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Abstract

We employ p, q-binomial coefficients, a generalisation of the bino-
mial coefficients, to describe the magnetisation distributions of the
Ising model. For the complete graph this distribution corresponds ex-
actly to the limit case p = q. We take our investigation to the simple
d-dimensional lattices for d = 1, 2, 3, 4, 5 and fit p, q-binomial distri-
butions to our data, some of which are exact but most are sampled.
For d = 1 and d = 5 the magnetisation distributions are remarkably
well-fitted by p, q-binomial distributions. For d = 4 we are only slightly
less successful, while for d = 2, 3 we see some deviations (with excep-
tions!) between the p, q-binomial and the Ising distribution. However,
at certain temperatures near Tc the statistical moments of the fitted
distribution agree with the moments of the sampled data within the
precision of sampling. We begin the paper by giving results on the
behaviour of the p, q-distribution and its moment growth exponents
given a certain parameterization of p, q. Since the moment exponents
are known for the Ising model (or at least approximately for d = 3) we
can predict how p, q should behave and compare this to our measured
p, q. The results speak in favour of the p, q-binomial distribution’s cor-
rectness regarding their general behaviour in comparison to the Ising
model. The full extent to which they correctly model the Ising distri-
bution is not settled though.
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1 Introduction

The Lenz-Ising model is arguably the most studied model in theoretical
physics. Though solved completely in one dimension [15] and for the special
case without an external field in two dimensions [28], the three dimensional
case has so far defied all attempts at an exact solution. Most studies have
been devoted to the free energy, or rather, its derivatives with respect to
either the temperature or the field. Series expansions and Monte Carlo
studies in combination with finite-size scaling techniques have been quite
successful methods for pinpointing the critical temperature or the critical
exponents. This then has provided us with good knowledge of how the
magnetisation cumulants, such as the susceptibility, scale with system size.
There are also good estimates of shape parameters of the magnetisation
distribution. One of these, the Binder ratio [5], gives us a measure of the
kurtosis, or peakedness, of the distribution. However, less attention has
been paid to the underlying magnetisation distribution. In this paper we
focus on this distribution with the hope that our investigation may provide
a new lead on the exact solution of the Ising model. We will take a very
general perspective at first and only later concentrate on the distribution
for the standard lattice systems.

Choose a graph, e.g. a square lattice, on n vertices and compute its Ising
partition function Z, keeping track of its terms according to their magneti-
sation, so that Z = Z0+Z1+ · · ·+Zn. The quotient Zk/Z is the probability
of having k negative spins, or magnetisation M = n − 2 k. The controlling
parameter of the partition function is the temperature, that is, for any given
temperature the partition function provides us with a distribution of mag-
netisations. At infinite temperature this is simply the binomial distribution.
At zero temperature, on the other hand, we receive a distribution with two
peaks, one at k = 0 and one at k = n, both with 50% of the probability mass.
The distribution is always symmetrical. What happens between these two
extreme temperatures? Though there are exceptions to the rule, for most
graphs the distribution begins its life at high temperatures as a unimodal
distribution with the peak at the middle k = n/2. As we lower the temper-
ature the distribution gets increasingly wider until we reach a temperature
where the distribution changes from unimodal to bimodal. Near this tem-
perature, slightly above and slightly below, the distribution is particularly
wide. Lowering the temperature even further the distribution develops two
sharp peaks, both essentially gaussian [25], and these peaks move outwards.

Early studies of the magnetisation distribution include [7] and [5]. Dis-
tribution moment ratios were studied in for example [31] for 2-dimensional
lattices. In [26] the distribution was used to estimate the critical tempera-
ture of the model and in [16] they studied the effects of anisotropy on the
distribution for the 3D-lattice. In the 5-dimensional case renormalisation
group techniques have been used to give expressions for the distribution, see
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[6] and [27]. We should also mention [12] and [14] which include studies of
the magnetisation distribution for the 2-dimensional and 3-dimensional case
respectively. The distribution has also been studied for higher spins in two
dimensions, see [29]. Even for 1-dimensional lattices, for which the scenario
described above does not hold, the distribution is complex enough to merit
interest, see [11]. The magnetisation distribution was recently studied for a
quantum model in [21].

Since the magnetisation distribution is binomial at infinite temperature,
is it then possible to describe this distribution at all temperatures with
a generalisation of the binomial distribution? The study of q-series and
q-analogs of the classical special functions has popped up in such diverse
quarters as Lie algebras, statistical mechanics, trancendental number theory
and computer algebra [2]. We, in this article, try to model the distributions
using p, q-binomial coefficients. In one case, the complete graph, they model
exactly the distributions and for d-dimensional lattices the dimension seems
to determine how well they fit to the Ising distributions. Especially in the
case of d = 1 and d = 5 the Ising distributions are particularly well-fitted
by the p, q-binomial coefficients.

These coefficients, controlled by only two parameters once the size of
the system is set, constitute a very flexible family of distributions with a
clear relationship to the Ising distribution under very general settings. It
would of course be very beneficial to our understanding of the Ising model
if we knew how close this relationship is. As it turns out, the p, q-binomial
distribution, interesting enough in itself to merit a study, can be analysed
theoretically in a way the Ising distribution so far has resisted. We believe
this study will provide ample evidence of their belonging to the same family
of distributions.

The problem now turns into that of determining how the parameters
p, q depend on the temperature. We estimate this dependence for very high
temperatures for d = 1. For d > 1 we give theory-based predictions of how
the parameters should depend on n near Tc to receive the correct finite-
size scaling of the moments. This prediction even includes the logarithmic
correction of the susceptibility for d = 4, in agreement with renormalisation
group predictions.

The paper begins in section 2 by providing the basic definitions, such
as the q-Pochhammer symbol, q-binomial coefficients and finally the p, q-
binomial coefficients. Some results on their properties are also stated, in-
tended to give the reader a feel for how p, q-binomials behave. In section 3
we define the p, q-binomial distribution and give an algorithm for finding
values of p and q when the distribution is given as input. The problem is to
determine an optimal choice for p and q. As it turns out we only have to
focus on the value of the probability and the location of the distribution’s
peaks, at least for a bimodal distribution. The unimodal distribution always
has its peak at the middle so in this case we instead take the quotient be-
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tween the two middle probabilities as controlling parameter. This quotient
is unfortunately rather sensitive to noise, making it difficult to determine
the parameters p and q for sampled data.

In section 4 we provide some useful tools for working with p, q-binomial
coefficients. After this we are, at long last, ready to give some general
results on the distribution of p, q-binomial coefficients in section 5. Using the
parameterization p = 1 + y/n and q = 1 + z/n we find the asymptotic value
of y, given z, where the distribution is flat in the middle. We also allow for
a small change in y, using a higher order parameter a, so that we can follow
properly how the distribution changes from unimodal to bimodal. However,
the computations that we rely on involve some rather complicated series
expansions that were made using Mathematica. These are much too long to
fit into this paper. We have prepared a simplified Mathematica notebook
that performs all the necessary computations. The interested reader can
obtain it by contacting the first author.

In section 6 we give exact scaling formulae for the moments of the dis-
tributions depending on the parameters a and z. For a given moment of
these distributions we always obtain the same exponent on n, regardless of
a and z. In section 7 we try to remedy this by letting the previously fixed
parameter z depend ever so slightly (at most logarithmically) on n. We can
now adjust the exponent of n though this comes at the cost of an extremely
slow convergence.

Section 8 defines the Ising model, laying the ground for studying dis-
tributions of magnetisations, the intended application of our endeavour.
In section 9 we apply our tools to the d-dimensional lattice graphs for
d = 1, 2, 3, 4, 5 fitting p, q-distributions to simulated distributions and com-
paring them. With statistical certainty we find that at least for d = 4, 5 the
magnetisation distribution is correctly modelled by a p, q-binomial distribu-
tion.

The Appendix A gives detailed results for the special case when p =
q. This case corresponds exactly to the complete graph and is the only
case where we can give asymptotically exact expressions for the sum of the
coefficients.

A condensed reading, more suitable to the reader who is pressed for
time, should include a look at (1), (5), (10), (11), (12), (28), (29), (30) for
the necessary definitions and results concerning the basics. After that, the
most important results are stated in equations (39), (45), (68), (79) and
(82). After looking up the basic definitions regarding the Ising model the
reader can skip to (91). In Section 9 the reader can now pick and choose his
favourite lattice and look at the pictures.
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2 Definitions, notations, the very basics

The q-binomial coefficient

[

n

k

]

q

=
k
∏

i=1

1− qn−i+1

1− qi
, q 6= 1, 0 ≤ k ≤ n (1)

is a natural extension of the standard binomial coefficient. Note that (1)
can be viewed as a formal polynomial in q of degree k (n − k) where the
coefficient of qj counts the number of k-subsets of {1, . . . , n} with element
sum j + k (k + 1)/2. It is thus easy to see that

lim
q→1

[

n

k

]

q

=

(

n

k

)

(2)

The Pochhammer symbol (a)n, or shifted factorial, also has a q-deformed
relative, the q-Pochhammer symbol, defined as

(a; q)n =

n−1
∏

i=0

(

1− a qi
)

, n ≥ 0 (3)

The q-binomial coefficient can be expressed as

[

n

k

]

q

=
(q; q)n

(q; q)k (q; q)n−k

=

(

qn−k+1; q
)

k

(q; q)k
(4)

The q-binomials and the q-Pochhammer function have many interesting
properties and we point the interested reader to the book [3] and especially
the charming little book [2].

The p, q-binomial coefficient was defined in [10] as

[

n

k

]

p,q

=
k
∏

i=1

pn−i+1 − qn−i+1

pi − qi
, p 6= q, 0 ≤ k ≤ n (5)

Clearly, in the case p = 1 this reduces to a q-binomial coefficient. Also, note
that p and q are interchangable and that the coefficient takes the same value
at k and n− k. It is an easy exercise to show the following identity and we
leave this to the reader.

[

n

k

]

p,q

= pk (n−k)

[

n

k

]

q/p

= qk (n−k)

[

n

k

]

p/q

(6)

Combining (6) with (2) we let the p, q-binomial coefficient be defined for
p = q as

[

n

k

]

q,q

= qk (n−k)

(

n

k

)

(7)
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An identity involving q-binomial coefficients can be extended to a p, q-

binomial identity by first replacing q with q/p and then using the identity
(6). As an example we consider the q-Vandermonde identity, see e.g. [10],
which can be stated as

[

m + n

k

]

q

=
k
∑

ℓ=0

[

m

k − ℓ

]

q

[

n

ℓ

]

q

qℓ (m−k+ℓ) (8)

and is an extension of the Chu-Vandermonde identity for binomial coeffi-
cients. Using (6) above we can now obtain a p, q-analog of this.

Theorem 2.1.

