
HAL Id: hal-00605714
https://hal.science/hal-00605714

Submitted on 4 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure extension of FPGA soft core processors for
symmetric key cryptography

Lubos Gaspar, Viktor Fischer, Lilian Bossuet, Robert Fouquet

To cite this version:
Lubos Gaspar, Viktor Fischer, Lilian Bossuet, Robert Fouquet. Secure extension of FPGA soft
core processors for symmetric key cryptography. 6th International Workshop on Reconfigurable
Communication-centric Systems-on-Chip, ReCoSoC 2011, Jun 2011, Montpellier, France. �hal-
00605714�

https://hal.science/hal-00605714
https://hal.archives-ouvertes.fr

Secure extensions of FPGA soft core processors
for symmetric key cryptography

Lubos GASPAR, Viktor FISCHER, Lilian BOSSUET, Robert FOUQUET
Université de Lyon

Laboratoire Hubert Curien, UMR 5516, CNRS
42000, Saint-Etienne, France

{lubos.gaspar, fischer, lilian.bossuet, fouquet}@univ-st-etienne.fr

Abstract—When used in cryptographic applications, general-
purpose processors are often completed by a cryptographic
accelerator – crypto-coprocessor. Secret keys are usually stored
in the internal registers of the processor, and are vulnerable to
attacks on protocols, software/firmware or cache memory. The
paper presents three ways of extending soft general purpose
processors for cryptographic applications. The proposed exten-
sion is aimed at symmetric key cryptography and it guarantees
secure key management. Three security zones are created and
physically separated in each of three configurations: processor,
cipher and key storage zones. In the three zones, the secret
keys are manipulated in a different manner – in clear or
enciphered, as common data or keys. The security zones are
separated on the protocol, system, architectural and physical
levels. The proposed principle is validated on Altera NIOS
II, Xilinx MicroBlaze and Actel Cortex M1 soft core processor
extensions. The NIOS II processor needs fewer clock cycles per
data block encryption, because the security module is included
in the processor’s data path. The data path of the MicroBlaze
is unchanged and thus shorter, but additional clock cycles are
necessary for data transfers between the processor and the
security module. The Cortex M1 processor is connected via
AHB bus and the cryptographic extension is accessed as an
ordinary peripheral – a coprocessor. Although the interfacing
is different, the three processors with their extensions attain
the required high security level.

Keywords-Hardware security; Crypto-processor; FPGA soft-
core; NIOS II; MicroBlaze; Cortex M1

I. INTRODUCTION

Data security systems implement very often both compu-
tationally extensive parallel cryptographic functions (such as
multiplication in Galois fields, modular multiplication, ma-
trix multiplication, etc.) and complex sequential algorithms
(such as cipher modes, key management and cryptographic
protocols). In order to fulfill contradictory speed/complexity
requirements, sequential algorithms are mostly implemented
by the use of general-purpose processors, while parallel
functions are implemented in the coprocessor placed inside
the same cryptographic module or logic device (when a
monochip solution is required). This approach is very fre-
quent in asymmetric key cryptography [1], [2], and also in
block ciphers (such as AES) hardware implementation [3],
[4]. Some embedded systems using processor/coprocessor

approach implement both symmetric and asymmetric key
cryptography algorithms in the same device [5].

The use of processors weakens security in all the above
mentioned solutions. In order to face side-channel attacks
[6], [7], the keys must be changed/manipulated regularly
using a key management protocol. When a general-purpose
processor manipulates confidential keys, the keys are saved
in clear in processor registers or cache memory and are
exposed to potential software attacks. One such attack has
been recently demonstrated by Bangerter et al. in [8]. A
small malicious software monitored the processor’s cache
memory during encryption and the confidential key was
recovered remotely from the captured temporary data within
a few minutes.

In order to counter software attacks, the authors in [9]
used two processors executing different tasks on different
security levels. They created two virtual zones inside the
physical memory: the protected memory zone was dedicated
to private key storage and the unprotected one to public
data memorization. The security processor had access to
both zones and the general-purpose processor was allowed
to access only the public virtual zone. Since both zones
were located in the same physical memory, certain types
of attacks, such as protocol attacks [10] or timing violation
attacks, were still possible.

