
HAL Id: hal-00605624
https://hal.science/hal-00605624

Submitted on 2 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometry of warped products
Abdelghani Zeghib

To cite this version:

Abdelghani Zeghib. Geometry of warped products. 1999. �hal-00605624�

https://hal.science/hal-00605624
https://hal.archives-ouvertes.fr


GEOMETRY OF WARPED PRODUCTS

ABDELGHANI ZEGHIB

ABSTRACT. This is a survey on the geometry of warped products, without, or
essentially with only soft, calculation. Somewhere in the paper, the goal was
to give a synthetic account since existing approaches are rather analytic. Some-
where else, we have interpreted statements, especially by means of a physical
terminology. This is essentially heuristic, but we think itmight be helpful in
both directions, that is, in going from a synthetic geometrical language to a rela-
tivistic one, and vice-versa.
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1. INTRODUCTION

The warped product is a construction in the class of pseudo-Riemannian mani-
folds generalizing the direct product, and defined as follows. Let(L, h) and(N, g)
be two pseudo-Riemannian manifolds andw : L → R

+ −{0} awarping function.
The warped productM = L×w N , is the topological productL × N , endowed
with the metrich

⊕

wg. The metric onM will be usually denoted by〈, 〉. Here,
we will be especially interested in the case whereM is Lorentzian (a spacetime)
and sometimes Riemannian.

Previous works.There are several references on warped products, we mentiona
few: [2, 4, 8, 10, 21, 24]. Some of them are, like the present one, surveys, but, in
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2 A. ZEGHIB

general, they originate from different points of view. The author met the subject
while working on [29] 1.

Terminology.Usually,M is seen as a bundle overL (thebasis) with fiberN . This
point of view is surely justified. However, it turns out that one sometimes needs to
project ontoN . Indeed, the distortion of the structure comes from the transverse
structure of the foliation determined by the factorL, the study of which involves
projecting onN (see§2). Here, motivated by the analogy with a group theoretic
situation (justified by1.1), and to emphasize its importance, we will callN the
normal factor of the warped product.

Let us introduce another useful terminology in this text. A warped productM =
L×wN is called a (global)generalized Robertson-Walker(GRW in short) space,
providedN is a pseudo-Riemannian manifold of constant curvature (see[26] for
another use of this terminology). Recall that classical Robertson-Walker spaces
correspond to the case whereN is a Riemannian manifold of constant curvature,
andL is an interval ofR endowed with the metric−dt2. These Lorentz spacetimes
model an expanding universe.

Interests.The warped product construction has at least two interesting properties.
Firstly, it has a practical interest, since it gives sophisticated examples from simple
ones: calculation on warped products is easy (but non-trivial). Secondly, having a
large symmetry group generally involve a warped product structure. Actually, be-
ing “simple” and having a large symmetry group, are criterion of beauty. Therefore,
imposing a warped product structure is somewhat a formulation of a philosophical
and an aesthetical principle.

1.1. Two fundamental extension facts.As in the case of direct products, warped
products enjoy the two following properties:

• Dynamical property: extension of isometries.
• Geometric (static) property: extension of geodesic submanifolds.
In the present article, we will specially investigate the first point. (We hope to

consider the second one in a subsequent paper).
Let f : N → N be a diffeomorphism. Consider thetrivial (or product) exten-

sion:
f̄ : (x, y) ∈ L×N → (x, f(y)) ∈ L×N

With the notations above, we havēf∗(h
⊕

wg) = h
⊕

wf∗g. In particular:

Trivial isometric extension 1.1. The trivial extension̄f is an isometry ofL×w N
iff f is an isometry ofN .

Warped products are reminiscent of semi-direct products inthe category of
groups, the factorN playing the role of the normal subgroup. Indeed, Isom(N) is
a normal subgroup of Isom×(L ×w N), which designs the group of isometries of
L ×w N preserving the topological product. This justifies callingN the normal

1. The present article exists in fact since 1999, it was destined to be published in the proceeding
of a conference on pseudo-Riemannian geometry. I came back recently around the subject and
discovered interest of some people who quote it; that is why Iestimated it is worthwhile to revive
this paper.



GEOMETRY OF WARPED PRODUCTS 3

factor of the warped product.

The following is the second extension fact which will be proved in§4.

Geodesic extension 1.2.LetM = L ×w N be a warped product, andS a sub-
manifold ofN . ThenS is geodesic inN iff L× S is geodesic inM .

As a corollary, we obtain that a warped product has many non-trivial (i.e. with
dim > 1) geodesic submanifolds. This is the starting point of rigidity of GRW
spaces.

