
HAL Id: hal-00605697
https://hal.science/hal-00605697

Submitted on 4 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blind extraction of sparse components based on
L0-norm minimization

Leonardo Tomazeli Duarte, Ricardo Suyama, Romis Attux, Joao M. T.
Romano, Christian Jutten

To cite this version:
Leonardo Tomazeli Duarte, Ricardo Suyama, Romis Attux, Joao M. T. Romano, Christian Jutten.
Blind extraction of sparse components based on L0-norm minimization. SSP 2011 - 2011 IEEE
Workshop on Statistical Signal Processing, Jun 2011, Nice, France. pp.617-621. �hal-00605697�

https://hal.science/hal-00605697
https://hal.archives-ouvertes.fr


BLIND EXTRACTION OF SPARSE COMPONENTS BASED ON ℓ0-NORMMINIMIZATION

Leonardo T. Duarte1∗, Ricardo Suyama2, Romis Attux1, João M. T. Romano1, Christian Jutten3†

1 DSPCom Lab, University of Campinas (UNICAMP), Brazil

2 Engineering, Modeling and Applied Social Sciences Center (CECS), UFABC, Santo André, Brazil
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ABSTRACT

We investigate the application of cost functions based on the

ℓ0-norm to the problem of blind source extraction (BSE). We

show that if the sources have different levels of sparsity, then

the minimization of the ℓ0-norm leads to the extraction of the

sparsest component even when the sources are statistically

dependent. We also study the conditions guaranteeing BSE

when an approximation of the ℓ0-norm is considered. Finally,

we provide a numerical example to illustrate the applicability

of our proposal.

Index Terms— Blind source extraction, sparse compo-

nents, ℓ0-norm.

1. INTRODUCTION

In blind source separation (BSS) [1], the goal is to recover

a set of signals (sources) based only on the observation of

mixed versions of these original sources. A closely related

problem is that of blind source extraction (BSE), in which one

is only interested in recovering a single source. Evidently,

the BSS problem can be tackled by performing several run-

nings of a given BSE method so that, after a given running,

the contribution of the extracted source is removed from the

mixtures, e.g. via a deflation procedure [2, 3].

Most of BSE methods assume that the sources are mu-

tually statistically independent. In this case, BSE can be per-

formed by optimizing independent component analysis (ICA)

criteria such as the ones based on cumulants [1]. More re-

cently, some works have proposed criteria specially adapted

to the case in which the sources are sparse. In [4], for instance,

a nonconvex sparsity measure is adopted as cost function. De-

spite the good results obtained by this approach, there is no

theoretical results indicating the conditions for which such an

approach can be used. On the other hand, in [5], it is shown

that a criterion based on the ℓ1-norm is indeed a contrast func-

tion [1] and, thus, can be used to perform BSE. However, [5]

assumes that the sources are disjoint orthogonal, i.e., at most

one source is not null at a given instant.

∗L. T. Duarte thanks FAPESP for funding his post-doctoral research.
†C. Jutten is also with Institut Universitaire de France.

In the present work, we introduce a novel framework for

the extraction of the sparsest source based on the minimiza-

tion of the ℓ0-norm. We derive the conditions for which the

ℓ0-norm is a contrast function. As will be discussed latter,

these conditions are solely related to the degree of sparsity

of the source. As a consequence, the proposed framework is

sound even when the sources are not statistically independent

or disjoint orthogonal. As a second contribution, we study an

extension in which an approximation of the ℓ0-norm is used.

Our motivation here comes from the fact that, in practical sce-

narios, sparse signals usually present many elements that are

very close to zero although not null. In these cases, thus, one

must resort to approximations of the ℓ0-norm.

The paper is organized as follows. In Section 2, we intro-

duce the notation and the problem treated in this work. Sec-

tion 3 presents the results concerning the use of the ℓ0-norm
as a contrast function. In Section 4, a numerical example is

conducted to illustrate the interest behind the proposed frame-

work. Finally, in Section 5, we expose our conclusions.

2. PRELIMINARY OBSERVATIONS

Let the i-th source1 be represented by the vector si ∈ R
Nd×1

(Nd is the number of samples) and the ensemble of Ns

sources by the matrix

S =







sT1
...

sT
Ns






=







s1(1) s1(2) . . . s1(Nd)
...

...
. . .

...

sNs
(1) sNs

(2) . . . sNs
(Nd)






.

Analogously, matrixX represents the mixtures, which are as-

sumed to be linear and instantaneous, that is,X = AS, where

A ∈ R
Nm×Ns denotes the mixing matrix. In this work, we

consider that the number of mixtures is equal to the number

of sources (Nm = Ns) and thatA is a full-rank matrix.

