
HAL Id: hal-00605723
https://hal.science/hal-00605723v1

Submitted on 4 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic HLS based Low-Cost IP Watermarking
Bertrand Le Gal, Lilian Bossuet

To cite this version:
Bertrand Le Gal, Lilian Bossuet. Automatic HLS based Low-Cost IP Watermarking. 9th IEEE
International NEWCAS conference 2011, Jun 2011, Bordeaux, France. pp.490-493. �hal-00605723�

https://hal.science/hal-00605723v1
https://hal.archives-ouvertes.fr

Automatic HLS based Low-Cost IP Watermarking

Bertrand Le Gal
IMS Laboratory - UMR CNRS 5218,

ENSEIRB-MATMECA, University of Bordeaux, France
bertrand.legal@ims-bordeaux.fr

Lilian Bossuet
Hubert Curien Laboratory, UMR CNRS 5516,

Telecom Saint Etienne, University of Lyon, France
lilian.bossuet@univ-st-etienne.fr

Abstract—Currently, the Intellectual Properties (IP) and their
reuse are common, however the use of IP is raising design
security issues i.e. counterfeiter, reverse engineering.
Watermarking is one of the efficient methods to detect an
unauthorized IP use and a counterfeiter. In this context, many
interesting works have been proposed. However, a few of them
combine the watermarking process with the synthesis one. This
article presents a new automatic and low cost watermarking
solution. The design watermark is implanted in a high-level
synthesis process. Some implementation results with Xilinx
Virtex-5 FPGA assure the proposed solution low overhead
compared to existing solution.

I. INTRODUCTION
To handle the increased system complexity, companies

reuse more and more IP cores. In consequence of the IP core
business rise, the theft of IP is increasing [1]. The trade group
founded by Ciso, HP, Nortel and 3COM (Alliance for Gray
Market and Counterfeit Abatement [2]) estimates that the
legitimate electronic companies loose almost $100 billion
revenue per year due to counterfeiting. Counterfeiting
prevention requires the technological solution in addition to
the legal process i.e. patents.

In order to identify an IP theft, a novel watermarking
solution (design methodology, which originally answers to the
IP security required by actual design reuse market) is
presented in this article. To reduce the watermarking overhead
(area, delay, power consumption and design time), a mark is
automatically inserted in the design. It is done during the
behavioral synthesis process by using a High Level Synthesis
(HLS) tool [3, 4].

The paper is structured as follows. Section II describes a
state of the art of the watermarking solutions. Section IV
details the new proposition of watermarking. Section V
presents the main parts of the modified HLS automatic flow.
Finally section VI gives experimental results with signal
processing benchmarks on Xilinx Virtex-5 FPGA target.

II. RELATED WORKS
According to [5] the goals of IP protection are: (1) to

enable IP providers to protect their IPs against unauthorized
use, (2) to protect all types of design data used to produce and
deliver IPs, (3) to detect an unauthorized use of IPs, (4) to
trace an unauthorized use of IPs.

IP unauthorized use detection involves the ability to
determine that an unauthorized use has occurred and then to
trace the source of theft. To answer the detection issue, IP
providers introduce shadow digital signature.

Digital watermarking is an indirect protection scheme
which demonstrates the ownership of an IP. The concept of
active watermarking consists of a digital signature insertion
into an IP. Many approaches have been developed depending
on the watermarking abstraction level:

• Application level digital signature hide examples can be
found in [6–9]. A Digital Signal Processing (DSP)
watermarking is introduced in [6].

• Authors in [7] target an algorithmic level watermarking
in the design flow. Both approaches [6] and [7] are based
on the idea of slightly changing the gain of filters, without
affecting the system behavior. Two different
watermarking techniques at behavioral level are
introduced in [8] and [9]. Both algorithms are based on
adding new input/output sequences in the design finite
state machine (FSM) representation.

• Digital signature hiding at logical synthesis level can be
found in [10, 11, 12, 13]. In [10] Hong presents the
watermarking combinational logic synthesis solutions.
The watermarking behavioral synthesis techniques for IP
protection are described in [11].

• Mostly the post-synthesis watermarking introduces
constraints [14] and [15]. An example is the addition of
extra hardware, like buffer [16] or dedicated embedded
tester [17].

The pre-synthesis watermarking techniques are application
dependant, and their over-cost is not measurable. The post-
synthesis techniques are time consuming and design/device
dependant. The in-synthesis watermarking techniques
introduce power/area/timing overhead. Generalizing the
watermarking usage for IP identification is important.
However, it requires enough generic watermarking techniques
with low overhead cost. Such techniques must be
implemented in automatic design flows due to time to market
constraint. It is for a fast component tagging in a designer
friendly process. For these reasons, a new in-synthesis
watermarking scheme is devised in the following section.

