundary layer of size £? near ¢t = 0. To understand why, just come
back to the study of (31) for t ~ €% or 7 ~ 1. Then, the contributions brought by v/ can no more
be neglected. Considering (31) with the information (33) in mind, it seems natural to impose

Laf(s,vg,vj) = 0(N), T €10,1] (35)
where we have introduced
£ (e,vf v2) = e720,0] (r,.) + e th o] (r,.) — Povl(r,.)
+eM72 (0 (7, )(%v (r,.) + vl (r,.)0, (T, )) +(0,0ph vl (7,
+eM72 (0l (%7, )0l (1, ) + 55(52 vl(7,.))
+eM72 (0l (7, )00 (77, ) + evZ! (7, )0y vE (€77, ) - (36)

Assume that the data v is known. The Cauchy problem (33)-(34) furnishes v (¢, -) for ¢t € [0, T7.

In particular, it gives access to all derivatives (9,)v**(0,.) with [ € N. Therefore, we can

go further in the analysis by replacing in £%f (e, v/, v?) all the expressions v}*(¢?,.) by their

sy Vg s
corresponding Taylor expansions (say up to the order N — 1) near ¢ = 0. As long as 7 € R is

fixed, this operation is justified. From now on, we look at
LY (e, 0]) = 0N, TEeRy (37)
where the definition of £/t is
L e, vl) = e720,v.(r,.) + e ThOyv.(T,.) — Pove(r,.)
4+ M2 (’U;(T, )09V (T, ) + ev2(T, .)Oyve (T, J) + g2t (0 deh vl (r, D)

M—2 - ()’ 1 1s (e7) 1, 2s
+e ( (00020, )pve (7 +5Z at (,.)ayvg(r,.)>

=0

N— L N- 1
+eM ( )V Dpv(0,.) + e vi( . )1, e (0, )) (38)

1=0 : =0
To be coherent with (4), we have to impose
v(0,) = vf°C) = (v = 02)(0,), (39)
where v2(0, -) and vZ(0, -) are prescribed as indicated in lines (10) and (34). Now, we can recover
some v{(,-) for 7 € Ry by solving the Cauchy problem (37)-(39).

The difficulty comes from the condition v/ € &5°. Nothing guarantees that the criterion
v! € £° can be verified for some well-chosen v:?. To show the existence and the uniqueness of
such a data vZ° is in fact what matters. The extraction of an adequate function v2° is clarified
in the construction described below.
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For the sake of brevity, for £ > M, introduce the following notations:

J(M, k) :=={(i,j) € [0O,N+1]*; i+j=k—- M}, (40)
I(M,k):={(i,5,)) €[O,N+1]*x [O,N—1]; i+j+2=k—M} . (41)

For k < M, we set J (M, k) = 0 and Z(M, k) = . We also adopt the conventions vj = v/ =0
for k= -3, k= —2and k = —1. Let us now go into the details of the BKW calculus.

The first step is to inject some expansion v? like in (30) into the Equation (33). By this way,
we can obtain a cascade of equations concerning the unknowns vj = t(vi ks U3, ). More precisely,
for k € [0, N + 3], we have to consider

OV o +hOyvT ;i + Z vy ;0pvy ; + Z v3 ;0yv7
(4,J)€T (M,k) (4,§)ET (M +1,k)

= (10697 1, + HOyyv7 1o + ADog¥7 11 + ADoyv3 1o, (42a)

O3 o + R Oyv3 ;1 + Z vy ;0pv3 ; + Z v3 ;0yvs i + Ogh vy
(1,)€T (M, k) (i,§)€T (M+1,k)
= (1009V3 1, + HOyyv3 1o + Aoy o + ADyyv3 1 3. (42Db)

The next step is to plug some expansion v/ like in (30) into the Equation (37). By this way, we
can obtain a cascade of equations concerning the unknowns v‘,ic = t(v{ k,’l)g ). More precisely,

for k € [0, N + 1], we have to consider

oo +hopl  + > v oe] + > vl o]
(4,5) €T (M, k) (4,5) €T (M+1,k)

1

]

Y (oL@ @i )O) + @) wlo@a],) T
(i,5,1) ET(M, k) .

l

S s T

Y (00 ) + @) w3 0000,00,) T

(4,4,1) EL(M +1,k) !
= uaeev{,k + Mayyv{k_Q + )\agg’l){,k_l + Aa@y“éik_z ’ (43a)

Orvdy +hofy_y+Ophol, + D ol Opud ; + > v3 03
(i,5)€T (M,k) (4,5)€T (M, k+1)
!
l s L s T
Y (of @) @es O + @) (1) ()00d,) T
(4,5,1) ET(M k) '

!
l s L/ s T
Y (v @) @0 + ) (15.)000,0,)
(1,5,) ET(M+1,k) '
= #599”£,k + Nayyvg,k—2 + Aa@y”{kq + )‘ayy”g,k—s . (43b)
In view of (10), we can associate (42) and (43) with initial data v{’ and v,{o satisfying the
restriction:

05(0,0,y) + 0/ (0,0,y) = v)(0,y), Vke[0o,N+1]. (44)
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Proposition 2.1. [Solving (42) and (43) together with (44) and the condition v,]: € &°] Fix a
time T € R%, a number § €0, u[ and, for all k € [0,...,N + 1], functions v) € H>*(T x R).
Then, the conditions (42%), (43x) and (44) have a unique solution such that

(i, v]) e HF x E°,  Vke[o,N+1]. (45)
Moreover, the component v; can be identified through the homogenized Equation ().

The proof relies on some induction on the size of N, based on the following hypothesis of
induction:
HN(N) : " The Proposition 2.1 is verified up to the integer N ". (46)

To go from N up to N + 1, we will need a succession of lemmas which are produced below.
Before going into the details of the analysis, we give below a brief description of what happens
depending on the choice of M.

- When M > 3, the non linear terms are rather small, the construction is somehow linear.

- When M = 2, the non linearity becomes critical and a few arguments must be added. For
instance, if we write the Equation (42a) for k = 2, we can notice a Burgers’ term

Oy o+ hOyvy 1 + 7 o Ogut o = pOpevy o + 11 Oyy vy o + ADgevy 1 + ADpyvs (47)

and also two contributions dggv{ 5 and Jgevi ; to be calculated in function of vf o, with
apparently a non linear dependence with respect to vy ;.

- When M = 2 again, another effect of the non linear interactions is the apparition at the
level of (50) below together with (62), of a source term S,Zl// which can depend on vj.

- However, there are transparency phenomena at work which come from the initialization
procedure. Indeed, knowing that v = 0 for £ € {—3,—-2, -1}, the Equation (42) in the
case k =0 and M > 2 reduces to pudpev = 0. In other words, we have to impose

vig = (I-1)vj, = 0. (48)

It follows that v{ ; dgv{ o = 0. In the same way, all other apparent non linear contributions
will disappear. Therefore, the remaining term Ilvf, can be determined apart without
seeing any non linear effect.

2.1.1 Technical Lemmas

A consequence of the (point) spectral gap. The system (43) is made of two evolution
equations of parabolic type, based on 0, — udgg. This falls under the following framework.

Lemma 2.2. [Fast decreasing under a polarization condition] Let m € N and 6 €]0, u[. Select
wo € H™2(T x R) and Sy € (E]"?)*(T x R), that is such that TLSy = 0. Consider the initial
value problem:

Orw — ptOgow = Sy , Wy, _, = Wo - (49)

For allT € Ry, there is a unique solutionw € C*([0,T); H™(TxR)) to the Cauchy problem (}9).
Moreover, if the initial data is well prepared in the sense that llwyg = 0, then Ilw = 0 for all
t€[0,T] and w € EF(T x R).

The proof of Lemma 2.2 is very easy. It will not be detailed.
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Interpretation of the system (42). The Lemma below is intended to look at the system
(42) otherwise. Indeed, there is a difficulty when dealing with (42) since the knowledge of v§_,
seems to require the determination of v;_; and vy, that is the identification of terms vj with
indices j greater than k—2. An important remark is that such a dependence can disappear when
the projector II is applied. The possible dependence in the terms v} are recorded in the source

terms S,?l// (with explicit formulas). For this occasion, the two cases M > 3 and M = 2 must be
distinguished. This fact can be formulated in the following way.

Lemma 2.3. [Non-linear homogenization| Assume that the functions vy with k € [0, N + 3] are
solutions of the system (42). Then, for all k € [0, N + 1], the part Ilvj = t(HUik’va,k) 8 a
solution of
s _ s l nl s
0d1v; , — (p+ LII((05 ' 1)%)) 9y, 1105, = SV, + STV + PE(T — 0w
Oullug , — (1 + 305 ")) DyyThos = S5 + S5 + PA-(1 — i (50)
+ Py T, + Q5H(I — T)us, .

In the above system (50), the four operators P+, P, PQI// and QL-, as well as the source term

S,i// = t(Si{/MSé{/k), are defined along lines (51)---- - (58). On the other hand, the contribution
SZI// = t(Sflk//,Sg,lk//) is given by (59)-(60).

Proof of Lemma 2.3. The matter is to identify the contributions brought by the non linear terms.
Let us project () according to V/. Since J(M + 1,k +2) = J(M, k + 1), this yields

OV 4, + 11 (R Oyv5 oy y) + 10 > Vi Opvs
(i,5) €T (M, k+2)

+1I Z V35 0yv7 ;| = pOyyIlvg y
(4,§)€T (M,k+1)

OuIIvs 4, + 11 (R Oyv3 1oy ) + 11 > Vi Opvs
(i,5) €T (M, k+2)

+11 > 3, 0y05 5 | + 11 (06hv5 jya) = 1Oy, TTv3 4 + Ay, TT0S 4 .
(4,§) €T (M,k+1)

In what follows, we will use the system (42) and many integrations by parts in order to interpret
(R Oyvs 4 yq), 1T (h 8yv§7k+1) and II (agh ”ik+2)' The goal is to show that these quantities can
be expressed in terms of the v with j € [0, k.
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o Study of II(h9yv{ ;). Exploiting (42a) with k£ + 1 in place of k, we can deduce

(h ay”ikﬂ) = H(ae_e)Q(h) aya%vik+1) )
1 - S S S
= ; H(aaez(h) 0y (047 1 — pOyyv] 1 — Aa@yvlkfl))

1 — S S S S
+— 11| 0,4 (h) 0y Z vy ; gy ; + Z V3 ; Oy7
H (6,0) €T (M, k+1) (.)€ (M. k)
1 B Ao .
+ I T1(h 95 (h) By 1) — m (054 (h) Dyoovs ) -
Recalling (6) and (7), we have to deal with

s 1 _ s l s
T(h 8,05 1) = — p 11 (85 *h)?) 8y, TTvs 5, — sl{/k — P (1 - T3,

1 - S S S S
+ ; IT 854 (h) 9, Z vy ; gy ; + Z V3 ; Oyvy ;
(1,5)€T (M, k+1) (4,5)€T (M, k)

with the conventions,

1 — S S S
Si,k = *; 3992(h) 0y (3t’U1,k—1 - Hayy”1,k—1 - /\3«931”2,16—1) ) (51)
A _ 1 _
Plf:= A I1 (0,4 (h) Opoy f) — B I (h 9,52 (h) Oyy f) - (52)

o Study of II(hdyv3 . ). Exploiting (42b) with k + 1 in place of k, we can derive
il (h 8yv§,k+1) = H(ae_ez(h) 3y3991’§,k+1) )
1 — S S S S
= ; 1 (8902(]1) 0y (8tUé,k—1 — pOyyv3 1 — Aoy 1 — )‘ayyUQ,k—Q))