In BSE, the goal is to estimate a single source by adapting

an extracting vector (represented by w ∈ R
Nm×1) such that

1The results developed in this work are valid for signals represented in

time or any other transformed domain.
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the extracted source is given by

yT = [y(1) . . . y(Nd)]
T = wTX = wTAS = gTS, (1)

where the vector g ∈ R
Ns×1 is the combined response ex-

tracting vector-mixing matrix. In most of ICA-based BSE ap-

proaches, there are scaling and permutation ambiguities [1],

that is, the best one can expect is to extract a scaled version of

any of the sources, without any particular order.

Properties of the ℓ0-norm. The ℓ0-norm, which corre-

sponds to the number of non-zero elements of a vector, has

been applied to quantify the sparsity of a signal [6]. It satis-

fies the triangle inequality and, thus, the reverse triangle in-

equality, i.e., given two vectors a and b, then ||a − b||0 ≥
∣

∣

∣
||a||0−||b||0

∣

∣

∣
. On the other hand, the ℓ0-norm is not positive

homogeneous since ||ka||0 = ||a||0 6= |k|||a||0 for k 6= 0.
Therefore, although the term “ℓ0-norm” is commonly used,

this measure is not a true norm.

3. BUILDING A CONTRAST FUNCTION BASED ON

SPARSITY

A BSE contrast [1] is a cost function in w whose global op-

tima (minima in our case) are associated with a perfect source

extraction. That said, we address the following question: for

which conditions ||y||0 is a contrast? We assume, without

loss of generality, that ||s1||0 ≤ ||s2||0 ≤ . . . ≤ ||sNs
||0.

We first address the case with two sources. In this situa-

tion, the following theorem can be derived.

Theorem 1 (Case of binary mixtures) Let w = [w1 w2]
T

represent an extracting vector such that yT = wTX. If at

least one element of w is not null and ||s1||0 < 1
2 ||s2||0, then

||y||0 ≥ ||s1||0, being the equality achieved if and only if
gT = wTA = [α 0], where α ∈ R

∗.

Proof The extracted signal is given by

yT = wTX = wTAS = gTS = g1s
T

1 + g2s
T

2 . (2)

The theorem can be proved by analyzing the following cases:

1) g1 = 0 and g2 = 0. This situation is impossible to happen
as, by assumption,w is not the null vector andA is a full-rank

matrix. 2) g1 = 0 and g2 6= 0. From the ℓ0-norm invariance

to scaling, ||y||0 = ||g2s2||0 = ||s2||0 > ||s1||0. 3) g1 6= 0
and g2 = 0. In this case, ||y||0 = ||g1s1||0 = ||s1||0. 4)

g1 6= 0 and g2 6= 0. From the reverse triangle inequality

||y||0 ≥
∣

∣

∣
||g1s1||0 − || − g2s2||0

∣

∣

∣
. (3)

Since g1 6= 0 and g2 6= 0 in this case, and due to the ℓ0-norm
invariance to scaling, (3) can be rewritten as

||y||0 ≥
∣

∣

∣
||s1||0 − ||s2||0

∣

∣

∣
. (4)

By assumption, ||s1||0 < 1
2 ||s2||0 and, therefore, from (4), it

asserts that ||y||0 > ||s1||0. �

According to Theorem 1, it is possible to extract the

sparsest component in a binary mixture by minimizing the

ℓ0-norm. Note that there is no permutation ambiguity as the
source having the smaller ℓ0-norm will be extracted first. It

is also worth noting that Theorem 1 does not rely on joint

properties such as statistical independence or correlation. In

other words, when the sparsity of the sparsest source is half

of the other, BSE becomes possible even if the sources are

dependent.

Theorem 1 provides a sufficient but not necessary con-

dition for the ℓ0-norm to act like a contrast; it is in fact

based on a worst-case condition. For instance, consider the

class of disjoint orthogonal sources, for which the follow-

ing property holds: ||s1 � s2||0 = 0, where � stands for

the element-wise multiplication. In this case, it asserts that

||y||0 = ||g1s1||0+ ||g2s2||0. Thus, since g cannot be the null
vector, ||y||0 ≥ ||s1||0, being the equality achieved if and

only if gT = wTA = [α 0]. Therefore, in this case, s1 can
be extracted by minimizing the ℓ0-norm no matter the values

of ||s1||0 and ||s2||0. Actually, they should only be different.
Considering now the case of Ns sources, we present a

more general version of Theorem 1.