[

m + n

k

]

p,q

=
k
∑

ℓ=0

[

m

k − ℓ

]

p,q

[

n

ℓ

]

p,q

p(n−ℓ) (k−ℓ) qℓ (m−k+ℓ) (9)

Proof. In the q-Vandermonde identity (8), replace q with q/p and multiply
both sides with pk (m+n−k). Using (6) the left hand side is now a pure p, q-
binomial coefficient. The ℓth term of the right hand side becomes

[

m

k − ℓ

]

q/p

[

n

ℓ

]

q/p

pk (m+n−k) (q/p)ℓ (m−k+ℓ) =

p(k−ℓ) (m−(k−ℓ))

[

m

k − ℓ

]

q/p

pℓ (n−ℓ)

[

n

ℓ

]

q/p

p(n−ℓ) (k−ℓ) qℓ (m−k+ℓ) =

[

m

k − ℓ

]

p,q

[

n

ℓ

]

p,q

p(n−ℓ) (k−ℓ) qℓ (m−k+ℓ)

and the theorem follows.

The q-binomial coefficients have been shown to form a log-concave (and
thus unimodal) sequence for q ≥ 0, see e.g. [8] and [19]. However, for
the p, q-binomial coefficients this does not always hold. Rewriting them as a
product like in (6) we have in fact a product of two sequences; that of pk (n−k)

and

[

n

k

]

q/p

for k = 0, . . . , n. The first sequence is log-concave for p ≥ 1 and

log-convex for p ≤ 1. It is well-known that the element-wise product of two
log-concave positive sequences is also log-concave. So, if p ≥ 1 and q ≥ 0
then the sequence of p, q-binomial coefficients is log-concave.

We conjecture that for p, q > 0 the sequence can be either unimodal,
with the maximum at k = ⌊n/2⌋, or bimodal, with the maxima at k and
n − k for some 0 ≤ k ≤ n/2, but not trimodal etc. We will assume this to
be true in this paper but a formal proof is still lacking. It is, however, fairly
easy to show in the special case p = q. Note that if we allow negative values
of p the sequence can have a local maximum at every alternate index k.

6
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We write f(n) ∼ g(n) to denote that f(n)/g(n) → 1 as n → ∞. Anal-

ogously f(n) ∝ g(n) denotes that f(n)/g(n) → A, for some non-zero real
number A, as n → ∞. Also, henceforth we will assume that n is even to
simplify some calculations.

3 The p, q-binomial distribution

Now we are ready to introduce the notation

Ψp,q (n) =
n
∑

k=0

[

n

k

]

p,q

(10)

and define the p, q-binomial probability function

Pp,q (n, k) =

[

n

k

]

p,q

Ψp,q (n)
(11)

The reader should here observe that the sum of the coefficients has, to the
best of our knowledge, no simpler expression in the general case. Neither do
the sum of the q-binomial coefficients have a simpler expression that we are
aware of. Compare this with the case of the standard binomial coefficients
for which the sum is simply 2n.

Having made our assumption of unimodality/bimodality we can now set
up a simple computational scheme to find values of p given q. First we need
to define a highly useful quantity; the ratio between two coefficients

Rp,q (n, k, ℓ) =

[

n

k − ℓ

]

p,q
[

n

k

]

p,q

(12)

In the special case when ℓ = 1 we are looking at two consecutive coefficients.
The ratio then becomes

Rp,q (n, k, 1) =
pk − qk

pn−k+1 − qn−k+1
=

p−(n−2k+1) 1− (q/p)k

1− (q/p)n−k+1
= q−(n−2 k+1) 1− (p/q)k

1− (p/q)n−k+1

(13)

Due to symmetry we assume now that 1 ≤ k ≤ n/2. Given q and a ratio
r = R (n, k, 1) we wish to find the p, assumed to be larger than q, such that
p and q satisfies (13). This is done through the iteration scheme

p←
(

qk − r qn−k+1 + r pn−k+1
)1/k

(14)

7
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which is obtained from setting (13) to r. Choosing e.g. p = 1, or a number
slightly larger than q, as start value works well for all practical purposes.
To prove that this iteration scheme actually converges one would have to
show that the derivative with respect to p is at most 1 using the start value.
We give no such proof but will leave it at that and just claim that this is a
practical method.

Given a p, q-binomial distribution, or any distribution that we wish to
approximate by a p, q-binomial distribution, can we find the pair p, q > 0
that generated it such that the distribution of p, q-binomial coefficients have
the correct probability and ratio r at coefficient k? A simple bisection pro-
cedure solves this problem practically under the assumption p > q. Suppose
the input distribution has the probabilitites P (0) , P (1) . . . , P (n). Let k,
P (k), r = P (k − 1) /P (k) and an ǫ be given as input parameters.

Algorithm p, q-Find

1. Assign qmin ← 0 and qmax ←
(

k
r (n−k+1)

)
1

n−2 k+1
.

2. Assign q ← (qmin + qmax)/2

3. Compute p using (14).

4. Compute Pp,q (n, k) using (11).

5. If Pp,q (n, k) < P (k) then qmin ← q, otherwise qmax ← q.

6. If qmax − qmin < ǫ then exit loop, otherwise jump to step 2.

The initial value of qmax in step 1 is due to that the ratio r is bounded
by

0 < r < q−(n−2 k+1) k

n− k + 1
(15)

which is a consequence of

0 <
1− xk

1− xn−k+1
<

k

n− k + 1
(16)

for x > 1 and 1 ≤ k ≤ n/2.
The p, q-Find procedure seems to work best when P (k) is one of the

maximum probabilities. However, if the distribution is unimodal so that the
maximum probability is at k = n/2, then the scheme will depend heavily
on the quality of r. On the other hand, if the distribution is bimodal then
this problem goes away and we may simply set r = 1, unless n is too small.
It is implied here, though we do not have a proof, that increasing q while
keeping k and r fixed also increases the probability Pp,q (n, k). It actually
increases until p = q which then constitutes an interesting limit case, which
we will deal with in the appendix A.

8

Page 8 of 47

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
4 q-Pochhammer bounds

In this section we set up bounds for the q-Pochhammer function and use
them for giving bounds of quotients between q-binomial coefficients. Basi-
cally we mimic the upper bound in [18] and [17] but we extend it to obtain
a lower bound as well. They are very useful bounds so we will do this in
some detail though everything is based on standard elementary methods.
First we need the integral estimate of a sum. Let f(x) be a continuous,
positive, decreasing function on the interval m ≤ x ≤ n + 1 where m and n
are integers. Then

n+1
∫

m

f(x) dx ≤
n
∑

k=m

f(k) ≤ f(m) +

n
∫

m

f(x) dx (17)

Recall that the dilogarithm is defined as

Li (x) =
∞
∑

n=1

xn

n2
= −

x
∫

0

log(1− t)

t
dt (18)

Now let 0 < a < 1 and 0 < q < 1 and note that

− log (a; q)n =

n−1
∑

k=0

− log
(

1− a qk
)

(19)

Note also that − log (1− a qx) is a positive and decreasing function for x ≥ 0.
Take the series expansion

− log(1− x) =

∞
∑

k=1

xk

k
(20)

so that

− log(1− a qx) =

∞
∑

k=1

(a qx)k

k
(21)

Integration gives

u
∫

0

− log(1− a qx) dx =
∞
∑

k=1

u
∫

0

(a qx)k

k
dx =

∞
∑

k=1

ak

k

[

qk x

k log q

]u

0

= (22)

1

log q

( ∞
∑

k=1

(a qu)k

k2
−

∞
∑

k=1

ak

k2

)

=
Li (a qu)− Li (a)

log q
(23)

Together with the integral estimates above we have

Li (a qn)− Li (a)

log q
≤ − log (a; q)n ≤ − log(1− a) +

Li (a qn−1)− Li (a)

log q
(24)
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Reversing the signs and taking exponentials we finally obtain

(a; q)n ≥ (1− a) exp

(

Li (a)− Li (a qn−1)

log q

)

(25)

(a; q)n ≤ exp

(

Li (a)− Li (a qn)

log q

)

(26)

Now we turn to the q-binomial coefficients. Let 0 ≤ ℓ ≤ k ≤ n/2 and use
(4) to note that

Rq (n, k, ℓ) =

(

qk−ℓ+1; q
)

ℓ

(qn−k+1; q)ℓ
(27)

Using the bounds for the q-Pochhammer function we can now bound the
ratio. For the upper bound of the ratio we take the quotient of the upper
bound and the lower bound. The ratio Rq (n, k, ℓ) then has the upper and
lower bounds

Rq (n, k, ℓ) ≤
exp

(

Li(qk−ℓ+1)+Li(qn−k+ℓ)−Li(qk+1)−Li(qn−k+1)
log q

)

1− qn−k+1
(28)

Rq (n, k, ℓ) ≥
(

1− qk−ℓ+1
)

exp

(

Li(qk−ℓ+1)+Li(qn−k+ℓ+1)−Li(qk)−Li(qn−k+1)
log q

)

(29)
Using (6) we can now obtain bounds for the quotients of p, q-binomial coef-
ficients. Note simply that

Rp,q (n, k, ℓ) =
Rq/p (n, k, ℓ)

pℓ (n−2 k+ℓ)
(30)

and use the bounds from (28) and (29).

5 Controlling the p, q-binomial distribution

Choosing a k for a given n such that Rp,q (n, k, 1) = 1 defines a set of pairs
p, q; an isocurve. If we choose a value of q, then what value should p have
to result in a distribution of coefficients which has a peak at k (and n− k),
i.e. with Rp,q (n, k, 1) = 1? The iterative method (14) above produces the
correct p for any given q but reveals no information on p. To obtain this we
need to parameterize q properly and one way to do this is to set q = 1+ z/n
for some z ≤ 0. This parameterization was also used in [18] and [17] for
computing upper bounds on q-binomial coefficients.
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5.1 Wide and flat distributions

Let us begin with the particular distribution which has its peak in the mid-
dle, i.e. k = n/2. Due to symmetry we are interested only in the case p > q.
Recall that in the special case p = q the distribution has its peak at n/2
when

q =
n

n + 2
= 1− 2

n
+

4

n2
− 8

n3
+ · · · (31)

which would correspond to z = −2. Assuming that p has the expansion

p = 1 +
y1

n
+

y2

n2
+ · · · (32)

we shall now determine y1, y2, . . .. According to (13), Rp,q (n, n/2, 1) = 1 is
equivalent to

pn/2+1 − pn/2 = qn/2+1 − qn/2 (33)

Setting p = 1 + y1/n + y2/n
2 + · · · and q = 1 + z/n and performing a series

expansion using (126), we find the right hand side to be

z ez/2

n
− z3 ez/2

4n2
+

z4 (3 z + 16) ez/2

96n3
+ · · · (34)

and the first two terms of the left hand side are

y1 ey1/2

n
−
(

y3
1 − 4 y2 − 2 y1 y2

)

ey1/2

4n2
+ · · · (35)

We solve this term by term. The first equation

y1 ey1/2 = z ez/2 (36)

has the solution y1 = 2w where

w = W
(z

2
ez/2

)

(37)

Here s = W (x) is the Lambert function solving s es = x. Note that for
z ≥ −2 we have y1 = z but this is not the case for z < −2 where we have
y1 > z. It is easy to solve the corresponding equations for y2, y3, . . . but
for the case in hand we actually only need y1. We will henceforth drop the
subscript and refer to it as simply y.

