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Model-free Reconfiguration Mechanism for Fault Tolerance

The problem of fault tolerant control is studied from the behavioral point of view. In this mathematical framework, the concept of interconnection among the variables describing the system is a key point. The problem is that the behavior we intend to control is not known. Therefore, we are interested in designing a fault accommodation scheme for an unknown behavior through an appropriate behavioral interconnection. Here we deal simply with the trajectories that are generated by the system in real time. These trajectories determine the behavior of a system in various (faulty/healthy) modes. Based on the desired interconnected behavior, only those trajectories are selected that obeys certain laws. These laws representing the desired behavior can indeed be achieved by a regular interconnection. Thus, when the trajectories do not belong to a certain desired behavior it is considered as due to the occurrence of fault on the system. The vantage point is the fault tolerant control problem now becomes completely a model free scheme. Moreover, no explicit fault diagnosis module is required in our approach. The proposed fault tolerance mechanism is illustrated on an aircraft during the landing phase.

I. INTRODUCTION

A fault represents an unexpected change of the system dynamics that tends to degrade the overall system performance and can lead to system instability as well. Generally, a fault tolerant control (FTC) system includes two modules: fault diagnosis (FD) module and fault accommodation (FA) module (see figure 1). An FD module is a monitoring module that is used to detect faults and diagnose their location and significance in a system. The module with fault estimation sub-module is very often considered as fault detection and isolation (FDI). An FA module is a fault-recovery module that controls the faulty system in a specific way, such that the system still achieves the objectives which were achieved by the healthy system before the occurrence of fault.

The general block diagram of a fault tolerant control is shown in the figure 1. The main controller activities occur on the execution level. In the faultless case, the nominal controller attenuates the disturbance d and ensures set-point following and other requirements on the closed loop system at the execution level. On the supervision level, the diagnosis block simply recognizes that the closed-loop system is faultless and no change of the control law is necessary. If a fault occurs, the supervision level makes the control loop fault-tolerant.

The diagnostic block identifies the fault and gives this information as D to the fault accommodation block. The FA module adjusts the controller to the new situation, such that the closed loop satisfies the performance specifications [START_REF] Jain | A model based 2-dof fault tolerant control strategy[END_REF] [START_REF] Zhang | Design of integrated fault detection, diagnosis and reconfigurable control systems[END_REF].

The problem of fault tolerant control is often handled in two ways: model-based approach and model-free approach. In the former approach, the full information of the actual plant is known a priori. Accordingly, a sub-system (state observer, output observer, Kalman's filter, etc.) is built, which reconstructs the plant output and diagnoses the fault. The fault is then accommodated using an FA module. On the other hand, generally in the socalled model-free approaches in the existing literature, the model of the plant is estimated.

Nevertheless, the plant knowledge is required during estimation in real-time as well. Hence, the knowledge of a plant model is mandatory at any time to achieve fault tolerance either by assuming the plant model to be known or to be estimated. This elicits the model mismatching issue that can generate false alarms, even in the fault-less situation. Consider the case of disgraceful performance degradation where control objectives are modified to achieve the partial tolerance to fault. This implies that after the accommodation of fault, the current state of plant still enfolds some dynamics of fault in the faulty mode that has not been accommodated entirely. Therefore, the fault diagnosis module must be adaptive with respect to fault accommodation module such that the further modeling issue can be averted. Otherwise, it will again result in false alarm. As we have seen, FTC requires two distinctive modules that operate sequentially to accommodate the fault. These two modules involve their respective time delays, particularly, known as fault detection delay and fault accommodation delay. A significant attention has to be entail while handling these time delays. In the time interval between the occurrence of fault and its accommodation, the stability aspects of any FTC scheme become a concern. In addition, due to historical reasons and the complexity of the problem, most of the research on FD and FA was carried out as a two separate entity. More specifically, most of the FDI techniques are developed as a diagnostic or monitoring tool, rather than an integral part of FTC systems. As a result, some existing FD methods may not satisfy the need of controller reconfiguration in FA module. On the other hand, most of the research on reconfigurable controls is carried out assuming the availability of a perfect FD. Little attention has been paid to the analysis and design with the overall system structure and interaction between FD and FA modules [START_REF] Zhang | Bibliographical review on reconfigurable fault-tolerant control systems[END_REF].

Seeing these shortcomings, the objective of this work is to develop a generic method for the fault tolerant control based on real trajectories from the system subjected to faults. The main contribution of the paper intends to formulate a model-free approach to FTC that does not require any information about the plant in real-time. Unlike the so-called subspace approach for FTC in [START_REF] Ding | Subspace method aided data-driven design of fault detection and isolation systems[END_REF], we do not focus on designing an FDI module that implicitly requires the knowledge of the plant parameters. On the contrary, our approach does not include any explicit FD module. The idea here is to choose an appropriate control law such that the system in any (faulty/healthy) mode achieves the performance specifications without the need of a plant model. We employed the mathematical framework of behavioral systems for the proposed approach. In the last decade, the behavioral point of view has received an increasingly broader acceptance as an approach for modeling dynamic systems, and now it is generally viewed as a cogent framework for system analysis [START_REF] Zerz | Behavioral systems theory: A survey[END_REF]. The proposed FTC mechanism is illustrated on an aircraft during the landing phase.