1 - S S S S
+ - I | 9;2(h) ), > vl 00vs Y s, 005
(4,§)ET (M, k+1) (1,7) €T (M,k)

+ T () 0, (h 0y + kot ).
We come back to the Equation (42a) in order to change the last term in this sum. This yields
%H(Bg(f(h) Oy(Oeh v i) = %H (0ph 0y (h) Oy (I — D)5 4 1q)
_ %n (00h 85,2 (h) B,052(1 — T1) (8405 5y — Dy} 1 — Aoyt p_1))
+ % IT (9gh 0,47 (h) 0y 0y (I — T1) (R Oyv5 1, — ADpov5 1))
1

+ — I1 | 9ph 0y (h) 9,0y’ (I —T0) > vl 0pvi Y v, 0,5
a (1.J) €T (M J+1) (1.4) €T (M.R)
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This amounts to the same thing as

s 1 _ s [1 s i1 s
(R 0,05 1) = =2 TL((05°1)%) Oy Tl 4 — Syl — PR (1 —Thpws , — P Twg

1 — S S S S
BT - Mvs , + =10 Dpq (h) 0, Z vy ,; Ogvy ; + Z v5; Oyvt 5
H (i,J)€T (M,k+1) (4,§)€T (M,k)
1 _ _ s s S
+ =1 80h8992(h) 8y8092(1 —1) Z vy ,; Ogvy ; + Z V3 ; Oyvt
H (4,§)ET (M, k+1) (4,J)€T (M, k)

with the notations

Sélk = ia;(f(h) Oy (atvg,kq - Mayyvg,kq - Aaeyvi‘;,kq - )‘ayyvg,k72)
- iQ Aoh Dy’ (h) Dy 0> (1 — 1) (0405 j_q — 1y V5 j—1 — ADoyV3 1) (53)
Plf.=—TI (:2 Aoh 0,5 (h) 0y (I — I1) (hOy f — Aaeef)) ; (54)
(55)

b= L g0 o)

o There remains to compute II(9phv{ ;). This is again (42a) with this time k + 2 in place

of k.

I (9phv§ 4 n) = IL (05 ' (h) Deovs i)

1 _ s s s
= i 11 (9, H(h) (6tv1,k — pOyyvi . — Aay (I — H)Uz,k))

1 — S S
+ m 11(9, " () (h Dy} i1 — Moot 111))

1 - S S S S
+ =1 ( 85" (h) Z vy ; Opvy ; + Z V35 Oyvy
a (1,§)€T (M k+2) (1,))€T (M.k-+1)

We want to remove the presence of v{ ;. ;. The relation II(h 9, 'h) = 0 allows to write

I1(9, ' (h) (R Oyv5 gy — ADpgvs 1)) = T1(85 " (h) (R Dy — Ndge) By (I — 1) Dpgv§ 11 1)) -
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The part dpov7 5., can be extracted from the Equation (42a) with k& + 1 in place of k. We find

1 - S S s
II (69hvik+2> = 0 I (9, H(h) (8tvi,k — pOyy v — Aoy (I — H)U2,k))

1 _ _ s
+ E I (39 () (h Oy — )\899)3992(1 —1I) (atvf,kq — pOyyvi 1 — )‘8011”‘2,1@71))
1 _ _ s
+ 2 IT (0 " (h) (h 0y — ADap) Dy (I — ) (R Oyv5 . — ADppvs 1))
1 - _ S S S S
+ =5 I | 9, (h) (1 9y — \gg) Dy (I — TI) Soowi 0+ Y vs, 0,05
K (i.7)€T (M k+1) (i,7) €T (M, k)
1 - S S S S
+ =1 | 8, (h) > vi ; Ogvs ; + > vs ;003
H (i,5)€T (M,k+2) (i,§) €T (M ,k+1)

This yields to

11 (0ph Uf,mz) = _Sé?lé/ — P (I~ Mof , — PQW/ Iof  — 2 (I - w3

1 — — S S S S
+ 5 I [ 9, () (h Dy — NDge) Dy (I — ) > w0005+ Y s, 0t
K (.)€ T (M, k+1) (i.5)€T (M, k)
1 — S S S S
+ —1I 69 1(h) Z U1 801}17]' + Z Vg i 6Z/’Ul,j ’
K (4,§)ET (M,k+2) (4,§)€T (M,k+1)
with

1 — - S S S
S5k =z 0y " (h) (—h 8y + A0p9) g’ (I = T)(9pvf oy — By 1 — ADoyv3 1)), (56)

pi2f :Z% T (95 (1) (—h Oy + Apo) 02 (T —T1) (hy f — Ao f))
- % (05 L) (00 f — Dy f) (57)
o :=2 I1(0; (1) (99, f)) - (58)

Briefly, for all £ € N, we denote
Sé,k = Sélk + Sgk + A0yyllvs g, PL:=P}'+P?, Qh = QY + QY.

o Conclusion. Combining all informations together, we finally obtain (50) with

nl 1 — s s s s
Sl,k:// =—-1 8092(11) Iy Z U1,i 80“1,3‘ + Z Va4 3y”1,j
H (.)€ T (M,k+1) (i,5)€T (M. k)
~1I ST v 005+ S uon; |, (59)
(i,J)€T (M,k+2) (4,§)ET (M,k+1)
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and

nl 1 — s s s s
SZk// = _; I 8992(h> Oy Z V1, 89U1,j + Z Va4 8yU1,j
(4,5)€T (M, k+1) (4,5)€T (M, k)

1 — — S S S S

- E IT'| doh 8992(h) ay8992(1 —1I) Z V14 80”1,;‘ + Z Va4 ay“Lj
(4,5)€T (M, k+1) (,§)€T (M,k)

]- — —_ S S S S

- 11 { 9572 (h) (hy, — \ge)Dp* (I — 1) S w0t i+ > vs, 0
(1,5)€T (M,k+1) (,4)€T (M,k)

1 — S S S S

T u I 95 (h) Z vy ; gy ; + Z V3 ; Oyvy
(1,5)€ET (M, k+2) (4,J)€T (M,k+1)
T S wviioes;+ S usious; . (60)
(1,5)ET (M, k+2) (1,5)€T (M, k+1)

O

The definition of S,?l// involves the sets J (M, k), J(M,k+ 1) and J(M, k + 2). Note that

(M >3, ke{kk+1,k+2}, (i,j)e J(M,k)] = i<k—landj<k-1. (61)
Thus, the presence of vj inside S,:Ll// is not allowed as long as M > 3. On the contrary, when
M = 2, it becomes effective. This remark can be formalized through the following statement.
Lemma 2.4. [Refined description of the source term of (50)]

i) The expressions S,l/ only depend on the vi with j € [0,k — 1]. More precisely, we have

l l s s
Sk// = fk//(UOa e VRo)

where f,l/ =Y i//k, é//k) are homogeneous linear functions of their arguments.

it) When M > 3, the expressions S,:l// only depend on the v; with j € [0,k —1]. More
precisely, we can retain that

nl nl s s
Sk//: IZ //(’UOV'"UIcfl)

where fqnl// =1 {",Zl//, Qq;g//) are quadratic functions of their arguments.

i11) When M = 2, the expressions Sgl// only depend on the v with j € [0,k]. The influence
of vi can be specified through a decomposition of the form

nl// fq"l//(vg,...,u;,l) + SP(vy) v, fqnl// (fq”l// fq”l//)

Again fg"l// is a quadratic function of its arguments whereas SP(v§) = t(SPl(vg),SPg(vg)) is
the linear differential operator defined according to

SPi(vy) vp == —TL(v7 ), Ogvi o + vi o Ogvs 1),
S S S S S S 1 — S S S S
SPy(vg) vy = —1L(v] g Opv3 j, + V7 o3 ) — 0 I ((’99 '(h) (v1 0 Opv7  + V1 807’1,0)) .
(62)
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From now on, we simply note fgl// = f,i// + f,;"”//.

Proof of Lemma 2./. As already mentioned, the statement i) is a direct consequence of (61).
The linear aspect of f,i// is a consequence of the formulas obtained in (53) and (56). On the

other hand, the quadratic aspect of f,g"l// is obvious in view of (59) and (60). It proves ).

There remains to consider the situation ii) where M = 2. Note that J(2,k + 2) = J(0, k).
In view of (61), we have to concentrate on the contribution of

—1II Z vy ; Opvy ;
(1,4)€T (0,k)

1 - S S S S
- 1(h) Z v, 891;11]. —1I Z vy 891)2’]-
a ()€ (0.5) ()€ (0.8)
In the sums above, only the extremal indices (i, ) = (k,0) and (4, ) = (0, k) give a contribution
to include in SP(v§), leading to (62). O
2.1.2 Analysis of the system (50)

Projection of system (50). The system (50) is clearly an evolution equation of parabolic
type. As such, it can be completed by initial data. But to solve it, we also need to identify the
extra terms (I — IT)vg ; with x € {1,2}. To this end, it suffices again to exploit (42). Recall that
Ve {Wme HS Wi* M5, E5} and define the linear continuous isomorphism

®:V(TxR)x V(T xR) — V= VLT x R) x V/(R) x V(T x R) x V/(R)
(fluf?) — ((I_H)flvnflv(I_H)f27Hf2>-

By construction, the expression V;# := '® vf must be solution of the system

ude 0 0 0 1%; vi’%
-PL P 0 0 n "

VS = 1 Yy Ve = 1,k —. fnl VS — 1,k 63
AVi= | L 0 [V gl | T TS (63)
L 1L nl s
- =P -Qy P, f27k/ v2’/2

where the term f,? W i given by Lemma 2.4 whereas T and P, are the operators defined by

Tfim (L=W@hf) . P =00 = (s STL(05 1)) 0,5

Description of fit. As for f,?l// we decompose fit into fplt = fH + fgnu‘ where the
linear part f,lf is defined by
flk =1 —1II) (atvik—Q - Nayyvik—Q - /\aéyvg,k—z + hayvik—l - Aa@GUik—l) ) (64)
élk = — H)(atvg,k—Q - ﬂayyvg,k—z - )‘89y”f,k—2 + hayv;,k—l - )‘ayyvéq,k—g) ) (65)

whereas the quadratic part fg”u‘ =t 1(",1“‘, quu‘) is given by

FO = (1 -1 Sowiioevy+ > w0 |, pe{l,2}. (66)
(2,7)€T (M, k) (2,7) €T (M+1,k)
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Lemma 2.5. [Description of f,?u] The functions f,iL and f,g"“‘ only depend on the vi with
j € [0,k —1]. They are respectively homogeneous linear and homogeneous quadratic functions of

their arguments (v§,...,vi_,).