Theorem 2 (General case) Let w = [w1 . . . wNs
]T repre-

sent an extraction vector such yT = wTX. If at least one

element of w is non zero and

||s1||0 < 1
2 ||s2||0

||s1||0 < 1
2 (||s3||0 − ||s2||0)

||s1||0 < 1
2 (||s4||0 − ||s3||0 − ||s2||0)

...

||s1||0 < 1
2

(

||sNs
||0 −

∑

Ns−1
i=2 ||si||0

)

,

(5)

then ||y||0 ≥ ||s1||0, being the equality achieved if and only
if gT = wTA = [α 0 · · · 0], where α ∈ R

∗.

Sketch of the proof Although the theorem is provable using

the triangle inequalities for the ℓ0-norm, we will present here
a simpler line of reasoning based on the notion of mathemat-

ical induction. Starting from Theorem 1, let us deal, at first,

with the case of Ns = 3 sources.
In order that the extraction of s1 be the solution with the

smallest possible ℓ0-norm, the number of zeros generated

from any linear combination including s3 must be greater

than the number of zeros generated by a solution in which

g2 = g3 = 0 and g1 6= 0. If g3 = 0, such a requirement

is already covered by Theorem 1, which is exactly the first

equation in (5).

If g3 6= 0, the least attainable value for ||y||0 will be ob-
tained in a situation in which all non-null elements of the

other sources are used to cancel non-null elements present in

s3. This situation, which requires that, for each time instant
n corresponding to a non-null element in s3, either s1(n) or
s2(n) is non-null, leads to a case in which the number of ze-
ros in y(n) can be made equal to Z1 = ||s1||0 + ||s2||0 +
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Nd − ||s3||0, i.e., all non-null elements of s1 and s2 are used
to cancel out a non-null element of s3, thus increasing the

number of zeros in y (notice that Nd − ||s3||0 represents the
number of zeros shared by the three sources). On the other

hand, the number of zeros generated by the solution of in-

terest (g2 = g3 = 0 and g1 6= 0) is simply Nd − ||s1||0.
Therefore, a valid contrast requires that:

||s1||0 + ||s2||0 +Nd − ||s3||0 < Nd − ||s1||0,

or that ||s1||0 < 1
2 (||s3||0 − ||s2||0).

The same considerations hold for cases with Ns > 3 as

well: in order that we have a valid contrast, the sum of the

ℓ0-norms of the Ns − 1 sparsest sources plus the number of
zeros in common cannot exceed the number of zeros in s1, as
indicated in Theorem 2. This concludes the argument. �

According to Theorem 2, the ℓ0-norm is a contrast when there

is enough difference between the sparsities of the sources.

The tighter situation, i.e. the one in which the differences

between the sources’ ℓ0-norm are smaller, is attained when

the following conditions holds: ||si||0 = 2i−2 (2||s1||0 + 1) .
For instance, if ||s1||0 = 100, then such a limit is achieved for
||s2||0 = 201, ||s3||0 = 402, ||s4||0 = 804, and so forth.

3.1. Extension to approximations of the ℓ0-norm

Despite the interesting aspects of the results presented so far,

it is important to analyze them in more realistic situations. In

fact, the application of the ℓ0-norm in a BSE context is lim-

ited, as sparse signals typically have many elements with very

low energy, but not necessarily null. In view of this limitation,

we here study an approximation of the ℓ0-norm that takes into

account a small amount of modeling noise. Approximations

of the ℓ0-norm has been already exploited in other problems

such as overcomplete signal representation [7] and linear clas-

sification [8]. Our analysis addresses the case of two sources,

and we consider the following approximation of the ℓ0-norm:

||y||
(ǫ)
0 = Nd −

Nd
∑

i=1

Eǫ
(yi), (6)

where Eǫ
(yi) is the indicator function on the set Eǫ =

{yi|yi ∈ R, |yi| ≤ ǫ}. Therefore, ||y||
(ǫ)
0 counts the number

of elements of y whose absolute value is greater than ǫ

We assume the following model for the sources

si(n) = {s|s ∈ R, |s| ≤ δ, |s| ≥ γ}. (7)

The parameter δ is an upper bound for the absolute values of
the small elements that are typical of sparse signal whereas γ
models the elements of higher energy. We also assume that

γ > ǫ ≥ δ. Based on this model, the following robust version
of Theorem 1 is stated.

Theorem 3 (Case of binary mixtures - robust version)

Let yT = gTS and consider that the sources follow the

model (7). For every g1 and g2 satisfying

|g1|δ + |g2|δ ≤ ǫ (8)

|g1|γ > ǫ, |g2|γ > ǫ (9)

if ||s1||
(ǫ)
0 < 1

2 ||s2||
(ǫ)
0 , then ||y||

(ǫ)
0 ≥ ||s1||

(ǫ)
0 , being the

equality achieved if and only if gT = [α 0], where α ∈
{g | δ|g| ≤ ǫ, γ|g| > ǫ}.

