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What population does the sample represent? The answer to this question is of crucial importance when estimating a survivor function in duration studies. As is well-known, in a stationary population, survival data obtained from a cross-sectional sample taken from the population at time t 0 represents not the target density f (t) but its lengthbiased version proportional to tf (t), for t > 0. The problem of estimating survivor function from such length-biased samples becomes more complex, and interesting, in presence of competing risks and censoring. This paper lays out a sampling scheme related to a mixed Poisson process and develops nonparametric estimators of the survivor function of the target population assuming that the two independent competing risks have proportional hazards. Two cases are considered: with and without independent consoring before length biased sampling. In each case, the weak convergence of the process generated by the proposed estimator is proved. A well-known study of the duration in power for political leaders is used to illustrate our results. Finally, a simulation study is carried out in order to assess the finite sample behaviour of our estimators.

INTRODUCTION

The central problem in the analysis of duration data is the efficient estimation of the distribution of the time Z between two specified events under different sampling scenarios. The two events whose gap time is of interest will be called the initiating and terminating events. The two events may be HIV infection and death, successive hospitalizations due to a disease or entry and exit from the workforce. Frequently, the distribution of Z must be estimated from a cross-sectional sample at time t 0 consisting of subjects who have experienced the initiating event, but not the terminating event, prior to t 0 . In the context of epidemiology and survival analysis, crosssectional studies are concerned with prevalent rather than incident cases. As it is well-known, such data suffer from length-bias in the sense that Z b , the time gap between initiating and terminating events for a cross-sectionally selected subject, is stochastically larger than Z with dP (Z b < t) proportional to tdP (Z < t). This phenomenon, to be referred to as length-biased sampling (LBS), was noted by [START_REF] Mcfadden | On the lengths of intervals in a stationary point process[END_REF] for lengths of intervals in a stationary point process, by [START_REF] Blumenthal | Limit theorems for functions of shortest twosample spacings and a related test[END_REF] in industrial life testing and by [START_REF] Cox | New development in survey sampling[END_REF] for estimating the distribution of fiber lengths in a fabric. [START_REF] Zelen | On the theory of screening for chronic diseases[END_REF] recognized LBS in screening for chronic diseases while [START_REF] Simon | Length biased sampling in etiologic studies[END_REF] noted its relevance in etiologic studies. The source of LBS is the simple fact that, when drawing observations from a set of subjects in a particular state, the probability of being included in the sample is proportional to the sojourn time in that state. This, therefore, leads to disproportionate representation of longer durations. [START_REF] Vardi | Nonparametric estimation in the presence of length bias[END_REF] was the first to consider nonparametric estimation in the presence of LBS. He derived and studied the unconditional nonparametric maximum likelihood estimate (NPMLE) of the distribution function of Z on the basis of two independent samples, one a sample from Z and the other a sample from its length-biased version Z b . We refer to [START_REF] Vardi | Nonparametric estimation in the presence of length bias[END_REF], [START_REF] Vardi | Empirical distributions in selection bias models[END_REF], [START_REF] With Discussion By | Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation[END_REF], [START_REF] Gill | Large sample theory of empirical distributions in biased sampling models[END_REF] and [START_REF] Vardi | Large sample study of empirical distributions in a random-multiplicative censoring model[END_REF] for further theoretical developments. More recently, [START_REF] Asgharian | Lengthbiased sampling with right censoring: an unconditional approach[END_REF] obtained the unconditional NPMLE of the survivor function of Z and its asymptotic properties when the data are purely length-biased with a special case of right censoring.

Length-biased data can be considered as a special case of left-truncation if the occurrence time of the initiating event is uniformly distributed. Here, truncation refers to the fact that a subject can not be observed at t 0 if it has experienced the terminating event before t 0 . There is an extensive literature on nonparametric estimation under left truncation. We refer to [START_REF] Turnbull | The empirical distribution function with arbitrarily grouped, censored and truncated data[END_REF], [START_REF] Woodroofe | Estimating a distribution function with truncated data[END_REF], [START_REF] Wang | Asymptotic properties of the product limit estimate under random truncation[END_REF], [START_REF] Tsai | A note on the product-limit estimator under right censoring and left truncation[END_REF], [START_REF] Wang | Nonparametric estimation from cross-sectional survival data[END_REF] and [START_REF] Wang | Statistical models for prevalent cohort data[END_REF].

The motivation for the present paper comes from the conjunction of LBS, competing risks (CR) and Proportional Hazards (PH). Suppose that the terminating event can occur in either of two competing ways A and B, e.g. A may be death due to a specific disease, say cancer, and B death from a natural cause. Let X (resp. Y ) be the latent, or potential survival time associated with risk A (resp. B) and let us assume that X and Y have proportional hazards. Suppose that the terminal event can also be due to independent right censoring. Then the time gap between initiating and terminating events is of length T = (X ∧ Y ) ∧ C where C is the censoring time and x ∧ y denotes the minimum of x and y. However, under LBS, the random variable (r.v.) T is not observable. To be precise, we shall consider the following situation. The observed sample consists of n independent individuals, cross-sectionally selected at t 0 , who were exposed to risk A at known time points σ i ≤ t 0 , i = 1, ..., n. These individuals are followed up to death, from cause A or B, or censoring time. For the ith member of the length-biased sample, the r.v. X b i (resp. Y b i and C b i ) will denote the potential survival time of the ith subject when facing risk A (resp. B and censoring). The sample data thus consists of the n pairs (T b i , δ b i ) where

T b i = X b i ∧ Y b i ∧ C b i
, and δ b i indicates the mode of termination (death due to A, death due to B or censoring). Our main objective is to estimate the survivor function ḠX (t) = pr(X > t) based on such a sample.