Proof of Lemma 2.5. Just look at (64)-(65)-(66) together with (61). O

Analysis of the system (63). To study the system (63), we have to distinguish the general
case M > 3 from the critical case M = 2.

o When M > 3, According to the Lemmas 2.3 and 2.5, the above right hand term f,?l can be
viewed as a source term.

o When M = 2, f,? " is no longer a source term. Now, recall that we can exploit the
condition (48). This information is essential. It induces many simplifications when computing
SP(v§). We find that SP;(v§) = 0 whereas SP5(v§) can be reduced to the following linear (non
differential) operator

S s S S 1 S S
SPy(vg) vf, = — (v} D) + . v T (hovst). (67)

At first sight, the expression SP(v§)v§ depends in a non linear way on vj. However, we can
again exploit the condition (48) (which says that vi§ = 0) and then apply (67) with k = 0 in
order to obtain further cancellations. There remains

SP(vg)vg = 0. (68)

From now on, since there is no more ambiguity, we can omit to signal that SP(v§) depends
on vg, and in fact only on vi/{). We will most often note SP(v§) = SP(”US//) =SP=%SP,SP).
Since SP, # 0, the formulation (63) must be changed. This time, we have to deal with

T17s n nl n nl S s
AVE =Y 1,%7 171@//7 z,lkLa 2,1!)’ Vi =00} (69)
where
,uagg 0 0 0
~ — Pt P, 0 0
A o _Ts _Ts /J/899 0 (70)

—PpZsp Pt Qi P,

The similarities between A and A are obvious. These two matrix valued operators have both
a triangular structure. The difference, when passing from A to A, concerns only the perturbation
in the bottom-left position (4, 1). This particularity plays a crucial part in the discussion below.
To simplify, we present below the result in a smooth setting.

Lemma 2.6. [Solving the system (63) or (69)] We assume that the condition (48) is verified.
Select a function VO// = t(Vol//, VOZ//) € H*(R)? and a source term F = t(F™- FU F2L F2/) ¢
(HP)!". Then, for all T € R, the problem

{Pv=r, v=tw vyt vy =,

where P € {A, A}, has a unique solution V in (H52)™!.
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Proof of Lemma 2.6. To solve (71), the strategy is to argue line after line. We start to solve the
problem for the operator A.

- First line. Since the operator udp : (’H%O)J' — (’H%O)J' is invertible, we can define without
ambiguity (and with no choice)

Vit = u o R e (M) (72)

- Second line. Observe that Pit : H¥® — (’H%O)L. The next component V'/ must be a
solution of the heat equation (in ¢ and y)

{PVY =FY 4 PV cuy, (v, =Vl e (HF) . (73)

Obviously, there is a unique solution on [0, 7] of this initial value problem. It does not depend
on 6. In other words, it is such that V'(t,-) € (H3?)/ for all t € [0, T).

- Third line. Since Ty : HF — (7—[%")L the component V21 can be obtained through the
formula

V2 = 10,2 (P2 4+ TV + TV V) € (M) (74)

- Fourth line. We can use the same argument as in the second line. It suffices to check that
by definition P} : H5® — (H5°)" and Q) : H5® — (H5°)™. Then, there remains to solve

{PVY =P+ PPV RV Qi vt e ) (v, =V e ()
Note that the triangular structure of A is crucial in this procedure.

To solve the system (69) that is replacing the operator A by .Z, the only change in the above
proof is at the level of the fourth line where the supplementary source term SP,V'+ must be
incorporated. O

2.1.3 Analysis of the system (43)

Projection of the system (43). In this paragraph, we consider the parabolic system (43)

which can be associated with some smooth initial data v,f (0,-) € H°(TxR). Classical statements

(see for instance [11]) say that the corresponding Cauchy problem has a unique global solution v,{

such that v,’:(t, ) € H(T x R) for all 7 € R4. The difficulty is the following. The variable 7 is
aimed to be replaced by e =2t with ¢ fixed and ¢ — 0 and, since the original equation (3) contains
nonlinearities, we cannot allow any (uncontrolled) growth with respect to 7. To get round this
problem, we will instead require a rapid decay when 7 — +o00 but this necessitates v,f (0,-) to be

selected conveniently.

To see how to adjust v,{(O, -), we can interpret (43) in the form

P, 0 0 0 gl,lk// ”1f,/1;
0 0. 0 0 gy v
BV = T Vol vi=tew)=| b 75
k Ts Ts P9 0 g;l,llj_ k (k) v{l]; ( )
: 0 0 0, nl/ 7/
2k Vo k

where Ty and Py are the operators defined by
Tff = H(aeh f) s ng = 8Tf - ,uaaef.
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Description of g,’ju. We decompose g,’;u into is linear and quadratic part g,’jl = gfe + gZ"l

The linear part gl is defined by

9= (*hayvf,k—l + Aa%v{,k—l) + (ﬂayy”{,k—1 + )‘89y”£,k—2) ) (76)
9l2,k i=—h ayvg,k—l + (Aa@yv{,kq + Mayyvg,k—z) + )‘ayyvg,k—:s’
whereas, the quadratic part of gznl = t(gﬁcl, ggfg) is given by
nl
gi= D 0], + > vf,; 0]
(i,5)€T (M,k) (i,)€T (M ,k—1)
!
l S l S T
Y (ol @) @i O + @) (1)) G ) T
(i,5,1) €L(M k)
!
l K l S T
+ Y (v @) @O + @) (3 )0 0] ) T
(i,3,1) €T(M k~1) '
nl
g = D vlowl;+ >, vdi00i

(4,)€T (M,k) (i,9)€T (M,k-1)
l
l e l S T
+ Y (ol @) @3 O + @) (01)(0) 9t ) T
(i,5,1)ET(M,k) ’

7l

Y (v 00 @030 + 00 ()0 0d,) T

(4,4,0)€T(M,k—1)

Lemma 2.7. [Description of gi'] Assume that M > 2. The functions g\ and gZ"l depend only on

the v{ and the aévj (0,-) where j € [0,k—1] and € [[0, L%”] They are respectively homogeneous
linear and homogeneous quadratic functions of their arguments.

Proof of Lemma 2.7. Tt suffices to examine the various terms appearing in the sums involved by
the definition of gg”l.

- The sums based on the symbol 7 can be dealt by observing that

(M >2, ke{k-1k}, (i,j)e J(M,k)] = i<k-landj<k-1. (77

- The sums involving the symbol Z are of the form Z(M, k) or Z(M,k — 1). Coming back to
the definition (41), we can easily infer that

(M >2, ke{k—1k}, (i,5,)) eI(M,k)] = i<k-landj<k-1 (78)
as well aslglgj.

O

Due to Lemma 2.7, the expression g,?l can be viewed as a source term in system (75). In
order to guarantee the fast decaying criterion in 7, we can proceed as described below.
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Lemma 2.8. [Solving 75 in the case of a fast decay when T tends to +oo] Select functions
Vi ="(V0H V) e HX(T xR, G=YG", GV, G*.G*)e (), deloul.

There is a unique expression VO// = t(Vol//,VOQ//) € (H®)/(T x R;R)? which can be determined
in function of G through formulas (80) and (81) such that the Cauchy problem

{BV:G, V:t(VlL’Vl//7v2L7v2//)7 ‘/l :t(V01L7‘/v01//7‘/E)2l7‘/v02//) (79)

=0

has a global solution V' belonging to the space (Sgo)m

Proof of Lemma 2.8. The strategy is again to argue line after line.
- First line. Just apply the end of Lemma 2.2.
- Second line. It suffices to take

Vol () = /;OO G (s,.) ds € (H®)/ (80)

in order to recover after integration that V/ € (£¢°)/ with

T +oo
V)= O+ [ @y as=— [ 66 as.

0 T

- Third line. For all m € N, the operator T : H™ — (H™)* is continuous. It follows that T
sends the functional space £§° into (EEC)J-. Concerning V?2+, the argument is again Lemma 2.2
applied this time with the source term G?+ — T,V+ — T,V € (£8°)*.

- Fourth line. For all m € N, the operator Ty : H™ — (H™)/ is continuous. Therefore, we
know that T : £5° — (£8°)/. With this in mind, it suffices to select

V() = _/OH)o (G* — TG (s,.) ds € (H®) . (81)

2.1.4 Proof of Proposition 2.1

The matter is to show by induction on K € [0, N + 1] that the property given at the level of
line (105) is verified.

Verification of #N(0). By convention, we start with vj = 0 and v;f =0fork e {-3,—-2,—1}.
Applying Lemmas 2.4, 2.5 and 2.7 with k& = 0 and exploiting the given (linear or quadratic)
homogeneity properties, we find that ! =0 and ¢! = 0.

Recall that V§ = '®v§ and VOf =P vg . The matter here is to show the existence of
functions Vg € (H5)" and Vi € (£2°)™°! such that:
- For M > 3:
AVg =0, BVi=0, (VZ+V{)0,)="1®u3(). (82)
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-For M =2: B
Avdg =0, Z:’,VOf =0, (ng +VOf)(O") = t(pvg(')' (83)
By construction, the two first lines of (82) and (83) amount to the same thing as p dggvis = 0.

We recover here (48). From (68), we can deduce that A V5 = AVy. Therefore, the discussion
concerning (83) is the same as the one related to (82).

The above initial condition can be decomposed into

t(V(flla VOSQL)(O, ) + t(%fll> VOf2l)(O’ ) = (I - H)Ug() ) (84)
Ve Ve, ) + v VR0, = T ) (85)

In view of (80) and (81), we must have Vofl//((),-) = V0f2//(0,-) = 0 whatever V5*(0,-) is.
It follows that we can identify VOSU/((), -) and VOS2//((), -) through (85). Now, knowing what is
VOSU/(O, -), formulas (72) and (74) give access to Vg'+(0,-) and V24 (0, ). There remains to use
the condition (84) in order to further extract VOfU‘(O, -) and VOfQJ‘(O, ).

We apply Lemma 2.6 and Lemma 2.8 in the case of the initial data VOS// (0,-) and Vofl (0,-)
which have just been computed. Note that, due to the preceding construction, there is no
contradiction between the expressions Vg (0, -) and VOf / (0, -) thus obtained and the compatibility
conditions required at the level of (84) and (85). By this way, we can recover functions V' €
(H52)tt and V| € (£5°)™°t. Then, to conclude, it suffices to come back to v§ € H5° and vf € £5°
through the action of ®~1.

Assume that the condition HN(K) is true for some K € [0, N]. Since the criterion
(48) is satisfied, the problem can be interpreted as before. The matter is to find two functions
Vigp, = "®v} € (HF)"" and VIJ;_H = 1®o] € ()" such that:

- For M > 3:
AVI?-&-I :tq)fl?lv BV[{'+1 :t¢ggl7 (VIS(+1+VIJ(C+1)(O7'):tq)v([)(-l-l(')'
-For M =2:
AV ="oftt,  BVL, ='0gl, (Vi + Vi )0,) ="00} ().

The induction hypothesis applied with the index K together with Lemmas 2.4, 2.5 and 2.7 say

that the functions ‘® f,?l and ‘® g,’gl are known source terms with the expected (H$)™" and
(E5°)t°! regularities.
-When M > 3, the initial condition can be decomposed into
(VAL VIER)(0,) + 1 (VES VER(0,) = (= Tvg 1 () (86)
sl s2 1 2
(Vilh VER 0, + ' VEL VIELD0,) = o1 (). (87)

In view of (80) and (81), as clearly indicated in the statement of Lemma 2.8, the expression

V[)Z/rl(O, -) depends only on ‘®g!, . We can determine V;/il(o, -) through (87). Knowing what

is V;//H (0,-), formulas (72) and (74) give access to V5%, (0, ). There remains to use the condition
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(86) in order to deduce V;le(o, -) and V};%( -). Remark that the initial data Vi ,(0,-) and
V[]; +1(0,-) thus obtained inherit the expected H*°(T x R) smoothness.