It is clear that software attacks targeting confidential keys
can be countered only if enciphering is realized indepen-
dently from the general-purpose processor (GPP), e.g. in a
hardware cipher and if the keys are stored in a dedicated
memory. However, storing the keys in an external memory
is not sufficient when facing software attacks. If confidential
keys pass to the cipher via the processor in clear, they are
vulnerable to attacks. In the proposed novel solution, the
processor can manipulate the keys only indirectly: the keys
are read/written from/to the key memory via a cipher and
the processor can never read them in clear.

The paper is organized as follows: Section II proposes and
discusses creation of hardware security zones that enable
secure key management in conjunction with GPPs. Section
III compares three basic types of interfacing GPP with

external modules. Section IV describes a novel principle
of the security extension for soft GPPs. In Section V, the
proposed security extension is evaluated and validated on
three implementations based on NIOS II, MicroBlaze and
Cortex M1 processors. Results are presented in Section
VI and they are discussed in Section VII. Section VIII
concludes the paper.

II. PRINCIPLE OF SEPARATION OF PROTECTED AND
UNPROTECTED ZONES

We have explained in the previous section that for facing
software attacks on embedded systems using GPPs, proces-
sor shouldn’t have access to confidential keys in clear. It is
thus necessary to isolate it from the key memory. In order
to fulfill the highest security requirements, the separation
should be realized on four levels:

• the protocol level,
• the system level,
• the architectural level,
• the physical level.
Next, we will describe these levels and their principles in

more detail.

A. Separation on the protocol level

Integrity and confidentiality of exchanged keys is one
of the most discussed security issues. In order to achieve
a high security level, a robust communication protocol is
needed. During key exchange, encrypted keys are usually
transfered to the processor in packets. When a packet arrives
to the processor, the keys have to be decrypted before
being used for data encryption or decryption. However, if
the decryption of the keys is carried out by the processor,
these keys are exposed to software attacks. Therefore, keys
have to be decrypted outside the processor in a dedicated
unit so that unencrypted key or part of it can never leave
the unit. Moreover, keys have to be authenticated before
being used for data enciphering/deciphering. Once keys are
decrypted and authenticated, they can be used for data
encryption/decryption and authentication, but still outside
the processor so that it will not have access to them.
However, encrypted/decrypted data blocks can be processed
directly by the processor e.g. when performing cipher mode
operations.

It is the protocol that has to clearly separate key man-
agement and data processing tasks and define how and by
which system units these tasks are performed. In addition to
the separation of tasks, the protocol defines multiple-level
key hierarchy. Higher-level keys (i. e. master keys) are used
to encipher lower-level keys (i.e. session keys). The highest-
level key has to be introduced to the system in unencrypted
form through a separate entry by the trusted entity. All low-
level keys have to be either generated inside the security
module using a True Random Number Generator (TRNG)

or received in a packet and decrypted. The low-level keys
are used for data encryption, decryption and authentication.

B. Separation on the system level

The principle of the separation on the system level is
illustrated in Fig. 1. This principle is based on the creation
of three zones: a processor zone, a cipher zone and a key
zone. The processor exchanges data with a cipher through
the data bus (in black in Fig. 1). Encrypted session keys are
also transported through this data bus when being exchanged
with other communication counterparts. No other way for
accessing the key memory from the GPP must exist.

Unencrypted keys are stored in a dedicated memory
situated in a key storage zone. The key memory is separated
from the GPP by the cipher. The keys are transfered between
the cipher block and the key memory via the key bus (in
grey in Fig. 1). This bus must be completely separated from
the data bus interconnecting the GPP with the cipher. It
is essential that paths allowing unencrypted secret keys to
pass from the key bus to the data bus must not exist. This
precondition is one of the most important from the security
point of view because it enables separation of the key storage
and the processor zones.

Before enciphering/deciphering data blocks, the cipher is
initialized with the selected key via cipher key bus (in dashed
grey in Fig. 1). Key selection is controlled by the processor
through a control bus. The control path must be organized
so that in case of an attack on the control bus, the selection
of an incorrect key (e.g. by addressing an all-zeros key out
of the key address range) must be prevented.

The principle of creation of security zones is independent
from the type of encryption algorithm – any symmetric key
block cipher with or without side channel attack countermea-
sures can be used. Furthermore, the two separation walls de-
limiting the cipher can be used during the dynamic cipher re-
configuration when changing cryptographic algorithm, while
maintaining the key memory contents unchanged.