The setup described above, namely, the LBS-CR-PH data with independent censoring preceding LBS is the first framework to be considered. We will refer to it as "Case 1: Independent censoring before LBS".

In a number of practical situations, two risks A and B, which have proportional hazards, compete unhindered by the risk of censoring. An estimator of ḠX (•), based on a LBS, can be introduced and its large sample properties studied. However, without any additional serious mathematical complications, it is possible to introduce a more general estimator of ḠX (•) and study its large sample behavior even if we allow the possibility of independent random censoring after the cross-sectional sample has been selected. Such post-LBS censoring may or may not be justified in specific practical situations. An excellent discussion, with examples, of various censoring issues in biased-sampling situations is given by [START_REF] Tsai | Pseudo-partial likelihood for proportional hazards models with biased-sampling data[END_REF]. We will allow the post-LBS censoring scenario in our "Case 2: No censoring before LBS". In this case, the observable random variables are

T i = Z b i ∧ C i where Z b i is the LBS observation of Z i = X i ∧ Y i
and δ i which gives the type of the observed terminal event. Case 2 encompasses the "no possibility of censoring" scenario and we easily obtain the estimator and its large sample properties for the without censoring case from our results for Case 2.

As far as we know, these problems have not been considered in the literature so far. [START_REF] Huang | Estimating the occurrence rate for prevalent survival data in competing risks models[END_REF] did consider the LBS-CR set up but they were concerned with estimation of crude hazard functions and occurrence probabilities rather than estimation of ḠX (•). [START_REF] Dauxois | Nonparametric inference under competing risks and selection-biased sampling[END_REF] have considered the problem of the nonparametric inference of the Cumulative Incidence Functions under competing risks and selection-biased sampling. But no proportional hazards assumption was made in their work.

The outline of this paper is as follows. The two cases described above are considered respectively in Section 2 and 3. Estimators of ĜX (•) are obtained in each case and their large sample behaviors are studied. In Section 4, we apply our methodology to the data set introduced by [START_REF] Bienen | Time of power[END_REF], whereas in Section 5 we study the behaviour of our estimator through Monte Carlo simulation of its mean integrated squared error (MISE). An appendix details the proofs of technical lemmas used in Sections 2 and 3.

CASE 1: INDEPENDENT CENSORING BEFORE LENGTH BIASED SAMPLING

The objective of this section is to develop a framework for study of length-biased sampling (LBS) in the setup of competing risks (CR). From now on and for convenience, the initiating and terminating events of interest will be called birth and death, respectively.

2.1. Initial population. We shall consider a population of individuals (to be called initial population) who are subject to two competing causes, A and B, of death. The CR model will be described in terms of latent survival times X and Y where X (resp. Y ) is a positive random variable (r.v.) representing the age at death in the hypothetical situation in which A (resp. B) is the only possible cause of death. Frequently, there is a primary cause of interest. For example, the target interest of study may be death due to breast cancer. In such cases, we shall take A as the primary risk of interest and all other causes will be lumped together as B. The individual lifetime will be denoted by Z = X ∧ Y .

In the present paper, we are concerned with the important special case in which the risks A and B have proportional hazards. Thus, it will be assumed in this paper that there exists β > 0 such that for all t > 0:

Λ Y (t) = βΛ X (t)
where Λ X (•) and Λ Y (•) are the cumulative hazard functions of X and Y , respectively. Equivalently, denoting by ḠX (•) and ḠY (•) the survival functions of X and Y , we will assume in the following that

ḠY (t) = ( ḠX (t)) β (1)
for all t > 0. This model, often called "Koziol-Green" model, has been widely studied in classical survival analysis literature, see e.g. [START_REF] Chen | Maximum likelihood estimation of a survival function under the koziol-green proportional hazards model[END_REF]), Csörgő (1988), [START_REF] Gather | Estimating the survival function under a generalized Koziol-Green model with partially informative censoring[END_REF] and [START_REF] Kirmani | Testing the Koziol-Green model against monotone conditional odds for censoring[END_REF].

The constant β gives the odds on death due to cause B, i.e.:

pr(Y ≤ X) pr(X ≤ Y ) = β,
while the theoretical proportion α of deaths from cause A among all deaths is given by:

α = pr (X ≤ Y ) = 1 β + 1 . (2)
We will assume that the lifetime Z may suffer from independent randomright censoring. Let C denote the censoring time and H(•) its survival function. Then, T = Z ∧ C denotes the age at terminating event (death from cause A, from cause B or censoring) and δ indicates the mode of termination:

δ =    0 if C < Z 1 if T = Z = X 2 if T = Z = Y .
It has to be noted that under this independent censoring mechanism, the proportion of deaths from cause A among all termination causes (A, B or censoring) is still equal to α, that is:

α = pr (X ≤ Y, X ≤ C) pr (X ∧ Y ≤ C) . (3) 
2.2. Length-biased population. Let {i ∈ I} denotes the initial population described in the previous subsection. Let X i and Y i be the latent survival times (corresponding to risks A and B, respectively) and C i be the latent censoring time for individual i. The age of individual i at terminal event is

T i = Z i ∧ C i = X i ∧ Y i ∧ C i and δ i indicates the mode of termination.
Now, let σ i be the calendar time of birth of the individual. A convenient graphical representation of the lifespan of an individual born at calendar time σ i and experiencing a terminal event at age t i is given by the wellknown Lexis diagram (see Fig. 1). This diagram consists of line segments in a rectangular coordinate system with calendar time as abscissa and the age as ordinate such that the life (or time from birth to censoring) is represented by the line segment joining the points (σ i , 0) and (σ i + t i , t i ). The Lexis diagram and associated point processes described in [START_REF] Brillinger | The natural variability of vital rates and associated statistics[END_REF], [START_REF] Keiding | Statistical inference in the Lexis diagram[END_REF][START_REF] Lund | Sampling bias in population studies-how to use the Lexis diagram[END_REF] provide useful settings for analyzing lifetimes. It is particularly important in describing sampling patterns for selection of individuals in a study. It also helps in visualizing follow-up patterns and truncation of lifetimes.