Again, we apply Lemmas 2.6 and 2.8 in the case of the initial data V[S(//H(O7 -) and Véil(O, )
which have just been computed. As before, the preceding choices concerning V[J{cﬁl( -) and
Vi£1(0,-) are sufficient to guarantee (87) and (86). We find that Vi, € (H3)™" and VIJ;H €

(E5°)t°". To conclude, it suffices to come back to v§,, ; € HF and U{<+1 € £° through &~ 1.
-When M = 2, the same types of arguments prevail. This ends the induction. (I

From the preceding construction, we can also deduce the following information.

Corollary 2.9. [Nonlinear homogenization] For all k € [0, N + 1], the expression IIv; can be
determined through the following parabolic equation,

1 - S n
oy Iv;, — (u + ;H ((0, 1h)2)> Dy Ty, = St (88)
where the source term SP = (S{‘lk, S;le) depends on the index j with j < k. This fact may be
formulated by writing (Sflk,Sglk) ¢ ffk, ;lk)(vo,.. U5 1)

2.1.5 Approximated solutions
In this subsection, we prove estimate (11). We assume that m > 2 so that H™(R?) is an algebra.
We explicitly compute the action of the operator £* on the approximated solution v¢ built
in the previous subsection and estimate the remainder R, := L£%(e,v2) in H™-norm.
To this ends, we justify that the slow profiles v2* and the fast profile v?/ are good approxi-
mation of operator £ and £/.

One aspect of the proof is to compute the difference between £%fand £t given by some
Taylor formula. To control it, we provide the following Lemma.

Lemma 2.10. Let m > 2 be an integer and § €]0, pu[. Let f € EY(T x R), g € HI")(T x R).
On the strip [0,T], consider the function hezp( ) = f(e72t,") fot ulNg(u,-)du. Then the family
{5_(N+1)h2:vp}5 is bounded in Hjr (T x R), i

sup sup Hs (N+1) heap(ts )H < +o0.

£€]0,1] t€[0,T) H™(TxR)
The proof is obvious using some Gagliardo-Niremberg’s estimate.

Proof of Proposition 11. First, we decompose the action of £ on v¢ into
ﬁa(g’ vg(tv )) = £as(€7 vgs (t7 )) + ’Caf(gv Ugs(t7 ')7 Ugf(t/(SQ, ))7 (89)

where the operators £2* and £/ are defined in (32) and (36).
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o Writing vZ® as the sum v2® = ZkNJBl ekv? and using the cascade of equations (42), we
obtain:

N+1
L (e,v2%) 1 = Z ebopy + eN oy i1
k=N
2(N+1)+(M-2) 2(N+1)+(M-1)
LD DR D RN M7 S D DI D DI fo
k=N (i,5) €T (M,k+2) k=N (3,5) €T (M,k+1)
N+1 N+1
k N k :
1 Z €70pov7 j + A" Dgovy N 41 + A Z " 0gyvs
k=N k=N
N+1 N+1 N+2 : (90)
k P k : k P
H Z €7 0gov3 ) + A Z €7 0pyvi 1, + A Z €5 0yyv3 1
k=N k=N k=N

First we can factorize by ¢ in the above expression. Then, since vy isin HY for k € [0, N +1],
we estimate (90) in H™-norm and get for all integer m > 2:

sup e N sup [[RE(t )| o (pumy < +00-
€€]0,1] t€[0,T]

Thus v? is an approximated solution for the operators £** (up to order N).

o We constructed v/ so that it approximates the operator £L%/* instead of £%/. To pass from
£ to £t we perform a Taylor formula (with respect to ¢ up to order N — 1):

LY (e,vf,v8) = LY (e, v]) + R,

where the remainder is defined as:

</ i )Nl (u, ) du vl (/€2 -)
JF‘E/ @ IV (u, ) du Oyvl (t/€2, )>

t, N
e (uf /) [ 50 o
=

REV(t,

f 2 Ll N-1 s
+ vl(t/e%, ) ; ﬁ(at) Oyv (u,-)du | .

According to Proposition 1.1, the hypothesis of Lemma 2.10 are satisfied. For all integer m > 2
we have:

sup sup S*NHRZ‘”’(t

s M grm < +oo.
€€]0,1] te[0,T] HH (TxR)

o Finally, we plug v = Zi\wol 5kvk and vf = ZNH kv,{ into £t and use the cascade of
equations (43). We obtain:

£ (e, vf)(t/e?) = R + R,
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The remainder R!/ is defined as

2(N+1)+(M—2)
RY =Mool w20+ Y S /e ) awl (/)
k=N (4,5) €T (M, k+2)
2(N+1)+(M—1)

D D=L N 1 (= LA (T

k=N (i,§) €T (M+1,k+2)
N+1 N+1
p Y "] (/€2 ) + NeNBpov] oy (/) + X D Fdpy]  (t/E2, )
k=N k=N
N+1 N+1 N+2 )
Iz Z 5’“899@{,6(15/52, )+ A Z 5k69y”{,k(t/525 )+ A Z Ekayyvg,kﬂ(t/fa )
k=N k=N k=N

whereas R?f consists of the terms corresponding to the Taylor formula:

AN+(M—2)
RY:= > £ > EQl,alv“( ) Bpv] (t/€2,+)
k=N (4,4,1) ET(M ,k+2) ’
4
+ Z 21“ (t/€ )8%891;]5((),)
(i,9,1) EL(M,k+2)
AN+(M—1)
Y € 3 Ezll,aivzx ) 0,0l (t/<%, )
k=N (i,4,1) ET(M,k+1) ’

tl
+ > Tk 1i(t/2,)010,v3(0, )

(4,5,)) €Z(M,k+1)

-By construction (see Proposition 1.1), the profiles {v,’: Yeepo,n417 lie in £5°. Furthermore, we
can factorize RLf by ¢V. We deduce that for all integer m > 2:

sup sup € NHle < 400.

=€l0.1] tefo.7] M e )

-There remains to estimate the term R2/. A priori this term can be dangerous because it contains
some polynomials in the variable ¢/e2. Nevertheless we can use the fast decreasing behaviours
of the profile v{. Indeed if f € £§° then for all [ € N the function 7! f is also quickly decreasing:
7l f € £ for some 0 < ¢’ < §. Furthermore, noticing than we can factorize by eV in R/, we
obtain for all integer m > 2:

sup sup eV HRgf(t < +00.

c€]0,1] t€[0,7] Mo rxry

2.2 The case of the pressure - Consequence

Here, we still assume that M > 2. First of all we quickly prove Proposition . Then we take
advantage of the control obtained on {¢¢}. to prove that the approximated solution v? is a good
approximation for operator (£!, £2) assuming v is large enough (Proposition 1.3).
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Approximated pressure. Consider the approximated velocity v¢ built according to Propo-
sition 1.1. Since the operator Ly is linear with respect to the pressure variable, we build the
profile g;, as the solution of the following problem:

Lo(e, g5, v%) = 0iq, + e hdyqj,
+ M2 (v Dpqf + e v20yq5) + C M 2G5 (Dpvlt + €0,v2*) =0 (91)

with initial data satisfying ¢ (0,) = ¢2(-).

At fixed €, for any positive time 7', (91) has an unique solution ¢j in H7'(T x R). We
recover the approximated solution ¢% (on the strip [0,7]) by summing over all the multi-indices
ke ]o,N +1]:

N+1

¢ =) g
k=0

However, since the transport is singular the family of solution {¢?}. is not bounded in H7* (T x
R). Yet, it is in the anisotropic Sobolev spaces. In other words, Inequality (14) is satisfied.

Approximated solution for the operator £. A direct consequence of Inequality (14) is
that {(¢%,v%)}c is an approximated solution for the operator £, i.e. Proposition 1.3 is satisfied.

First, we have Ly(g,¢%,v2) = 0 and:
(L1, L2) (6,8, 08) = L (e,02) + Ce® M2 F (q2pq2 £ q20,q2) -

The quantity £%(g,v2) can be estimated thanks to (11). The pressure term e2V =M =2%(q29,¢2, € ¢*
dyq®) can be estimated thanks to the Gagliardo-Niremberg’s Inequality. Let a € N2, |a| < m,

then

16" (420042 | 2 = 006 (a2)?|

226, a2

To recover an estimate in the anisotropic version of the Sobolev spaces, we use (5) together with
the following equivalence of norms:

gz < €™ Wellazgy - (92)
Thus, we obtain
e O N e [ B LA
Assuming (15), it completes the proof. |

3 Energy estimates

In this section we prove Theorem 1.4. The integers m, v, M, N and R satisfy property (18). As
ever mentioned at the level of the introduction, page 12, the main issue is to get a control over
the singular term e~29ph v}%. To desingularize it, we consider the new unknowns:

~R

~R._ R IR ~2R ._ _ 2R
gt = q2, D v, v = evit (93)
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It satisfies a hyperbolic-parabolic system (singular in €):
NGl + e h0yglt + M2 (vl Opglt + ev2* 0,GF) + C MG (0pvl® + £ 0yv2?)
+ M2 (TR 9q + 02 9,q0) + C M2 (8501 + 9,028) = SOBN . (94a)

00l + e h 9, 4|t (0,671 Oph VL) |+ M2 (vl 0p0F + cv2* 0,0F)

+M72 (350 + 0270,) (vl e v2?) — Q. (0F) = S, (94b)

together with the initial data (¢Z*(0,-),v%(0,)) = 0. The right-hand side of Equation (94) is
defined as:

SPIN = —eN=H(e™N Lo (e, q2, 02)) — ™M 72 (01 9pql + 0270, L)
— CER+M_2§§ (395;13” + c’)yﬁfR) , (95)
SN = _eN=B (=Nt (L9 v.),eLi(e,v.))) — eTM—2 (02 0p0F + 020, 0F)
C€2V—M—R—2

- T (00,2%,) (a2 + ") (96)

This is clearly a non-linear problem and the variable of pressure g and the variables of velocity
~R

v;* are coupled. The dissipation is turned into
c sts g2 \A (899U5 te 6yyv5 ) +eTue (8‘91/1}8 + 6@/1’/”8 )

We clearly desingularize the hyperbolic part to a cost on the parabolic part, Q.. It can no
longer satisfy an estimate such as (28) necessary to keep control over singular terms in (94). One
important aspect of the proof is to obtain Inequality (108). If it is not satisfied, the mechanism
of the proof fails.

Thus, in this section, we look for accurate energy estimates for the unknown (g7, o). We
easily go back to the initial variables according to (93).

Coupling and nonlinear aspects. In Equation (94b), the variables of pressure and velocity
are only coupled threw the term:

C€2V7M7R72

(00,220, (a2 + ")’ (98)

If v is large enough, the Equation (94b) is somehow independent of the pressure. It seems that
we can deal with the velocity and then deal with the pressure. This is reinforced by the fact that
the pressure and the velocity are estimated in different Sobolev Spaces.

Yet, the term (98) has to be estimated carefully. We have to link the anisotropic Sobolev
norms with the classical Sobolev norms (92). It explains the loss of precision on w,,, with respect
to the regularity m (see Equation (18)).

In practice, we perform energy estimates on Equation (94b). Then we plug the estimates
obtained on the velocity into Equation (94a). We underline here the fact that we need more
regularity on the velocity to estimate the term gg’R’N (defined by Equation (95)). Thus, the
regularization of the velocity (thanks to the dissipation) plays again a crucial role.
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Finally, the problem is nonlinear (for example term (98)). Classically, nonlinear terms are
estimated thanks to the Gagliardo-Niremberg’s estimate which required a L°° control over the
unknowns. To get this control, we introduce the characterized time 77

~R
‘UE (t7 .)HH771+3(TXR) S 2}) .
It provides L>-estimates on the strip [0, 7], for all € €]0,1] (see (5)):

vt el0,T7], H\ﬁ@f(t ')HW(T;)L”(WR) <2 Hﬂf(t"”’wmﬂm(ﬂ‘x[&) <2 (99)

|a§(t7 .)HHm+3(T><R) S 27

T := min (1, sup {Vt € (0,7,
(1.2)

Te0,T.]