General-

purpose

processor

Data

bus

Key
data
bus

Control bus

CIPHER/

TRNG

1. Processor zone 2. Cipher zone 3. Key zone

Physical
separation walls

Cipher key

bus

KEY

STORAGE

S
e

c
u

ri
ty

 m
o

d
u

le

Figure 1: Separation on the architectural level

C. Separation on the architectural level

To achieve a high quality physical separation, the archi-
tecture of buses has to be organized in such a way that even
after a physical attack, keys from the key zone cannot pass
unprotected into the data zone. Bus multiplexers directing
the flow of data to/from the cipher have to be placed so that

even if their control is violated, no physical path for keys to
escape from the key zone can be created.

D. Separation on the physical level

In order to achieve a higher level of physical separation,
an isolated area of the chip has to be dedicated to each
zone. On the border of the two neighboring zones, an empty
area has to be used. This area represents an insulation
wall between two neighboring zones (see Fig. 1). Only
selected signals are allowed to cross this wall. This counter-
measure minimizes the possibility of the loss or corruption
of secret keys by residual electromagnetic radiation from the
protected zone (i.e. key zone) to the unprotected zone (i.e.
processor zone). Using this approach, a physical attack on
one zone has a minimal impact on the other zones. This
physical insulation principle is recommended by NSTISS in
its Red/Black installation guidance [11].

III. COMMUNICATION INTERFACE

The data interface between the security module and the
processor plays very important role in the system design.
When considering the architecture, a trade-off has to be
found between the performance, area and security criteria.
Unfortunately, this can lead often to contradictory require-
ments.

A. Interface properties

Overall system performance depends on the interface
type and parameters, such as bus width and latency. When
managing keys, small data blocks are exchanged between
the processor and the security module and pipelining is not
efficient. In order to achieve higher performance, it is the
best to suit the bus width to the cipher width. Unfortunately,
this is not always possible.

From the security point of view, point-to-point commu-
nication is in general more secure than point-to-multipoint
commnunication, because data are exchanged only between
two units, and other peripherals are not physically connected.
When using a point-to-multipoint interface, the bus is shared
among all communication counterparts, and data exchanged
between the security module and the processor can be
potentially eavesdropped by other peripherals. In this case,
some techniques, such as small firewalls protecting each
peripheral on the bus [12], can be used.

B. Interface types

The security module can be interfaced with a GPP using
the following types of connections:

1) The internal processor bus: The security module is
included in the processor data path. Data pass to the module
directly from registers as operands. Results are returned to
the registers. The security module is controlled directly by
the processor control unit through a dedicated control bus.
The advantage of this solution is its high performance and

minimal latency. Unfortunately, the module is a part of the
processor’s critical path and therefore it can slow the whole
system down if not properly designed. A high security level
is naturally achieved by the point-to-point connection.

2) The coprocessor-like bus: The security module is not
included in the processor data path, but it is connected
through a fast internal bus (often a coprocessor bus), running
mostly at the same clock frequency as the processor core.
This bus enables direct access to the processor registers thus
minimizing communication latency, although the latency is
higher when compared to the previous alternative. Con-
sidering the connection between a single security module
and a processor, the connection has a point-to-point nature
therefore high security level is maintained.

3) The peripheral bus: The security module is connected
to the processor through a bus using a point-to-multipoint
connection. In the best case, the module is connected di-
rectly to a high-performance system bus, otherwise data
are transferred across one or several bus bridges increasing
the latency. Furthermore, because bus is shared between
all system units, performance is significantly decreased.
From the security point of view, point-to-multipoint bus is
less suitable for security applications because data transfers
between security unit and processor can be potentionally
eavesdropped by other units connected to the same bus.

IV. IMPLEMENTATION OF THE SECURITY MODULE

The implementation of the security module is illustrated
in Fig. 2. Three zones (the processor interface, the cipher
and the key storage zone) can be clearly distinguished. Three
type of buses are used: data bus (in black), key transfer bus
(in grey) and cipher key bus (in dashed grey). It is important
that key buses never pass through the processor interface
zone and data buses never pass through the key storage zone.
The module is organized so that secret keys can never leave
the key zone without passing through the cipher. This strict
separation on the architectural and physical level guarantees
a very high security level.