II. ACTIVE FAULT TOLERANT CONTROL STRATEGY

In a model based fault tolerant control, generally it is seen that the prime motive is to estimate the constraints C f (θ f ) of the faulty system for FD module. Based on this information, a new control law is applied in fault accommodation phase such that the system satisfies the performance specifications. The scheme is termed as active fault tolerance. On the counterpart, in passive fault tolerance the control law is not redesigned subject to the occurrence of fault. This implies that the system objectives can be obtained when the system is healthy, as well as when the system is faulty with the same control law. Thence in the literature, passive FTC system is also known as reliable control systems [START_REF] Zhao | Reliable state feedback control systems design against actuator failures[END_REF] or control systems with integrity.

The fault tolerant control is concerned with the control of a faulty system. This implies that we can consider any FTC problem as a control problem subject to state of the system (healthy/faulty). The problem is completely defined by the triple [START_REF] Blanke | Diagnosis and Fault tolerant control[END_REF] < O, C(θ), U >

where

• The objective O defines what the system is expected to achieve. This implies that the system should satisfy certain performance specifications.

• Constraints C are functional relations that depends on some parameter vector θ. The controlled system satisfy these constraints over the time. This represents the state and measurement equations of actual plant model in state space representation.

• The set U represents admissible control laws. These control laws are designed in such a manner, when implemented achieves the desired objective.

Now, let us analyze the impact of faults on the control problem. An occurrence of fault on the system transforms the control problem from

< O, C n (θ n ), U > into < O, C f (θ f ), U f >, f ∈ F
where F indexes the set of all considered faults, C n (θ n ) is the set of nominal constraints with nominal system parameters, and C f (θ f ) is a set of faulty constraints with faulty system parameters. Generally, the occurrence of fault does not result in the change of system objectives because the main idea of fault tolerant control is to try to reach them even in the presence of fault. However, this would sometimes be possible or not. The case when current specified objectives are not able to achieve, the problem is transformed into finding new objectives, which are less restrictive such that the system still managed to satisfy the fault-tolerance property. This is known as disgraceful degraded performance in the FTC literature.

One of the active approaches for FTC is to employ switching theory that is based on constructing a bank of controllers, each controller being associated to a healthy, or a faulty plant-working mode. The selection of a controller then, to be used for the present working mode assumes to be achieved with some delay. The critical issue in any model-based active FTC system (AFTCS) is the limited amount of time available for FD and for control system reconfiguration. The theory of logic based switching control provides a unique direction for AFTCS without utilizing an explicit diagnosis module, which relies on a bank of controllers (figure 2). The supervisor block shown in figure 3 is made-up of a set of estimators, followed by the so-called performance evaluation, and a switching logic scheme. Each estimator reconstructs the actual plant output in either healthy or faulty working modes. Its performance is evaluated by computing a norm of the output estimation error, and the estimator that yields the smallest error corresponds to the present working mode. Consequently, the controller corresponding to the smallest performance index yielding estimator is applied to the process by the switching logic. Here the notion of performance evaluation does not correspond to the closed loop performance of the system. Estimator n This approach has some shortcomings from a practical point of view. In the present configuration, the scheme presupposes that for each fault a reasonable controller has been designed before the plant is put into operation. However, the presence condition of a right controller is assumed in the controller bank. To build a set of estimators, partial or complete knowledge of the plant is required to be known, thus introducing model mismatch issues.
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In other words, the above scheme requires the knowledge of the plant model in real-time as well. Nevertheless, one cannot ignore the role of gradual convergence in latter approach required to estimate the current working mode. A notable feature of our proposed scheme is that it does not require an explicit fault diagnosis module in real-time.

III. FTC IN BEHAVIORAL CONTEXT

A mathematical model in behavioral setting is viewed as any dynamical relation among system variables classified as manifest variables and latent variables. Indeed, the resulting dynamical relations are constrained by the time-evolution of these variables. Hence, the collection of all time trajectories satisfying these equations is called the behavior. When the trajectories do not belong to a specified desired behavior, the cause is the occurrence of fault. The following gives a precise definition of the concept of a dynamical system. 

w : T → W, t → w(t)
The set W is the space in which the system time-signals take on their values and the behavior B ⊆ W T is a family of W-valued time trajectories. Any behavior of dynamical system is also represented by its kernel representation, B :≡ P ( d dt )w = 0, where P ∈ R •×w [ξ] and ξ is an indeterminate operator. By assuming this point of view, important aspects of the classical system theory have been translated and solved in the behavioral framework.

A. Control via System Interconnection

In the behavioral setting, a control problem is viewed as an interconnection of two dynamical subsystems. These subsystems are the plant and the controller. Here we will consider the case of partial interconnection, which is different from the notion of full interconnection.