3.0.1 Results and Consequences

As indicated, we first prove an estimate over the velocity on the interval [0,77], thanks to
Equation (94b):

Proposition 3.1. Let 9% be a solution of (94) on [0,TY]. There exist a positive constant €.,
and two positive constants K}, and K2, (independent of €) such that

* ~ 2 w 2
Vel el VEEOT] TR e oy < €2 K (eKmt . 1) . (100)

Furthermore, one can prove a regularization property. Select a multi-index o € N? of length |«
smaller than m + 4; then

2
e~ (181 0) gogf (s .)\ ds < KL eomg (101)

t
v 0 crit]s Vi O’T* ’
e €0, ecrit] €10,77] /0 L2(TxR)

where ¢; ; denotes the Kronecker symbol (of two integers): ¢; ; = 0if ¢ # j and d;; = 1.
By plugging (100)-(101) in (94a) we obtain:

Proposition 3.2. Let ¢ be a solution of Equation (94) on [0,T]. There exist a positive
constant €.+ and a positive constant K,ln (independent of €) such that

* ~R 2 2wy, 771
Ve E]Oascrit]» Vte [O,Ts], HqE (t’)HH("le;’(TXR) S € w Kmt
Those two lemmas allow to prove an accurate estimate of the solution on a strip independent
of .

Corollary 3.3. Consider integers m, v, M, N and R satisfying the condition (18). Then, there
exist two positive constants €. and T, (independent of €), and a positive constant cerr > 0 such
that,

Vit e [OvTc]a Ve 6]0756]7 ||a5(tv .)||H("1L+)3('I[‘><R) < Cerry H:JsR(tv .)HHT"+3('I[‘><]R) < Cerr-

,€

Proof of Corollary 3.3. We argue by contradiction:
V(g,T) €]0,1] x [0,1], 3Fe€]0,e], T < T.

We recall that there exist 4 and C,, positive constants such that, for all e €]0, 4] and for
all time ¢ € [0, T

[ .)|‘ilg':?(T><R) <emCnt, |7, .)HZMH(MR) < 2UmC ¢
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We choose for instance T' = min(%, %) and € = g4 < 1. In particular, 7' < 1. From assumption,
there exists €9 €]0,¢&4] such that 77 < T. Furthermore, since w,, > 0 from condition (18) we
get:

" ~ 1 - 1
VEE0,T5], a25 (¢, ')HH{?;S)(TXR) <3<% [0 ')HHs+3(1IxR) S5 %

Now consider the applications

te 0,75 [— || ( and t € [0, T2 [— |08 (t,)]| ymss

¢ ')HHg'lfgi)(TxR) (TxR) "

They are continuous. q~§é (respectively ©%) can be extended in time as long as the quan-

tity ||gZ (¢, ~)||Hm+3 ( respectively |07 (t, -)|THW+3) remains bounded.
(1,e0)

It follows that we can find T €]T*

€0?

T.,[ such that for all time ¢ € [0, 77, |

Tt Migee, <2

(respectively [[0 (t, ')||Hm+3 < 2). This is in contradiction with the definition of 77 . O

Assuming Propositions 3.1 and 3.2 are satisfied, Corollary 3.3 holds. We go back to the initial
unknowns thanks to the Equation (93) and obtain Theorem 1.4.

Thus in Subsection 3.1, we prove Proposition 3.1. We take advantage of Inequalities (100)
and (101) to obtain Proposition 3.2.

3.0.2 Notations

Here we introduce some notations required for the proof of Propositions 3.1 and 3.2.

Let (¢%,v%) an approximated solution of order N constructed on the interval [0, 1] according

to Proposition 1.1 and Proposition 1.2. The family {(¢%,v%)} lies in Hfai’? x HPTO0 and

satisfies Inequalities (11) and (14). We denote by C,, Cr« and C, positive constants such that:

sup sup |[v2(t, )| gm+s < Ca, sup sup |2 (t, )|l gm+s < Ca, (102)
c€]0,1]  t€[0,1] e€l0,1]  t€[0,1] e
and
sup sup HE_N E“(s,vg)HHm%(TxR) < Cra, (103)
€€]0,1] t€[0,1]
sup sup HE_N Eo(a,qg,vg)’|Hm+5(TxR) <Cr. (104)
£€]0,1] tel0,1] (1,¢)

In what follows we adopt the conventions:
V'm e N, I fll g=m =0,

to simplify all the statement.

3.1 Energy estimates for the velocity
In this section, we prove Proposition 3.1 by induction on the size of m settings:
P(m) : " Proposition 3.1 holds up to the integer m". (105)

To go from m to m + 1, we prove an energy inequality for the velocity performing an energy

method on Equation (94b) in the homogeneous Sobolev space H™ (defined page 3).
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Lemma 3.4. There exist ¢; and 4 two positive constants (which only depend on m) such that
for any J € [0,m + 3], there exist four positive constants Cp,, C}, C% and C3 such that for all
e €]0,¢e4], and for all time t € [0,T7],

,8t HNR , ||2(J(TX]R +c1 |Z P ( 5“55)(1%) < C} Hif(t’ .)HEJ(TXR) +(J+ 1)Cp627Um
al|=J

2 ||~R 2 3 —(1=bay,0) gamR (4 | :
+C5 HUE (t")HHJ*I(TxR) 0 IZJ HE AT C )‘ L2(TxR)

Subsections 3.1.1-...-3.1.3 are dedicated to the proof of Lemma 3.4. Then in Subsection 3.1.4,
we finally prove Proposition 3.1.

First, consider a multi-index o € N? and differentiate « times Equation (). Then we multiply
by 03 and integrate (with respect to the space variables 6 and y),

%at Ha%fH; — (0*(Q-05), 0°0) = (9*SEN  9°TE) — (0% (ATE), 0°0F)
(9% (BB, 0°5) — (9% (CT). 0°0) — (0 (HA).0°3F) . (106)
where the operators H, A, B and C are defined as follows:
HOE =7 h o, ok, ATE = M2 (310 + 0270, (vl e v2®),

Colt:="(0,e '9phvl®), Bl :=e""2 (vl*0p0F + ev?*0,vl).

The strategy of the estimates is the following. We first prove the coercive estimate over Q.
(see Lemma 3.5 in Subsection 3.1.1). Then we compute all the singular contribution (with respect
to the regularity and to ¢) in Lemmas 3.6-...-3.8 that we absorb thanks to Q. (see Subsection
3.1.2). Finally, we simply bound the remaining terms thanks to Lemma 3.9 in Subsection 3.1.3.
3.1.1 Step one : Coercive estimate for the dissipation
We start by estimating the term involving the dissipation Q..

Lemma 3.5. We recall that pn > 0. Select constant A and p which satisfy
A<dup. (107)
There exists co > 0, there exists 4 €]0, 1], such that for any function f € HY(T x R,R?):

Ve G]O,é:d}, _<st7f> ZCO (I)E(va) (108)
where @, is defined in Equation (28).
Proof of Lemma 3.5. Let f € HY(T x R,R?). We decompose f in Fourier series (in 6) into:

Z f 'Lk:@

kEZ

then we use a Fourier transform in the variable y. By the Parseval equality, up to a constant
(that we forget here),

~(01.5) =¥ [ BOQOR©E,  Ri© = [ hway,

kEeZ
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where Q). is defined as:

ek e 22 (14 L) ke
Qg(k’g)'_<g€(1+;2)k§ M§+(M+AE)£2 , kelZ, EeR.

We interpret (Q.f, f) as a quadratic form in the variables f/’g and ]/”E In this way, to prove
Inequality (108) we show that there exist 4 and ¢y two positive constants such that for all
g € H'(R,R?):

VEkeZ, VEER,  G&)Q:(k (&) > o (e 2K+ &%) (319 +35(6)) - (109)

At fixed (k,€) € ZxR, Q(k, ) is a diagonalizable matrix since real and symmetric. We compute
its eigenvalues:

ph(h €)= 22 (02 1 €) 4 0 (e ) 4 ) 4 (e IR + 2 (),
2k, €)= 2R (1 ) - 2 (e )+ (e R e ke’

In the end of the proof, we show that for any (k,£) € Z x R we have

p2(k &) > co (e 2 K>+ &%) (G1(O) +35(9)) .

Since pul > p2, we clearly obtain Inequality (109).

o We define the function p. : R? — R by:

2u + Ae Ae
pe(z,y) == 5 (2 + %) — ?\/(x‘l T+ + (cxy)2 +e2(xy)’

Then there exist €4 and ¢y (independent of €) such that
V(z,y) €R? pe(a,y) 2 co(a® +y7). (110)

-First of all the function p. is homogeneous of order 2 in the sense that it satisfies for all
acR:
V(z,y) € R xR, pe(ax, ay) = aPuc(z,y).

Thus, we prove (110) on the restricted set (x,y) € S the sphere of center 0 and radius 1.
-We expand p. as € goes to 07:

A
Ns(%y) = (1’2 + yQ) - §|(E||y‘ + 0(5)7
where O(e) is uniform in (z,y) € S'. Let us recall that we have:
V(z,y) € R? (z% +9?) — clz|jy| >0 = c<2.

That is the case if and only if A < 4u, i.e. assumption (107) is satisfied. We get an uniform
bound of p. (in €). Finally, there exist ¢4 and ¢y two positive constants such that Inequality
(110) is satisfied.

o Plugging # = e 'k and y = ¢ in Inequality (110), we obtain for all £ €]0, g4]:

V(k,§) €Z xR,  p(k,&) >col(e7k)* + 7).
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We deduce that N N N
Fr(€)Qe(k, &) fr(€) = co (k) + M) (O

Finally, summing over k£ € Z and integrating with respect to £, we have:

LDz @Y [ + MR = o ®.(7. 1)

keZ

Remark 1. The singular change of unknowns desingularizes the hyperbolic part of system (94)
to a cost on the parabolic part P.. Q. is dissipative enough assuming the A-part of the dissipation
is strong enough with respect to the V div-part (A < 4p).

Remark 2. The Inequality (108) can be proved for a more general family of dissipation. We can
replace e\ in the dissipation Q. by some coefficient A. going to 0 when € approaches 0. Then
replacing assumption (107) by:
A
limsup — < 4.
€

e—0t

Inequality (108) still holds.

From Equation (106) and the preceding lemma we deduce that for all € €]0,¢,4] and for all
time ¢ € [0, T}]:

%at Ha%ERH; + co®.(V,08) < (9*SHN,9°0F) — (0™ (ADE), 0°0F)
— (9% (Bof),0°0L) — (9™ (Cvl), 0°0f) — (9% (Mol),0°0F) . (111)

3.1.2 Step two : estimates over the singular terms
We now try to absorb the singular terms in (106), thanks to ®.. Singular terms are of two types:
-the operator only singular with respect to the regularity, SV

-the operators at least singular with respect of €, H and C.

