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Abstract—This paper presents a novel approach to evaluate
silicon Physically Unclonable Functions (PUFs) implemented
in FPGAs and based on delay elements. The metrics studied
to characterize the PUFs are Randomness, Uniqueness and
Steadiness. They take advantage of the measured physical values
of elementary component making up the PUF. The delay distri-
butions provide the interest to quantify the PUF at the physical
level rather than carrying out a lot of experiments to get the
PUF IDs at logical level. An Arbiter PUF composed of identical
chains has been considered as a test chip to evaluate the method
with the proposed metrics. Experiments have been carried out
on CYCLONE II FPGA and the corresponding results shows the
intra-device performance of the studied PUF.

Keywords: Physically Unclonable Function (PUF); Silicon

PUF, PUF metrics, FPGA.

I. INTRODUCTION

A Physically Unclonable Function (PUF) is a function

which returns a value characteristic of an integrated circuit

(IC). This device signature can be used to control the local

behaviour of an algorithm. For instance cryptographic appli-

cations take advantage of PUF for authentication or key gen-

eration purposes. The Silicon PUF outputs a response (or ID)

which depends on a control word, called the ”challenge”. A

simple device authentication is based on a ”challenge/response

pair” which is the association between a set of challenges and

the responses returned by a PUF. Due to the dispersion of the

manufacturing process, the response for a given challenge be

different between PUFs. Among the variety of PUF, the Silicon

PUF is certainly the simpler to design as it does not require

any specific technology. There are two main classes of Silicon

PUFs: the PUFs based on delay comparisons, composed of

identical elements, and the PUFs exploiting the initial state of

memory blocks. The first silicon PUF introduced by Gassend

& al is the Arbiter PUF [1] which compares the delay between

two identical control paths. The Arbiter PUF can be derived to

XOR PUF suggested in [7], and Lightweight Secure PUF [6],

which is a composition of Arbiter PUFs. The Ring Oscillator

(RO) PUF introduced by Suh & al [7] is a set of ring

oscillators pairs which are compared in frequency. Guajardo

& al. introduced the SRAM PUF [2] which is linked with the

state of the SRAM at power up. The Butterfly PUF [4] works

as the SRAM PUF but the memory point is based on two

Flip-flops. This paper deals with PUFs based on delay chain

comparison as arbiter PUFs or RO PUFs.

To perform an efficient characterization of PUFs, at least

three metrics are necessary: randomness, uniqueness and

steadiness. The randomness gives an estimate of the imbalance

between the number of IDs at ’0’ and the IDs at ’1’ for all the

challenges. The uniqueness indicates the entropy between two

PUFs, either in the same device (intra-uniqueness) or between

devices (inter-uniqueness). The steadiness expresses the level

of PUF reliability which is decayed by the noise coming from

the measurement environment.

The classical methods to characterize the PUFs are to

perform statistical tests as the ones proposed by Hori and

al. in [3]. These methods consider the set of logical PUF

IDs, hence they need a lot of trials in order to run a Monte-

Carlo estimation method. Our proposed method is based on

the measurement of the physical values, i.e. the delays or

frequencies. The advantage of this method is that only the

number of tests is linear with M , M being the number of

elements composing the PUF. Moreover it can compare with

model dispersion as for the Pelgrom model at the design stage.

The article is organized as follows: Section II presents the

background of the arbiter PUF architecture, used as an exam-

ple and base of probability calculation. Section III describes

the theory justifying the PUF metrics. The experiments and

the results are presented in Section IV. Finally, conclusions

and perspectives are discussed in Section V.

II. BACKGROUND

A. Arbiter PUF

The example structure of the Arbiter PUF is made up of

M identical delay elements structured as a mini crossbar 2x2,

as illustrated in Figure 1. A step input simultaneously triggers

the two paths which are controlled by a control word C, or

challenge. At the end of the two parallel paths, a flip-flop D is

used to convert the analog delay difference between the paths

to a digital value which represents the response ID. Although

the two paths are built identically, due to their intrinsic CMOS

variation, the delays of the two selected paths are different.

Therefore, the Arbiter PUF is expected to output unique IDs

to the device.
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Figure 1. A structure of the Arbiter PUF

The arbiter PUF can be easily designed by using two delay

chains of M elements as presented by Majzoobi in [5].

B. Metrics based on Gaussian pdfs

The base of the PUF metrics is to calculate a probability

that expresses the quality to be random, unique or reliable.

This probability is calculated from the delay distributions (or

probability density function pdf) obtained by measurement.

If we consider all the pdf as Gaussian, all the metrics need

to know the probability to measure a value below a certain

threshold. For instance the variable x ∈ N (µ, σ2), where µ
is the mean and σ2 is the variance. Then the probability to

obtain a value of x less than a threshold t is given by :

Pr(x < t) =
1√
2π

∫ t

−∞

e
−

(x−µ)2

2σ2 dx =
1

2
(1 + erf(

(t− µ)

σ
√
2

) (1)
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Figure 2. Error function and pdf(x).