1.2. Content and around the article. The article contains personnel points of
view rather than a standard survey on warped products. One fact which seems to be
new in our approach here, is to consider local warped productstructures, a notion
which belongs to the domain of foliations. This leads us in this paper to fix some
known and used characterizations (but sometimes difficult to find in literature) of
foliations with some transverse or tangential geometric structures (geodesic, um-
bilical, transversally pseudo-Riemannian...).

In another direction, one may also consider analytic pseudo-Riemannian mani-
folds, with a somewhere defined warped product structure, i.e. admitting an open
set which is a warped product. In the direct (non-warped) product case, an analytic
continuation is easily defined in the whole universal cover.(The reason is that we
get parallel plane fields which we extend by parallel transport).

This is no longer true in the warped case. Firstly, in general, there is no mean
to “extend analytically” (somewhere defined) foliations, since this is not uniquely
defined even in the simply connected case, and also, because this would at most
give rise to singular objects.

In the case of a somewhere defined warped product structure, we have a kind of
a “rigid geometric structure”, and one may use it as a model. One then considers
points admitting charts isometric to it. We will meet in§9 a situation where the
technical realization of this idea works well.

Actually, one solves Einstein equations (i.e. spacetimes with some geometry)
in charts, which are, thanks to reasonable symmetry hypotheses, endowed with a
warped product structure. One, in general, observes singularity of the metric writ-
ten in these co-ordinates systems. It is usual to call such “singularities” inessential.
From our point of view, they are still singularities, but forthe warped product struc-
ture. So, it is an interersting and natural problem to study the behaviour of analytic
extension of somewhere defined warped product: their degenerations (horizons!)
and their regenerations (but in a different physical nature). That is a question that
the present article would suggest to consider and study in a systematic way, how-
ever, we do here only a few in the particular case developed in§9.

1.3. Preliminary examples.

1.3.1. Polar coordinates.This example illustrates how the presence of a warped
product structure is related to symmetry, and how then, it isuseful, as are the polar
coordinates. Let us start withMn a Riemannian manifold, and letx ∈ M . Locally
M−{x} is isometric toR+×Sn−1, endowed with a metricg = dr2

⊕

gr, wheregr
is a metric onSn−1. Observe thatO(n) acts naturally by(A.(r, u)) → (r,A(u)).
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FACT 1.3. Polar coordinates determine a warped product, that is, there is a metric
g onSn−1 and a functionw(r) such thatgr = w(r)g, iff, the natural action ofO(n)
is isometric. It then follows thatg is, up to a multiplicative factor, the canonical
metric onSn−1, and that all the 2-planes atx have the same sectional curvature.

Proof. Assume we have a warped product. In order to prove that theO(n)-action
is isometric, it suffices to show that it is isometric on each sphereSr = {r}×Sn−1.
Let A ∈ O(n). All these spheres are homothetic, and the metric distortion of A is
the same on all of them. But this distortion tends to 1 whenr → 0. Therefore,A
has distortion 1 on eachSr, that isA acts isometrically. The remaining part of the
fact is standard.

�

For example, polar coordinates determine a warped product in the case of con-
stant curvature Riemannian spaces, the Euclidean case corresponds toR+ ×r2

Sn−1.
The previous fact generalizes to pseudo-Riemannian manifolds. More precisely,

the polar coordinates at a pointx of a pseudo-Riemannian manifoldMp,q of type
(p, q), give rise to a warped product structure, iff, the natural action of O(p, q) is
isometric. Let us callx in this case, a point ofcomplete symmetry. All the non-
degenerate 2-planes at such a point have the same sectional curvature.

In particular, if all the points ofM are points of complete symmetry, then,M has
a constant curvature. It is then natural to ask if there are non-trivial, i.e. with non
constant curvature, examples of pseudo-Riemannian manifolds with at least one
point of complete symmetry. An averaging method works to give examples, in the
Riemannian case, sinceO(n) is compact. In the other cases, the “spheres” become
complicated, and a large isotropy group at some point, may create extra symmetry
elsewhere. However, nontrivial examples do exist, for instance, any Lorentz metric
on R

2 of the formF (xy)dxdy, whereF is a positive real function defined on an
interval containing 0, admits(0, 0) as a point of complete symmetry. (The metric
is defined on an open subset ofR

2 delimited by hyperbolasxy = constant). A
celebrated example of this form is the Kruskal plane (see forinstance [21]).

More generally, in any dimension, one may consider Lorentz metrics of the form
g = F (q)q whereq is a Lorentz form. The origin is a point of complete symmetry
for g. Let us however that the situation becomes really rigid if one asks for many
points of complete symmetry.