The difference lies in the fact that in latter all the variables are accessible for interconnection while in former only few are available. Therefore, it is natural to separate the variable w as w := [ w c ] T where w is the manifest variable and c is the latent variable (see figure4a). If Σ 1 = (T, W, B 1 ) and Σ 2 = (T, W, B 2 ) are two dynamical subsystems with the same time axis and same signal space, then the interconnection of Σ 1 and Σ 2 shared by variable c, denoted

as Σ 1 ∧ c Σ 2 , is defined as Σ 1 ∧ c Σ 2 := (T, W, B 1 ∧ c B 2 ). Thus, the behavior of Σ 1 ∧ c Σ 2 consists
simply of those trajectories w : T → W which are compatible with both the laws of Σ 1 and of Σ 2 . In a closed-loop feedback control, w and c are also termed as to-be controlled variables and control variables (see figure4b). In case of a linear time invariant (LTI) system, there exist co-prime polynomials R y and R u such that G = R -1 y R u , where G(ξ) is the polynomial representation of plant. In the behavioral context, a control problem is now formulated as follows. Assume that the plant, a dynamical subsystem Σ p = (T, W, P f ) whose behavior is given by

P f = {(w, c) ∈ R q+p | R(ξ)w = M(ξ)c} (2) 
with appropriate matrices

R ∈ R •×q [ξ] and M ∈ R •×p [ξ], where [ R(ξ) -M(ξ) ]   w(t) c(t)   = 0
is the kernel representation of plant's behavior, w := (r T , y T ) T ; c := (e T , u T ) T and

R =   0 R y 1 -1   , M =   0 R u 1 0  
Here P f represents the full behavior of the plant and the manifest behavior in to-becontrolled variables is given by

P = {w ∈ R q | ∃c ∈ R p such that (w, c) ∈ P f } (3) 
Similarly for the controller, there exist co-prime polynomials C e and C u such that C = C -1 e C u , where C(ξ) is the polynomial representation of the controller and its behavior is described as

C = {c ∈ R p | H(ξ)c = 0} (4) with H ∈ R •×p [ξ]
, where H(ξ)c(t) = 0 is the kernel representation. The interconnection between P f and C results in a manifest controlled behavior, K = (P f ∧ c C) w defined as

K = {w ∈ R q | ∃c ∈ C such that (w, c) ∈ P f } (5) 
Therefore, we say that K is implemented by C which in connection with the hidden behavior

N gives the implementability condition [2] N ⊂ K ⊂ P (6)
where the hidden behavior is defined as the behavior consisting of plant trajectories with the interconnection variables put equal to zero. It is described as

N = {w ∈ R q | (w, 0) ∈ P f }
Let see an example of a control problem in the behavioral framework.

Example Given a plant G(ξ) = ξ-1 ξ(ξ+1) and the controller is given by C(ξ) = -ξ+1 ξ+2.6 . Find the controlled behavior K ?

y u = ξ -1 ξ(ξ + 1) = R u (ξ) R y (ξ) [ξ(ξ + 1)]y + (-ξ + 1)u = 0 e = r -y P f :=   1 -1 -1 0 0 ξ 2 + ξ 0 -ξ + 1          r y e u        = 0 For controller C(ξ) u e = - ξ + 1 ξ + 2.6 = C u C e (ξ + 1)e + (ξ + 2.6)u = 0 C := 0 0 ξ + 1 ξ + 2.6        r y e u        = 0 (P f ∧ c C) w :=      1 -1 -1 0 0 ξ 2 + ξ 0 -ξ + 1 0 0 ξ + 1 ξ + 2.6             r y e u        = 0
Since from equation ( 6) K is a restricted behavior in P and K = (P f ∧ c C) w , [START_REF] Polderman | Introduction to Mathematical Systems Theory: A Behavioral Approach[END_REF]Sec 6.2.3] there must exist an unimodular matrix. The greatest common divisor between R u (ξ) and C e (ξ) is 1. Using Bezout identity, there exists polynomials a(ξ), b(ξ) such that a(ξ).R u (ξ) + b(ξ).C e (ξ) = 1. Define unimodular matrices U 1 (ξ), U 2 (ξ) as follows:

U 1 (ξ) =      1 0 0 0 1 0 ξ + 1 0 1      , U 2 (ξ) =      1 0 0 0 a(ξ) b(ξ) 0 ξ + 2.6 ξ -1     
Here a(ξ) = -1 3.6 , b(ξ) = 1 3.6 . One easily checks that

U 2 (ξ)U 1 (ξ)      1 -1 -1 0 0 ξ 2 + ξ 0 -ξ + 1 0 0 ξ + 1 ξ + 2.6      =      1 -1 -1 0 ξ+1 3.6 -(ξ+1) 2 3.6 0 ξ+0.8 1.8 ξ 2 -1 (ξ + 1)(ξ 2 + 1.6ξ + 1) 0 0      K :=       1 -1 -1 0 ξ+1 3.6 -(ξ+1) 2 3.6 0 ξ+0.8 1.8 ξ 2 -1 (ξ + 1)(ξ 2 + 1.6ξ + 1) 0 0                r y e u          = 0 (7) 
Here we see the relation between r and y is given by the third row in the above equation. In this framework, the control problem is also formulated as to find a controller C that yields a desired controlled behavior D. Hence the controller C should yield a controlled behavior K such that K ⊆ D . If it is possible to find a controller C that yields K ⊆ D, then D is said to be implementable or implemented by C. Further, if a given desired behavior D is implementable, we say that 'the control problem is solvable'. Polderman [START_REF] Polderman | Sequential continuous time adaptive control: A behavioral approach[END_REF] proposed that for a given control objective, we must select a desired behavior to design a controller such that the control objectives are satisfied. While in [START_REF] Weiland | A behavioral approach to the H ∞ optimal control problem[END_REF], it is proposed that for a given control objective, there exist an equivalent desired behavior to design a controller such as the control objectives are satisfied. These two investigations were generally formalized as a single entity in [START_REF] Van Der Schaft | Achievable behavior of general systems[END_REF] to design a controller based upon the desired behavior. This controller is termed as the canonical controller, irrespective of the control objective. Therefore, we can regard the desired behavior D as equivalent to the control objective O.