Contribution of SH¥. We start by estimating the term SIV. Tt contains nonlinear terms
together with the coupling terms (98). What can be underlined is that this term (98) is nonlinear
(only) singular with respect to the number of derivatives acting on the pressure. This is a problem
since the dissipation only regularizes the velocity. When possible, we pass those extra-derivatives
onto the velocity (thanks to an integration by parts). One can prove:

Lemma 3.6. [Control over SFN | Select a multi-index o € N? with length smaller than m + 3
and a positive constant Cs. There exist C&, C, two positive constants such that for any € € 10,1],
for any time t € [0,T7],

2

|<aa5§7N’aav§>’ (t,-) < Cs Hﬁf(t’ ')Hf}\aHl(TXR) +Cs Hﬁ%(t’ ')Hiirlaw(qrxn@) +Cp et
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Proof of Lemma 5.6. Consider o € N? satisfying |a| < m + 3. We decompose the source into
<8aSER,N7aozvf> — _gN-R <8a ( _Nﬁa(g ,Ua)) 804~R>
R+M 2<ao¢ lRag’U +€,02Ra,v ) 0% R>
_ 2l M-R-2 < (99,2 0,)0° (¢° + B G2, aaa§> .
We estimate the three above contributions.
o The first term: contribution of the approzimated solution. v¢ is an approximated solution

for the operator £%. According to Proposition 1.1, it satisfies Inequality (11). That is to say,
Inequality (103) holds and:

|5N_R (0% (e N L(e,02)) ,8“55)’

IN

1 — o4 a (4
5(62“ Do (=N e e [ + 00 -

(C[; VR 4 o) - (112)

\ /\

o The second term is the contribution corresponding to the non linear part "u-Vu" (in Navier-
Stokes Equations). Select a positive constant ¢;. Further, we choose it so that the contribution
of Vi£ in H™-norm is small with respect to ®..

efHM=2 (9> (01 R 9gul + e 027 9,0L), 00|
1 o R~ R\ 112 1 aa 2
< 5 (o2 oo @RaTE + 720, 7, + o, )
< a2 (g0 (R, + o (2707 2 + o Jor . (19
1

We deal with the nonlinear term 9%(v1%9,0%) applying the Gagliardo-Niremberg’s estimate
together with (99). There exists a positive constant Cy which only depends on m such that for
all € €]0,1] and for all time ¢ € [0,T/]:

Haa ~1R 89

+’v

Mz < €5 (19271, 0007

<405 (lef 4.1,

H\O‘\ H(“)gv HL‘X’> ’
i) <8C (I s + 1955 ) -

The same holds for 922 9,0 Finally, we get that for all £ €]0, 1] and for all time ¢ € [0, 7]

o
Hlal

—i—\vg

‘€R+M72<aa( lRaa,U +€’U Ra ! ) 9%y R>‘

<1601 C2 ||[58|[3, .., + (164 02+— ) (|53 (114)

Hlal+1 Hlal®

o The last term. This term has to be studied with care. As mentioned, two obstacles have
to be overcome:

-It is singular with respect to the number of derivatives acting on q. However the term can
formally be written under the form:

%<V(q2)7v>.

A derivative can be passed onto the velocity with an integration by parts.
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-The pressure is only estimated in anisotropic Sobolev spaces H ("1‘ o) We pass to the anisotropic
Sobolev spaces H, (”f’s) thanks to Inequality (92) at a cost on the precision w,, (see Equa-
tion (18)).
First we integrate by parts:
R 2 ~
|—Carte M2 (g, 2 0,)0 (g2 + "), T8 )| =
~R\ 2 _
‘CQ‘ngV_M_R_Z <6°‘ (qg +ef qf) , 0% t(@g,say)v5>) .
We select a positive constant ¢z, then
R\ 2 ~
‘_C 2—162y—M—R—2 <t(89,66y)8a (qg + ER qf) ,8av§>’

(O22(2v—R—M—2) ’

leY a R~R)2 2 9 a t R||2
0% (¢¢ +"q) T3 0% (06, 0y)0F|| .. (115)

802

We apply the Gagliardo-Niremberg inequality together with the equivalence of norms (92),

Hlal
< 204”1 g2 + Rl | o [|a¢ + e

0 (¢ +<"G8)’|| | <2, |lag + ™| [lag +"aF

o |al

(1,8)

With regards to the construction of the characterized time T2, (99) and (102) holds. It results
in:

Vel ), VEe 0.7 IVEE M ey <2 IVEGE ) | pry < Co
We obtain ’

Finally plugging Inequality (116) in (115), we deduce:

o (g2 +6R§f)2HL2 <20, 2 lel(C, +2)% (116)

-C 2—1€2u—M—R—2 <t(89,€6y)aa (qaa + ER q~§)2 ,8(15§>‘
C2 Cg £2(2v—R—M—5/2—|al) )
Hlal41

< (117)

C
5es (Oa+2)4+§2 [oF

o To finish, we put estimates (112), (114) and (117) together. Let ¢; and ¢; be two positive
constants for all £ €]0, 1] and for all time ¢ € [0, T

o o c 2 1 1 2
(9%SEN 0208 < (5 + 1601 CF) [0 |5 e + (2 + 166, C2 + 201) [o2]3,.

c?c?
+ <C£a S2(N=R) | 9(C, + 2)4 62(2VRM5/2|0¢)> :

262
‘ 9 1 1 2
< (24166 C2) oG, + (2 +16¢1 C2 + 21) (E I
2 2
+ (cw + 2029 (Co + 2)‘*) et

Select C's a positive constant. We choose ¢; and co two positive constants such that Cg :=
. . cc?
2 +16¢1 C2. Then, it requires C§ = £ + 16¢1 C2 + i and Cp = Ce + 5.2(Co + 2)4. O
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Contribution of operators H and C. Presently, we study the singular operators H and C.
We decompose their action into:

(0 (MOR) ,0°%8) = (M (0°%8), o) + ([0, H]OE, 0°%T%) |

(0™ (cvf),0°08) = (C(0°0F), o) + ([0, CIoE, 0°L) .
by making some commutators appear. Since the commutator of two operators respectively of

order m and n is of order m + n — 1, the contribution of the commutators are less singular than
expected:

Lemma 3.7. Select a multi-index o € N? with length satisfying 1 < |a] < m + 3. Select
V € {H,C}.There exist C),, C% and C5, three positive constants such that for all £ €]0,1], for all
time t € [0,T)],

2[5, )|
+ Oy [[o( 7')||H\al—1(1er)

+C3 He*<1*5a1=°>8“z7§(t, -)‘

([0 VITE, 0°38) | (1) < C% ||55( 7hwmm

2

L2(TxR)

The proof is rather easy. We do not write it. Then, since <7—[ 8"‘55, 55> = 0, there remains
to deal with (C(9°v%),0°vL).

Lemma 3.8. [Absorption of C] Select a positive constant ¢ and a multi-index o € N? of length
less than m + 3. Then for all € €]0,1] for all time t € [0,T}]:

121l e (my

a~R(y | azR V) <«
(€T (1), 070 (1, ) < 5

10°BE (e rmy + 5 Il (|7 00 E

Proof of Lemma 3.8. We prove the result for a = (0,0). Replacing 7% by 9°9% in the above
estimates proves the result. We select ¢y a positive constant. The idea is to integrate by parts

with respect to the variable 6 to make the weighted derivative of the velocity e ~'9pvf appear.
[(Col, o8| = ‘/he 1aev1R“’ZRd9dy+/hale ~10p0%Rd6 dy| |

1Pl o ~ PP
S gvaHLﬁﬁ =™ 0012 ) -

O

Absorption of singular terms. Select ¢; and C; two positive constants to be chosen (small)
later. We get a bound for the right-hand-side of (111) applying Lemmas 3.6-...-3.8. We obtain
that for all £ €]0, 4] and for all time ¢ € [0, T7]:

1 . 2 oy, c1 . |
iat Haavf(t, ')HLZ +1co q)e (vad U?) 2 ”hHL““ H 1890 QJRHLZ - C*S H t, HZH]‘FI(Tx]R)
Bl ;oo 7
< (” 2”L +CS+CC+CH) 25 M gy + Coe™

2
2 2 ~R 3 3 —(1-0%a,, a~R .
+ (C¢ + C3) |[oke, .)HH~7*1(’]I‘><R) +(Ce + Cy) H6 Um0l (¢, )‘ L2(TxR)

+ (0™ (ATEF) , 020 | + |(0~ (BBF) ,0°01)| . (118)
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At this stage, the quadratic form ®. can not absorb the norm ||§R However

(t, 2

’ ”I?I]‘*'l(TXR)’

summing over all € N? of length J the quadratic form > jaj=g Be(V, 0%, 2 does.
Choosing ¢; and C§ such that the quantity ¢ := co — 4 [|h]| j. — (m + 4)C§ is positive, we

have:

|z (co @ (V20°T) = 5 bl €7 20008 2 = Cis 720 ) sy
al=J
> co Z v,0°%8) — ”h”L‘X’ Z e 1398a~3||L2 (J +1)Cs |[oF (¢ |}2J+1(TX]R)
lal=J la|=J
> (co—%uhnm ~ (m+4)Cs) |Z (V,0°T1) = 2 (V,0°T8).
Hence, we obtain for all € €]0, 4] and for all time ¢ € [0, T/]:
~ 2 [03neahl
,atH R, HHJ(’]I‘X]R +c » @ (V,0°0F)
o=
Bl ;oo w
<(J+1) (II 2||CL +CS+CC+CH> o, H;J(M) + Cp(J + 1) g2om
2
(I 1)(CE + C3) [T [ ey + (CE + CR) |2J [emtmmmo e,
Z (0™ (ABF) 0058y + Y [(0* (BoF),0°0F)|. (119)
|=J la|l=J
Remark 3. The term 3, _; Ha_(l_‘salvo)ao‘ﬂf(t,-)Hiz(TxR) seems to be singular with respect

to . With regards to the Inequality (101), we will interpret it as a non-degenerate source term
in the proof of Proposition (3.1).
3.1.3 Last step: estimates over non-singular terms

The two last terms (contribution of operator A and operator ) can be easily estimated. They
satisfy:

Lemma 3.9. Select a multi-index o € N? of length smaller than m+3. SelectV € {A, B}. There
exist Cy, and C3 two positive constants such that for all e €]0,1] and for all time t € [0,T7]:

Q ~ . ~ 2 ~ 2
](6 ( R) 9 R>’ ) < Cy ||Uf(t’ ')Hﬁzwal(nrxua) +C5 va(t’ ')HH\M*l('H‘xR) : (120)

The proof is very classical. We do not write it. Applying Lemma 3.9, we obtain from
Inequality (119) that for all e €]0, 4] and for all time ¢ € [0, 77]:

D, 2 Wm
78,5 (pA(C HHJ(Tx]R) + %o Z (V.0°0F) < Oy [[of'(t, HHJ(']I'X]R) Cp(J +1)e”
|a|=J
_ 2 o o 2
+03Hv5<t,->y|ml(mﬁcig_jJHE 00 TR ()| (120
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with €3 i= (7 +1) (1= 1 G4+ C4 + Ch + G + €Y ), €3 1= (J + 1)(Ch + CE + CE + C3)
and C3 := (C3 + C3)).

That achieves the proof of Lemma 3.4. 0

3.1.4 Proof of Proposition 3.1

This subsection is dedicated to the proof of Proposition 3.1. We prove by induction that prop-
erty P(J), defined at the level of (105), is satisfied for J € [0, m + 3]. We proceed in two steps.
First we obtain an estimate for the velocity (Inequality (100)). Then, we take advantage of the
quadratic form Z\a|=J D, (V, 8“55) to obtain the regularization Inequality (101).

