Does physical realism of articulatory modeling improve the perception of synthetic speech?

dépasser les frontières

5

Daniel Pape¹², Pascal Perrier²⁴, Susanne Fuchs²³, Sonia Kandel⁵ ¹IEETA Aveiro, ²PILIOS, ³ZAS Berlin, ⁴GIPSA Labs, ⁵LPNC

 Viviani and colleagues (e.g. Viviani & Stucchi 1992) show that movement identification in vision integrates knowledge about the physical characteristics of the human movements:
 Our research question:
 Does physical realism of the trajectories influence speech perception?

Use of the 2D biomechanical model (Perrier et al. 2003)

/aka/ targets and biomechanical trajectories

Targets (dots), biomechanical trajectory (black)and purely kinematic trajectoy (red)

Example for differences in trajectories

Stimuli generation

for all models and all phonemes, the targets were identical
 biomechanical model: physically the most realistic kinematic models: physically less/least realistic
 transition are linear interpolations between consecutive targets with either constant or bell-shaped velocity profiles

Identification/Discrimination Perturbed condition:

Silent Center paradigm: the acoustic target of the central vowel is completely removed, the listener can only rely on information available in the trajectories towards and from the target
 Unperturbed condition:
 Discrimination (dl) for VVV and VCV

/a_a/ Silent Center stimulus with missing middlerajectories for the "frontedness" identification experiment

Identification of "frontedness" VCV

Data split according to peak in the RTs histograms

Short RTs (<2s) : low-level processing Long RTs: high-level processing

Results

Only short RTs are considered

Silent Center Condition:

- Gentification:
 - Significantly better identification for the biomechanical as compared to the linear model with constant velocity

model1model2model3Identification scores for the Silent Center experiment
(mod1-mod2: pMCMC=0.016, t=-2.45, significant
mod2-mod3: pMCMC=0.0874, t=1.678), n.s.
mod1-mod3: pMCMC=0.4098, t=-0839, n.s.)

Tendency for better identification of the biomechanical model as compared to the linear model with bell-shaped velocity profile
 Unperturbed condition:
 No significant differences in all unperturbed conditions, neither for discrimination nor for "frontedness" identification Discussion
 No discrimination differences for physically realistic transitions or unrealistic ones!
 More/better information can be retrieved from signals generated with a physically realistic model for identification in perturbed conditions