As presented in Sec. II, any encryption algorithm can
be used in the security module. In order to validate the
principle, we use a 128-bit Advanced Encryption Standard
(AES). Input data, keys and output data are registered in
cipher input/output registers. The cipher has a 128-bit folded
data path and encryption is completed in 11 clock cycles.

Keys are organized in two hierarchical levels. High-level
master keys for encryption and authentication are stored in
the master key register. These keys are initialized via ded-
icated key input during system initialization by the trusted
entity. Master keys are used solely for encryption, decryption
and authentication of low-level session keys. Session keys
are generated inside the module by a TRNG (any principle
can be used) or received from the processor and decrypted
and authenticated using master keys. When generated inside
the module, keys are post-processed in the decipher core.

Session keys are used only for encryption/decryption (using
cipher modes) and authentication of data (e. g. using CBC-
MAC mode).

The authentication of keys is supported directly inside the
module by including a comparator (CMP) that is responsible
for comparison of digital fingerprints. The security module
is controlled by a local control unit (CTRL) that interprets
the fetched instructions. Comparison results or cipher status
flags are saved in the status register, which can be read by the
processor. This principle of demand-response dialog permits
a secure and high-performance operation of the module.

IN

OUT

Instr

MKin

Session

Key

register

Master

Key

register

DECIP.

CIP.

TRNG

CMP

CTRL

Data bus Key data bus Cipher key bus

Figure 2: Security module implementation

A. Communication algorithm

The communication protocol between two devices de-
noted as side A and B is illustrated in Fig. 3 where tasks
1, 2, 3, 5, 9 and 10 are performed solely by the security
module. On the other hand, tasks 6, 7, 8 are executed only
by the GPP. Tasks 4 and 11 are performed partly by the
GPP (xor, cmp) and partly by the security module (AES
ciphering).

Before establishing the communication channel between
sides A and B, master key registers of the communicating
security modules have to be initialized with the same en-
cryption (MK) and authentication keys (AMK) by a trusted
entity TE.

Subsequently, the device that starts the communication
(A) has to generate new session key SK. The session
key CSK is generated by the TRNG inside the security
module on the communication side A. The key CSK is
then post-processed in the decipher, using a master key MK,
and stored in the session key register. Afterwards, a digital
fingerprint FPA is generated by enciphering the generated
key using authentication master key AMK.

When both session key SK and its fingerprint FPA

are generated, the data blocks (DATA) can be encrypted
using the session key SK and sent to the GPP. The GPP
implements cipher modes by processing subsequent data
blocks according to the selected algorithm. Finally, the
processor creates a packet P . This packet contains generated
session key CSK encrypted with the master key MK, its

fingerprint FPA, and encrypted data CDATA. At the end
of the transaction, the packet P is sent to communication
partner B.

Processor B receives the packet P , recognizes the packet
header and extracts the encrypted session key CSK with
its digital fingerprint FPA. The key is sent to the security
module, where it is decrypted using master key MK and
stored in the session key register. The fingerprint FPB of
the session key SK is computed by enciphering it with
the master authentication key AMK. The processor sends
the received fingerprint FPA to the security module, where
it is compared with the computed fingerprint FPB . If the
fingerprints match, the receiving processor can decrypt data
using the acquired session key SK by executing selected
cipher mode operations.

Side B

1. {MK, AMK} = TE(t1)

8. RECEIVE(P)

9. SK = AES
-1

(CSK)MK

11. IF FPA = FPB THEN

 DATA = AES
-1

(CDATA)SK

10. FPB = AESCBC-MAC(SK)AMK

Side A

1. {MK, AMK} = TE(t1)

2. CSK = TRNG (t2)

3. SK = AES
-1

(CSK)MK

4. CDATA = AES(DATA)SK

5. FPA = AESCBC-MAC(SK)AMK

6. P={CSK, FPA, CDATA}

7. SEND(P)

Figure 3: Communication protocol between two devices

V. EXTENSION OF SELECTED SOFT-CORE PROCESSORS

Proposed security extensions were implemented in three
FPGA families using Altera NIOS II, Xilinx MicroBlaze
and Actel version of Cortex M1 soft processors. Each
processor system included the same security module that
was connected to the processor using a wrapper, which
was compatible with the processor interface. The wrapper
is responsible for the translation of the control commands
and the bus width conversion (128-bit security module
data bus is transformed into 32-bit processor bus). Both
communication interfaces use point-to-point communication
increasing device security.