What shape does the distribution have at this particular p and q? What
we are seeking is an expression for Rp,q (n, n/2, ℓ) and this is where we start
using (28), (29) and (30). We define ℓ = xn3/4, just as we did in the case
of p = q. Let also

q

p
=

1 + z
n

1 + 2 w
n + · · · = 1 +

z − 2w

n
+ · · · (38)
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where w is defined as in (37). We are now ready to compute the limits of
the upper and lower bound of (30) by using (28) and (29). It turns out that
the limits of these bounds coincide and we receive

Rp,q

(

n, n/2, x n3/4
)

∼ exp

(

w z (2w + z)x4

6

)

(39)

Note that the special case z = −2 corresponds to p = q and gives the co-
efficient −4/3 of x4. The calculations were performed with Mathematica
and are much to unwieldy to fit in this paper. We have prepared a Math-
ematica notebook that performs the calculations step by step, using some
practical transformation rules. What we compute is actually the limit of
the logarithm of the upper and lower bound. The steps are as follows; com-
pute series expansions of the different powers of q/p, use them inside the
dilogarithms and then compute their series expansions, add the dilogarithms
and the series expansions of the logarithms of the remaining factors. Some
transformations of this expression helps Mathematica to take the limit that
gives the result.

Figure 1 demonstrates how the asymptotic ratio is achieved with increas-
ing n. It shows Rp,q

(

n, n/2, x n3/4
)

for z = −9 at y = 2w = −0.10539 . . .

and the asymptotic ratio is given by (39), that is, e−0.719718 x4
. The red

curve is the asymptote and the blue curves are for finite n where the curves
for larger n are closer to the asymptote.

Using (4) in combination with exactly the same technique as above we
can also determine the growth rate of the middle coefficient. With r = q/p
we have

[

n

n/2

]

p,q

= pn2/4

(

rn/2+1; r
)

n/2

(r; r)n/2

(40)

and the q-Pochhammer bounds gives the growth base

θ(z) = lim
n→∞

log

[

n

n/2

]

p,q

n
=

π2 + 6w2 − 3w z + 12Li (−2 w/z)

12w − 6 z
(41)

Note that when z → −2− then θ(z) → −1/2 + log 2, corresponding to the
case p = q in lemma A.2. With a slightly improved form of the integral
estimate (17) we can also show that

[

n

n/2

]

p,q

∝ exp (n θ(z))√
n

(42)

Compare this with lemma A.2 where the exact order is given. However, in
the manner of the proof of theorem A.4 we can determine the sum

Ψp,q (n) ∝ n1/4 exp (n θ(z)) (43)
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Figure 1: (Colour online) Rp,q

(

n, n/2, x n3/4
)

(blue curves) versus x at
z = −9 and y = 2w = −0.105391 for n = 26, 28, 210 and 212. The red curve
is the asymptote e−0.719718 x4

.

5.2 Wide and double-peaked distributions

Changing p only slightly, say on the order of 1/n3/2, allows us to move
around in the region where the distribution is wide. With a proper choice of
the coefficient of 1/n3/2 we can get a nice ratio expression. Let q = 1 + z/n
and

p = 1 +
2w

n
+

aw
(

z2 − 4w2
)

3 (1 + w)n3/2
(44)

and the end result is

Rp,q

(

n, n/2, x n3/4
)

∼ exp

(

w z (2w + z)

6

(

x4 − 2 ax2
)

)

(45)

This puts the maximum at x = ±√a for a > 0 and at x = 0 for a ≤ 0.
Figure 2 works like figure 1 but here with the parameter a set to 1.

It shows Rp,q

(

n, n/2, x n3/4
)

for z = −9 with p = 1 − 0.105391/n −
1.50171/n3/2 and the asymptotic ratio is given by (45), that is, e−0.719718 (x4−2 x2).
The red curve is the asymptote and the blue curves are for finite n where
the larger n are closer to the asymptote. Had we set a < 0 the distributions
would still be wide but with a single peak in the middle.
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Figure 2: (Colour online) Rp,q

(

n, n/2, x n3/4
)

(blue curves) versus x at

z = −9 and a = 1 so that q = 1−9/n and p = 1−0.105391/n−1.50171/n3/2

for n = 26, 28, 210, 212 and 214. The red curve is the asymptote
e−0.719718 (x4−2 x2).

5.3 Peakish distributions

If we instead choose a middle ratio of 1 + a/n then we receive a sharply
peaked distribution. Say that we want

Rp,q (n, n/2, 1) =
pn/2 − qn/2

pn/2+1 − qn/2+1
= 1 +

a

n
(46)

for p = 1 + y1/n + · · · and q = 1 + z/n as before. Note that a = −2
corresponds to a binomial distribution, so we are usually interested in the
case −2 < a < 0. After expanding the equation we receive as before, from
the first term of the left and right hand side, the equation

(a + y1) ey1/2 = (a + z) ez/2 (47)

which has the solution y1 = 2w − a where

w = W

(

a + z

2
e(a+z)/2

)

(48)

This gives a distribution with a width of the order
√

n. Computing the limit
ratio gives us

Rp,q

(

n, n/2, x
√

n
)

∼ ea x2
(49)
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thus giving us an essentially gaussian distribution. Note that it does not
depend on z in its current form. Of course, we expect other terms to depend
on z but these vanish when n→∞.

The growth base θ(z) of the middle coefficient can be determined to

θ(z) =
(2π2 + 3 (a− 2w) (a + z − 2w) + 24Li

(

−2 w
a+z

)

12 (2w − a− z)
(50)

as we did before in equation (41). More precisely the coefficient is

[

n

n/2

]

p,q

∝ exp (n θ(z))√
n

(51)

and analogous to theorem A.10 this gives the sum

Ψp,q (n) ∝ exp (n θ(z)) (52)

5.4 Two separate peaks

Suppose that we want the peaks located outside the middle. Defining k =
n
2 (1 + µ) for 0 < |µ| < 1 means that we move the peaks out from the
middle. We keep q = 1 + z/n and p = 1 + y1/n + y2/n

2 + · · · and solve
Rp,q (n, k, 1) = 1, i.e.

pn−k+1 − pk = qn−k+1 − qk (53)

With k = n
2 (1 + µ) we use (126) on both sides and find the equation

ey1/2 sinh
µ y1

2
= ez/2 sinh

µ z

2
(54)

At this point it would be appropriate to define the function s = Ωµ (x), for
0 < µ < 1, as the maximum solution to the equation

x = es sinh (s µ) (55)

Note here that the function ex sinh(µ x) has a minimum at (− atanh µ)/µ
for 0 < µ < 1 and, due to symmetry, a maximum at the same point for
−1 < µ < 0. The function Ω returns a value in the interval

−atanh µ

µ
< s < 0 (56)

The solution sought in our equation is thus y1 = 2w where

w = Ωµ

(

ez/2 sinh
µ z

2

)

(57)
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We should mention that Ωµ (x) is a natural extension of W (x). In fact, if
we let w = W (x ex) then

Ωµ (ex sinhµ x) = w +
w (x2 − w2)

6 (1 + w)
µ2 + · · · (58)

giving a good approximation for small values of µ. Having computed p =
1 + y1/n we compute the upper and lower bounds of the ratio as before.
Unfortunately, the ratio has the rather ghastly expression

Rp,q

(

n,
n

2
(1 + µ), x

√
n
)

∼

exp

{

x2

2

(

2w + z − eµw+ µz
2

(

e2w − ez
)

(z − 2w)

−e2µw+w+ z
2 + eµw+2w+ µz

2 + eµw+ µz
2

+z − ew+µz+ z
2

)}

(59)

where w is defined by (57).
In figure 3 we show how the finite cases approach their asymptote for

µ = 1/3 and z = −9. This gives p = 1 − 0.153208/n and the asymptotic
ratio is given by (59), that is, e−0.103551 x2

. The red curve is the asymptote
and the blue curves are for finite n where the larger n are closer to the
asymptote.

The growth base θ(z) of the maximum coefficient is given by

θ(z) =
π2 + 3w (z − 2w) (µ2 − 1)

6 (z − 2w)
+

Li (ez−2 w)− Li (e(z−2 w) (1−µ)/2)− Li (e(z−2 w) (1+µ)/2)

z − 2w
(60)

The coefficient is then proportional to
[

n

n/2

]

p,q

∝ exp (n θ(z))√
n

(61)

and analogous to theorem A.14 this gives the sum

Ψp,q (n) ∝ exp (n θ(z)) (62)

6 Moments

Once we have the ratios (39), (45), (49), (59) it is an easy task to compute
moments of the distributions. Let us do this for the most interesting case
of (45). First, to make the notation somewhat simpler, denote φ = Φ(z) =
−w z (2w + z)/6, i.e. φ > 0, with w as in (37), so that

Rp,q

(

n, n/2, x n3/4
)

∼ e−φ (x4−2 a x2) (63)
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Figure 3: (Colour online)Rp,q (n, (n/2) (1 + µ), x
√

n) (blue curves) versus
x at µ = 1/3 and z = −9 so that q = 1 − 9/n and p = 1 − 0.153208/n for
n = 26, 28, 210, 212, 214 and 216. The red curve is the asymptote e−0.103551 x2

.

where a is defined by (44). We use the notation

σm =
〈
∣

∣

∣
k − n

2

∣

∣

∣

m〉

(64)

for the mth moment of the probability distribution of k = 0, . . . , n. Define
also

̺m =

+∞
∫

−∞

|x|m exp
(

−φ (x4 − 2 ax2)
)

dx, m ≥ 0 (65)

so that the mth moment becomes 〈|x|m〉 = ̺m/̺0. For m = 0 we have

̺0 =



















π
√

a
2 exp

(

φa2/2
) (

I1/4 (φ a2/2) + I−1/4 (φ a2/2)
)

, for a > 0
√
−a√
2

exp
(

φa2/2
)

K1/4 (φ a2/2) , for a < 0

Γ(1/4)

2 φ1/4 , for a = 0

(66)

so that

1 =

n/2
∑

k=−n/2

Pp,q (n, n/2 + k) ∼ n3/4
Pp,q (n, n/2) ̺0 (67)
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In general we have for m ≥ 0 that

σm =
〈
∣

∣

∣
k − n

2

∣

∣

∣

m〉

∼ n3 m/4 ̺m

̺0
(68)

where ̺m is given by


















φ−(m+1)/4

2

(

Γ(m+1
4

) 1F1(m+1
4

, 1
2
, φ a2) + 2 a

√
φΓ(m+3

4
) 1F1(m+3

4
, 3

2
, φ a2)

)

, a > 0

φ−(m+1)/4

2(m+1)/2 Γ(m+1
2

) U(m+1
4

, 1
2
, φ a2) , a < 0

φ−(m+1)/4

2 Γ(m+1
4

) , a = 0

(69)
Here 1F1(a, b, c) and U(a, b, c) denote the confluent hypergeometric functions
of the first and second kind respectively. If we want to compute cumulant
ratios we first need moment ratios which of course is easy now. For example,
in the case of a = 0 we have

σ4

σ2
2

∼ ̺0 ̺4

̺2
2

=
Γ(1/4)4

8π2
= 2.1884 . . . (70)

This moment ratio is also obtained in the 5-dimensional Ising model, see
e.g. [6].