B. Switching control in Behavioral Context

The theory of switching control relies on constructing a bank of controllers. Adopting a well-defined switching algorithm, one of the controllers in the bank is selected such that the control objectives get satisfied. In the analysis and development phase, it has been assumed that a finite set of controllers

C = {C 1 , C 2 , ..., C N } (8) 
is constructed in such a way that in every situation either healthy or faulty mode of the plant, there is at least one controller in that set which has the appropriate control action and is able to satisfy the control objectives. The notion of directability in the behavioral framework precisely describes the existence of controller bank. The following definition of weak directability is given below [START_REF] Polderman | Introduction to Mathematical Systems Theory: A Behavioral Approach[END_REF].

Definition 2. Let w 1 , w 2 ∈ B and t ∈ T. We say that w 1 is weakly directable to w 2 at time t ′′ if there exists a trajectory w 3 ∈ B and a t ′ ≤ t ′′ such that

w 3 (t) =      w 1 (t), t ≤ t ′ w 2 (t), t > t ′′
In above definition, the trajectories before t ′ belong to an undesired behavior. Therefore, satisfying the weak directability on plant ensures that it is possible to switch the trajectory at any time t ′ such that it achieves the desired behavior after time t ′′ , introducing some time delay.

Remark 1. The notion of directability is stronger than definition 2. Unlike to weak directability, the interconnected system satisfying directability does not allow any time-delay while switching to the desired trajectory. If the interconnected system is weakly directable, then it is equivalent to say that there must exist a controller such that K ⊆ D.

Interestingly, the behavior we intend to control is of the form given by equation 2. The matrices of polynomials R(ξ) and M(ξ) are unknown. Once a fault occurs, the behavior of the closed loop becomes inconsistent w.r.t. desired behavior, and it must be compensated by making an interconnection with another controller (compensator). A compensator is a set of laws that restrict the interconnection variable c and therefore w. No doubt the measurements render the information about a dynamical system. These measurements give a partial knowledge about the systems and might be thought as representing a small set of the behavior of a dynamical system. This can be formalized by viewing these measurements, collected over time τ , as a nonempty subset M of W T . Polderman [START_REF] Polderman | Sequential continuous time adaptive control: A behavioral approach[END_REF] uses a somewhat similar explanation relying only on the measurements taken from a dynamical system. In that explanation, each time a measurement is completed, a model from that measurements is derived using an iterative algorithm. A controller is then generated so that the interconnection satisfies the control objective for that particular derived model. This model is known as the Most Powerful Unfalsified Model (MPUM). A formal definition on measurements illustrating the plant behavior [START_REF] Willems | From time series to linear systems, part ii : Exact modeling[END_REF] is given as:

Definition 3. Given a vector space of time signals W T , a model or dynamical system Σ p = (T, W, P f ) ,a mapping O τ : W T → W T and a measurement set M τ ⊂ O τ (W T ), we say that the behavior P f is said to be unfalsified by the measurement set M τ if

M τ ⊂ O τ (P f )
where O τ (x) is the experimental observation time sampling operator defined by

[O τ (x)](t) =    x(t), t a -τ ≤ t < t a ; 0, otherwise.
where 

t
O τ (O -1 τ (M τ )) ∧ c C) ⊂ O τ (D); where O -1 τ (M τ )) ∧ c C = K
Definition 4 supposes roughly that a controller, whose behavior is denoted by C, is said to be unfalsified if the set of trajectories that are consistent with the data and the controller, at the past observation times, is a subset of the desired set O τ (D). As we are working in real time, introducing the time sampling operator is justified.

Remark 2. The underlying idea of utilizing the behavioral approach is that it captures the behavior of the plant without any explicit modeling. In definition 4, the trajectories when to change the control law and which controller should be switched into feedback with the evolving plant. From the hypothesis of the existence of at least one corrective controller in the pre-designed set (eq.8) for the faults occurring in the plant and taking definition 4 into account, a simple conceptual solution to the controller selection would be to evaluate experimentally each candidate controller's performance by applying it to the plant. Unfortunately, not all the potential controllers can be tested simultaneously in the feedback loop. To overcome this situation, the idea of identifying directly the right corrective controller to be switched into the feedback loop using only the experimental information up to the current time would be appealing. The problem amounts to infer the closed loop behavior from the observed data produced by the plant driven by a different controller.

Moreover, without further modeling assumptions on the plant Σ p , it is logically impossible to verify that a controller Σ c will implement an interconnected system K that achieves the desired behavior D. Thus we provide a bound on the time of a controller to be present in the closed loop so that its performance can be analyzed during that time interval. The controller will be provisionally retained as the best available controller until it is falsified (or rejected) or possibly outmoded by a better controller present in the bank. As in real time operation, it is impossible to foresee the realization of the desired behavior by a closed loop system, unless we know the model of the plant. Whenever the controller is not rejected by the experimental data, it is said to be unfalsified. This formulation is based on an approach, which is popularly known as the unfalsified control concept [START_REF] Safonov | The unfalsified control concept and learning[END_REF].

Notice that the observed data M τ is not related to any particular experimental setting.