A. NIOS II with the security module extension

Implementation of the NIOS II processor with its secu-
rity extension is illustrated in Fig. 4. All security module
operations are implemented as custom instructions. Data are
transfered from the processor register in 32-bit words via the
wrapper. When the instruction execution is finished, data
from the security module are sent back to the processor,
again in 32-bit blocks.

Because of the use of custom instructions, the NIOS II
control unit drives signals that control directly the opera-
tion of the security module. This direct connection of the
control interface eliminates unwanted latency increase, thus
accelerating the execution of custom instructions.

Since the security module is included in the NIOS II data
path, the critical path of the processor is extended by the
data path of the security module. This directly affects the
processor maximal clock frequency.

Data

registers

ALU

Control

unit

A
B

ALU

OUT

N
IO

S
 I
I

Master Key

128b

to 32b

32b to

128b32 Security

module

MKin

Instr

OUT

IN

128

128

Module wrapper

ctrl

Figure 4: Interfacing NIOS II with the security module

B. MicroBlaze with the security module extension

Implementation of the MicroBlaze processor with its se-
curity extension is illustrated Fig. 5. In contrast to the NIOS
II processor, custom instruction set implementation is not
possible. However, MicroBlaze architecture supports a high-
performance coprocessor-like Fast Simplex Link (FSL) bus,
which allows interfacing external modules with processor
registers. The FSL bus is 32-bit wide. Therefore 128-bit
data blocks have to be divided into four 32-bit blocks before
being transfered to the security module.

Unfortunately, FSL standard doesn’t define any control
interface, so that control signals cannot pass directly from
the MicroBlaze control unit to the security module. Control
instructions are transfered with data to the security module
via the FSL data bus and FIFOs. Before each operation, one
32-bit instruction word has to be sent. However, this opera-
tion imposes an additional instruction on the program code,
what slows down the code execution and data exchange
between the processor and the security module. On the other
hand, the security module is not a part of the processor’s
critical path, thus the clock frequency of the processor is
not affected. Despite the fact that FIFOs insert additional
latency, they enable separation of processor and security
module clock domains, thus security module can run on a
higher clock frequency than the complex processor.

C. Cortex M1 with the security module extension

Implementation of the Cortex M1 processor with its
security module is illustrated Fig. 6. Unlike the previous
two processors, Cortex M1 doesn’t allow implementation
of any point-to-point interface interface suitable for security
module implementation. The only way to add custom blocks
to the Cortex M1 system is to interface them through an
AMBA bus. The AMBA specification describes two types of
buses – AHB and APB bus. The APB bus is not considered
in this work because of its lower performance. The AHB

Data

registers

ALU

A B

ALU

OUTM
ic

ro
B

la
z
e

32

FSL0

FSL1

Security

module

MKin

Instr OUT

IN

M
o

d
u

le
 w

ra
p

p
e

r ctrl

F
S

L

S
L

A
V

E

F
IF

O
F

IF
O

32b to

128b 128

128b

to 32b

128

Master Key

32

Figure 5: Interfacing MicroBlaze with the security module

bus is a high-performance point-to-multipoint system bus
used by the Cortex M1 for instruction fetching as well
as I/O data transfers, RAM access (internal/external) and
communication with all high-performance peripherals.We
use 32-bit AHB bus, therefore each 128-bit data block must
be divided into four 32-bit blocks before being transferred
to the security module.

Although AMBA specification doesn’t describe control
interface for transfer of instructions, instructions generated
by the Cortex M1 control unit can pass to the security
module using AHB control signals. This advantage permits
transferring of control instructions and data in parallel. On
the other hand, the AHB bus is shared among several
bus slaves (program flash memory, RAM memory, etc.),
therefore data exchange rate with the security module is
significantly decreased.

CORE

AHB bus

master

Program

(FLASH)

RAM

(SRAM)

Ext.

mem.

controller

S0 S1 S2M0

S4

Master Key

128b

to 32b

32b to

128b

MKin

Instr

OUT

IN

128

128

M
o

d
u

le
 w

ra
p

p
e

r

A
H

B

S
L

A
V

E

32

S5

Security

module
ctrlUSB

Ext.