III. METRICS COMPUTATION

In this section we define and explain the PUF metrics which

are based on probability density functions of the measured

delay. We consider an arbiter PUF which is made up of two

delay chains of M delay elements di as in [5]. The notation

used in this paper is listed in Table I.

Table I
NOTATION USED IN THE PAPER

Notation Explanation

M Number of elements in the PUF.

L Number of studied PUFs.

T Number of carried tests to evaluate the Steadiness of a PUF.

ci Challenge bit of the ith element of the PUF.
If ci = 0, the path is the top else the bottom

di
0

Delay difference between top and bottom path, ci = 0.

di
1

Delay difference between top and bottom path, ci = 1.

A. Randomness

As we have seen before, the randomness represents the

ability of the PUF to produce 0 or 1 with the same probability.

An expression of the randomness in the probability domain can

be:

Randomness = 1− |Pr(ID = 0)− Pr(ID = 1)| (2)

Therefore a randomness of 100% means the PUF ID states

have the same probability of 1/2. Considering the 2M chal-

lenges, the probabilities to obtain an ID at 0 and 1 are:

Pr(ID = 0) = 1− Pr(ID = 1) = Pr(
M∑
i=1

dici < 0)

By considering two complementary challenges (i.e. one with

ci and the other with ci) we notice that:

M∑
i=1

dici +

M∑
i=1

dici =

M∑
i=1

(di
0
+ di

1
)

Hence the mean value of the distribution DR which repre-

sents the pdf of
∑M

i=1
dici is:

E(DR) = 1/2

M∑
i=1

(di
0
+ di

1
). (3)

As explained in Subsection II-B, the randomness computa-

tion can be done by using the distribution DR illustrated in

Figure 3 with DR = N (E(DR),M · σ2). This pdf is build

with the measurement of the constant
∑M

i=1
(di

0
+di

1
), and the

variance M · σ2.
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Figure 3. Randomness with the D distribution.

From Equation (1), we can derived:

Pr(ID = 0) = Pr(DR < 0) =
1

2
(1 − erf(

E(DR)

σ
√
2 ·M

))

Thus, from Equation (2) the randomness expression is:

Randomness = 1− |erf( E(DR)

σ
√
2 ·M

)|. (4)



B. Uniqueness

The uniqueness is the ability of the PUF to behave differ-

ently than PUFs in another device (Inter-Uniqueness) or in the

same device (Intra-Uniqueness). If we consider L PUFs, the

global normal distribution D has M ·L elements. We propose

to compare the M distributions DL
i , i ∈ [1,M ]) of the delay

difference (di
0
−di

1
) of the L elements in the same range i, with

the global distribution D. Hence if some elements i are biased,

they will mitigate the comparison between their respective

distribution DL
i and the global distribution D. The uniqueness

value is the mean of the M probabilities corresponding to M
comparisons of distributions:

Uniqueness =
1

M

M∑
i=1

Pr(DL
i = D). (5)

The compared distributions are considered normal, DL
i ∈

N (µi, σ
2

i ) and D ∈ N (µ, σ2). The comparison of two

Gaussian distributions can be expressed by the common area

of these two distributions as illustrated in Figure 4 .
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Figure 4. Example of two distributions comparison

The common area gives Pr(DL
i = D) which can be

calculated by knowing the intersection points P1,i and P2,i

and consequently the 3 areas A, B and C which are computed

using Equation (1). The x-coordinate of the two intersection

points P1,i and P2,i (of the two normal distributions are:

P1,i =
−(µσ2

i +µiσ
2)−

√

(µσ2
i
+µiσ

2)2−(σ2
i
−σ2)[µ2σ2

i
−µ2

i
σ2

−2σ2σ2
i
Ln(σi/σ)]

σ2
i
−σ2

P2,i =
−(µσ2

i +µiσ
2)+

√

(µσ2
i
+µiσ

2)2−(σ2
i
−σ2)[µ2σ2

i
−µ2

i
σ2

−2σ2σ2
i
Ln(σi/σ)]

σ2
i
−σ2

Equation (6) gives Pr(DL
i = D) with σi > σ and P1,i <

P2,i.

Pr(DL
i = D) = 1 +

1

2
(erf(

P1,i − µ√
2σ

)− erf(
P2,i − µ√

2σ
)) (6)

+
1

2
(erf(

P2,i − µi√
2σi

)− erf(
P1,i − µi√

2σi

)),

C. Steadiness

The steadiness property of a PUF should show its ability

to produce basically T times the same output, when using

the same challenge on the same environmental conditions

(temperature, voltage and noise).

Every delay difference of element i, (di
0
−di

1
), is measured

T times. The M distribution DT
i of the T measured values

are considered to be normal, centered in E(di
0
− di

1
) with a

variance S2 identical for every element. The global distribution

D corresponds to the distribution of mean values E(di
0
− di

1
),

centered in 0 (ideal randomness) with a variance σ2.