Hence a deep consequence of definition 4 is that the controller Σ c can be tested, even if it is not actually interconnected to the plant. This fact is a powerful tool for evaluating the ability of an off-the-shelf controller to perform corrective actions and satisfy the performance objective following an unexpected change in a feedback loop. In [START_REF] Weiland | A behavioral approach to the H ∞ optimal control problem[END_REF], Weiland et. al.

formalizes the desired behavior or acceptable behavior with the notion of control objective as follows. 

O τ (S min ) ⊆ O τ (K) + O τ (R min ) (9) 
O τ (K) ∩ O τ (R max ) ⊆ O τ (S max ) (10) 
The control objective O from equation 1 specifies the desired behavior. It is specified in terms of a minimal and a maximal requirement on the behavior of the controlled system.

Thus we call equation ( 9) a minimal and equation ( 10) a maximal requirement for O τ (K).

Roughly speaking the minimal requirement formalizes the idea that O τ (K) should be "sufficiently rich" so that a suitable extension of this system contains at least a specified set of trajectories (such as disturbances, reference trajectories or norm-bounded signals). The maximal requirement articulates the performance of the system. Definition 6. Given L + 2 , the space of square integrable trajectories which vanish for t < 0, the truncated L 2 inner-product w 1 , w 2 τ and norm w τ is denoted by

w 1 , w 2 τ t+τ t w T 1 (t)w 2 (t)dt w τ w, w τ .
where w : R → R q

Let Q = Q T be a real symmetric full rank indefinite matrix of dimension q × q and suppose that

Q = Q + -Q -,
where Q + 0 and Q - 0 are such that q + := rank Q + and q -:= rank Q -satisfy q + + q -= q. Given such a Q, the control objective is defined by the quadruple

R min := Q -L + 2 , (11) 
S min := L + 2 , (12) 
R max := L + 2 , (13) 
S max := {w ∈ L + 2 | J(w) ≡ w, Qw 0} ( 14 
)
where J(w) is the performance index. Comparing to standard input-output formulation of the H ∞ control problem. Let w be partitioned as, w := [ r u y ] T ∈ W T , where r has dimension n r > 0, u has dimension n u > 0, y has dimension n y > 0 and

n w = n r + n u + n y .
The H ∞ control problem then amounts to find a controller which when connect in the closed-loop, the system becomes stable and satisfy

λ 2 r 2 τ -u 2 τ -y 2 τ =      r u y      ,      λ 2 I nr 0 0 0 -I nu 0 0 0 -I ny           r u y      τ 0, ∀w ∈ L + 2 ( 15 
)
where constant λ > 0 is an upper bound of the H ∞ norm of the closed loop transfer function (see [START_REF] Grimble | Robust Industrial Control: Optimal Design Approach for Polynomial Systems[END_REF]Ch.3]). Now we proceed with the controller falsification test. For an unknown dynamical system Σ p = (T, W, P f ), named plant, we have a set of measurement M τ during the time interval τ composed of trajectories u and y such that O -1 τ (M τ ) ⊆ P f , where

M τ = {(r, u, y) ∈ O τ (W T ) | u = u (m) , y = y (m) }; W T = R × U × Y ( 16 
)
for some

(u (m) , y (m) ) ∈ O τ (U × Y)
In other words, (u (m) , y (m) ) is the measured data during τ . The performance evaluation of a controller C k in the set is based on the measurement set (u (m) , y (m) ) proceeds as follows.

The behavior of the controller C k is given by so that based on the measurements, the signal r should have been

C k = {w := (r, u, y) ∈ W T | u(t) = C k (r(t) -y(t))} ( 
r k (t) = C -1 k u (m) (t) + y (m) (t), t a -τ ≤ t ≤ t a ( 18 
)
where we have assumed that all the controllers in the set are stable causally left invertible (SCLI) controller. Note that this assumption is not restrictive since the controllers can be designed to be bi-proper. Alternatively, in order to avoid the restriction to the minimum phase (SCLI) controllers, we can use the matrix fraction description (MFD) form [START_REF] Stefanovic | Safe adaptive switching control: Stability and convergence[END_REF] for the controllers. The signal w k = (r k , u (m) , y (m) ) ∈ W T on the time interval [t aτ, t a ], clearly belongs to the controller behavior C k as well as to O -1 τ (M τ ), i.e.

w k ∈ O τ (C k ∧ c O -1 τ (M τ )
). From definition 4, a controller C k is unfalsified by the experimental measurements M τ generated by an unknown plant, whenever w k ∈ O τ (D) , i.e. the feedback loop with the current controller satisfies the control objective O at w k ∈ W T for a certain value of λ. We denote control objective O at w i as O w i . Equation 18 defines a filter F k that reconstructs the reference signal r k from the measurements of (u, y) [START_REF] Yamé | A real-time model-free reconfiguration mechanism for fault-tolerance: Application to a hydraulic process[END_REF]. The above procedure can also be applied to any off-the-shelf controller in the set (equation 8) of the N potential candidate controllers, thus yielding N performance indexes

{J(w i ), i = 1, 2, ..., N} (19) 
The unfalsified controllers are those controllers with index i that satisfy the control objective O w i for a certain value of λ. These performance indexes facilitate the selection of right unfalsified controller that can switch into the loop. The explicit structure of the reconfiguration mechanism consists in a bank of filters (equation 18), a performance index generator producing the indexes (equation 19), and a controller selector block is shown in figure 6. The controller selector block is a system that produces a piecewise constant signal (the switching signal) σ based on {J(w i )} N i=1 whose job is to select the corrective controller from the bank. The switching signal is a map from the time axis T to the controllers index set {1, 2, ..., N}, i.e. σ : T → {1, 2, ..., N}.