A random sample cross-sectionally selected at calendar time t 0 is not really a random sample from the initial population I but, in fact, from the population

J = {i ∈ I : (σ i , x i , y i , c i ) ∈ E} where E = {(σ, x, y, c) : σ ≤ t 0 , σ + x ≥ t 0 , σ + y ≥ t 0 , σ + c ≥ t 0 }. Individuals with age at terminal event T i = Z i ∧ C i = X i ∧ Y i ∧ C i shorter than t 0 -σ i are excluded from Age Time t 0 FIGURE 1. A Lexis diagram representation of lifespans the population J.
That is, the time T i is left truncated by the time t 0 -σ i . Individuals with birthtimes σ i ≥ t 0 are also excluded from the sample.

Thus, the observable r.v. is not T i but T b i , a r.v. whose probability distribution is the same as the conditional distribution of

T i = Z i ∧ C i given {(σ i , X i , Y i , C i ) ∈ E}.
The mode of termination associated with T b i will be denoted δ b i . We shall refer to T b i as the length-biased version of T i and {j ∈ J} as the length-biased population.

The following proposition provides a key fact: it gives the probability distribution of (T b , δ b ) defined above. It will be seen that, under the assumptions made, the distribution of (T b , δ b ) will be independent of σ. Thus, the pairs

(T b 1 , δ b 1 ), . . . , (T b n , δ b n )
of the n individuals in the sample selected at t 0 will be independent copies of (T b , δ b ).

Theorem 1. Suppose that: (i) the birth process η = i∈I ε σ i , where ε σ i denotes the random measure concentrated on σ i , is a mixed Poisson process with random intensity ϕ;

(ii) conditionally on the process η, the vectors (X i , Y i , C i ), for i ∈ I, are independent and identically distributed with common probability density function (p.d.f.) 

g X (•)g Y (•)h(•) with respect to the Lebesgue measure on R 3 + (where g X (•), g Y (•) and h(•) are respectively the p.d.f of X, Y and C); (iii) E(X) < ∞ and E(Y ) < ∞ and E(C) < ∞.
Then, the distribution of the pair (T b , δ b ) is specified by the following expression of its three sub-distribution functions:

F b 0 (t) = pr T b ≤ t, δ b = 0 = E(T ) -1 t 0 ch(c) ḠX (c) ḠY (c)dc F b 1 (t) = pr T b ≤ t, δ b = 1 = E(T ) -1 t 0 xg X (x) ḠY (x) H(x)dx F b 2 (t) = pr T b ≤ t, δ b = 2 = E(T ) -1 t 0 yg Y (y) ḠX (y) H(y)dy for t > 0.
Proof of Theorem 1. Although the above result is merely the competing risks statements of the well-known length-biased density [START_REF] Lund | Sampling bias in population studies-how to use the Lexis diagram[END_REF]; [START_REF] Van Es | Survival analysis under cross-sectional sampling: length bias and multiplicative censoring[END_REF], we offer the following derivation. First note that η is a point process on R such that, for each Borel set S in R, the r.v. η(S) gives the number of births encountered in S. We assume that η(S) < ∞ almost surely. For each individual i, the birth time σ i is marked by the pair of latent survival times (X i , Y i , C i ). We now define the Lexis point process

µ = i∈I ε (σ i ,X i ,Y i ,C i ) on (R × R 3 + , B R ⊗ B R 3 + ), where B R (resp. B R 3 + ) denotes the Borel σ-algebra on R (resp. R 3 +
). This has the advantage of showing that µ |ϕ , the process µ conditional on the intensity ϕ of the mixed Poisson process, is Poisson with intensity

(σ, x, y, c) → λ |ϕ (σ, x, y, c) = ϕg X (x)g Y (y)h(c)
and with mean-measure Λ |ϕ (•) defined, for each Borel set S on R × R 3 + , by

Λ |ϕ (S) = S λ |ϕ (σ, x, y, c)dσdxdydc.
We refer to [START_REF] Kingman | of Oxford Studies in Probability[END_REF] for the marking theorem exploited here. Further, let

µ E|ϕ (•) = µ |ϕ (• ∩ E) be the restriction of the Poisson process µ |ϕ to the measurable set E = {(σ, x, y, c) : σ ≤ t 0 , σ + x ≥ t 0 , σ + y ≥ t 0 , σ + c ≥ t 0 }.
Then, by the well-known restriction theorem for Poisson processes [START_REF] Kingman | of Oxford Studies in Probability[END_REF], the process

µ E|ϕ is Poisson on R × R 3 + with mean-measure Λ E|ϕ (•) defined, for all Borel set S in R × R 3 + , by Λ E|ϕ (S) = Λ |ϕ (S ∩ E) = S∩E λ |ϕ (σ, x, y, c)dσdxdydc.
Our mode of sampling is equivalent to selecting a random subset E * ⊂ E such that µ |ϕ (E * ∩E) = n is the sample size. By the order statistics property of Poisson processes, see e.g. [START_REF] Crump | On point processes having an order statistic structure[END_REF], given µ |ϕ (E) = N , the points of the Poisson process µ |ϕ (•∩E) look exactly like µ |ϕ (E) independent r.v.'s, with common probability measure

pr E|ϕ (•) = Λ |ϕ (• ∩ E) Λ |ϕ (E)
on Borel subsets of R × R 3 + . [START_REF] Hayakawa | A new characterisation property of mixed Poisson processes via Berman's theorem[END_REF] showed that the order statistics property characterizes a mixed Poisson process within the general class of point processes. This indicates that assumption (i) can not be weakened.