Memory

 bus

USB I/O BUS

C
o

rt
e

x
 M

1

32AHB bus

Sx – AHB slave peripherals (S0-S5)

LEGEND:

M0 – AHB bus master

16

Figure 6: Interfacing Cortex M1 with the security module

VI. RESULTS

The three processors with their security extension modules
presented in the previous section were described in VHDL
and mapped to three FPGA families. The NIOS II system
was implemented in Altera NIOS II evaluation board fea-
turing Stratix II device EP2S60F672C5ES. The project was
compiled and mapped to the selected device using Quartus

II version 9.2. The MicroBlaze system and its extension
were implemented in Xilinx ML605 evaluation kit featuring
Virtex 6 device XC6VLX240TFF1156. For synthesis and
mapping, ISE version 12.4 was used. The Cortex M1 sys-
tem and its extension were implemented in Actel Fusion
embedded development kit board featuring Actel Fusion
device M1AFS1500-FGG484. The project was compiled and
mapped to the selected device using Libero version 8.5 SP2.
A small hardware module including the Cypress EZ USB
interface device CY7C68013A was connected to all three
evaluation boards for data transfers from/to the PC.

The implementation results concerning the logic area and
memory requirements are presented in Tab. I and Tab. II.
The area is expressed in number of occupied Adaptive Logic
Modules (ALM) for Altera family, Slices for Xilinx family
and Tiles for Actel family. For comparison, we recall that
one ALM in Altera Stratix II family contains two 4-input
Look-up tables (LUTs) and two flip-flops (FFs). One Slice in
Xilinx Virtex 6 family contains four 6-input LUTs and eight
FFs. One Tile in Actel Fusion family contains either one 3-
input combinatorial function or one FF. Therefore, the results
cannot be directly compared. The memory requirements are
given in kbits for all technologies. Besides the processor and
its security extension, a small block containing 16-bit data
interface to the external Cypress USB device was embedded
in all systems. It was used only for testing purposes and
it does not constitute an inherent part of the system. It is
therefore not included in Tab. I and Tab. II. For clarity, we
present the results for the processor and for its extension
separately. The results are discussed in the next section.

In order to compare the achieved throughput fairly, the
clock frequency of all three systems was set to 50 MHz.
The throughput was evaluated by transferring packets from
the PC to the FPGA (and vice versa) via USB interface.
Each packet contained an encrypted session key, its digital
fingerprint and five 128-bit payload blocks. Packets were
analyzed in the processor, which then sent the session key
and its fingerprint to the security module. Once the key was
decrypted and authenticated, the processor sent data blocks
to be decrypted. Subsequently, the processor recreated new
packets containing received decrypted data and sent them
back to the PC. When implementing this complete protocol,
the NIOS II-based system achieved the overall throughput
of 25,1 Mb/s, the MicroBlaze-based system achieved 18,4
Mb/s and the Cortex M1 system achieved 12,2 Mb/s.

The security of all three solutions depends on the type
of interface between security module and processor. Since
separation of the key and processor zones was achieved on
the protocol and architectural level, all three implementa-
tions should be robust against software and timing violation
attacks. In order to validate this assumption, software attacks
were implemented in tests by reordering and/or replacing
instructions. However, these tests have shown that during
CBC decryption mode, replacement of GPP instructions

Table I: FPGA fine-grain resource utilization

Extended Extended Extended
NIOS II MicoBlaze Cortex M1
(ALMs) (Slices) (Tiles)

System total 2531 1954 15053
→ Processor 1204 1350 9433
→ Sec. module 1327 604 5620

Ext. overhead 110.2% 44.7% 59.6%

Table II: FPGA embedded RAM utilization

Extended Extended Extended
NIOS II MicoBlaze Cortex M1

(RAM kb) (RAM kb) (RAM kb)

System total 243.9 1206.0 216
→ Processor 187.9 774.0 104
→ Sec. module 56.0 432.0 112

Ext. overhead 29.8% 55.8% 107.7%

led to a substitution of data by encrypted session keys
previously stored in the GPP registers and their subsequent
decryption inside the security module. It was clear that
CBC mode can not be fully supported, otherwise security
backdoor is created. Implementation of security module
enabling the CBC decryption mode backdoor is illustrated
in the Fig. 7. For the sake of security, CBC decryption
mode is no longer supported in the implementation presented
in this paper. However, CBC mode can be still used for
authentication because CBC-MAC standard does not use
the Decipher (encryption is safe). Furthermore, the timing
violation attack was carried out by increasing the clock
frequency over its maximum allowed value. This technique
allowed to introduce faults to the control logic of the security
module, however no key fragments were acquired from the
module. The tests confirmed the robustness of the proposed
techniques of separation that were shown to be secure-by-
design.