Since the proof is exactly the same for the case J = 0 and the increment of the induction, we
do not write the details to prove that property P(0) is true.

We assume that P(J) is true for J € [0,m+2]. We apply Lemma in the case J+1 (> 1).
There exist 4 and ¢; two positive constants, there exist Cj ., C7,,, C5, and C, four positive
constants such that for all ¢ €]0,&4] and for all time ¢ € [0, T/]:

1. o
SOUEE s gy + 01 D 2e(V,0°T)(0)
|a|=J+1

< C}+1 Hﬁf(t’ ')Hiw(qer) + C'§+1 H'ﬁf(t ')||%J+1(TxR)

2
tCn 2 Hsi(liéal’())aavf(t")' L2(TxR)
|a|=J+1

+ (J+2)Cpe?m.  (122)

o First, we look for the H”*!-estimate. We neglect Z\OzI:JH ®.(V,0°0F) since it is positive
as a sum of positive quadratic forms. Hence, for all € €]0,¢4] and for all time ¢ € [0, T]:

1 - ~
5875 H’Uf(t’ ')HEJ+1(TXR) < 03+1 va(t7 .)H}IJ*l(TXR) + SJ+1(t)7

where Sj4 is defined as:

Sye1(t) :==Cjyy Hif(t, ')Hi{J(TxR)

2
3 —(1-64 a~R
+Cn Y |0t <t">\Lz<w
|aj=J+1

+ (J +2) Cpe®m.

From the assumption P(J), Inequalities (100) and (101) hold. The functions ¢ — Hﬁf(t, )Hip

2
—(1=840,,0) goR (4
andtH‘ Izm\g RRLACACD!

a positive constant such that for all e €]0, 4] and for all time ¢ € [0, T7]:

are in L'([0,77]). In addition there exists M},

~ 2 —(1-4 ~ 2 ,
O T D D A CR] NS T
|a|=J+1
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Thus, the function ¢ — Sy, 1(t) is in L([0,77]) and satisfies for all ¢ €]0,4] and for all time
te[0,T7):

Syr(t) < 2M,, + (J +2)Cp)e*m.
We can apply the Gronwall’s lemma, for all € €]0, 4] and for all time ¢ € [0,T7],

t 1
~R 2 202 (t—s 2M,y, + (J +2)Cp 9y, (202
Hve (t, .)||I€>IJ+1(T><R) < /(; e?Crnt )SJ+1(5)d5 < 203+1 Le (6 T+t — 1) . (123)

Setting K, | == (2M,, +(J+2)C;)/(2C7,,) and K7, | := 2C7, |, the first inequality of P(J+1)
is proved.

o Then, to obtain the estimation L2([0,T}], H/*2), we go back to Equation (122). We
integrate it with respect to the time t,

1,
5 ||’U§(t7)

t
2 z : .
i—,[JJrl +/ q)s(va 8 ’Uf)(S)dS

0 |a|=J+1

t
gc?m/o (||5§(s7.)y|}ﬂ+l+SJ+1(8)) ds. (124)

Since ||§f(t, 2 EJH is positive, we neglect it in the left-hand side of the Inequality (124). Ac-
cording to (123), the functions t — [|oF(t, ) i‘}ul and Sy, are in L'([0,77]). Furthermore,
there exists K7 such that for all € €]0,e4] and for all time ¢ € [0,T7]:

TRt )30+ S(H) < K3 ,e20m 1 < K3, e,

So to say, there exists K7, (> 0) such that for all € €]0, 4] and for all time ¢ € [0,77]:
t
/ S 0.(V,0°T8) (s)ds < 2 K3, 1.
0 a|=d+1

We end the proof choosing K7, := max K (i € {1,2}). O
j€[0,m+4]

Remark 4. In the above discussion, we only use the assumption M > 2 whereas we as-
sume M > T7/2. It becomes crucial when estimating the pressure.

3.2 Control over the pressure

In Subsection 3.2 we prove Proposition 3.2. The result is again proved by induction on the size
m setting Q(m):

Q(m) := " The Proposition 5.2 is satisfied up to the integer m". (125)

To go from m to m + 1, the proof is once more based on an energy method for Equation (94a)
in the anisotropic Sobolev spaces H, (T o) (defined page 4):

43



Lemma 3.10. There exits a positive constant eq > 0 such that for any J € [0, m+3], there exist
three positive constants C, C% and C3 such that for all e €]0,£4] and for all time t € [0,T7]:

2 ~ 2 ~ 2
M, remy <O (CRR (AT ] [— 12z, reny

O3 (L BN ) 1 71

+Cj (||55(ta')||2m+4mm +52<N*R)). (126)

The lack of dissipation has two consequences.

2 [

-There is no absorption phenomena. It makes us consider the anisotropic Sobolev spaces
instead of the classical Sobolev spaces. An unexpected effect of considering the anisotropic
Sobolev norms is that the family {9pq*}. becomes singular with respect to ¢ in L%. How-
ever {9pqlt}. is. We introduce a power of € when necessary thanks to the integer M. It
explains why M is assumed at least larger than 3.

-There is no regularization phenomena over the pressure. A difficulty appears when we want
to estimate terms such as Vp. Each time it appears, we integrate by parts (if possible) to
pass the derivative on the velocity. It explains the appearance of the H™%* norm of the
velocity. The regularization of the velocity plays again a crucial role in this process.

The energy method in quf ) consists in differentiating Equation (94b) by £%19%. Then we
multiply it by £219%g" and integrate (with respect to the space variables (6,%)),

1 2 - -~
500 (e 0G|, + (0% (M), = 0°TF)
+ <5alaa (szg)’ ot aaa§> + <€a16a (DER) a18a~R>
= (eM10°SPN e 9°ql) — (eM 0% (Fol),e™ o), (127)
where operators H, B, D and F are defined as
HGE = 'ho,ql, Fol =M% (1R 0gq? + 027 0yq2) + CeM2¢¢ (090l R + £ 0,027) |
Bq~§ =eM—2 (v;” 89(}5 +ev2® ayaf) , DqNE =CeM2 R (89111“ +e0 v2a) .

In the sequel we prove several lemmas where we estimate each contributions. We sort them
contingent on how much they are singular with respect to ¢ in the anisotropic Sobolev spaces. In
Subsection 3.2.1, we study the contribution of operators H, B and D. Then in Subsection 3.2.2,
due to technical computations, we have to assume that M > 7/2 and deal with the terms F
and SO-BN,

Finally in Subsection 3.2.3, once Lemma 3.10 is proved, we present the induction to prove
Proposition 3.2.

3.2.1 Non-singular terms: M >3

First we deal with the contributions of operators H, B and D. Since we introduce the anisotropic
Sobolev spaces to get ride of the singular transport #, it is no longer singular:

Lemma 3.11. Assume that M > 2. Select a multi-index o € N? of length smaller than m + 3.
Then, there exist two positive constants C3, and C3, such that for all € €]0,1] and for all time
tel0,Tr]:
(07 (% — ~ « [ 2gns ~ 2
(10 (7 h0,2") e 0°GT)| () <C || +Cl|a ¢, )

’ ||Hlo“ )(TXR) )" ||H(“1)‘1|;)1(T><R) .
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When |a| = 0, the contribution of H is even vanishing. Since it is very classical, we do not
write the proof.

Presently we compute the contribution of operators B and D. We have to estimate the
term 9ypg” singular in ¢ in the anisotropic spaces. It thus requires:

Lemma 3.12. Assume M > 3. Select a multi-indexr o € N2 with length smaller than m + 3.
Select V € {B,D}. There exist two positive constants C3, and CZ such that for all € €]0,1] and
for all time t € [0,T],

‘<€a18a (Vz]vf) ,€a13a§§>| (t) < Clli ||Z]v5(tv .)H?{‘(TL)(TXR) + C\% szf(tv ')||il(|;‘“;)1('ﬂ‘><R) ’

Of course the contribution of D only requires M > 2 since 9,¢ is bounded in the anisotropic
Sobolev spaces.

Proof of Lemma 3.12. We prove the result for operator B. We consider a multi-index o € N2
such that |a] > 1. We have:

(e (BEL) ") = M7 (200 (o2 i) < )

+ M2 (e219% (ev?? 0, qF) , e 0L .

The two terms are estimated performing the same proof. Thus we only write the proof for the
term eM =2 (e219 (v2! OpqL),e*10*q%)). Of course, the estimates for the second term only re-
quires M > 2 since it appears the derivative d, instead of Jg.

We apply the Leibniz formula. Then to diminish the number of derivatives acting on the
pressure (for the extremal term), we consider an integration by parts. There exists a family
{Cq,5} of positive constants such that,

eM—2 ‘<5‘“8“ (v2! 89q~§) ,ea18a§f>’

=M " Cap / 201 9°Fu2t 07 (9pqLt) 0°qldo dy
B<a TxR

—eM=2) /9 pvt (e*10°G) 2 dOdy.  (128)
TxR

o First, we get a bound for the last term in the right-hand-side of Equation (128). For all
e €]0,1] and for all time ¢ € [0, T]:

e [ e T ] < e 2

(1,e)
< Ca/2llg=(t, )%, - (129)

o
[ex]

(1,e)

TxR

o Then, to control the other terms in Equation (128), we make appear the e-derivative € Jp
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paying a loss of precision on M. For all € €]0,1] and for all time ¢ € [0, 7],

2 [ ) 000 () 0 s dy‘
TxR
g2+ gaBuyel(¢ ) 9P9,g8 ¢, ) 07 (t, ) dO dy
TxR

||Ugl(t’')HW”H-‘%OC ai1+19B89 ~R 2 a1 ga~R 2
5 (Il #10%a0a* ¢, ) [ + e 0l 2. )

Ca (|~ 2 4 j
< G (1M w20 My, )

)

Choosing A =35, Ca5Ca/2 >0 and B := (3 5., Cap +1/2)Cy > 0 we obtain that for all
e €]0,1] and for all time ¢ € [0, 7],

2

M2 (e (v ) e 0T (1) < AT o + BT G

(130)
That ends the proof. O

3.2.2 Singular terms: M >7/2

There remains to estimate the contributions of F and S%®¥. They are put aside since we
need M > 7/2 to desingularize it. It is actually a technical assumption and it should be relaxed
to M > 3 by proving more regularity on the approximated solution (¢%,vZ).

Estimate for operator F. We start by estimating the contribution of the operator F. The
main difference with the three previous operators (#, B and D) is that the operator F acts on
the velocity 7%. We have to be prudent with terms of the form

9% (g2 (990" + 0,021)).