1.3.2. Riemannian symmetric spaces.We find the representation of the hyperbolic
(Riemannian) spaceHn as the warped productR×et R

n−1, to be the nicest model
of it (hereR andRn−1 are Euclidean). One amuzing fact coming from the theory of
geodesics in warped products, is how geodesics of the hyperbolic plane are related
to solutions of mechanical systemsx′′ = ce−x (c is a constant) (see§6.6). Of
course the interest here is not to analytically solve this equation, but rather to see
how it can be solved geometricaly.

Remark 1.4(Generalization). The situation of more general Riemannian symmet-
ric space is more subtle. It involves “multi-warped products”. This means that
we have(L, h), and(N, g), endowed withT1, . . . Tk supplementary subbundles of
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TN (= T1 ⊕ . . . ⊕ Tk), with restriction of the metric denotedgi. We also have
warping functionsw1, . . . , wk defined onL, and construct from all, the metric
w1g1 ⊕ . . .⊕ wkgk. All Riemannian symmetric spaces (e.g.SL(n,R)/SO(n)) ad-
mit such a representation. The geometry of such “multi-warped products” is quite
delicate, at least more than the somewhat usual definition inthe literature, where
the plane fieldsTi are assumed to be integrable. However, it is the non-integrable
case that covers the case of symmetric spaces. We think it is worthwhile investigat-
ing this generalization.

2. LOCAL WARPED PRODUCTS

A pseudo-Riemannian manifold which is a warped product is inparticular a
global topological product. This is so restrictive (for instance for physical applica-
tions) and we are led to localize the notion of warped products as follows.

Definition 2.1. LetM be a pseudo-Riemannian manifold. A local warped product
structure onM is a pair (L,N ) of transversal foliations, such that the metric on
adapted flow-boxes is a warped product. More precisely, for any point ofM there
is a neighborhoodU , and a warped product pseudo-Riemannian manifoldL×wN ,
and an isometryφ : U → L×wN , sending the foliationL (resp.N ) to the foliation
ofL×N determined by the factorL (resp.N ).

A local warped product is called a local GRW structure if the factor N has
a constant curvature (i.e. each leaf ofN is a pseudo-Riemannian manifold of
constant curvature).

2.1. Geometry of submanifolds. In the sequel, we will investigate conditions on
a pair of foliations(L,N ) in order to determine a local warped structure. For this,
let M be a pseudo-Riemannian manifold, andS a non-degenerate submanifold of
M , that is the metric restricted toTxS is non-degenerate for anyx ∈ S. Recall that
thesecond fundamental form, also called theshape tensor, atx is a bilinear map:
IIx : TxS × TxS → Nx, whereNx is the normal space ofTxS, which measures
howS is far from being geodesic (II is well defined because of the non-degeneracy
hypothesis).

The submanifoldS is umbilic if for any x ∈ S, IIx has the formIIx = 〈, 〉nx,
wherenx is some normal vector toTxS. In this case, the vector field (alongS) x →
nx is called theshapevector field. (the terminology force field is also pertinent as
may be seen from Theorem6.3).

The (totally) geodesic submanifoldscorrespond to the casenx = 0, for all
x ∈ S.

We will also need the following notion:S is said to bespherical, if it is umbilic,
and furthermore, the shape vector fieldx ∈ S → nx, is parallel (alongS).

When we consider umbilic submanifolds, we will always assume that they have
dimension> 1. Indeed, every 1-dimensional submanifold is umbilic (but need not
to be spherical).

• Let us recall the geodesic invariance characteristic property of geodesic sub-
maniflods. Letx ∈ S, u ∈ TxS, and letγ :] − ǫ,+ǫ[→ M be the geodesic inM
determined byu. If S is geodesic, then the image ofγ is contained inS, for ǫ suffi-
ciently small. This fact is true also whenS is umbilic, if in additionu is isotropic.
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This is a remarkable rigidity fact in pseudo-Riemannian geometry, which has no
counterpart in Riemannian geometry.

Example 2.2. TakeM to be the pseudo-Euclidean space of type(p, q), i.e. Rp+q

endowed with a pseudo-Euclidean formQ of type(p, q).
A (connected) geodesic hypersurface is an open set of an affine hyperplane. The

(connected) umbilic hypersurfaces are contained in hyperquardricsQ(x−O) = c,
whereO ∈ R

p,q and c is a constant (the proof is formally the same as in the
Euclidean case). One can verify that such a hyperquadric is ruled, that is, it contains
the isotropic lines which are somewhere tangent to it.

In general, an umbilic submanifold is the intersection of a hyperquadric with an
affine plane of some dimension.