7 Fine-tuning the exponents

Note (45) and, as before, keep Φ(z) = −w z (2w + z)/6 where w is defined
by (37). Recall that the first and second absolute moments obtained from
(69) for a = 0 are

σ1 ∼ n3/4 ̺1

̺0
= n3/4

√
π

Γ(1/4)

1

Φ(z)1/4
∝ n3/4

Φ(z)1/4
(71)

σ2 ∼ n3/2 ̺2

̺0
= n3/2 π

√
2

Γ(1/4)2
1

√

Φ(z)
∝ n3/2

√

Φ(z)
(72)

The argument z is allowed to depend on n but probably not to a high order.
At this point it is not clear how z may depend on n for the calculations
leading to (45) and Φ(z) to work. We will assume, for the moment (see the
end of this section), that the expressions for the moments of (69) are valid
when z = O (log n).

The series expansion of W (x) is

w = W (x) = x− x2 +
3x3

2
− 8x4

3
+ · · · (73)

With x = ez/2 z/2, and note that z is negative, we have

w = W (x) = W

(

z ez/2

2

)

=
z ez/2

2
− z2 ez

4
+

3 z3 e3 z/2

16
+ · · · (74)
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so that

Φ(z) =
−z w (2w + z)

6
= −z3 ez/2

12
− z3 ez

12
+

z4 ez

24
+ · · · (75)

Set z = λ0 + λ1 log n + λ2 log log n + λ3 log log log n with λ1, λ2 ≤ 0 and
focus on the first term of (75).

Φ(z) ∼ −1

12
(λ0 + λ1 log n + λ2 log log n + λ3 log log log n)3

eλ0/2 nλ1/2 logλ2/2 n (log log n)λ3/2 (76)

We are interested in two special cases. First choose λ1 < 0, λ2 = −6 and
λ3 = 0. This gives

Φ(z) ∼ (−λ1)
3

12
eλ0/2 nλ1/2 (77)

Combining this with (71) we receive

σ1 ∼
31/4
√

2π

Γ(1/4)

n3/4−λ1/8

(−λ1)3/4 eλ0/8
(78)

and

σ2 ∼
2
√

6 π

Γ(1/4)2
n3/2−λ1/4

(−λ1)3/2 eλ0/4
(79)

Had we let λ2 = 0, instead of λ2 = −6, then we would have ended up with
a factor log3/4 n in the denominator of (78) and a factor log3/2 n in the
denominator of (79). For the second case we choose λ1 = 0, λ2 < 0 and
λ3 = −6. We get

Φ(z) ∼ (−λ2)
3

12
eλ0/2 logλ2/2 n (80)

This together with (71) gives us

σ1 ∼
31/4
√

2π

Γ(1/4)

n3/4 log−λ2/8 n

(−λ2)3/4 eλ0/8
(81)

and

σ2 ∼
2
√

6π

Γ(1/4)2
n3/2 log−λ2/4 n

(−λ2)3/2 eλ0/4
(82)

These expressions obviously converge extremely slowly and are probably not
of any use for n that might occur in practical situations.

We have managed to verify (78) and (79) by using the method described
in section 5, again using Mathematica, only in the special case z = − log n,
i.e. λ1 = −1, λ0 = λ2 = λ3 = 0. We could then confirm that

Rp,q

(

n, n/2,
x n7/8

log3/4 n

)

∼ exp

(−x4

12

)

(83)
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Computing the moments of this distribution produces the same result as
setting λ1 = −1 and λ0 = λ2 = λ3 = 0 in (76) and then computing the
moments in the same the way we obtained (78) and (79). A more general
computation seems not to be within reach with our current set of tools
though. To conclude this section we note that the exponent of n in (83) is
3/4 − λ1/8. For this exponent to stay less than one we thus need λ1 > −2,
giving us a bound on z.

8 The Ising model

A state τ on a graph G is a function from the set of vertices to {±1}. There
are thus 2n states for a graph on n vertices. We define the energy of a
state as E(τ) =

∑

ij τiτj where the sum is taken over all edges ij of G.
The magnetisation is defined as M(τ) =

∑

i τi with the sum taken over all
vertices i of G. Note that −n ≤ M ≤ n and it only takes every alternate
value, i.e. M ∈ {−n,−n+2,−n+4, . . . , n− 4, n− 2, n}. We will often need
to refer to it in terms of how many negative spins the state has. If k spins
are negative then M = n− 2 k.

The partition function of the Ising model is defined for any graph G as

Z(G; x, y) =
∑

τ

xE(τ) yM(τ) =
∑

E,M

a(E,M)xE yM (84)

The coefficients a(E,M) then are defined as the number of states with energy
E and magnetisation M . Denote the number of states at energy E by
a(E) =

∑

M a(E,M). Note that the number of states at magnetisation M
is just

(

n
k

)

, where k = (n −M)/2 is the number of negative spins. Let also
Zk denote the terms of Z with magnetisation M = n− 2 k for a graph on n
vertices, so that Z = Z0 + Z2 + · · ·+ Zn, i.e. Zk are the terms corresponding
to k negative spins.

If we evaluate the partition function in x = eK and y = eH with K the
dimensionless coupling, or inverse temperature J/kBT , and H = h/kBT as
the dimensionless external magnetic field, we obtain the physical partition
function denoted Z = Z(G; K, H) = Z(G; eK , eH), though we are usually
interested only in the case when H = 0 (or y = 1). Analogously, we write
Z = Z0 + · · ·+Zn. The dimensionless and normalised free energy is defined
as F = (logZ) /n. From the derivatives of the free energy we can now
obtain other physical quantities such as the internal energy ∂F/∂K and the
specific heat ∂2F/∂K2 though we shall not be needing the latter for this
investigation.

We assume the Boltzmann distribution on the states so that (with H =
0) the probability for state τ is

P (τ) =
eK E(τ)

Z (85)
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We have then especially that the probability for energy E is

P (E) =
a(E) eK E

Z (86)

and the probability for magnetisation M is

P (M) =
1

Z
∑

E

a(E,M) eK E =
Zk

Z (87)

where M = n− 2 k.
Denote by K∗ the coupling where Zn/2−1 = Zn/2 = Zn/2+1. This cou-

pling will correspond to the relation Rp,q (n, n/2, 1) = 1 for some choice of
p, q. We define the (spontaneous) normalised magnetisation µ̄ = 〈|M |〉 /n
and the (spontaneous) susceptibility χ̄ = Var (|M |) /n =

(

〈

M2
〉

− 〈|M |〉2
)

/n.

The pure susceptibility is simply χ = Var (M) /n =
〈

M2
〉

= 4σ2/n. Since
M = n−2 k we thus have µ̄ = 2σ1/n and χ̄ = 4 (σ2−σ2

1)/n. Recall the tradi-
tional finite-size scaling laws which claim that in the critical region, i.e. near
Kc, µ̄ ∝ L−β/ν and χ̄ ∝ Lγ/ν . Being near Kc means that |K −Kc| ∝ L−1/ν

and we especially expect K∗ to belong to this region. Though the high-
and low-temperature exponents may or may not be equal for three dimen-
sions, see [14] for an in-depth numerical investigation of this matter, the
details of these exponents are not important for our present investigation.
What matters is that there are exponents that guide the growth of e.g. the
susceptibility near Kc.

8.1 The complete graph

For a complete graph, denoted Kn on n vertices and
(n
2

)

edges the partition
function is easy to compute. Suppose k of the vertices are assigned spin −1
and the other n−k have spin +1. The magnetisation is obviously M = n−2 k
and the energy is

E =

(

k

2

)

+

(

n− k

2

)

− k (n− k) =

(

n

2

)

− 2 k (n− k) (88)

The partition function is then

Z(Kn; x, y) = x(n
2) yn

n
∑

k=0

(

n

k

) (

1

x2

)k (n−k) ( 1

y2

)k

(89)

and with y = 1 we have

Z(Kn; x, 1) = x(n
2)

n
∑

k=0

[

n

k

]

q,q

= x(n
2) Ψq,q (n) (90)
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where q = 1/x2. Thus we have

Z(Kn; K, 0) = exp

{

K

(

n

2

)}

Ψq,q (n) (91)

where q = exp(−2K). Obviously we have

P (M = n− 2 k) = Pq,q (n, k) (92)

Since we have defined the critical temperature as the K = K∗ where the
middle ratio is 1, i.e. P (M = −2) = P (M = 0) = P (M = +2) then this
corresponds to the point where Rq,q (n, n/2, 1) = 1, which takes place at
q = n/(n + 2), see lemma A.1. Thus K∗ = 1

2 log
(

1 + 2
n

)

for Kn.
In short, the partition function and the magnetisation distribution for

Kn can be expressed in terms of p, q-binomial coefficients. Does this hold for
all graphs? No. In fact, it seems to only be true for Kn. However, it does
seem to hold asymptotically as the order of the graphs increase, for some
interesting families of graphs. The precise formulation of such a statement
remains and falls outside this paper.

8.2 The average graph

Let us compute the sum of all partition functions taken over all graphs on
n vertices.