First it is more singular with respect to the number of derivatives acting on the velocity. Once
more, when estimating the product, we have to use a control over the pressure ¢¢ in L°°-norm.
We may lose some regularity to go back to the anisotropic Sobolev norms. This term can be
more singular in L2-norm. Thus it requires:

Lemma 3.13. Assume M > 7/2. Select a multi-index o € N2 with length smaller than m + 3.
There exist two positive constants Cx and Sz such that for all e €]0, 1] and for all time t € [0,T7]:

(e (FO) <0G () < 5 [0 oy + O NN ) -

Proof of Lemma 5.13. Select a multi-index o € N? satisfying |a| < m + 3. We decompose F as
follows:

(20™ (Fglt), e 0°q) = (M2 0 (017 0pq?) , ™1 0°G)
+(eM72e1 0% (02 9,q2) e 0°G)

+{C eM—2gm o (g2 891721%) 75“180"qf‘> +{C M2z (q¢ anT)gR) 75“150‘21“5} . (131)
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The first and second term (respectively the third and fourth term) can be computed following
the same line. So we only provide the estimates for the first term (respectively the third term).

o The first term. We start by estimating the contribution of <5M’25°‘1 o (55”?‘ 89qg) ,EM 80‘q~5>:
(=g (2R op) o) < (Moo (R o) [ + e 00 )

We use the Leibniz formula. Then apply the Minkowski inequality and loss a power of € to get
a control of the approximated solution in the anisotropic Sobolev spaces. There exists a family
of positive constant {C, g} such that

4200 (32 00t o <M S Coaller 0000 000

Iz

0<B<a
< Z Ca,ﬁ ”qgllw(’yt)‘l"’o H’UfHHera .
0<B<a

Then, we use the imbeddings [|g2(t,-)||ym+a.00 < e77 |lgl(t, ')||Hgn,+6,
(1,e) l,e)

et @) <] 5 ool ol
0<p<a
<Cu Y Cop l0F )|y -

0<B<a
Finally for all € €]0, 1] and for all time ¢t € [0,T.],
(M 20 (727 apgt) 1077 1)
2

2 N0 Cas | (0B ) s + e 0@ ()50 | - (132)
0<B<

<

N | =

o Estimate of the third term. We now move to the estimate of (C'e™ =219 (2 9pvL7) , e 9*q%).
First, apply the Cauchy-Schwarz inequality together with the Young inequality:

[(CeM=2emon (g2 0yTim) emorgh)| < 5 (o2 0% (g2 ™) . + e %2812

To get rid with the contribution of the nonlinear term ||C' e™ =219 (¢2 9p0lT)||,, we start
with a Leibniz formula, then:

et (2 4T, < CM2 Y Coglevi0mPauT 0%

0<B<a

< CeM2 YT Caplle™ 07| [0 P 000 o
0<B<a

S CEM_2 Z CQ,B ||qg||W(‘f|’)°° |’v§HH'rrb+4 ’
0<p<a -

< C Z Coz,ﬁH‘IgHH(“}’t? U5||Hm+47

0<B<a
< CC, Z Ca,ﬁ””?”]{vn+4 .
0<B<a
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Finally for all £ €]0, 1] and for all time ¢ € [0, 7] we have,

[(CeM 210 (g2 DpTL") e 0°GE)]
2

1 1
<o [ Cup | B+
0<B8<a

2

Frial
Hie

(133)

It proves Lemma 3.13. O

Estimate of the source term S%%". The term SO contains all difficulties ever met:

-Singular terms (with respect to the number of derivatives) such as VgZ are dealt by inte-
grations by parts to a cost on the regularity of the velocity.

-Singular terms in ¢ in anisotropic spaces such as 9pglt are dealt assume the integer M is
large enough.

Lemma 3.14. Assume M > 7/2. Let a multi-index o € N2 with length smaller than m + 3.
There exist three positive constants C§, C% and Sg such that for all € €]0,1] and for all time
tel0,T7]:

2

(082N, e 0G| (1) < Ch (14 [0 Mmooy 1T Gy

2 ~] 2
O3 (14 R s rery) 1 gy

2 -
+ 8 (|02t e rry + V)
Proof of Lemma 3.14. We decompose S%% into:
(210 SPRN c1goghty = (219N R (67N Lo (e, ¢2,v2)) , e 0*G)
+ (MM 2019 (521 9pqlt) 61 0°GL) + (MM 2610 (327 9,4LY) , e 0°GL)

+ <C €R+M726a1 o« (af aegljis) 76041 aa§§> + <C6R+M72Ea1 o« (E]vf ay;[)zR) ’5alaazj§> )

In what follows we study each of these contributions. Since contributions of the second and third
term (respectively fourth and fifth term) are estimated following the same steps, we only write
the estimates for the second term (respectively the fourth term).

o Contribution of the First term. Since ¢Z is built as an approximated solution it satisfies
Inequality (104). Then, for all £ €]0,1] and for all time ¢ € [0, T

(N Fer 0 (67N Lo(e, g2, 00)) e 0G| (1)

1 -

<3 <52(N—R) Hﬁ‘Nﬁo(&‘1?7”?)”1251'@‘,‘5) + [laf e, )Hfi}lg)) ;
1 ~]

S 5 (EZ(N_R)C% + qu(t7 .) E(T]e)) .
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o Contribution of the second term. We now estimate the contribution of
<€R+M725a1 % (;J;R 8055) ’Ecn aaaé%> )

We need to clearly understand the regularity required on the pressure and the velocity. We
expand the derivatives of the product thanks to the Leibniz formula and put aside the extremal
terms in the summation. There exists a family of positive constant {C, g} such that

}<€R+M728a18a (*ﬁiRag’qVé?) ’galaaa§>|
gHM=2 / £21 9T 9y 0G0 dy
TxR

+eMM=2 N Cop / 2 9 PR 9,0°gT 0GR do dy
0<B<a TxR

~S1R
ghtM=2 / SQQI%(ﬁaaf)zdﬁdy. (134)
TxR

-First, we deal with —eft+M=2 [ g201 207 a"v - (¢! ) df dy. We perform as in Inequality (129).
For all £ €]0,1] and for all time t € [0, T*]

R+M-—-2 89NIR 6a~R d@d 1 8 ~R g aoz ~R R
€ (0°aF)" do dy| < 3 [|0607 | | 0", < [l
T><]R 2

=5 (135)

o
Hiile

-Then, we consider the second extremal term e+ —2 fT R520‘1 0°ULE gl 9°gR df dy. We

have to get a control over the family {9pG*}.. To do so, we introduce a power of £ (to a cost
on M).

eFHM=2 |(2en gaglR(y ) 9yqli(t, ), 0 (L, )|
< M2 19,8 (8, )|, [(e™ 07Tt ), 4 0GR (1, )]

efitM R 2 ~R 2

< S N0 g (I s + 1N )
gR+M=3 ~R
Iy (12 s + 1 ) -

Then we use the equivalence of norms (5) together with assumption M > 7/2,

IN

ER+M_2 |<52a1 aaﬁis(t, ) a&a?(tv ')7 aaaf(t7 )>|

=l (e

< <||05<t, s + |8, )

I /\

Wigmes + [l

i )
|| )
H< B

2
o lal . 136
H(LE)) (136)

-Finally, there remains to get a bound for the sum appearing in the Equation (134). The
Gagliardo-Niremberg’s estimate only provides a control in terms of the H (IaH)- -norm of the pres-

sure. Here one can notice that 0 < 8 < a and so |a — 8| < m + 2. Thus 9?7 is bounded
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in L*°. For all £ €]0,1] and for all time ¢ € [0,T7],
€M+R72 |<E2oc1 aaf,@;t;;R aeaﬁaé%’ 8aa‘§>’
L (0 et + e o)

1 ~ 2 ~ 2
2 (U 2 ) 1 g (137

IN

IN

-Finally plugging estimates (135), (136) and (137) into (134) we get for all € €]0,1] and for all
time ¢ € [0, 7],

‘<€R+M72€alaa (:J;R 8965) ’ealaaqfﬂ (t)

C, - 3\ - _
[ o (el 1)+ L) I+ s
0<B<ax .

o Contribution of the fourth term. To estimate <C€R+M*260‘180‘ (E]vf 5‘9’6;1:‘) ,50‘18°‘§§>, we
first apply the Cauchy-Schwarz inequality,

(censat-zemar (@ anmt®) morat)| < g (Jlo=m-temor @ am s + 1y ) -

The control over 9% (Z]Vf 895;R) could be done thanks to the Gagliardo-Niremberg inequality.

However it only gives a bound which depends on the H (‘(flg)_l—norm (respectively H!*/*1-norm) of

the pressure (respectively velocity). We have to be more accurate. We compute this contribution
thanks to the Leibniz formula:

[CeH 260 (G g0 ™) || 1o < CEMFMTE R Caplle™ 070 070502 -
0<p<a

Then we study the competition between the regularity over the pressure g% and over the veloc-
ity o2. To do so, we cut the sum in two parts depending on the length of 3. When |A3] is small
enough, 07 is bounded in L> whereas when |3 is large it is 9 #9,0!f which is bounded in
L. Therefore we decompose the sum into

|oemrzemar @ ot . < CMMR ST Gl 0% 9Pt
0<B<a,0<|B|<1
=:Cps
+ CefttM—2 > Cap et 0758 0P 0pul ", .

0<B<a,2<BI<|et]

=:Cpg
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We start by estimating Cgs,

Cos < CHMT2 0 3 Caplle™ 0G| o [|0° 770057 2

0<B<a,0<|B|<1

< e ST Cap @l (172 g
0<8<a,0<|8(<1
< O€R+M7271/2 Z ﬁHqRHHl ||U1RHH7"+4’
0<8<a,0<|8]<1
3o R N DR Y [ (138)

0<B<a,0<|BI<1

Presently, we get a bound the second term Cg; by

Co< CMU= S O e 0ot
0<B<,2<|B|< ]
<O S et o e
0<8<a,2<|8]< o]
<O S G o e [ (139)

1,e
0<B<a,2|8|<al ¢

Joining the two estimates (138) and (139) together we deduce that for all € €]0,1] and for all
time ¢ € [0, T]:

[(Cem M2 9 (gF 9yulT) e 0G| < 207 S Cas | B e
0<B<a,0<|B|<1
2

1
3¢ o Cap | Mol + 1 12 e

0<B<a,2<|BI< e ?

This achieves the proof. O

Finally, Lemma 3.10 is a simple corollary of Lemmas 3.11-...-3.14.

3.2.3 Proof of Proposition 3.2

In this subsection we prove Proposition . We prove, by induction on the size J that prop-
erty Q(J) defined page 43 is satisfied for J € [0, m + 3]. Since the proof for the initialization
of the induction (Q(0) is true) and the increment (Q(J) = Q(J + 1)), we only the proof of the
increment.

One aspect of the proof is to give meaning to the a priori Inequality (126).

Proof of Proposition 3.2. We assume Q(J) is true, for some J € [0,m + 2].
o Apply Lemma , there exist three positive constants C'} 1 c3 41 and c3 41 such that for all
€]0, 1] and for all time ¢ € [0, T]:

o1



o | SOl ARl [ R OF (140)

HH‘]+1)('J1‘><R)

with for all £ €]0, 1] and for all time ¢ € [0,75]:
) = 200 (L4 8 )
@2 1) 1= 205y (14 02 M gmen) 1Ty, + 20301 ([0, ) s +2¥ ).

o On the one hand, since % is in Lng?;‘l (see Proposition 3.1), the family {¢7 ™ }.¢)0.c,) is
bounded in L':

t
Vecloed vie 0.1, [ wlteds s
0

On the other hand for all € €]0, 4], applying the assumption of induction Q(.J) then Proposi-
tion 3.1, the function ¢/ *! is bounded in L*([0,t]) for any ¢ € [0,t}]:

K t
[ et s [ (I M) 16+ (TGl 25 ) s,
t
g/ (52wm—|—||1}5(5’.)”i]m+4> ds < 2wy
0

We can integrate the Inequality (140) with respect to the time and apply the Gronwall Lemma.
For all € €]0,&4] and for all time ¢ € [0, T/]:

~ 2
Hq,f(ta ')HIE’IJJrl < su ( J'H eXp (/ ,(/)J+1 ) 5 te2wm
(1,e) SE[O, ]

It proves the induction. O
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