In particular, one sees in the case of pseudo-Euclidean spaces, that umbilic sub-
manifolds are spherical. This is true for all pseudo-Riemannian manifolds of con-
stant curvature, but not true in the general case.

2.2. Tangential geometry of foliations. (See for instance [5, 25, 27] for more
details). A foliationF is called geodesic, umbilic or spherical, if its leaves are
geodesic, umbilic or spherical, respectively.

Let X be a vector field defined on an open subsetU ⊂ M . We say thatX is
a (F-) normal foliated vector field, ifX is orthogonal toF , and its local flowφt

preservesF , i.e. it sends a leaf ofF to a leaf ofF (everything is restricted toU ).
As in the case of an umbilic submanifold, an umbilic foliation F has ashape

vector field−→n defined by the relationII = 〈, 〉−→n , whereII is the shape tensor.

Lemma 2.3. LetF be a non-degenerate foliation of a pseudo-Riemannian mani-
fold (M, 〈, 〉). Letf denote the first fundamental form ofF , that is the tensor which
vanishes onTF⊥ and equals〈, 〉 onTF , and denote byII : TF × TF → TF⊥

the second fundamental form.
LetX be a normal foliated vector field, then the Lie derivativeLXf satisfies:

(LXf)(u, v) = −2〈II(u, v),X〉,
for all u, v ∈ TF . (In other words, ifφt is the (local) flow ofX, then, at anyx,
∂
∂t(φ

t
∗f)x|t=0 = −2〈IIx(., .),X〉).

Proof. Let u and v be two vector fields tangent toF which commute withX.
Then by definition(LXf)(u, v) = X.f(u, v), which also equalsX.〈u, v〉. Now,
X.〈u, v〉 = 〈∇Xu, v〉 + 〈u,∇Xv〉. By commutation, this becomes〈∇uX, v〉 +
〈u,∇vX〉. Since〈X, v〉 = 〈u,X〉 = 0, (LXf)(u, v) = −〈X,∇uv〉 − 〈X,∇vu〉,
and so by definition ofII, we have:(LXf)(u, v) = −2〈II(u, v),X〉

�

Corollary 2.4. If F is geodesic (resp. umbilic) then the flow ofX maps isometri-
cally (resp. conformally) a leaf ofF onto a leaf ofF .

Conversely, if the flow of any normal foliated vector field maps isometrically
(resp. conformally) leaves ofF to leaves ofF , thenF is geodesic (resp. umbilic).

Proof. The proof is just the translation, with the above notation, of the fact that the
flow φt maps isometrically (resp. conformally) leaves ofF to leaves ofF , into the
equation:φt

∗f = f (resp.φt
∗f = af for some scalar functiona).
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�

Note however, that there is no a such characterization for spherical foliations.
For example, any (local) umbilic foliation of the Euclideanspace is spherical, as
it is just a foliation by round spheres. The flow of a normal foliated vector field
maps conformally a sphere to a sphere, but not more, for example not necessarily
homothetically.

3. CHARACTERIZATION OF LOCAL WARPED PRODUCTS

The following theorem is due to S. Hiepko, but with a different proof, and espe-
cially with a purely “analytic” formulation. We said in a previous version of this
article, that this analytic formulation could explain why the article of Hiepko [15]
seems to be not sufficiently known in the literature. Afterwards, we discover the
work [23] by R. Ponge and H. Reckziegel, which contains a geometric approach.

Theorem 3.1. Let (M, 〈, 〉) be a pseudo-Riemannian manifold endowed with a
pair (L,N ) of non-degenerate foliations. This determines a local warped prod-
uct structure withN as a normal factor, iff, the foliations are orthogonal,L is
geodesic, andN is spherical.

Proof. Let L andN be two orthogonal foliations. Locally, at a topological level,
we may suppose thatM = L×N , and that the foliationsL andN correspond to
those determined by the factorsL andN . Let (x, y) be a fixed point inL×N . The
metric onM at (x, y) has the formh(x,y)

⊕

f(x,y), whereh(x,y) (resp.f(x,y)) is a
metric onL×{y} (resp. on{x} ×N ). Note that a normal foliated vector field for
L is just a vector field of the formX(x, y) = (0, X̄(y)), whereX̄ is a vector field
onN , and similarly forN .

By Corollary2.4, L is geodesic, iffh(x,y) = hy. In the same way,N is umbilic,
iff there is a functionw(x, y) such thatf(x,y) = w(x, y)fx. Therefore, the fact
thatL is geodesic andN is umbilic, is equivalent to that the metric〈, 〉 of M is a
twisted product h

⊕

wg, whereh andg are metrics onL andN respectively, and
w is a function onL×N .