Z̄n(x, y) =
∑

G⊆Kn

Z(G; x, y) = (93)

n
∑

i=0

(

n

i

)

yn−2 i

(i
2)
∑

j=0

(
(i
2

)

j

)

xj

(n−i
2 )
∑

k=0

(
(n−i

2

)

k

)

xk

i (n−i)
∑

ℓ=0

(

i (n − i)

ℓ

)

x−ℓ = (94)

n
∑

i=0

(

n

i

)

yn−2 i (1 + x)(
i
2) (1 + x)(

n−i
2 )
(

1 +
1

x

)(i (n−i)
2 )

= (95)

(1 + x)(
n
2) yn

n
∑

i=0

(

n

i

) (

1

y2

)i ( 1

x

)i (n−i)

(96)

and for y = 1 we have

Z̄n(x, 1) = (1 + x)(
n
2)

n
∑

i=0

(

n

i

) (

1

x

)i (n−i)

= (97)

(1 + x)(
n
2)

n
∑

i=0

[

n

i

]

q,q

= (1 + x)(
n
2) Ψq,q (n) (98)

where q = 1/x so that K∗ = log(1+2/n). Again we have P (M = n− 2 k) =
Pq,q (n, k). The mean magnetisation distribution can then be modelled by
p, q-binomial coefficients, though with p = q, just as for the complete graph.
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8.3 The complete bipartite graph

What about Ku,v, i.e. the complete bipartite graph on n = u + v vertices?
Now the partition function is

Z(Ku,v; x, y) = (99)
u
∑

i=0

v
∑

j=0

(

u

i

)(

v

j

)

yu+v−2 i−2 j xi j+(u−i) (v−j)−i (v−j)−j (u−i) = (100)

xu v yu+v
u
∑

i=0

v
∑

j=0

(

u

i

)(

v

j

) (

1

y2

)i+j ( 1

x2

)i (v−j)+j (u−i)

(101)

which for y = 1 gives us

Z(Ku,v; x, 1) = (102)

xu v
u
∑

i=0

v
∑

j=0

(

u

i

)(

v

j

) (

1

x2

)i (v−j)+j (u−i)

= (103)

u+v
∑

k=0

∑

ℓ

(

u

ℓ

)(

v

k − ℓ

)

x(u−2 ℓ) (v−2 (k−ℓ)) (104)

which defines the partial sums for y = 1 as

Zk =
∑

ℓ

(

u

ℓ

)(

v

k − ℓ

)

x(u−2 ℓ) (v−2 (k−ℓ)) (105)

Data suggests that

P (M = n− 2 k) =
Zk

Z ≈ Pp,q (n, k) (106)

given an appropriate choice of p and q and for a rather wide range of tem-
peratures. It does however not seem to hold if u differ from v. In the left
panel of figure 4 we show a sample of magnetisation distributions together
with fitted p, q-distributions for a K32,32. To find the appropriate p and q we
used the method described in the p, q-find algorithm in section 3. The fit is
excellent. The right panel of figure 4 shows y = n (p−1) versus z = n (q−1)
for a range of temperatures and for complete bipartite graphs of different
sizes. High temperatures are in the upper right corner and K = 0 gives
p = q = 1, i.e. y = z = 0. As the temperature decreases, i.e. with increas-
ing K, we move along the curves. The points are where the distribution is
exactly flat, i.e. the inverse temperature K∗ where the middle probabilities
are equal. We have no exact closed form expression for K∗ but one can
show that the series expansion of this inverse temperature for Kn/2,n/2, i.e.
a total of n vertices is

K∗ =
2

n
− 3

n2
+

11

3n3
− 101

24n4
+

3827

480n5
+ · · · (107)
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Figure 4: (Colour online) Left: magnetisation distributions for K32,32

(points) and fitted Pp,q (64, k) (lines) vs k − 32 for four different temper-
atures. Right: y = n (p − 1) versus z = n (q − 1) for Kn/2,n/2, with
n = 24, 32, 48, 64, 96, 128, 192 (downwards). Points represent K∗. Low tem-
peratures in lower left corner.

The calculations behind this are rather long and were done with Mathemat-
ica. Compare this with the expansion in the previous subsection for the com-
plete graph on n vertices, Kn, which begins K∗ = 1/n− 1/n2 +4/3n3 + · · · .
In the lower left corner the distribution has P (M = n) = P (M = n− 2), i.e.
at K = log n/n. The points in the right panel of figure 4 should approach
z = y = −2. One can show that the distribution of a balanced bipartite
graph Kn/2,n/2 has the shape

R
(

n, n/2, x n3/4
)

∼ exp

(

−4

3
x4

)

(108)

at K∗, just like the complete graph on n vertices. Since Φ(−2) = 4/3 we
then assume that z, and thus also y, will approach −2.

8.4 The free energy

If the magnetisation distribution were indeed an exact p, q-binomial distri-
bution then we could also express the free energy as

F(G;K) =
K m

n
+

log Ψp,q (n)

n
(109)

for a graph on n vertices and m edges and it is here implied that p and q
depend on K. Why this expression? Note that Z0 = a(m,n) eK m = eK m

and thus we have

Pp,q (n, 0) =

[

n

0

]

p,q

Ψp,q (n)
=

1

Ψp,q (n)
=
Z0

Z =
eK m

Z (110)

from which the result follows. Compare with (91) where this relation holds
exactly. Actually we expect (109) to be a good approximation for K near
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0, where the distributions are close to binomial, and for very high K where
all the probability mass is concentrated on the extreme magnetisations. In
the left plot of figure 5 we show the exactly computed free energy (red
curve) for a complete bipartite graph on 16 + 16 vertices together with
the p, q-approximation (109) (points). The fit is indeed very good for the
whole temperature range. Taking a derivative of the points with respect to
K produces a good approximation to the internal energy as the right plot
shows.

0.00 0.02 0.04 0.06 0.08 0.10
K

0.70

0.75

0.80

0.85

F

0.00 0.02 0.04 0.06 0.08 0.10
K0

1

2

3

4

5

6

¶F�¶K

Figure 5: (Colour online) Left: free energy (red curve) compared to the for-
mula (109) (points) for K16,16. Right: internal energy (red curve) compared
to the derivative of the points produced by (109) (points) for K16,16.

9 Lattices

The plots in figure 4 are very representative for several graphs of interest.
We intend to focus on the graphs that traditionally are studied in statistical
physics; lattice graphs. We will take a look at the simple lattices in 1, 2, 3,
4 and 5 dimensions. Just to be clear, a 1D-lattice is a cycle Cn on n vertices
and it is 2-regular, i.e. 2 neighbours for each vertex. The 2-dimensional
L × L-lattice is the cartesian product of two cycles on L vertices. The
product thus has n = L2 vertices and it is 4-regular. The d-dimensional
L × L × · · · × L-lattice is a product of d cycles on L vertices, thus having
a total of n = Ld vertices. It is obviously 2 d-regular. Assuming finite-size
scaling to hold then for a d-dimensional lattice we have

σ1 = n µ̄/2 ∝ n L−β/ν = n
(

n1/d
)−β/ν

= n1−β/d ν (111)

and correspondingly for the second moment

σ2 = n χ/4 ∝ n Lγ/ν = n
(

n1/d
)γ/ν

= n1+γ/d ν (112)

Note also that for an r-regular triangle-free graphs we have P (M = n) =
P (M = n− 2) when K = log n

2 r .
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9.1 1D-lattices

For 1D-lattices we can compute the coefficients a(E,M) exactly. It is an
exercise to show that the number of states with k negative spins and ℓ
negative spin products (over the edges) is

a(E,M) =

(

k

k − ℓ/2

)(

n− k − 1

n− k − ℓ/2

)

+

(

k − 1

k − ℓ/2

)(

n− k

n− k − ℓ/2

)

(113)

where M = n− 2 k and E = n− 2 ℓ. The distribution of magnetisations do
not behave in a way representative for lattices of higher dimension. However,
for extremely low temperatures the probabilities P (M = −n) = P (M = n)
will dominate the other probabilities. The two outermost probabilities,
P (M = n) and P (M = n− 2), are equal when K = log n

4 . For the 1D-lattice
the distribution is here sharply unimodal, while for higher dimensions the
distribution is bimodal and has its peaks at the extreme magnetisations.
For K larger than (log n)/4 the distribution actually has three peaks, i.e.
a local maximum at M = 0. For 1D-lattices the p, q-approximation of the
distribution thus breaks down beyond this K since it can not model a lo-
cal maximum in the middle as well as peaks at the ends; they are at most
bimodal. For K less than this point the p, q-distribution is a very good
approximation. Figure 6 demonstrates this clearly; for the flattest distri-
bution (low temperature) the fitted p, q-distribution starts to deviate from
the actual distribution. In figure 7 we plot y = n (p − 1) and z = n (q − 1)
versus K for a range of different n. Clearly there is some limit curve here,
though we have not established what the limit function is. In figure 8 we
see y = n (p−1) versus z = n (q−1) for different n. The right plot of figure 8
shows the value at K that gives the maximum value of y. The fitted straight
line gives the limit 0.1333, very close to 2/15. What about the values of y
and z? Indeed they converge beautifully as figure 9 indicates. The limit for
y is about 1.010 and z approaches a value of −3.537. Though we can not
exactly solve what y and z should be at K = 2/15 we can at least see how
y and z relate at this point. For an infinite 1-dimensional lattice we have
that χ = e2 K , see e.g. [4]. The second moment then should behave as

σ2 ∼
n χ

4
=

n e2 K

4
(114)

Let ℓ = k − n/2 and σ =
√

σ2. For high temperatures we expect ℓ/σ to be
normally distributed and thus

P (ℓ) ∼ exp
(

−(ℓ/σ)2/2
)

σ
√

2π
(115)

The probability ratio is then

R (n, n/2, ℓ) =
P (ℓ)

P (0)
= exp

(

−ℓ2/2σ2
)

(116)
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Figure 6: (Colour online) Magnetisation distributions for C32 (points) and
fitted Pp,q (n, k) (lines) vs k − n/2 for several temperatures.
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Figure 7: (Colour online) Left: y = n (p − 1) versus K for Cn. Right:
z = n (q − 1) versus K for Cn. Both plots are for n = 16, 32, 64, 128 (larger
cycles stretch farther to the right).

and for ℓ = 1 this simplifies to

R (n, n/2, 1) = exp
(

−1/2σ2
)

= exp
(

−2 e−2 K/n
)

∼ 1− 2 e−2 K

n
(117)

Compare this with (46). We thus have a = −2 e−2 K . Now y and z are
related as y = 2w − a where w is defined by (48). If we set K = 2/15 then
a = −1.531857, and choosing z = −3.537 indeed gives us y = 1.01002. To
actually solve z as a function of K seems harder though. However, numerical
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Figure 8: (Colour online) Left: y = n (p − 1) versus z = n (q − 1) for Cn,
with n = 8, 16, 32, 64, 128 with larger n extending farther to the left. Right:
K giving the maximum y vs 1/n for Cn, n = 8, 12, 16, 24, 32, 48, 64, 96,
128, 192, 256.
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Figure 9: (Colour online) Left: Maximum value of y = n (p− 1) versus 1/n
for Cn. Right: value of z (q−1) versus 1/n for Cn when y is at its maximum.
In both cases n = 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256.

experimentation suggests that y and z for small K behave as

y(K) ≈ c1

√
K + c2 K (118)

z(K) ≈ −c1

√
K + c2 K (119)

where c1 ≈ 6.164 and c2 ≈ −10.33.
If we compare the magnetisation distribution with the fitted p, q-binomial

distribution we will of course see some small deviations. Say that we choose
K = 1/4 and see how the two distributions differ with increasing n. For
n = 128 we show how the difference in probabilities look in the left plot of
Figure 10. We see a maximum which is located near ±1.5σ and a minimum
at ±3σ, where σ = eK √n/2 is the standard deviation. A simple scaling
projection gives that the value at these peaks decrease at an order of 1/n5/2.
Comparing the moments of the distributions we can detect no error at all,
up to numerical precision.