IN

OUT

Instr

MKin

Session

Key

register

Master

Key

register

DECIP.

CIP.

TRNG

CMP

CTRL

Data bus Key data bus Cipher key bus

for CBCDEC = backdoor!!!

Figure 7: Security module with CBC decryption mode
backdoor

VII. DISCUSSION

Area requirements for NIOS II, MicroBlaze and Cortex
M1 extensions from Tab. I and Tab. II seem to be different.
This is due to differences between ALMs, slices and tiles
in Altera, Xilinx and Actel families and also because of the
size of the soft processors. In the Altera FPGA, the security
module area is similar to that of the NIOS II processor
(1327 versus 1204 ALMs giving 110%). However, since
the security module included both AES cipher and decipher
cores, we can conclude that the sole security extension
cost due to zones separation is negligible. On the other
hand, the MicroBlaze processor occupies bigger area and
the security module overhead is only 45%. The separation
cost remains negligible. In Cortex M1 system, the security
module represents a 60% overhead therefore cost remains
negligible.

As presented in Section VI, the MicroBlaze proces-
sor with its extension achieves approximately 73% of the
throughput of the NIOS II implementation. This is caused by
more complicated communication protocol (data and control
words) across the FSL bus in MicroBlaze, compared to the
straightforward custom instruction implementation in NIOS.
This difference could be reduced if data were transferred to
the security module using DMA transfers. This way, the
FSL bus would serve only for transporting instructions to
the security module. Moreover, the Cortex M1 processor
with its security module extension achieves only 49% of
the throughput of the NIOS II implementation. This is
because of the nature of the AHB bus that is shared among
all communicating units. Therefore access of the security
module to the AHB bus is multiplexed with flash memory,
RAM and I/O (USB). This fact limits significantly overall
system performance.

Another useful aspect of comparing the three processor
extensions is the system design complexity. When inter-
facing the NIOS II processor with the security module,
several actions are needed: 1) the processor data path and
control signals are output from the processor; 2) a wrapper
containing simple control interface and data bus translation
interface has to be implemented; 3) the wrapper with the
security unit has to be interfaced with the NIOS II processor
using SOPC builder software; 4) custom instructions have to
be generated and described in the software implementation.
We can conclude that the design is relatively complex, but as
a result, the security module is closely tied to the processor
and thus maintaining high performance. Connecting the
security module to the MicroBlaze processor is simpler
on hardware level, but more complex on protocol level:
more complex state machine has to be implemented in
the wrapper to pick up control instruction from the data
stream transported via the Fast Simplex Link. Because of
this fact, the overall speed of the system is significantly
lower. Connecting security module via a peripheral bus is the

most general solution. Once the data interface is designed,
the module can be reused with any processor featuring a
common peripheral bus. However, in this case, the speed of
the system is the lowest.

Attacks that were carried out revealed a vulnerability in
the CBC decryption mode and this backdoor was eliminated
by disconnecting Decipher output from the output of the
security module. Nevertheless, CBC decryption mode is
often used nowadays and its secure implementation remains
an open problem. Timing violation attacks that were carried
out against the processor implementations were not success-
ful. The implemented protocol and architectural separations
of the key and processor zones were therefore shown to
be efficient. Furthermore, higher security level could be
achieved if the security zones were physically isolated on
the chip. Although this physical isolation by insulation walls
was not realized, it can be easily done in the future because
of existing strict separation of modules.

The principle presented in this paper concerns three soft
core GPPs. We believe that it can be extended to other GPPs.
However, faster and perhaps more secure implementations
can be obtained by creating a specific-purpose processor
such as the one published in [13], which takes advantage of
reduced instruction set oriented in cryptographic operations.
Nevertheless, this custom processor has to comply with all
the above mentioned separation techniques.