III. ARCHITECTURAL SYNTHESIS CONCEPTS
Our methodology targets custom hardware architectures,

dedicated to the computational intensive applications for
signal and video processing. In most usual video and signal
processing applications, full pipeline architecture is quite
inefficient. In fact, such architectures are too area and power
consuming. Usually, there is a trade-off between the high-
performance and the low-cost (area, power consumption)
architectures [18] and [19]. An efficient architecture shares the
hardware resources (operators and registers) during an
application execution. This resource sharing makes some input
and output slots free and ready to tag.

The circuit inputs and outputs permit it to receive and send
data from/to the system. Figure 1 presents the IO behavior for
a FIR filter application. This IP component receives data from
the system (Xn), performs computations and then provides
valid result to the system (Yn). The output time slots between
two successive high levels of data valid signal are unused.
These free output slots are grey-colored in Figure 1.

The proposed idea is to employ the empty output slots for
the design watermarking. The circuit watermark is composed
of a set of mathematical relations. These relations are based on
circuit input values, initial values and internal results. Each
mathematical relation is a sub-mark. The sub-marks are read
like an output value during free output slots (when data valid
is inactive). The watermark is invisible for an IPs integrator. It
is because these sub-marks results look like the dynamic
transient output values. Consequently, the watermark is
invisible from static analysis.

The proposed method is well adapted for general-purpose
applications like digital signal, image or video processing etc.
Nevertheless, this method is not appropriate for data-security
application such as data encryption, data integrity or data
authentication. In such cases, the IP watermark can cause a
dramatic data security failure

The next section details this novel watermarking
technique, which uses output dynamic sub-marks to
watermark the IP.

IV. NEW IPP PROPOSITION BY WATERMARKING
This novel technique is based on the free output slots

behavior. These output slots can be modified by introducing
custom design singularities (that are IP internal values). The
proposed method is based on the assertion that the hardware
IP has free output slots.

Depending on the required protection level and the
watermark cost allowed, we propose two watermarking
solutions with different area costs: random low-cost
watermark and cost-less watermark.

Random low cost watermark is characterized by a set of
randomly chosen architecture internal values. A special data-
path generates each sub-mark by transferring the chosen
internal value (during the choosen clock cycle) to a free output
slot. The watermarking area cost is due to the data path
modification (output multiplexer resizing and FSM controller
modifications). The data path area overcost could be very low.
It is particularly true for FPGA implementation. In fact, while
using FPGA, the reconfigurable data paths do not cost area. It
is because the data paths set is directly available in the device.
However, increasing input multiplexer size could cost area.

Cost-less watermark is a low-cost one with an usable
reduced set of internal values. It employs the existing dynamic
transient outputs during the free slots (internal values which
do not required new path creation in the datapath). To
introduce this kind of watermark, the only change required
consists in modifying IP control unit to drive selected internal
data to output ports. HLS tools design the IP control unit with
a Finite State Machine (FSM). The cost-less watermark affects
only the FSM. Experimental results on the FPGA target
presented in section IV will assure that the modifications are
cost-less and even could decrease the IP area occupation. In
fact, the area increase or decrease depends on the FSM
modification and the logical synthesis process. Hence, it is
hard to estimate.

Figure 2 and Figure 3 present the main distinction between
the low-cost and the cost-less watermark. In these examples
the architecture required modifications are represented with
dotted lines. Figure 2 describes the case of low-cost
watermarking mode. It allows the algorithm to allocate new
data-path (multiplexers and wires). It is to drive the

1 2 n-1 n cycles... n+1

Input

Output

data
valid

....

....Yn-1

XnX0 Xn+1

Yn

Figure 1. Example of an IO behavior.

reg_1
reg_2
reg_3

MULT
reg_4
reg_5
reg_6

ADD

reg_14
SUB

reg_13
reg_7
reg_8
reg_9 MULT

reg_10

Controler unit register and multiplexer command signals

In1

In2

In3

Out2

Out1reg_11

reg_12

D1

D2
D4

D3

M1

M2

M3

M4

M5

M6

M7

M8 M11

M10

M9 M13

M12

Figure 2. Low cost watermarked architecture reusing existing resources,

including also new dedicated data path allocations (dotted line).

reg_1
reg_2
reg_3

MULT
reg_4
reg_5
reg_6

ADD

reg_14
SUB

reg_13
reg_7
reg_8
reg_9 MULT

reg_10

Controler unit register and multiplexer command signals

In1

In2

In3

Out2

Out1reg_11

reg_12

D1

D2
D4

D3

M1

M2

M3

M4

M5

M6

M7

M8 M11

M10

M9 M12

Figure 3. Cost-less watermarked architecture reusing existing paths controller

with multiplexer control modifications (dotted line).