Let X b and Y b denote the latent survival times (corresponding to risks A and B respectively) and C b the censoring time for an individual in J where, as defined earlier, J = {i ∈ I : (σ i , X i , Y i , C i ) ∈ E}. Let x 0 , y 0 and c 0 be positive reals and S = {(σ, x, y, c) : x ≤ x 0 , y ≤ y 0 , c ≤ c 0 }. It follows from the above discussion that, conditionally on µ |ϕ (E) = N :

pr |ϕ (X b ≤ x 0 , Y b ≤ y 0 , C b ≤ c 0 ) = Λ |ϕ (S ∩ E) Λ |ϕ (E) = S∩E ϕg X (x)g Y (y)h(c)dσdxdydc E ϕg X (x)g Y (y)h(c)dσdxdydc = x 0 0 y 0 0 c 0 0 t 0 t 0 -(x∧y∧c) g X (x)g Y (y)h(c)dσdxdydc t 0 -∞ ḠX (t 0 -σ) ḠY (t 0 -σ) H(t 0 -σ)dσ = x 0 0 y 0 0 c 0 0 (x ∧ y ∧ c)g X (x)g Y (y)h(c)dxdydc E(T ) .
Since the last expression does not involve ϕ, integrating w.r. its distribution, we get

pr(X b ≤ x 0 , Y b ≤ y 0 , C b ≤ c 0 ) = x 0 0 y 0 0 c 0 0 (x ∧ y ∧ c)g X (x)g Y (y)h(c)dxdydc E(T ) .
The proposition then follows by differentiation and integration on the proper sets.✷ It has to be noted that the distribution function of the r.v. T b is the lengthbiased version of the distribution function of T . Indeed, from Theorem 1, we get for all t ≥ 0:

pr T b ≤ t = F b (t) = F b 0 (t) + F b 1 (t) + F b 2 (t) = 1 E(T ) t 0 udF (u),
where F (•) is the distribution function of the r.v. T . Consequently, by the knwon inversion formula of [START_REF] Cox | New development in survey sampling[END_REF], the distribution function F (•) is expressible as:

F (t) = E(T ) t 0 1 u dF b (u) = t 0 1 u dF b (u) ∞ 0 1 u dF b (u) . (4)
In the present paper we are concerned with the special case where the risks A and B have proportional hazards (see ( 1)). Under this assumption, the sub-distribution functions of (T b , δ b ) given in Theorem 1 have simplify as follows:

F b 0 (t) = E(T ) -1 t 0 ch(c) Ḡβ+1 X (c)dc F b 1 (t) = E(T ) -1 t 0 xg X (x) Ḡβ X (x) H(x)dx F b 2 (t) = E(T ) -1 t 0 yβg X (y) Ḡβ X (y) H(y)dy , (5) 
for all t > 0.

2.3. Statistical Inference. Our aim is to estimate the survivor function ḠX (•) = pr(X > •) of the cause of primary interest on the basis of a length-biased sample obtained from the initial population described earlier (competing risks with proportional hazards and independent censoring). Adhering to the notations of the previous section, the observable r.v.'s are T b and δ b rather than T and δ. Recall that the probability distribution of (T b , δ b ) is the conditional distribution of (T, δ) given {(σ, X, Y, C) ∈ E}.

Under the assumption that X and Y are independent with proportional hazards, the unconditional distribution of Z = X ∧ Y has p.d.f.

g Z (z) = (1 + β)g X (z)( ḠX (z)) β , z > 0,
and distribution function ḠZ (•) = Ḡβ+1

X (•). Moreover, from Theorem 1 one can see that the sub-distribution function F b 12 (•) defined, for all t ≥ 0, by:

F b 12 (t) = pr T b ≤ t, δ b = 0 = F b 1 (t) + F b 2 (t)
, may be rewritten as:

F b 12 (t) = t 0 zg Z (z) H(z)dz E(T ) , for all t ≥ 0. (6)
That is, the sub-distribution function F b 12 (•) is a weighted version of the distribution of Z, with weight function t → t H(t). It has to be noted that it is not a length-biased version since it is not proportional to t 0 zg Z (z)dz, for all t ≥ 0. Consequently, the well-known inversion formula of [START_REF] Cox | New development in survey sampling[END_REF] does not apply here. We will instead follow the approach of de [START_REF] De Uña-Álvarez | Nelson-Aalen and product-limit estimation in selection bias models for censored populations[END_REF].

By taking the derivative in Equation ( 6), we get for all t > 0:

E(T ) 1 t dF b 12 (t) = g Z (t) H(t)dt.
Equivalently,

E(T ) 1 t ḠZ (t) H(t) dF b 12 (t) = g Z (t) ḠZ (t) dt.
Note that the independence between Z and C gives us

F (•) = 1 -F (•) = ḠZ (•) H(•).
Hence, integrating the last equality and using Equation ( 4) we obtain, for all t > 0:

t 0 1 z ∞ z 1 u dF b (u) dF b 12 (z) = t 0 g Z (z) ḠZ (z) dz = Λ Z (t), (7) 
where

Λ Z (•) = -log( ḠZ (•)) is the cumulative hazard function of Z.
Moreover, as X and Y have proportional hazards, we have:

Λ Z (•) = Λ X (•) + Λ Y (•) = (1 + β)Λ X (•).
Finally, using the product integral notion [START_REF] Andersen | Statistical models based on counting processes[END_REF] we get:

ḠX (t) = π s∈[0,t] (1 -dΛ X (s)) = π s∈[0,t] (1 -d (αΛ Z (s))) , for all t ≥ 0.
Hence, a natural estimator of ḠX (•) is the plug-in estimator

ḠX (t) = π s∈[0,t] 1 -d α ΛZ (s) (8) = π s∈[0,t] 1 -α s ∞ s 1 u d F b (u) d F b 12 (s) , for all t > 0,
where F b 12 (•), F b (•) and α are estimators of respectively F b 12 (•), F b (•) and α that we will introduce now. Note that the estimator ΛZ (•) is obtained by plug-in in equation ( 7).