As we have mentioned earlier, we take the measurements and scrutinize the performance index on the time interval [t aτ, t a ]. This implies that if it requires switching of the controller, the switch will occur after time τ exclusively. Therefore, it imposes a lower bound on the length of intervals between successive switches. This minimum length of time in which a controller is active in the loop is known as dwell time. The logic is then realized through

σ(t) = σ(t a ) for t a ≤ t < t a+1 (20) 
with an updating rule

σ(t a+1 ) =    σ(t a ), if C σ(ta) is not falsified; k = arg min{J(w k )} k =σ(ta) , if O w k is not satisfied for certain value of λ (21)
where k is the index of to-be-switched controller. The controller selector block contains the control selection algorithm given in equation( 20)- [START_REF] Zerz | Behavioral systems theory: A survey[END_REF]. The switching logic implements the following: it lets the stable dynamics of the closed-loop switched system have enough time to decay before a next possible switching occurs, and it bounds the detection delay, i.e. the time elapsed from the occurrence of a fault to the invalidation of the active controller. Note that a short detection delay requirement will need a short dwell-time that clearly conflicts with the stability of the closed-loop switched system. Moreover, in [START_REF] Wang | Stability of unfalsified adaptive control using multiple controllers[END_REF] it is proven and in [START_REF] Baldi | Multi-model unfalsified adaptive switching supervisory control[END_REF] it is experimentally illustrated that the unfalsified control concept cannot prevent the destabilizing controller to be switch in the feedback loop. This implies that the switching signal σ ∈ {1, 2, ..., N} follows a certain switching order before selecting the right controller.

Hence, the corrective controller will not be switched directly in the loop. Therefore, any destabilizing controller is expected to remain in the loop during the time interval τ . This also infringes the stability of the switching system. So here, we see, the stability of the closed loop conflicts because of the two reasons: (a) due to the short dwell time that can lead to multiple switching; (b) due to the impact of a destabilizing controller operating in the closed loop during the time interval τ .

For point (b), we can assume that the controllers installed in the bank are stabilizing for at least one working mode of the plant. For the latter case, we do not consider the multiple switching any more. Since it is well known that the large dwell time, itself ensure the global exponential stability [START_REF] Morse | Lectures notes on logically switched dynamical systems[END_REF]. Therefore, these stabilizing controllers are corresponding to the modes, i.e. there always exist at least one plant/controller stable interconnection.

Reacting to these issues, a lower bound for τ should be imposed to ensure the exponential stability of the overall switched system [8, Lemma 1.1]. As a result, a lower bound on dwell time is also determined in the analysis and development phase. As we mentioned that for a fixed short dwell time, there will be multiple switching in the system. On the other hand, a fixed large dwell time can lead to the second stability issue. Therefore, similar to [START_REF] Stefanovic | Safe adaptive switching control: Stability and convergence[END_REF],

the dwell time must be adaptive with the evolving time. In [START_REF] Stefanovic | Safe adaptive switching control: Stability and convergence[END_REF], Stefanovic et al. discusses the finiteness of the overall number of switches in case of multiple switching and develops a bound on it that depends on the data. Since it is also proven that the final controller will be the corrective controller, which implies that the number of switches would be some finite value and hence there could be a set of data, for which the number of switches can be arbitrarily large (though finite). Nevertheless, this situation depends on the switching algorithm and the evaluation of performance functional. Take a more precise look in [START_REF] Stefanovic | Safe adaptive switching control: Stability and convergence[END_REF],

the performance of all the controllers is evaluated on the whole time axis, starting from the origin to the current time. In the switching algorithm as well, the performance functional is evaluated for all the controllers, even if it has already been falsified. However, in our switching algorithm, the correct controller is selected in one shot. As mentioned before, we evaluate the performance in a fixed time window, thus, the evaluation of dwell time from [8, Lemma 1.1] considers the fact that right controller is identified. Moreover, for the stability of the overall system, the performance index should reflect any instability taking place in the closed loop. This feature is termed as cost-detectability [START_REF] Stefanovic | Safe adaptive switching control: Stability and convergence[END_REF], which is different from the plant detectability. At the same time, cost-detectability is determined from the knowledge of performance index and the candidate controllers, based upon the trajectories generated by the system in real time. The formal definition is follows as Definition 7. Let w m i = (r, u m , y m ) denote the measured trajectories and J(w i ) denote the performance index with i-th controller C i as the current controller. The set {J(w i )} N i=1 is said to be cost-detectable if, without any assumption on the plant and for every i ∈ {1, 2, ..., N}, the following statements are equivalent:

1. J(w m f ), where f ∈ {1, 2, ..., N} is bounded as t increases to infinity, where index-f corresponds to final corrective controller;

Given D, C, τ Form a measurement set M τ ∈ O τ (W T ) J(w k ) ≥ λ Switch 'off-the-shelf' controller k = arg min{J(w k )} k =σ(ta)
Analysis & development phase 1.

Determine the behavior of plant 2.

Fulfills the cost-detectability 3.

Re-configure the controller 4. From definition 7, it is now clear that any unpermitted behavior in the closed loop will be reflected by the performance index evaluation. The proposed algorithm to achieve real-time fault tolerant control is illustrated in figure 7. The following theorem provides the main result.