Figure 2.

inaccessible data to outputs, increasing the design
singularities. Figure 3 presents the case of second
watermarking scheme (cost-less watermarking). Here, the data
paths are already allocated to implement the behavior
computations. They drive the internal data to outputs, only
design controller is modified.

V. WATERMARKING AUTOMATION FLOW
The proposed technique is integrated as a part of a HLS

design flow. It permits the designer to automatically include
copyright information in generated circuits. The designer
configures the watermark generation specifying: (1) the
watermark length (number of sub-marks). (2) the number of
distinct clock cycles to mark (3) the choice between cost-less
or low-cost watermarking technique. After the automatic
watermarking step, the designer has a watermarked IP,
generated under the system constraints. The tool provides him
a file containing the design watermark. This file contains the
output time slots where the sub-marks are produced and the
existing mathematical relations. This information may keep
secret from a consumer point of view, as it may be used to
proof the circuit ownership.

A. HLS design flow modifications
Figure 4 presents the design flow modifications compared

to the usual HLS ones [17]. The watermarking stage
composed of four steps: (1) Graph analysis, to find the usable
internal data (2) Possible watermark enumeration (3) Internal
values for random selection. (4) Architecture modifications:
datapath change, multiplexer resizing and control unit
modification.

B. Selecting the marks and modifying the design
By using the designer provided parameters, an automatic

process computes the number of possible watermarks
(depending on the number of registers, the number of internal
values and their associated lifetime). Depending on this result,
it computes the average number of marks to introduce per
clock cycle. The watermark repartition is then randomly
performed to tag the required number of clock cycles. Once
these computations are performed, a mapping algorithm is
applied to find the most singular data from the design. It is

done (1) to select them for sub-mark usage (2) to drive them to
one of the output port.

For each internal data mapping to output, the tool analyzes
the required logical glue over-cost (due to multiplexer input
ports increase) in order to find the best couple (internal data,
output) for low area design cost. An overview of the
watermarking algorithm is provided in Figure 5.

This process is repeated for each sub-mark that the tool
must insert in the design to respect the watermark length
constraint given by designer.

C. Generating the watermark file
The last step of the watermarking procedure is the

Watermark properties file creation. This stage aims to create a
file, containing all the inserted IO marks related information
(1) the couples {output port, sub-mark} (2) the clock cycle
during which the sub-mark is produced (3) the mathematical
equation that defines the sub-mark (see Equation 2).

These data correspond to the information required to
identify a cloned IP.

VI. EXPERIMENTS
To evaluate the proposed watermark design methodology

efficiency in terms of area and critical path delay, experiments
with signal and image processing benchmarks are conducted.
The watermarked IP implementations are done using a Xilinx
Virtex-5 FPGA. Results obtained using cost-less watermark
are presented in Table 1.

For each design (i.e. IP), the following circuit parameters
are provided: the number of FSM states, the number of I/O
ports, the maximum mark length (number of free output slots),
the introduced watermark length (0% for reference design,
50% or 100% for watermarked ones). The right columns
provide: the number of available different watermarks and the
circuit area and critical path obtained after logical synthesis.
Penalties for watermarked IP are obtained from comparison to
unprotected one. Logical synthesis results were obtained using
the Xilinx ISE 10.1 tool.

Area and timing overhead are functions of the watermark
selection algorithm. As it is shown in section III, area and
critical path length overhead come from the datapath changes
(some multiplexers are allocated) and from the control unit
changes (FSM instruction decoder is modified to drive data
and control new multiplexer).

Internal
model

RTL description

Contraints

Hardware
library

Behavioral
description

Compilation

Optimisations

Selection

Scheduling

Allocation

Binding

Watermarking

Mathematical
relations

Graph analysis

Watermark
parameters

Figure 4. High-Level Synthesis design flow including the proposed
watermarking technique (grey-colored).