Indeed, as much as we have delay difference near to 0,

greater is the probability that the PUF ID is erroneous. If σ2 is

much greater than S2, the computation of a steadiness metrics

based on probability is greatly facilitated. If the delays are in

the area [−λ, λ] as shown by Figure 5, the distribution D can

be considered uniform. λ is chosen in such a way that outside

the [−λ, λ] window the error probability is null. For instance,

with λ = 3S, the distributions DT
i have a confidence interval

of 99.7% when in worse case (i.e. DT
i centered in 0).
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Figure 5. distributions after T measurements

Hence the total error probability is the product of the error
probability when the delay is in the λ window multiplied by
the probability of the delay in the λ window. This is expressed
by the following equation:

Pr(error) = Pr(error | delay < |λ|) · Pr(delay) < |λ|).

The steadiness is merely the opposite of this probability:

Steadiness = 1− Pr(error). (7)

The probability Pr(error | delay < |λ|) is an integral of

the erf function which can be approximated with the Taylor’s

series at the third order:

Pr(error | delay < |λ|) = 1

2λ

∫ λ

0

(1− erf(
x

S
√
2
))dx (8)

=
1

6S

∫
3S

0

(1− 2√
π
(

x

S
√
2
− x3

3(S
√
2)3

))dx =
4
√
2π − 3

8
√
2π

Using Equation (1), the probability that a delay is between

−λ and λ is:

Pr(delay < |λ|) = erf(
λ

σ
√
2
). (9)

Therefore, using the Taylor’s series of erf at the fist order

(as S << σ), the steadiness has the following expression

which depends merely on the ratio S/σ:

Steadiness = 1 − 12
√
2π − 9

8π
× S

σ
. (10)



IV. EXPERIMENTS

A. Implementation

Tests have been carried out in a CYCLONE II EP2C35F672

with L=16 PUFs. The evaluated PUF is an arbiter PUF

based on two parallel delay chains of M = 8 elements. The

placement/routing of the 32 delay chains has been constrained

to obtain the exact replication of the same chain. This is

possible in ALTERA devices by using the same column and

different rows for the IPs to replicate. The timing identities

between the chains have been confirmed by the Time Quest

timing Analyzer. The delay chains are closed to form a ring

oscillator when in characterization phase. Figure 6 shows the

architecture to evaluate each of the 16 arbiter PUFs.

1 2 M

1 2 M3

3

D

osc

puf in

puf out

ch out

Mbits

challenge choix osc

osc

Figure 6. Implementation design

B. Measurement method

The ring oscillator output ch out drives a counter of r
bits. Concurrently the system clock period Tclk drives another

counter which is sampled at the value n by the ch out counter.

The relation given by: 2r−1Tch out = nTclk, is used to derive

Tch out from the value n. The measurement precision is of
1/2r−1Tclk = 0.61ps with r = 16, Tclk = 20ns.

α
dia0

dia1

dib0

dib1

β

α′

β′

Ci

choix osc

ch out

Figure 7. Measurement of element i

To measure the delay differences (di
0
−di

1
) of every element

i, the challenge bit Ci and the control signal choix osc
are driven alternately, the others challenge bits remaining

constant. Figure 7 shows the delays which are involved in

the measurements associated to the 4 combinations of Ci and

choix osc. As the measurement is differential (di
0
− di

1
=

dia0 - dia1 - dib0 + dib1 ), the external delays, as α and β,

are eliminated. Concerning the randomness, the measurement

of E(DR) expressed in 3 is global, the challenge bits are

alternately all at ’1’ and all at ’0’. We consider that the

variance σ2 of di
0
− di

1
is equal to the variance of di

0
+ di

1

needed for the randomness evaluation. T = 128 experiments

are carried out to measure the noise variance S2 needed for

the steadiness.

C. Results

The evaluation of the arbiter PUF based on two delay lines

is presented in Table II. The PUF has the optimum quality

when the metrics, equivalent to probabilities, are at 100%.

Table II
THE EXPERIMENTAL RESULTS OF THE INTRA-DEVICE EVALUATION OF

THE ARBITER PUF

Performance indicator Result

Randomness 0%.

Intra-Uniqueness 97.73%.

Steadiness 99.07%.

Table II reveals that the implemented PUF is absolutely not

random (0%). This shows that the bias of the two independent

delay lines has a lot of impact, as explained in [5], where a

delay is introduced to compensate this bias. The arbiter PUF

has good intra-Uniqueness and steadiness properties. However

the steadiness should be estimated in other temperature and

voltage configurations to cover all the conditions. The steadi-

ness metrics gives a good idea of the capacity of the necessary

error correction code to enhance the reliability towards 100%.

V. CONCLUSION

This paper presents a method to evaluate the silicon PUF

based on delay chains or oscillators. The three proposed

metrics which are randomness, uniqueness and steadiness are

probabilities which have been formally expressed. Tests have

been carried out on 16 arbiter PUFs based on two delay-chains.

The results underline the weakness of this PUF implementa-

tion concerning the randomness but its strength for uniqueness

end steadiness. The results should be further compare with

other methods based on the logical values of the PUF. As other

perspectives, the inter-uniqueness ((with different devices) will

be studied and the steadiness will consider larger temperature

and voltage conditions.
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