Theorem 1. Let D be the desired behavior that captures the control objective O (definition 5) using a cost-detectable performance functional J(w) (definition 7), τ be the interval during which the behavior of plant is determined, and the interconnection between the plant and the controller is assumed to be weakly directable (definition 2). For any system with σ(t) selected in accordance with eq. 20, 21, the following statements are equivalent:

• with any occurrence of unpermitted behavior, the system is fault-tolerant.

• global stability of final interconnected system is assured by the experimental measurement set M τ .

Note that, here we equipped the 'logic-based switching' mechanism unlike to the switching criterion dealt in [START_REF] Yang | Supervisory fault tolerant control for a class of uncertain nonlinear systems[END_REF]. Namely, in [START_REF] Yang | Supervisory fault tolerant control for a class of uncertain nonlinear systems[END_REF] the so-called continuous arbitrary switching criterion was used. Certainly, with periodic switching law the stability issue during the switching becomes a concern. It is studied in [START_REF] Hespanha | Overcoming the limitations of adaptive control by means of logic-based switching[END_REF] that the limitations often seen in arbitrary switching is successfully overcame in logic-based switching.

IV. SIMULATION EXAMPLE

In this section, we show an application of the proposed approach to construct the autopilot mechanism for an aircraft during the landing phase [START_REF] Oishi | Hybrid verification of an interface for an automatic landing[END_REF]. The auto-landing system of the modern aircraft is supposed to follow a certain trajectory called glide-scope. The landing of a civil transport aircraft is divided into three parts, namely approaching a trajectory, flare, and touchdown and ground run. Figure 8 shows the aircraft in a certain trajectoryapproaching phase, which constitutes the final phase of the descent (i.e. the glide-slope). The instrument landing system (ILS) on ground determines the difference between the actual trajectory of the aircraft and the reference trajectory imposed for the descent. Here the purpose is to design a fault tolerant autopilot that fully supports the conduct of the flight in the vertical plane along the glide scope. In these simulations, we ignored the lateral movement and rolling movements of the aircraft assuming that these aspects are handled by another automated system.

For the problem considered (longitudinal flight), the aircraft is seen as a system with three outputs that are measured in real-time: speed V , angle γ of the flight path and the distance from the center of mass of the aircraft relative to the glide-scope h err . The control inputs of the system are the aircraft thrust T and the elevator command δ [START_REF] Oishi | Hybrid verification of an interface for an automatic landing[END_REF]. The elevator is a movable aerodynamic surface located in the empennage that controls the pitch of the aircraft. We assume there is no dynamics between the elevator command and the angle of attack α of the wing. Thus, we view α as equivalent to δ and consequently for the sake of simplicity, we treat α as a control input. The thrust controls the speed V of the aircraft.

The objective is that the aircraft follows along the glide slope, making a desired flight path angle at 3 degrees clockwise (i.e. γ r = -3 deg.). Thus, it makes h err null. The non-linear model of the longitudinal dynamics of a large jet aircraft is given as:

     m dV dt mV dγ dt dherr dt      =      -D(α, V ) + T cosα -mgsinγ L(α, V ) + T sinα -mgcosγ V (sinγ + cosγtanγ R )      (22) 
See [START_REF] Yamé | Modeling and simulation of an aircraft in landing approach[END_REF] for the data and the parameters of the aircraft. 

0 0      , C =      1 0 0 0 1 0 0 0 1      .
As mentioned before, the control objective is to maintain the h err equal to zero. However, the references to be tracked are V and h err . Thus, the output is now given as y = C o x,

where

C o =   1 0 0 0 0 1   .
We design two corresponding controllers for the two different modes based on eq. 23. The control law is given as

u(t) = -K.z(t) + K p .e(t) + K i . t 0 e(ϑ)dϑ (24) 
with e(t) = wy, where w is the reference trajectory. The matrix gain corresponding to the measurement (or state) feedback is designed using the pole-placement technique. The poles for both modes are placed at (-2.8782, -2.3026 ± 1.7269i) that makes the system internally stable. The matrix gains corresponding to "Proportional+Integral" (PI) structure on error assist to follow the desired trajectory. The gains for healthy and faulty mode are then chosen as 

K h =   2 

 

The subscript h and f represent the gains for healthy and faulty mode respectively.

c. Parameters of supervisor The time interval during which the measurements are taken is τ and the performance is evaluated with t a , the instants of possible switching. The performance threshold λ distinguishes various modes of the system. These parameters are set to λ = 5, τ = 5s.