14 Bertrand LE GAL, Lilian BOSSUET

Algorithm 1 Generic cost-less and low-cost watermarking procedure

1. outList ← IdentifyDesignOutputsPorts (graph)
2. fosList ← SearchFreeOutputSlotsDuringExecution (outList, graph)
3. if CountSlots(fosList) < Wcount or CountClockCycles(fosList) < h then
4. return false
5. end if
6. ufosList ← RandomlySelectFreeOutputSlots(Wcount, h)
7. regList ← SearchRegistersHavingAnExistingPathToOutputs(graph, ufosList)
8. if LowCostMode = true then
9. regList ← regList + RegistersWithoutExistingPathToOutputs(graph, ufosList,

authorized cost)
10. end if
11. dataList ← ListUsableInformationFromRegisters (regList, ufosList)
12. ufosList ← RandomlySelectDataForOutputWatermarking (dataList, Wcount, h)
13. ModifyCircuitAccordingToWatermarkingChoices (graph, ufosList)
14. StoreRelationsBetweenInternalComputationAndOutputs (ufosList, filename)
15. return true

the average number of marks to introduce per clock cycle. The watermark

repartition is then randomly performed to tag the required number of clock

cycles. Once these computations are performed, a mapping algorithm is applied

to find the more singular data from the design. It is done (1) to selected

them for sub-mark usage (2) to drive them to one of the output port. These

singular data may be data not erased by rewrite in share registers, inputs

stored, temporally computation data, etc.

For each internal data mapping to output, the tool analyzes the required

logical glue over-cost in order to find the best couple (internal data, output) for

Internal
model

RTL description

Contraints

Hardware
library

Behavioral
description

Compilation

Optimisations

Selection

Scheduling

Allocation

Binding

Watermarking

Mathematical
relations

Graph analysis

Watermark
parameters

Fig. 12 High-Level Synthesis design flow including the proposed watermarking technique
(grey-colored).

Figure 5. Generic cost-less and low-cost watermarking procedure.

Table 1 shows, in the case of cost-less watermarking, that
the controller changes have a very low impact on the global IP
component characteristics. Moreover the number of different
watermarks that can be used to protect the design is quite
important in the overall examples. Design area varies from -
0,36% up to +0,17% when critical path progress from −1, 31%
to +1, 05%. However, Table 1 shows that the mark length is
much smaller for a high-level security. For some designs, such
as SSD 16×16, unusual area and critical path reductions come
from FSM signal command modifications. It may
involuntarily results into a better logical equation
simplification during logical synthesis. While considering the
low-cost watermarking experimentations (result table is not
provided due to article page limit), the area and timing
deterioration are higher like the possible number of
watermarks available. Design area increase from 0.07% to
1.02% while circuit critical path evolve from −1.29% to
1.45%. However, watermarking penalties are still low for
most of the experiments (area increase average = 0.55% and
latency average = 0.08%) These experimental results confirm
the interest and the low cost of the proposed watermarking
techniques which required low runtimes (only a few seconds).

VII. CONCLUSION
In this paper, a new watermarking technique for behavioral

IP components and its synthesis design flow have been
presented. The proposed technique is used for automatic
Intellectual Property protection by using the HLS tools. The
essence of this new approach is the set of mathematical marks
on the design output ports which encode the IP watermark
(copyright information). The mathematical marks are selected
and inserted during the synthesis process. It is done in such a
way that they result into the minimal hardware overhead while
embedding the signature. Finally, the watermark are difficult
to detect and remove.

REFERENCES
[1] M. Pecht and S. Tiku, “Bogus ! Electronic manufacturing and

consumers confront a rising tide of counterfeit electronics”, IEEE
Spectrum, Available from: http://www.spectrum.ieee.org/print/3423.

[2] http://www.agmaglobal.org.
[3] D. Gajski, et al., “High-Level Synthesis: Introduction to Chip and

System Design”, Kluwer Academic Publishers, 1992.

[4] P. Coussy and A. Morawiec (Eds.), “High-Level Synthesis from
Algorithm to Digital Circuit”, Springer, 2008.

[5] R. Chapman, T. Durrani, “IP Protection of DSP algorithms for system
on chip implementation”, IEEE Transactions on Signal Processing 48
(3) (2000) 854–861.

[6] Rashid, J. Asher, W. Mangione-Smith and M. Potkonjak, “Hierarchical
watermarking for protection of dsp filter cores”, In Proceedings of the
IEEE Custom Integrated Circuits Conference, 1999, pp. 39–42.

[7] Torunoglu and E. Charbon, “Watermarking-based copyright protection
of sequential functions”, IEEE Journal of Solid-State Circuits 35 (3)
(2000) 434–440.

[8] Oliveira, “Techniques for the creation of digital watermarks in
sequential circuits designs”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 20 (9) (2001) 1101–1117.

[9] F. Koushanfar, I. Hong and M. Potkonjak, “Behavioral synthesis
techniques for intellectual property protection”, ACM Transactions on
Design Automation of Electronic Systems 10 (3) (2005) 523–545.

[10] D. Kirovski, Y. Y. Hwang, M. Potkonjak and J. Cong, “Intellectual
property protection by watermarking combinational logic synthesis
solutions”. In Proceedings of ICCAD’98, 1998, pp. 194–198.