Since encryption standards are always evolving, it is
important that the cipher implementation inside the security
module could be easy to update. One of possible solutions
could be to use a dynamic reconfiguration technique. This
technique allows for creation of a special dynamically recon-
figurable zone reserved for the complete Cipher zone from
Fig.1. Afterwards, the enciphering algorithm can be updated
on the fly. It is very useful that the used physical separation
techniques are similar to those used in dynamic reconfig-
uration. Thanks to this, only a small effort is necessary
when implementing reconfigurability features in the device.
Moreover, the zone that is dynamically reconfigurable can
also be easily isolated from surrounding modules by creating
an empty space that will serve as an insulation wall around
the secured reconfigurable zone.

VIII. CONCLUSION

We have proposed a novel principle allowing general-
purpose processors to operate with secret keys in a highly
secure way. The principle is based on the creation of
separated processor, cipher and key zones. Separation is im-
plemented on the protocol, system, architectural and physical
levels, and it guarantees that unencrypted keys can never be
transfered from protected key zone to unprotected processor
zone. The only way to transfer the keys to the processor
zone is to pass across the cipher zone: the keys are encrypted
before entering the processor zone and must be decrypted
when going in opposite direction (when entering the memory

zone). The proposed solution enhances security substantially
when compared with existing soft-core cryptographic exten-
sions.

The separation principle was implemented in FPGAs and
tested using NIOS II, MicroBlaze and Cortex M1 processors.
The obtained throughput including the processing of pack-
ets, key management and data encryption/decryption and
authentication was about 25, 18 and 12 Mb/s, respectively.
This speed was limited mainly by processors and their data
interfaces. The area of the system increased by 110% when
compared with the smaller NIOS II processor, by 44% when
the MicroBlaze processor was taken as a basis and by 60%
when Cortex M1 was extended using the security module.

ACKNOWLEDGMENT

The work presented in this paper was realized in the
frame of the SecReSoC project number ANR-09-SEGI-013,
supported by the French National Research Agency (ANR).

REFERENCES

[1] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede,
“Multicore curve-based cryptoprocessor with reconfigurable
modular arithmetic logic units over GF (2n),” IEEE Transac-
tions on Computers, pp. 1269–1282, 2007.

[2] M. Machhout, Z. Guitouni, K. Torki, L. Khriji, and R. Tourki,
“Coupled FPGA/ASIC Implementation of Elliptic Curve
Crypto-Processor,” International Journal, vol. 2.

[3] F. Crowe, A. Daly, T. Kerins, and W. Marnane, “Single-chip
FPGA implementation of a cryptographic co-processor,” in
2004 IEEE International Conference on Field-Programmable
Technology, 2004. Proceedings, 2004, pp. 279–285.

[4] Y. Eslami, A. Sheikholeslami, P. Gulak, S. Masui, and
K. Mukaida, “An area-efficient universal cryptography pro-
cessor for smart cards.”

[5] M. Hani, H. Wen, and A. Paniandi, “Design and imple-
mentation of a private and public key crypto processor for
next-generation it security applications,” Malaysia Journal of
Computer Science, vol. 19, no. 1, pp. 29–45, 2006.

[6] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
CRYPTO99, pp. 789–789, 1999.

[7] F. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde, and
J. Quisquater, “Power analysis of FPGAs: How practical is
the attack?” FPL’03, pp. 701–711, 2003.

[8] E. Bangerter, D. Gullasch, and S. Krenn, “Cache games–
Bringing access-based cache attacks on AES to practice,”
Workshop COSADE, pp. 215–221, 2011.

[9] A. Ashkenazi and D. Akselrod, “Platform independent over-
all security architecture in multi-processor system-on-chip
integrated circuits for use in mobile phones and handheld
devices,” Computers & Electrical Engineering, vol. 33, no.
5-6, pp. 407–424, 2007.

[10] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov,
“Cryptographic processors - a survey,” Proceedings of the
IEEE, vol. 94, no. 2, pp. 357–369, 2006.

[11] J. M. McConnell, “TEMPEST/2-95,” NSTISSAM, 1995.

[12] P. Cotret, J. Crenne, G. Goniat, J.-P. Diguet, L. Gaspar,
and G. Duc, “Distributed security for communications and
memories in a multiprocessor architecture,” Workshop RAW,
2011.

[13] L. Gaspar, V. Fischer, F. Bernard, L. Bossuet, and P. Cotret,
“HCrypt: A Novel Concept of Crypto-processor with Secured
Key Management,” ReConFig’10, pp. 280–285, 2010.