An experiment is run with a complete stuck in the angle of attack appearing at time 30s. The closed-loop signals of figure 9 show that the real-time FTC system successfully reacts at time 40s by switching to controller 2 (faulty mode controller). After an acceptable transient, the control objective is recovered as seen from the distance from the center of mass of the aircraft relative to the glide-scope approaching to zero. Note that since the FTC scheme is based on the control performance, when the active controller is invalidated by the operating plant data, the supervisor puts into feedback the best controller from the potential controllers set, that is the controller yielding optimal closed-loop performance in real-time. In this paper, the fault tolerant control problem has been formalized in the behavioral setting using the concept of system interconnection. This results in a model-free reconfiguration scheme in real-time that is solely based upon the input-output trajectories. In fact, the concept of interconnection among the variables describing the system is regulated by the closed-loop performance evaluation. A cost-detectable "performance functional" captures the control objectives effectively, and plays the role of a detector for any abnormal situation or faults in the closed-loop system. On detecting this undesired behavior of the closed loop, appropriate interconnection is made in real-time without using an explicit model of the plant so that the control objective is satisfied at anytime. A novel feature of this scheme is that it does not require any FDI unit. This clearly rules out the issues of generating false or missed alarms associated with standard FDI units, thus, increases the reliability of the FTC system. not be satisfied. From remark 1, there exist a controller C f such that the performance functional corresponding to C f is minimal relative to the connected controller C i in loop. Thus, on directing C f in loop, the system (P ∧ C) f is H ∞ -stable by the set of trajectories w := (r f , u (m) , y (m) ). Then, there exist finite nonnegative constants α 1 , α 2 , δ 1 , and δ 2 such that u (m) ≤ α 1 rf + δ 1 , y (m) ≤ α 2 rf + δ 2 .

As the virtual reference rf converges exponentially to the true reference r, there exists a finite nonnegative constant δ such that rτ f ≤ r τ + rτ fr τ ≤ r τ + δ.

Consequently, one can conclude that

u (m) ≤ α 1 r + β 1 , y (m) ≤ α 2 r + β 2 .
where β 1 := α 1 δ + δ 1 ≈ 0, β 2 := α 2 δ + δ 2 ≈ 0 and α 1 + α 2 = λ, viz. the system P ∧ C is H ∞ -stable by M τ . Here we see, after the occurrence of fault, following eq.20, 21, the interconnected system is H ∞ -stable. Hence, it is a fault tolerant system.
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 1 Figure 1. Fault Tolerant Control architecture: r is a reference signal, u is the control signal, y is the output signal, f is a fault signal, d is a disturbance, D is the diagnosis information and C is the controller redesign information.
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 2 Figure 2. Structure of logic-based switching controller

Figure 3 .

 3 Figure 3. Structure of Supervisor

Definition 1 .

 1 Dynamical system Σ is represented by a triple Σ = (T, W, B) where T ⊆ R, called the time axis, W ⊆ R w called the signal space and B ⊆ W T called the behavior. A trajectory is a function

Figure 4 .

 4 Figure 4. (a) Interconnection of subsystems (b) Feedback control in behavioral context

  a is arbitrary current time. Thus O τ (x) returns values of x(t) only for past time intervals over which experimental observations of x(t) have been recorded. The measurement set M τ is the set of actual experimental observations of the plant behavior as observed through the time sampler O τ . Thus, O -1 τ (M τ ) is a behavior that interpolates the observed data during the time interval τ . Definition 4. Given a vector space of time signals (T × W), a controller Σ c = (T, W, C), a desired behavior D, a mapping O τ : W T → W T and a measurement set M τ ⊂ O τ (W T ), we say that a controller Σ c is unfalsified by the measurement set M τ if
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 5 Figure 5. Switching control scheme for FTC in behavioral setting

Definition 5 .

 5 A control objective is a quadruple O = (R min , S min , R max , S max ) of subsets of W T . A controller Σ c is said to achieve the control objective O for the interpolated plant behavior O -1 τ (M τ ) if the behavior O τ (K) satisfies the two inclusions
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 6 Figure 6. Structure of reconfiguration mechanism

Figure 7 .

 7 Figure 7. Proposed Algorithm

Figure 8 .

 8 Figure 8. Aircraft during the landing phase

  a. Fault scenario: For illustrating the FTC mechanism, we consider the complete loss of one of the control surfaces, i.e. a fault in the elevator. Two modes of the aircraft system are considered: the nominal mode (no fault) and a complete stuck in the angle of attack (faulty mode). b. Constructing a controller bank: We use the following linearized model for designing a controller bank around the trim points, α = 2.686 deg. and T = 4.23 × 10 4 N. ẋ = Ax + Bu, z = Cx (23) where x = V γ h err T
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 9 Figure 9. Closed-loop signals aircraft autopilot landing system

APPENDIX

The proof of Theorem 1 is somewhat similar to the stability proof in [START_REF] Stefanovic | Safe adaptive switching control: Stability and convergence[END_REF]. First, it is convenient to provide the following lemma.

Lemma 1. Consider a fault tolerant system with σ(t) selected in accordance with eq. 20, 21. For any controller C k in the loop, the corresponding virtual reference rk converges exponentially to the true reference r.

Proof. For any controller C k , eq. 18 yields

The corresponding controller in the loop gives the control signal by

From above two equations, we get

Hence, r(t)r(t) converges exponentially to zero being C ku (ξ) a co-prime factor.

We show our results corresponding to H ∞ -stable (eq. 15) interconnected system by the measurement set M τ .

Proof of Theorem 1. Recall that, by construction, ri can be viwed as the virtual reference that, if injected into the interconnected system (P ∧C) i , would reproduce (u (m) , y (m) ). Then, for any index i corresponding to an H ∞ -stable interconnected system, there exist positive reals α1 , α2 , δ1 , δ2 such that

In other words, for every right controller connected to the corresponding plant working mode, the interconnected system P ∧ C is H ∞ -stable by the set of trajectories w := (r i , u (m) , y (m) ), regardless of the switching sequence σ(t), t ∈ T. Consequently, from definition 7, one concludes that J(w) is bounded by λ. Since, the measurement set M τ determine the behavior of the plant. Therefore, after the occurrence of fault the unfalsification inequality will