[11] Lach, W. H. Mangione-Smith, M. Potkonjak, “Robust FPGA
intellectual property protection through multiple small watermarks”, In
Proceedings of DAC ’99, NY, USA, 1999, pp. 831–836.

[12] A. Cui, C.H. Chang and S.Tahar, "IP Watermarking Using Incremental
Technology Mapping at Logic Synthesis Level". IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
No 9, pp. 1565-1570, September 2008.

[13] C.H. Chang and A. Cui, "Synthesis-for-testability watermarking for
field authenticatioil of VLSI intellectual property". IEEE Transactions
on Circuits and System-I, vol. 57, no 7, pp. 1618-1630, July 2010.

[14] A. Jain, L. Yuan, P. Pari, G. Qu, “Zero overhead watermarking
technique for FPGA designs”, In Proceedings of the 13th ACM Great
Lakes symposium on VLSI (GLS-VLSI), 2003, pp. 147–152.

[15] G. Sun, Z. Gao, Y. Xu, “A watermarking system for ip protection by
buffer insertion technique”, In Proc. of ISQED, 2006, pp. 671–675.

[16] Y. C. Fan, H. W. Tsao, “Watermarking for intellectual property
protection”, Electronics Letters 39 (18) (2003) 1316–1318.

[17] B. Le Gal, E. Casseau, S. Huet, “Dynamic memory access management
for high-performance DSP applications using high-level synthesis”,
IEEE Transactions on VLSI Systems 16 (11) (2008) 454–1464.

[18] Arvind, R. S. Nikhil, D. L. Rosenband, N. Dave, “High-Level
Synthesis: an essential ingredient for designing complex ASICs”, In
Proceedings of ICCAD’04, DC, USA, 2004, pp. 775–782.

[19] P. Coussy et al., “GAUT - a high-level synthesis tool for DSP
applications”, High-Level Synthesis from Algorithm to Digital Circuit
(XVI) (2008) 147–169.

TABLE I. PROPOSED COST-LESS WATERMARKING IMPLEMENTATION COSTS ON A VIRTEX-5 DEVICE.

Without watermarkWithout watermark Watermark length = 50%Watermark length = 50%Watermark length = 50% Watermark length = 100%Watermark length = 100%Watermark length = 100%

Application # of FSM
States

of I/O
ports

free slots Area C. Path # of cost-less
watermarks

Area
overcost (%)

C. Path
overcost (%)

of cost-less
watermarks

Area
overcost (%)

C. Path
overcost (%)

FIR 64-taps
26 1/1 25 12351 15,499 2^46 0,05!% 0,01!% 2^50 0,02!% -0,01!%

FIR 64-taps
38 1/1 37 6612 14,613 2^70 -0,02!% 0,00!% 2^74 0,05!% 0,01!%

LWT 16-taps
25 2/2 34 14079 16,312 2^72 0,04!% -0,27!% 2^87 -0,18!% -1,31!%

LWT 16-taps
64 2/2 114 12028 16,346 2^317 -0,36!% 1,05!% 2^421 0,17!% -0,61!%

SSD 16x16
35 8/1 34 11078 16,103 2^65 0,09!% 0,00!% 2^68 -0,01!% 0,00!%

SSD 16x16
81 1/1 80 3193 15,689 2^156 -0,06!% 0,00!% 2^160 0,09!% 0,00!%

1d DCT 8 taps
15 4/4 56 8818 15,185 2^125 0,10!% -0,05!% 2^144 0,15!% -0,02!%

1d DCT 8 taps
20 1/1 13 6384 14,991 2^26 0,03!% -0,03!% 2^33 0,03!% -0,03!%

2d DCT 8x8
taps

80 8/8 584 31428 17,259 2^1323 -0,32!% 0,41!% 2^1509 0,02!% -0,24!%2d DCT 8x8
taps 160 1/1 97 25469 17,355 2^346 -0,30!% -0,06!% 2^547 0,08!% -0,59!%

Matrix
product 8x8

86 8/4 280 62784 16,104 2^880 -0,24!% 0,63!% 2^1210 -0,11!% 0,71!%Matrix
product 8x8 141 1/1 77 31117 17,201 2^443 0,01!% 0,34!% 2^445 0,05!% 0,13!%

FFT 64 taps
90 8/8 600 51086 17,255 2^1634 0,02!% -0,01!% 2^2106 0,04!% 0,05!%

FFT 64 taps
180 2/2 234 31589 17,181 2^814 0,04!% 0,02!% 2^1180 0,17!% -0,84!%