Recall that each individual in the sample, selected in the manner of Section 2.2, is followed until death or censoring. Then the observed data consists of n independent pairs (T b i , δ b i ) where

T b i = Z b i ∧ C b i and δ b i =    0 if C b i < Z b i 1 if T b i = Z b i = X b i 2 if T b i = Z b i = Y b i . The sub-distribution functions F b 0 (•), F b 1 (•) and F b 2 (•) associated with (T b , δ b
) and defined in Theorem 1 can be estimated from the available sample by

F b k (t) = 1 n n i=1 I({T b i ≤ t, δ b i = k}), (9) 
for all t ≥ 0 and k = 0, 1, 2.

As the distribution function

F b (•) of the r.v. T b is equal to F b 1 (•)+F b 2 (•)+ F b 3 (•), one can estimate it by F b (•) = F b 0 (•) + F b 1 (•) + F b 2 (•). (10) Also, F b 12 (•) = F b 1 (•) + F b 2 (•)
gives us an estimator of F b 12 (•). To estimate α = 1/(1 + β), we first note that

α = pr (X ≤ Y, X ≤ C) pr (X ∧ Y ≤ C) = pr X b ≤ Y b , X b ≤ C b pr (X b ∧ Y b ≤ C b ) ,
where the first equality is given by Equation ( 3) and the second is a straightforward consequence of Thereom 1. By the definition of the sub-distribution functions F b k (•), for k = 0, 1, 2, the second equality is equivalent to α = F b 1 (+∞)/F b 12 (+∞). As a consequence α may be estimated by

α = F b 1 (+∞) F b 12 (+∞) . (11)
Estimators given in ( 9), ( 10) and ( 11) complete the definition of the estimator ĜX (•) of ḠX (•) given in (8).

2.4. Large sample behaviour. Our aim in this section is to obtain the weak convergence of the process √ n( ĜX (•) -ḠX (•)), as n tends to +∞. One can see from the above section that our estimator ĜX (•) is a function of the estimators F b k (•), for k = 0, 1, 2. Since asymptotic results are available for the estimators of sub-distribution functions, the expected weak convergence result can be obtained by using the functional delta-method van der [START_REF] Van Der | Weak convergence and empirical processes[END_REF]. But, it has to be noted that one needs a weak convergence on the whole line [0, +∞] of the empirical processes associated with F b k (•), for k = 0, 1, 2. Such a result is available in [START_REF] Dauxois | Nonparametric inference under competing risks and selection-biased sampling[END_REF]. Their Theorem 1 is written with two competing risks (for ease of notation) and in presence of independent random right censoring. After an easy adaptation of [START_REF] Dauxois | Nonparametric inference under competing risks and selection-biased sampling[END_REF], considering the case with 3 competing risks and without censoring, we get the following weak convergence in D 3 [0, +∞], where D[0, +∞] is the space of càdlàg (right-continuous with left-hand limits) functions. As n → +∞, one has

√ n   F b 0 (•) -F b 0 (•) F b 1 (•) -F b 1 (•) F b 2 (•) -F b 2 (•)   D -→   Z 0 (•) Z 1 (•) Z 2 (•)   , (12) 
where (Z 0 (•), Z 1 (•), Z 2 (•)) ′ is a trivariate mean-zero gaussian process with covariance function

Z k (s), Z k (t) = l =k s∧t 0 (F b k (s) -F b k (u))(F b k (t) -F b k (u)) dF b l (u) ( F b (u)) 2 + s∧t 0 (F b k (s) -F b k (u) -F b (u))(F b k (t) -F b k (u) -F b (u)) dF b k (u) ( F b (u)) 2 and, for k = l Z k (s), Z l (t) = s∧t 0 (F b k (s) -F b k (u))(F b l (t) -F b l (u)) dF b j (u) ( F b (u)) 2 + s∧t 0 (F b l (t) -F b l (u))(F b k (s) -F b k (u) -F b (u)) dF b k (u) ( F b (u)) 2 + s∧t 0 (F b k (s) -F b k (u))(F b l (t) -F b l (u) -F b (u)) dF b l (u) ( F b (u)) 2 ,
where j is different from k and l.

As the first step in the derivation of the large sample behaviour of the process √ n( ĜX (•)-ḠX (•)), we introduce the following preliminary result, whose proof is given in the Appendix.

Lemma 1. As n goes to +∞, we have the following weak convergence in

D[0, ∞] × R: √ n ΛZ (•) -Λ Z (•) α -α D -→ L(•) U , ( 13 
)
where

L(•) = • 0 1 z +∞ z 1 u dF b (u) dZ 12 (z) - • 0 z +∞ z 1 u dZ(u) z +∞ z 1 u dF b (u) 2 dF b 12 (z), Z(•) = Z 0 (•) + Z 1 (•) + Z 2 (•), Z 12 (•) = Z 1 (•) + Z 2 (•) and U = 1 pr(δ b = 0) [(1 -α)Z 1 (+∞) -αZ 2 (+∞)].
We are now in a position to give the main result of this section.