Proof Note that if the vector gT is constrained to intervals

within which the measure (6) is scaling invariant (||gisi||
(ǫ)
0 =

||si||
(ǫ)
0 , ∀gi 6= 0) and satisfies the triangle inequality, Theo-

rem 3 can be proved in the same way as that of Theorem 1.

Therefore, our task is to check the conditions for which these

two properties are verified. Based on model (7), it is straight-

forward to check that (6) is scaling invariant if

δ|gi| ≤ ǫ, γ|gi| > ǫ, i = 1, 2. (10)

Concerning the triangle inequality, it is satisfied by mea-

sure (6) if the modulus of every linear combination of two

samples smaller than δ is smaller than ǫ. For this to be

true, it suffices to impose (8). Note that (8) also covers

δ|gi| ≤ ǫ, i = 1, 2, which explain why there are only three

conditions to be imposed. �

Theorem 3 guarantees that, if g is restricted to the region

defined by (8) and (9), then (6) is a contrast. This feasible

region is illustrated in Figure 1(a). Note that the area of this

region increases as ǫ/γ decreases and ǫ/δ increases. Also this
illustration is helpful in pointing out the price to be paid for

using an approximation of the ℓ0-norm. In fact, suppose that
g1 = 1; the ideal solution in this case is g2 = 0. However, the
vicinity of g2 = 0 given by |g2| ≤ ǫ/γ is not inside the region
covered by Theorem 3 and, thus, it is not assured that (6)

is a contrast in this case. Given this, ǫ/γ can be view as a

noise margin since the points g2 smaller than this value may
minimize ‖|y||0, although not being the ideal solution. Note
that for the ℓ0-norm, this noise margin is zero.

g g!
feasible 
solutions

(a) g1 × g2-plane.

w"w#
feasible 
solutions

(b) w1 × w2-plane

Fig. 1. Illustrating the regions for which (6) is a contrast.
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Fig. 2. Numerical experiment. (a) and (b): the sources; (c)

and (d): extracted components minimizing (6) and maximiz-

ing the kurtosis, respectively.

4. NUMERICAL EXAMPLE

Let us consider an example in which A = [1 0.5; 0.5 1] and
the two sources — shown in Figure 2 (first row)— are depen-

dent (correlation coefficient of ρ = 0.67) and were generated
according (7) (δ = 0.01 and γ = 0.3). We considered that

ǫ = 0.05; the sources were built so that ||s1||
(ǫ)
0 = 49 and

||s2||
(ǫ)
0 = 100 (the total number of samples was Nd = 100).

By assigning w1 = 1 and letting w2 vary, we plot in

Fig. 3(a) the measure (6) as a function of w2. Note that (6)

is minimized by values close to −0.5, which is the ideal so-
lution to our problem. The corresponding extracted signal is

thus a good estimation of the sparsest component as shown

in Fig. 2(c). On the other hand, as shown in Fig. 3(b), the

maximum of the kurtosis2 is far from the desired solution

w2 = −0.5. Consequently, the extracted signal here is still
a mixture as shown in Fig. 2(d). This bad performance is due

to fact that the sources are dependent.

In Fig. 3(c), we plot a detailed version of Fig. 3(a) around

w2 = −0.5. Note that there is vicinity of this point that

also minimizes (6). This fact illustrates the discussion of

Section 3.1. Still on this point, Fig. 1(b) illustrates the re-

gions in the w1 × w2-plane for which Theorem 3 is valid.

There is an interesting aspect here: Obtaining the feasible set

in the w1 × w2-plane is not a blind operation, since it re-

quires the knowledge of A to map from g1 × g2-plane to the
w1 ×w2-plane. Consequently, the shape of the feasible set in

the w1 × w2-plane (where blind algorithms will indeed oper-

ate) will depend on matrixA as well.

2The kurtosis is a BSE contrast when the sources are statistically inde-

pendent [1].
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(ǫ)
0 and kurtosis as a function of w2.

5. CONCLUSIONS

In this work, we studied the use of the ℓ0-norm and a related

measure as a BSE contrast. We showed that the proposed

approach is valid if the sources have different degrees of spar-

sity. Moreover, when such a condition holds, source extrac-

tion can be conducted even when the sources are statistically

dependent. This interesting feature paves the way for alterna-

tive routes to deal with signal separation problems for which

the existing solutions fail.
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