However, even though the difference in probabilities is small, and de-
creases quickly with n, this is not enough to get the free energy as an ap-
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proximation through (109), except for very small K. Recall here that the
asymptotic free energy for the 1D-lattice is given by F(K) = log (2 cosh K).

Let the p, q-approximation of the free energy, i.e. the right hand side of
(109), be denoted Fpq. For Cn we thus have Fpq = K + (log Ψp,q (n)) /n. If
the magnetisation distribution of Cn were perfectly fitted by a p, q-binomial
distribution then F = Fpq. In the right plot of Figure 10 we show the asymp-
totic difference F −Fpq versus K. This was obtained by fitting a second de-
gree polynomial to the difference versus 1/n for n = 256, 384, 512, 768, 1024
and taking the polynomial at x = 0, i.e. n =∞, as the asymptotic value.

-60 -40 -20 20 40 60
k-64

-2.*10
-7

-1.*10
-7

1.*10
-7

2.*10
-7

3.*10
-7

Ppq-P

0.2 0.4 0.6 0.8 1.0 1.2 1.4
K

0.02

0.04

0.06

Fpq-F

Figure 10: (Colour online) Left: The difference in probabilities vs k − n/2
between the fitted p, q-binomial distribution and the magnetisation distri-
bution for Cn at K = 1/4 for n = 128. Right: The asymptotic difference
Fpq −F versus K from scaling on n = 256, 384, 512, 768, 1024.

9.2 2D-lattices

For the 2-dimensional lattices we can rely on exact data only for up to L = 16
and they were computed according to the method in [12]. We have sampled
data for L = 32, 64, 128, 256, 512, collected with the methods described in
[13] and [24]. These methods gave us the energy distribution and then it
is just a matter of combining this with the distribution of magnetisations
for each given energy as described in [14]. Figure 11 shows an example of
some distributions for the 128 × 128-lattice together with their fitted p, q-
binomial distributions. The fit is fairly good, but hardly excellent near K∗.
However, as the figure shows, at K = 0.439 (i.e. for L = 128) the fit is
practically spot on. For the 2D-lattices we have studied there is always one
such temperature where the p, q-distribution fit particularly well. This point
is located between K∗ and Kc and is very close to, but not exactly equal to,
the point where the susceptibility is at its maximum.

Of course, for high temperatures (small K) and low temperatures (high
K) the fit is typically very good but in the high-temperature region the
measured y and z are unfortunately extremely sensitive to noise. As we
get closer to the critical region where the distribution becomes bimodal
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this problem goes away, even though the sampled distributions are more
noisy there. Regarding the free energy it is well-fitted by (109) for low
temperatures K > K∗ though less well for high temperatures K < K∗.

-6000 -4000 -2000 2000 4000 6000

0.00005

0.00010

0.00015

0.00020

0.00025

Figure 11: (Colour online) Magnetisation distributions for the 128 × 128-
lattice (red) together with fitted p, q-binomial distributions Pp,q (n, k) (blue)
vs k − n/2 at K = 0.432, K∗ = 0.43467, K = 0.437, K = 0.439 and
Kc = 0.44068 (downwards at y-axis).

The deviation of the fitted distribution from the sampled Ising distribu-
tion is of course reflected in the quotient of their variances. This quotient
stays close to 1 for high temperatures (modulo noise) but jumps, first down,
to about 0.6, and then up, to about 1.2 in the region where the distribution
changes shape. It does, however, take the value 1 at some point and this is
where the two distributions appear (almost) indistinguishable.

A chi-square test is more discerning than the human eye though. We
tested the hypothesis that the fitted p, q-distribution is consistent with the
distribution obtained from sampled data for a few temperatures between
K∗ and Kc for L = 128. The best result was actually found at K = 0.4384.
Running a standard Metropolis sampling algorithm we collected about 2.6
million samples. Between each measurement of |M | we made about five
sweeps to ensure at least an expected n successful spin flips.

The magnetisations at the tail which gave less than six samples were
lumped into one bin. The test statistic then was about 6549 and we received
6039 bins. The reduced test statistic then is 1.08 which indicates a good fit.
Unfortunately χ2

0.05(6038) ≈ 6220 so we are obliged to reject the hypothesis
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at the 5% significance level. However, the variance quotient between fitted
and measured distribution is 1.004 and for higher moments the quotient is
even closer to 1. Our fitted distribution thus have correct moments even
though the probabilities are not correct.

Recall from section 7 how the exponents of the moment growth rates
could be computed if we allow z to depend on n. For the 2D-lattices it is
known that β = 1/8, γ = 7/4 and ν = 1, see [28], [32] and [1]. Thus the
first moment σ1 should scale as n15/16 and the second moment σ2 as n15/8.
From equation (78) and (79) this would be achieved by choosing λ1 = −3/2,
λ2 = −6 and λ3 = 0. The left plot of Figure 12 shows z versus log n at
K∗ together with the curve 3 − 1.5 log n − 6 log log n. The constant λ0 is
chosen only to make the curve look plausibly near the points. The point
for L = 512 deviate slightly but we suspect that noise in the sampled data
explains this. With λ0 = 3 the coefficient of n15/8 obtained from (79) would
be 0.301 though the measured σ2 divided by n15/8 are closer 0.08. To get
this we have to choose λ0 ≈ 8.3. In that case the convergence is extremely
slow. Note also that the fitted p, q-distribution is far from perfect which
would contribute some amount of error as well.
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Figure 12: (Colour online) Left: z = n (q − 1) vs log n at K∗ for the L× L-
lattice, L = 6, 8, 10, 12, 14, 16, 32, 64, 128, 256, 512. The curve is
3 − 1.5 log n − 6 log log n. Right: y = n (p − 1) vs z = n (q − 1) for the
L × L-lattice, L = 6, 8, 10, 12, 14, 16, 32, 64, 128, 256, 512 (512 barely
visible near the z-axis). The points represent K∗.

The right plot of figure 12 shows y vs z for a range of temperatures.
The points representing K∗ may appear to lie on the z-axis but they are
are slightly below it. In the 1D-case we suspected that there is a limit curve
for the high-temperature region, but we suspect that the exact data that
produced this part of the plot rely on far too small lattices to give any
conclusive evidence. Also, the p, q-find algorithm is rather sensitive to noise
in this region to be useful for sampled data. However, as we said before, this
problem goes away once K ≥ K∗. Figure 13 shows y and z versus K for
all the lattices though for the sampled data we only show low-temperature
data. The red line is located at Kc = atanh

(√
2− 1

)

≈ 0.44068.
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Figure 13: (Colour online) y = n (p− 1) vs K (left) and z = n (q − 1) vs K
(right) for the L × L-lattice, L = 6, 8, 10, 12, 14, 16, 32, 64, 128, 256, 512.
The points represent K∗ and the red line is at Kc. The larger lattices have
their points farther to the right in the plots.

9.3 3D-lattices

For these lattices we only have exact data for L = 4 and sampled data
for L = 6, 8, 12, 16, 32, 64. The situation is actually somewhat better for
3D-lattices. Figure 14 shows some distributions in the vicinity of K∗ for
L = 32 together with the fitted p, q-distributions. For K ≥ K∗, just when
the distributions become bimodal, the fit is certainly less than perfect, but
near K∗ the p, q-approximation is actually rather good.

If we take the quotient between the variance of the fitted p, q-binomial
distribution and the variance of the Ising distribution we find that it stays
between 0.85 and 1.02 which is slightly better than for the 2D-lattices.

Running the chi-square test as we did for the 2D-lattice the best result
with L = 32 was found at K = 0.2208 which gave the test statistic 5917
and, at 5550 degrees of freedom, the reduced statistic 1.066. Again, as
for the 2D-lattice, the null hypothesis fails at the 5% significance level since
χ2

0.05(5550) ≈ 5724. However, the first four moment quotients stays between
1.00 and 1.01 at this temperature.

In the left plot of figure 15 we show z versus log n at K∗. The fitted
line through the points corresponds to z = −5.3− log n and is not too bad
an approximation. However, in [14] it was estimated that the growth rate
exponent at Kc of the susceptibility is γ/ν = 1.978±0.009 (assuming γ = γ′

and ν = ν ′). For the magnetisation it was estimated β/ν = 0.5147± 0.0007.
Translated into exponents of n this means 1.657 ≤ 1 + γ/3ν ≤ 1.663 and
0.8282 ≤ 1−β/3ν ≤ 0.8287. If we choose λ1 = −5/8 in (78) and (79) the first
moment exponent would be 53/64 = 0.828125 and 53/32 = 1.65625 for the
second moment, slightly below the lower bound of the estimate intervals.
Choosing λ1 = −2/3 would give exponents 5/6 = 0.8333 . . . and 5/3 =
1.666 . . . respectively, slightly above the upper bound of the intervals. Let
us suggest, as an example, that λ0 = 6.8, λ1 = −2/3, λ2 = −6 and λ3 = 0 in
the expression (79). In figure 15 the curve use these parameters for z at K∗,

32

Page 32 of 47

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

-6000 -4000 -2000 2000 4000 6000

0.00005

0.00010

0.00015

Figure 14: (Colour online) Magnetisation distributions for the 32× 32× 32-
lattice (red) and the fitted Pp,q (n, k) (blue) vs k − n/2 for K = 0.2204,
K∗ = 0.22066, K = 0.2210, Kc = 0.2216546 and K = 0.2220 (downwards
at the y-axis).

i.e. z = 6.8 − (2/3) log n − 6 log log n. Will the points eventually converge
to the curve? It would take considerably larger lattices to shed any light on
this. We also have the problem what λ0 should be. Using λ0 = 6.8 means
that the coefficient in (79) is about 0.393. Comparing the measured σ2 with
n5/3 gives a factor of roughly 0.16 though the data are certainly far from
conclusive. Since the distribution fit is not perfect a different constant is
perhaps to be expected. Also, slow convergence is to be expected here.

The right plot of figure 15 shows y versus z for K > K∗. Note the
peculiar backwards movement of z getting more and more pronounced for
larger L. The curves for 16, 32 and 64 show signs of approaching some limit
curve. We don’t have data for very low temperatures for the smaller lattices
though, except for L = 4. The plots in figure 16 shows y and z versus K for
K > K∗. The red lines show location of Kc ≈ 0.2216546, found in [14], but
see also [30] for a theoretical estimate of Kc.