Theorem 2. The following weak convergence holds in the Skorohod space

D[0, ∞]: √ n( ĜX (•) -ḠX (•)) D -→ ξ(•) = -ḠX (•) (U Λ Z (•) + αL(•)) ,
as n tends to +∞.

Proof of Theorem 2.

In view of equation ( 8), we have for all t

√ n ĜX (t) -ḠX (t) = √ n Ψ t ( ΛZ (•), α) -Ψ t (Λ Z (•), α) ,
where

Ψ • is a map from D BV [0, ∞] × R to D[0, ∞) defined by Ψ • (f (•), r) = π t∈[0,•] (1 -d (rf (t))),
where D BV [0, ∞] is the space of càdlàg functions of bounded variations on [0, ∞]. Using for example the Chain rule Lemma 3.9.3 of [START_REF] Van Der | Weak convergence and empirical processes[END_REF] and the Hadamard differentiability of the product integral [START_REF] Andersen | Statistical models based on counting processes[END_REF], one can see that the map

Ψ • is Hadamard- differentiable with differential DΨ (f (•),r) at (f (•), r) in D BV [0, ∞]×R given, for all (h(•), u) ∈ D[0, ∞] × R, by DΨ (f (•),r) (h(•), u) = -π t∈[0,•] (1 -d (rf (t))) (uf (•) + rh(•)) .
An application of the functional delta method (see Theorem 3.9.4. of [START_REF] Van Der | Weak convergence and empirical processes[END_REF]) on the weak convergence of Lemma 3 gives us

√ n( ĜX (•) -ḠX (•)) D -→ DΨ (Λ Z (•),α) (L(•), U ),
as n tends to +∞. From the above expression of the differential, one obtains the limiting process ξ(•) of Theorem 2.✷ 3. CASE 2: NO CENSORING BEFORE LENGTH-BIASED SAMPLING 3.1. New Framework. We now consider the case of no censoring before length-biased sampling but assume, as before, that the risks A and B have proportional hazards. It can be easily shown that Z = X ∧ Y has pdf

g Z (z) = (1 + β)g X (z)( ḠX (z)) β , z > 0.
Our goal is again to estimate ḠX (t) = pr(X > t) on the basis of observations on Z b , the length length-biased version of Z, and the associated cause of death. An easy adaptation of Theorem 1 (the set E is now E = {(σ, x, y) : σ ≤ t 0 , σ + x ≥ t 0 , σ + y ≥ t 0 } since there is no censoring at this stage) shows that the length biased observation Z b of Z has probability density function

g Z b (z) = z E(Z) (g X (z) ḠY (z) + g Y (z) ḠX (z)),
for z > 0. Now, thanks to the proportional hazard property assumed on the r.v. X and Y , this p.d.f. reduces to

g Z b (z) = 1 EZ (1 + β)zg X (z)( ḠX (z)) β , z > 0
and finally one can write

g Z b (z) = 1 E(Z) zg Z (z), z > 0. (14)
Thus, the p.d.f. of Z b appears as the length-biased version of the pdf of Z. The corresponding survivor function of Z b will be denoted by ḠZ b (•).

It has to be noted that the constant β gives also the odds of death due to cause B after length-biased sampling, i.e.

pr(Y b ≤ X b ) pr(X b ≤ Y b ) = β.
It can also be shown that the random variables I({X b ≤ Y b }) and Z b = X b ∧Y b are independent. However, as in Section 2, the initial independence between X and Y has been lost under the selection process, i.e. the r.v. X b and Y b are not independent. Now, as we will see, assuming independent right censoring on the lengthbiased observation Z b doesn't substantially complicate the following derivation of the estimator of ḠX (•) and its large sample behaviour study. The situation without any censoring, the one of preliminary interest, will be obtained as a simple particular case of our results under right censoring. This will be detailed at this end of this section.

Each individual in the sample, selected according to the above procedure, is followed until death or censoring. The observed data then consists of n independent pairs (T i , δ i ) where T i = Z b i ∧ C i and

δ i =    0 if C i < Z b i 1 if T i = Z b i = X b i 2 if T i = Z b i = Y b i .
Here, the r.v. C 1 , . . . , C n are independent copies of a random variable C which is assumed to be independent of Z b and with survivor function HC (•).

For later use, let

S(•) = ḠZ b (•) HC (•) denotes the survivor function of T = Z b ∧ C.

Statistical inference.

From Equation ( 14) we know that the p.d.f. of Z b is the length-biased version of the one of Z. Consequently, by the wellknown inversion formula of [START_REF] Cox | New development in survey sampling[END_REF], the distribution function

G Z (•) = pr(Z ≤ •) is expressible, for t ≥ 0, as G Z (t) = t 0 1 z d ḠZ b (z) +∞ 0 1 z d ḠZ b (z)
.

On the other hand we can write

ḠX (•) = ḠZ (•) α ,
where α = 1/(1 + β). Hence, a natural estimator of ḠX (•) is the plug-in estimator

GX (t) = 1 -ĜZ (t) α , for all t > 0, (15) 
where

ĜZ (t) = t 0 1 z d ĜZ b (z) +∞ 0 1 z d ĜZ b (z) , t > 0, (16) 
and ĜZ b (•) and α are estimators to be introduced below.