9.4 4D-lattices

In the case of 4-dimensional lattices we have sampled data of magnetisa-
tion distributions for L = 4, 6, 8, 10, 12, 16. Figure 17 shows some of these
magnetisation distributions for L = 12 near K∗ together with fitted p, q-
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Figure 15: (Colour online) Left: z = n (q−1) vs log n at K∗ for the L×L×L-
lattice, L = 4, 6, 8, 12, 16, 32, 64. The line though the points is −5.3 − log n
and the curve is 6.8 − (2/3) log n − 6 log log n. Right: y = n (p − 1) vs z
for the L × L × L-lattice, L = 4, 6, 8, 12, 16, 32, 64 (leftwards) for K > K∗.
Higher values of K when we move downwards left. The red curve is y = 2w
with w defined by (37).
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Figure 16: (Colour online) Left: z = n (q − 1) vs K with K > K∗ for the
L×L×L-lattice, L = 4, 6, 8, 12, 16, 32, 64 (downwards). Right: y = n (p−1)
vs K with K > K∗ for the L × L × L-lattice, L = 4, 6, 8, 12, 16, 32, 64
(upwards). In both plots the red line indicates location of Kc and the points
are the locations of K∗.

binomial distributions. The fit is quite good, considerably better than for
2D and 3D, in the whole range of selected temperatures. Though it is hard
to distinguish the fitted curves from the magnetisation curves, there is a
small deviation near the middle.

The quotient between the variances stays between 0.97 and 1.01 for all
K and L where we have sampled data. The best result from a chi-square
test for L = 12 was obtained at K = 0.1494. A Monte Carlo sampling
here gave us 3.6 million measurements of |M |. Comparing the sampled
data with the p, q-binomial distribution we received the test statistic 3205
with 3137 degrees of freedom. This gives the reduced test statistic 1.02 and
since χ2

0.05(3137) ≈ 3268 the null hypothesis stands. The quotients between
the first four moments stayed between 0.999 and 1.003 at this temperature.
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Figure 17: (Colour online) Magnetisation distributions for the 12×12×12×
12-lattice (red) and the fitted Pp,q (n, k) (blue) vs k − n/2 for K = 0.1490,
K∗ = 0.149255, Kc = 0.149695, K = 0.1500 and K = 0.1505 (downwards
at the y-axis).

However, it should be mentioned that at other temperatures, say at K =
0.1498, the chi-square test fails the p, q-distribution. The best fit is thus
found near K∗.

How should z at K∗ depend on n? Actually, taking the data at face-
value they are rather well-fitted to the simple formula z = −6.5−0.45 log n.
However, for the 4D-lattice we have γ = γ′ = 1, β = 1/2 and ν = ν ′ =
1/2. This gives that 1 + γ/d ν = 3/2 and 1 − β/d ν = 3/4. Moreover,
according to [20] there should be a correction to this. They calculated,
using renormalization group techniques, that the susceptibility should scale
as L2

√
log L near Kc. This means that σ2 should scale as n3/2

√
log n. From

(82) we see that we have to choose λ2 = −2, with λ1 = 0 and λ3 = −6, to
obtain this. In the left plot of figure 18 we have set z = −1.2− 2 log log n−
6 log log log n and plotted it versus log log n. The curve would then behave
as a limit curve rather than as a fitted curve. The choice of coefficient
λ0 = −1.2 is only supported by the human eye as a guide rather than any
theory and herein lies a problem. With this choice the coefficient of (82) is
about 0.558. However, dividing the measured σ2 at the different K∗ with
n3/2
√

log n gives values close to 0.15. This discrepancy could be due to
several sources; e.g. the expression in (82) could be incorrect or our data
could be suffering from very slow convergence. In the right plot of figure 18
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Figure 18: (Colour online) Left: z = n (q − 1) vs log log n at K∗ for the
L×L×L×L-lattice, L = 4, 6, 8, 10, 12, 16. The curve is −1.2−2 log log n−
6 log log log n. Right: y = n (p− 1) vs z = n (q − 1) for the L× L× L× L-
lattice, L = 4, 6, 8, 10, 12, 16 (leftwards). Higher temperatures (low K) begin
at the upper right part of the plot and with lower temperatures we move
down to the left. The red curve is y = 2w with w defined by (37).

we show y versus z for K > K∗ together with the curve y = 2w with w
defined by (37). In figure 19 we show y and z versus K for K > K∗. The
red line is located at Kc ≈ 0.1496497, estimated in [23].
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Figure 19: (Colour online) Left: z = n (q − 1) vs K with K > K∗ for the
L×L×L×L-lattice, L = 4, 6, 8, 10, 12, 16 (downwards). Right: y = n (p−1)
vs K with K > K∗ for the L × L × L × L-lattice, L = 4, 6, 8, 10, 12, 16
(upwards). In both plots the red line indicates location of Kc and the points
are the locations of K∗.

9.5 5D-lattices

For the 5-dimensional lattices we have sampled data of magnetisation dis-
tributions only for L = 4, 6, 8, 10, 12. The distributions in figure 20 are
extremely well fitted by p, q-binomial distributions; it is almost impossible
to tell them apart with the naked eye.

Looking at the quotient between the variances we note that it stays
between 0.99 and 1.005 for all L and K. A chi-square test on Monte Carlo
data (ca 2.1 million measurements) for L = 8 at K = 0.114 gave the test
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Figure 20: (Colour online) Magnetisation distributions for 8× 8× 8× 8× 8-
lattice (red) and the fitted Pp,q (n, k) (blue) vs k − n/2 for K = 0.1137,
K∗ = 0.113786, Kc = 0.113914, K = 0.1143 and K = 0.1147.

statistic 4001 at 3996 degrees of freedom. The reduced test statistic is thus
1.001, a very good fit. The test statistic is compared with χ2

0.05(3996) ≈
4144, giving us a safe margin to let the null hypothesis stand. The quotients
between the first four moments are all between 1.000 and 1.004 at this
temperature.

In five dimensions the susceptibility near Kc scales as L5/2, see [9]. Thus
σ2 should scale as n3/2 which is exactly what we receive when keeping z
fixed. So, for z constant we obtain σ1 ∝ n3/4 and σ2 ∝ n3/2. The left
plot of figure 21 shows z at K∗ for L = 4, 6, 8, 10, 12. If z approaches a
constant then what is the limit value? Extracting the limit z from this plot
is futile of course. The right plot of figure 21 shows y vs z for the different
lattices together with the points K∗ and the curve y = 2w. In figure 22 we
show y and z versus K for K ≥ K∗ with an estimated Kc marked as a red
line. Despite the noise in the plots it seems plausible that z stays essentially
constant very close to K∗ (and Kc) and that only y moves. Let us assume
this and see where this leads us. We employ the moment expressions in
section 6 in terms of the parameter a to model the behaviour near K∗.
A normalised first cumulant of the absolute magnetisation 〈|M |〉 /2n3/4 =
σ1/n

3/4 should approach ̺1/̺0 when plotted as a function of a for a fixed
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Figure 21: (Colour online) Left: z = n (q − 1) vs log n at K∗ for the L ×
L × L × L × L-lattice, L = 4, 6, 8, 10, 12. The straight line is constant at
z = −9.87. Right: y = n (p− 1) vs z = n (q − 1) for the L×L×L×L×L-
lattice, L = 4, 6, 8, 10, 12 (leftwards). Higher temperatures (low K) begin at
the upper right part of the plot and with lower temperatures we move down
to the left. The red curve is y = 2w with w defined by (37).
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Figure 22: (Colour online) Left: z = n (q − 1) vs K with K > K∗ for the
L×L×L×L×L-lattice, L = 4, 6, 8, 10, 12 (downwards). Right: y = n (p−1)
vs K with K > K∗ for the L × L × L × L × L-lattice, L = 4, 6, 8, 10, 12
(upwards). In both plots the red line indicates location of Kc and the points
are the locations of K∗.

z. Analogously, the second cumulant (normalised) should behave as

σ2 − σ2
1

n3/2
→ ̺2

̺0
(120)

where the ̺m were defined in section 6. Note that for a fixed z the ̺m

now depend only on a. The third and fourth cumulants of the absolute
magnetisation, divided by respectively 8n9/4 and 16n3, quite analogously
approach their corresponding limits

̺3

̺0
− 3

̺1 σ2

̺2
0

+ 2
̺3
1

̺3
0

(121)

and
̺4

̺0
− 4

̺1 σ3

̺2
0

− 3
σ2

2

̺2
0

+ 12
̺2
1 ̺2

̺3
0

− 6
̺4
1

̺4
0

(122)
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Through a simple scaling analysis based on our sampled data we have found
that the normalised third cumulant has a limit maximum of about 0.0205
and a minimum of −0.0500. The fourth normalised cumulant has a limit
maximum of 0.0229 and a minimum of −0.0278, based upon our sampled
data. Choosing z = −9.87 puts the maximums and minimums of the limit
curves at appropriate values. Now we identify the coupling K where the
minimum of the fourth cumulant occurs with the point a where the minimum
of the corresponding limit curve occurs and likewise for the maximum, thus
providing us with a rescaling translating K into a. In figure 23 and 24 the
first four cumulants are shown together with their estimated limit curves for
z = −9.87. Indeed the red curve may provide us with a limit.

-4 -2 0 2 4
a

0.5

1.0

1.5

2.0

First cumulant

-2 2 4
a

0.05

0.10

0.15

Second cumulant

Figure 23: (Colour online) Normalised first (left) and second (right) cumu-
lants for the L × L × L × L × L-lattice, L = 4, 6, 8, 10, 12, 16, 20, 24 (blue)
versus a for z = −9.87 together with the limit curve (red).

-2 2 4
a

-0.05

-0.04

-0.03

-0.02

-0.01

0.01

0.02

Third cumulant

-2 -1 1 2 3 4 5
a

-0.02

-0.01

0.01

0.02

Fourth cumulant

Figure 24: (Colour online) Normalised third (left) and fourth (right) cumu-
lants for the L × L × L × L × L-lattice, L = 4, 6, 8, 10, 12, 16, 20, 24 (blue)
versus a for z = −9.87 together with the limit curve (red).

Given a lattice size L we denote by Kmin(L) the location of the minimum
fourth cumulant and by Kmax(L) the location of the maximum. Analogously
for the limit curve, given a z we denote by amin(z) and amax(z) the location
of the minimum and maximum fourth cumulant. For z = −9.87 we have
amin ≈ 1.06965 and amax ≈ 2.51275. A simple scaling analysis gives that

39

Page 39 of 47

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
roughly Kmax(L) ≈ Kc + 0.22/L5/2 and Kmax(L) −Kmin(L) ≈ 0.093/L5/2.
Also Kc ≈ 0.113915, see [22]. Thus, in principle at least, the rescaling
between a and K is

K(a) ∼ Kmax(L)−Kmin(L)

amax(z)− amin(z)
(a− amax(z)) + Kmax(L) (123)

However, this kind of expression is somewhat too simplistic to get figure 24.
It would take higher-order corrections to scaling to produce it but this would
probably take a more involved numerical study of the 5D-model. Other
investigations of the 5D-lattice includes e.g. [6], [27] and [22].