Let

N j (t) = n i=1 I({T i ≤ t, δ i = j}), for j = 1, 2,
for t ≥ 0, be the counting process associated with the jth cause of death and let

Y (t) = n i=1 I({T i ≥ t}),
for t ≥ 0, be the at-risk process. Moreover let J(•) and N (•) be two processes defined respectively by = I({Y (t) > 0}) and

N (t) = n i=1 I({T i ≤ t, δ i = 0}) = N 1 (t) + N 2 (t),
for all t ≥ 0.

The survivor function ḠZ b (•) can be estimated by the Kaplan-Meier estimator (cf e.g. [START_REF] Andersen | Statistical models based on counting processes[END_REF])

ḠZ b (t) = i:T (i) ≤t 1 - ∆N (T (i) ) Y (T (i) ) , (17) 
where 16) is now completly defined.

T (1) ≤ • • • ≤ T (n) are the ordered statistics and ∆N (u) = N (u) - N (u -), for all u ≥ 0. The estimator ĜZ (•) given in (
In order to introduce our estimator of α, let

G 1 (t) = pr(X b ≤ t, X b ≤ Y b ) = pr(Z b ≤ t, X b ≤ Y b
). be the cumulative incidence function associated to cause A. Then,

α = pr X b ≤ Y b = G 1 (+∞).
Estimating G 1 (•) by the Aalen-Johansen estimator [START_REF] Andersen | Statistical models based on counting processes[END_REF] Ĝ1

(t) = t 0 ĜZ b (x -) dN 1 (x) Y (x) ,
an estimator of α is given by α = Ĝ1 (+∞). (18) Thus, the estimator GX (•) given in ( 15) is completly defined thanks to ( 16), ( 17) and (18).

3.3. Large sample behaviour. In order to get the weak convergence of the process √ n( GX (•) -ḠX (•)) stated in the next theorem, the following assumption is needed:

Assumption A : +∞ 0 dG Z b (x) HC (x-) < +∞.
Theorem 3. If assumption A is fulfilled, the following weak convergence holds in the Skorohod space D[0, ∞]:

√ n( GX (•) -ḠX (•)) D -→ ξ(•) = α ḠZ (•) L(•) + Ũ ḠZ (•) ln( ḠZ (•)),
as n goes to ∞, where L(•) is a mean zero gaussian process defined by and Ũ is a mean-zero normally distributed r.v. with variance given by

L(•) = G Z b (•) +∞ 0 1 x d Z(x) +∞ 0 1 x d ḠZ b (x) - • 0 1 x d Z(x) +∞ 0 1 x d ḠZ b (x) , Z ( 
v( Ũ ) = +∞ 0 (G 1 (+∞) -G 1 (x)) 2 d ḠZ b (x) ḠZ b (x)S(x) + +∞ 0 Ḡ2 Z b (x) d ḠZ b (x) Ḡ1 (x)S(x) -2 +∞ 0 (G 1 (+∞) -G 1 (x)) ḠZ b (x) d ḠZ b (x) Ḡ1 (x)S(x) .
The proof of the above theorem requires the following key result proved in appendix.

Lemma 2. Under Assumption A, the following weak convergence holds in

D[0, ∞] × R √ n G Z (•) -G Z (•) α -α D -→ L(•) Ũ , ( 19 
)
as n goes to ∞.

Proof of Theorem 2.

In view of equation ( 15), we have

√ n GX (t) -ḠX (t) = √ n Φ t ( G Z (•), α) -Φ t (G Z (•), α) .
where

Φ(•, •) is a map from D[0, ∞] × R to [0, ∞) defined by Φ t (f (•), r) = (1 -f (t)) r . A two-terms Taylor expansion of the map (x, y) → h(x, y) = (1 -x) y assures that Φ(•, •) is Hadamard-differentiable with differential DΦ (f (•),r) at (f (•), r) defined, for all (h(•), u) in D[0, ∞] × R, by DΦ (f (•),r) (h(•), u) = u(1 -f (t)) r ln(1 -f (t)) -r(1 -f (t)) r-1 h(t).
The functional delta method in its version of Theorem 3.9.4. of [START_REF] Van Der | Weak convergence and empirical processes[END_REF] applies and gives the result of Theorem 2.✷

We now come back to the "without censoring" case which was of original interest. In this case, the observations are given by Z b and δ b where the latter is now defined by

δ = 1 if Z b = X b 2 if Z b = Y b .
As an estimator of ḠX (•) one can still use

GX (t) = 1 -ĜZ (t) α , for all t > 0,
where

ĜZ (t) = t 0 1 z d ĜZ b (z) +∞ 0 1 z d ĜZ b (z) , t > 0.
But, in the absence of censoring, the Kaplan-Meier estimator ĜZ b (•) is nothing but the empirical survivor function defined by : ĜZ

b (t) = 1 n n i=1 I(Z b i > t).
The statistic Ĝ1 (+∞) still gives us an estimate of α and, now, we have the simplified expression:

α = N 1 (+∞) n ,
which is the observed proportion of death due to cause A.

The following corollary derives the asymptotic behaviour of our estimator in the "without censoring" case. It is easily obtained from Theorem 3 on noting that S(•) is now equal to ḠZ b (•).

Corollary 1. The following weak convergence holds in the Skorohod space

D[0, ∞]: √ n( GX (•) -ḠX (•)) D -→ ξ(•) = α ḠZ (•) L(•) + Ũ ḠZ (•) ln( ḠZ (•)),
as n goes to ∞, where L(•) is a mean zero gaussian process defined by 

L(•) = G Z b (•) +∞ 0 1 x d Z(x) +∞ 0 1 x d ḠZ b (x) - • 0 1 x d Z(x) +∞ 0 1 x d ḠZ b (x) , Z ( 
< Z(s), Z(t) >= ḠZ b (max(s, t)) -ḠZ b (s) ḠZ b (t)
and Ũ is a real r.v. with distribution N (0, α(1 -α)).

ILLUSTRATIVE EXAMPLE

The statistical analysis of the proportional hazards competing risks model developed here under the length-biased sampling scheme is of wide ranging interest. Its applicability extends well beyond the epidemiologic studies involving follow up of prevalent cases identified through a cross-sectional study. Here, we present an application to a well-known problem in political science. In those parts of the world where democratic institutions and constitutional practices are firmly entrenched, change of government frequently occurs through non-constitutional means (such as coups). In such situations, it is of interest to be able to estimate and predict the duration for which political and executive leaders hold power. The question is of more than academic interest as the length of a leader's stay in power may affect economic and human right issues. [START_REF] Bienen | Time of power[END_REF] is a pioneering study of the time of power for primary leaders of countries world-wide. They provide, analyze, and interpret data on duration (in years) in power for 2,256 leaders from 167 countries for a 100 years period terminating in 1987. However, we are interested only in a subset of the original data, confined to countries outside of Europe, North America, and Australia; and restricted to leaders who were in power in 1972. There were 99 such leaders facing two competing risks: exit by constitutional means (risk A) and non-constitutional means (risk B). We treat other termination modes as censoring. Bienen and van de Walle's data is rich in covariates. [START_REF] Allison | Survival analysis using the SAS system: a pratical guide[END_REF] gives an analysis of covariates effects via Cox models for a subset consisting of 472 spells of time in power beginning in 1960 or later. Although our analysis is not concerned with covariates and, unlike [START_REF] Allison | Survival analysis using the SAS system: a pratical guide[END_REF], we are estimating in the length-biased set up; we note from [START_REF] Allison | Survival analysis using the SAS system: a pratical guide[END_REF], that the two risks -constitutional and non-constitutional exits -have proportional hazards. This proportionality is indicated by Fig. 2 which provides the plots of log-log survivor functions for the two risks against time. Notice that the log-log survivor functions of Fig. 2 have been estimated from the initial sample (the sample with 472 spells used by [START_REF] Allison | Survival analysis using the SAS system: a pratical guide[END_REF]). Figure 3 shows the survivor function corresponding to risk B when estimated from the initial and length-biased samples. Our estimator, although based on a length-biased sample selected from the initial sample, performs quite well as compared to the Kaplan-Meier estimator computed from the whole initial sample. The length-biased sample is only about 20% of the initial sample of 472 spells.

SIMULATION STUDY

We carried out Monte Carlo simulations to compare our estimator in Case 1 (independent censoring preceding length-biased sampling) with the true survivor function when the two independent competing risks are Weibull distributed. More precisely, we consider two scenarios:

• Scenario 1: ḠX (t) = exp(-t 1.5 ) and ḠY (t) = exp(-0.6t 1.5 ), for all t > 0 • Scenario 2: ḠX (t) = exp(-0.6t 1.5 ) and ḠY (t) = exp(-t 1.5 ), for all t > 0

In the first scenario, the lifetime of interest X is stochastically smaller than Y , while in the second scenario the reverse is true. We generated a population of n I individuals whose birth times follow a homogeneous Poisson process with intensity λ = 1 on the interval (-10, 1). For each individual in this initial population, a censoring time was simulated according to an exponential distribution with parameter µ. The lengthbiased sample consists of the individuals alive, but not censored, at time t 0 = 0.5. We chose the values of the parameters n I and µ in order to get censoring levels of approximatively 5%, 10% or 30% and sample sizes of n = 100 or n = 1000 for the length-biased data.

The simulation design described above was replicated 1000 times. Tables 1 and 2 give the resulting Monte Carlo estimates of the classical mean integrated squared error (MISE) and a scaled mean integrated squared error (SMISE). The MISE is defined as MISE( ĜX ) = The number of grid points to approximate the integrals is set as 1000.

One can see in these tables that both the MISEs and SMISEs always decrease with the number of observations. This illustrates the consistency of our estimators. In Table 1 and2, one can see that the MISE does not necessarily increase when the proportion of censoring increases. This can be explained by the fact that the interval [0, T b (n-1) ] on which the MISE is calcuted decreases when the censoring increases, see e.g. [START_REF] Geffray | Maximum likelihood estimator for cumulative incidence functions under proportionality constraint[END_REF] for details. On the other hand, the SMISE, which is normalized with respect to the length of the interval [0, T b (n-1) ] , has the expected behavior: it increases as the censoring increases. 
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APPENDIX 1: PROOF OF THE LEMMAS Lemma 3. As n goes to +∞, we have the following weak convergence in D[0, ∞] × R:

where

Proof of Lemma 1. From the expression of ΛZ (•), Λ Z (•), α and α given in Section 2.3, one can write:

where ψ is the function defined on

.

Let us denote by ψ 1 and ψ 2 respectively the first and second coordinate of the function ψ. Rather straightforward arguments of differential calculus give us that the differential Dψ 1

On the other hand, the differential of

We are thus in a position to apply the functional delta-method on the weak convergence (12) of the sub-distribution empirical processes. This gives us the expected weak convergence of Lemma 1. The expression of the limiting process is easily obtained if one note that we have:

Proof of Lemma 2. From Theorem 3 of [START_REF] Dauxois | Nonparametric inference under competing risks and selection-biased sampling[END_REF], we have, under Assumption A,

where Z(•) is defined in Theorem 3 and Z1 is a mean-zero gaussian process defined on [0, ∞] with covariance function given by

.

It is easily seen that

. .

The functional delta method in its version of Theorem 3.9.4. of [START_REF] Van Der | Weak convergence and empirical processes[END_REF] ends the proof of this lemma.✷