10 Conclusions

The magnetisation distribution for the complete graph is exactly described
by the p, q-binomial distribution, corresponding to the special (or limit) case
of p = q. For balanced complete bipartite graphs this is most likely also true
in some limit sense, yet to be made precise. Actually, it appears that for most
graphs, at least those which are more or less regular, the magnetisations are
well-fitted by a p, q-binomial distribution for some choice of p and q. The
exact extent to which the p, q-binomial approximation is good we do not
yet know (e.g. convergence in moment or probability) nor the exact class
of graphs that would satisfy this. We have investigated the matter more
closely for lattices of dimension one through five. In general they are always
well-fitted by p, q-binomial distributions for high- and low-temperatures but
the problems arise near Kc, or rather K∗ where the distribution changes
from unimodal to bimodal.

For the 1-dimensional lattices (having no such bounded K∗) the situation
is basically always that of high temperatures. It seems possible to give
expressions for p and q in terms of K in this case though we have not done
so. The difference in probabilities between the magnetisation distribution
and the fitted p, q-binomial distribution vanishes at a rapid rate and the
moments of the distribution are equal up to numerical precision given large
enough n. This is, however, not enough to give the correct free energy using
only the fitted distribution.

For 2-dimensional lattices the distributions near K∗ are least well-fitted
by the p, q-binomials. Though there are temperatures close to K∗ where
the moments of the fitted p, q-binomial distribution are close to correct,
the fitted distribution fails a chi-square test. In the 3-dimensional case we
get a somewhat better fit but not enough to pass a chi-square test. For
4-dimensional lattices the distributions are clearly much better fitted by
p, q-binomials, though some discrepancy still remains just above K∗. For 5-
dimensional lattices even this small discrepancy is gone, leaving us perfectly
fitted (that is, to the human eye) p, q-binomial distributions. In fact, for
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both the 4- and 5-dimensional case the fitted distributions now also pass
a chi-square test. In the 5-dimensional case the values of z at K∗ should
approach a limit value. We estimated this limit to −9.87 and, using this
limit value, compared the first four normalised cumulants for finite lattices
with the (possible) limit curves.

Our theoretical investigation gives that the p, q-binomial distribution has
correct moment growth exponents given the correct parameter scaling of z.
We can in fact fine-tune this exponent to contain the logarithmic correction
for d = 4, as predicted by renormalisation group theory. Also, both for
d = 4 and d = 5 our numerical investigation gives that the sampled data
are correctly modelled by a p, q-binomial distribution, not just the moments.
We suggest thus that the magnetisation distribution is in fact a p, q-binomial
distribution for d = 4, 5, at least near K∗.

To obtain the fitted distributions we described and used a rather simple
method to determine p and q given a distribution. Possibly this method is
not optimal since it simply forces the distribution to be correct at a single
point rather than providing a good overall-fit. It is also sensitive to noise
when the distributions are unimodal, thus making it difficult to determine p
and q. On the other hand it works extremely well for bimodal distributions
where the noise sensitivity problem vanishes.

The p, q-binomial coefficients are just a tweaked form of q-binomials, i.e.
they are multiplied by a power of p. It is possible that a different choice
of factor would produce better results in the case of 2- and 3-dimensional
lattices.

It would be interesting to see if the magnetisation distribution for quan-
tum spin models or for spin-glass models can be modeled by p, q-binomial
distributions.

Acknowledgments

One of the authors (AR) wishes to thank the Swedish Research Council
(VR) for financial support. This research was conducted using the resources
of High Performance Computing Center North (HPC2N).

A The special case p = q

Recalling (7) we observe that

Rq,q (n, k, 1) = q−(n−2 k+1) k

n− k + 1
(124)

It is then trivial to show the next lemma.

Lemma A.1. For q = n
n+2 we have Rq,q (n, n/2, 1) = 1.
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What is the sum of the coefficients at this point? To answer this we

compare the middle coefficient with a coefficient situated at some carefully
chosen distance from the middle. How big is the middle coefficient? Note
first that

[

n

n/2

]

q,q

= q
n2

4

(

n

n/2

)

(125)

Lemma A.2. For q = n
n+2 we have

[

n

n/2

]

q,q

∼
√

2 e

π n

(

2√
e

)n

meaning that the quotient between the left- and right-hand side goes to
1 as n→∞. The proof follows from an easy application of the identity

(

1 +
x

n

)n
= ex

(

1− x2

2n
+

x3

3n2
+

x4

8n2
+ · · ·

)

(126)

and we leave it to the reader. A somewhat more involved application of
(126) is the following lemma

Lemma A.3. Let x be some real number. For q = n
n+2 we have

Rq,q

(

n, n/2, x n3/4
)

∼ exp

(

−4

3
x4

)

This allows us to give the exact order of the coefficient sum.

Theorem A.4. For q = n
n+2 we have

Ψq,q (n) ∼ Γ(1/4) 31/4 n1/4

√
π

(

2√
e

)n−1

Proof. The calculations goes as follows though we leave out some details.

Ψq,q (n) =

[

n

n/2

]

q,q

n/2
∑

k=−n/2

Rq,q (n, n/2, k) ∼

n3/4

[

n

n/2

]

q,q

+∞
∫

−∞

exp

(

−4

3
x4

)

dx ∼

Γ(1/4) 31/4 n1/4

√
π

(

2√
e

)n−1

where the factor n3/4 in front of the integral comes from the change of
variables k = xn3/4.
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This is the coefficient sum at the point where the distribution becomes

flat in the middle region. We can do even better if we allow ourselves to
move around in the vicinity of this point.

Lemma A.5. Let q = n
n+2 + a

n3/2 for some real number a. Then

[

n

n/2

]

q,q

∼
√

2 e

π n

(

2√
e

)n

exp

(

a
√

n

4

)

This can be verified using (126) as can the following lemma.

Lemma A.6. Let a and x be real numbers. For q = n
n+2 + a

n3/2 we have

Rq,q

(

n, n/2, x n3/4
)

∼ exp

(

−ax2 − 4

3
x4

)

We now have the resources to estimate the sum of the coefficients for
a whole spectrum of values of q near n/(n + 2). The next theorem can be
shown using the same technique as Theorem A.4, though the result gets
slightly more complicated due to the integral on the right hand side in the
previous lemma.

Theorem A.7. Let q = n
n+2 + a

n3/2 . For a > 0 the asymptotic order of

Ψq,q (n) is

n1/4

4

√

6 a e

π

(

2√
e

)n

exp

(

a
√

n

4
+

3 a2

32

)

K1/4

(

3 a2

32

)

For a < 0 the asymptotic order of Ψq,q (n) is

n1/4

4

√
−3 a e π

(

2√
e

)n

exp

(

a
√

n

4
+

3 a2

32

)

(

I1/4

(

3 a2

32

)

+ I−1/4

(

3 a2

32

))

Here Iα (x) and Kα (x) denote the modified Bessel functions of the first
and second kind respectively. The mth moment is simpler to express using
an integral formulation.

n/2
∑

k=−n/2

|k|m
[

n
n
2 + k

]

q,q

∼ (127)

n
3 m+3

4

[

n

n/2

]

q,q

+∞
∫

−∞

|x|m exp

(

−ax2 − 4

3
x4

)

dx (128)

and the asymptotic behaviour of the middle coefficient is given by lemma A.5.
The same technique allows us to repeat this for points farther away

from the critical point q = n/(n + 2). If we increase q by a/n then the
coefficients get sharply concentrated in the middle like that of standard
binomial coefficients. Again (126) to the rescue.
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Lemma A.8. Let q = n+a

n+2 and a > 0. Then

[

n

n/2

]

q,q

∼
√

2 e

π n

(

2√
e

)n

exp

(

an

4
− a2

8

)

Note that above, when the coefficients had a rather wide distribution,
we examined their behaviour at xn3/4 from the middle. Under our current
assumption of q the distribution gets more sharply concentrated around the
middle (basically they become gaussian), thus we study their behaviour at
x
√

n from the middle.

Lemma A.9. Let q = n+a
n+2 and a > 0. Then

Rq,q

(

n, n/2, x
√

n
)

∼ exp
(

−ax2
)

Combining lemma A.9 with lemma A.8 gives our next theorem on the
coefficient sum.

Theorem A.10. Let q = n+a
n+2 and a > 0. Then

Ψq,q (n) ∼
√

2 e

a

(

2√
e

)n

exp

(

an

4
− a2

8

)

If we instead decrease a below zero the coefficient sequence becomes
sharply bimodal, with all its mass concentrated around two peaks. We can
of course connect the position of the peaks with the parameter a. Suppose
that we want one of the peaks to have its maximum located at k and k − 1
where k = (n/2) (1 + µ) so that their ratio becomes 1. A simple calculation
shows that

lim
n→∞

Rq,q

(

n,
n

2
(1 + µ) , 1

)

=
1 + µ

1− µ
exp (µ (a− 2)) (129)

Setting the limit to 1 and solving the equation gives the next lemma.

Lemma A.11. Let q = n+a
n+2 and 0 < |µ| < 1. If a = 2 (1− (1/µ) atanh µ)

then the limit ratio in (129) is 1.

We continue as before and estimate the growth rate of the peak coeffi-
cient. The result (and the proof) is somewhat more complicated but follows
from an application of (126).

Lemma A.12. Let q, µ and a be defined as in lemma A.11. Then

[

n
n
2 (1 + µ)

]

q,q

∼
√

2 exp



n
2

„

log 4
1−µ2 −

1+µ2

µ
atanh µ

«

+ 1−µ2

2 µ2 (2 µ−atanh µ) atanh µ

ff

√

π n (1− µ2)
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Again we take x

√
n steps away from the peak and find the shape of the

distribution.

Lemma A.13. Let q, µ and a be defined as in lemma A.11. Then

Rq,q

(

n,
n

2
(1 + µ) , x

√
n
)

∼ exp

{

2x2

(

1

µ2 − 1
+

atanh µ

µ

)}

Finally we get the sum by multiplying the integral of the ratio with the
peak coefficient and 2

√
n, where the factor 2 is due to that we have two

peaks.

Theorem A.14. Let q, µ and a be defined as in lemma A.11. Then

Ψq,q (n) ∼
√

2π n

[

n
n
2 (1 + µ)

]

q,q

√

µ (1− µ2)

µ + (µ2 − 1) atanh µ
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