By choosing a point(x0, y0), we may suppose thatg = f(x0,y0), and hence
w(x0, y) = 1, for all y ∈ N .

The fact that this metric is a warped product means exactly thatw is a function
of x alone. Therefore, the statement of the theorem reduces now to the equivalence
between the two facts,w being constant alongN , andN being spherical.

To check this, letX̄ andȲ be two vector fields onL andN , respectively, and
let X andY be the corresponding vector fields onM , which are normal foliated
relatively toN andL, respectively.

SinceN is umbilic, II = f−→n , wheref andII are the first and second funda-
mental forms forN respectively, and−→n is its shape vector field.

We have,Y 〈−→n ,X〉 = 〈∇Y
−→n ,X〉 + 〈−→n ,∇Y X〉 = 〈∇Y

−→n ,X〉 + 〈−→n ,∇XY 〉,
sinceX andY commute.

SinceL is geodesic,∇XY is orthogonal toL, in particular,〈−→n ,∇XY 〉 = 0. It
then follows thatY 〈−→n ,X〉 = 〈∇Y

−→n ,X〉.
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Lemma2.3 says thatX.w = −2〈−→n ,X〉, and henceY.(X.w) = 〈∇Y
−→n ,X〉.

By definition,N is spherical iff〈∇Y
−→n ,X〉 = 0, for all X andY , which is thus

equivalent toY.(X.w) = 0. This last equality, applied to a fixedY , and an arbitrary
X, means thatY.w is a function ofy only, sayY.w = a(y). But, sincew(x0, y) =
1, it follows thatY.w = 0. Applying this to an arbitraryY , leads to the fact thatw
does not depend ony, which in turn means that the metric is a warped product.�

4. TRANSVERSE GEOMETRY OF FOLIATIONS

Theorem3.1 is expressed by means of tangential properties of foliations, i.e.
by those of individual leaves. Sometimes, it is also interesting to consider the
transverse structure of these foliations, i.e. the properties of their holonomy maps
(see for instance [19] as a reference about such notions). These holonomy maps are
especially easy to realize, for a foliationF , when the orthogonalTF⊥ is integrable,
that is, when it determines a foliation sayF⊥. The holonomy maps ofF are thus
just the local diffeomorphisms between leaves ofF⊥, obtained by integratingF⊥-
normal foliated vector fields (see§2.2for their definition).

The foliationF is said to betransversally pseudo-Riemannianif its holonomy
preserves the pseudo-Riemannian metric onTF⊥. Similarly one defines the fact
thatF is transversally conformal (resp. transversally homothetic). Using this lan-
guage, the previous developments imply straightforwardlythe following fact.

FACT 4.1. A pair (L,N ) determines a local warped product structure, iffL is
transversally homothetic andN is transversally pseudo-Riemannian.

In general (i.e. in a not necessarily warped product situation), we have the fol-
lowing duality between tangential and transverse structures of foliations.

FACT 4.2. LetF be a foliation admitting an orthogonal foliationF⊥. ThenF is
geodesic (resp. umbilic) iffF⊥ is transversally pseudo-Riemannian (resp. confor-
mal), that is more precisely, the holonomy maps of the foliation F⊥, seen as local
diffeomorphisms between leaves ofF , preserve the metric (resp. the conformal
structure) induced on these leaves (ofF).

4.1. Proof of Fact 1.2. LetS be a submanifold ofN , andM = L×wN . In order
to prove the equivalence,S a geodesic submanifold inN ⇐⇒ L × S a geodesic
submanifold inM , it suffices to consider the case where the dimension ofS is 1,
i.e. S a (non-parameterized) geodesic (curve). Indeed the general case reduces to
the 1-dimensional one by considering geodesic (curves) ofS.

To simplify let us suppose thatN is Riemannian, the general case needs only
more notations.

A geodesic such asS can be locally extended to a 1-dimensional foliationF
with an orthogonal foliationF⊥. To see this, take a hypersurfaceS⊥ ⊂ N which
is somewhere orthogonal toS, then the leaves ofF⊥ are the parallel hypersurfaces
of S⊥. More precisely, they are the levels of the distance function x → a(x) =
d(x, S⊥). The leaves ofF are the trajectories of∇a, the gradient ofa. ThusF⊥

is a transversally pseudo-Riemannian foliation ofN . By taking the product of the
leaves ofF with L, one may defineL × F as a foliation ofM . The orthogonal
foliation (L × F)⊥ of L × F is naturally identified withF⊥ (the leaf of(x, y) ∈
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L×N is {x} × F⊥
y ). From the form of the warped product metric, one sees that,

like F⊥, (L × F)⊥ is a transversally pseudo-Riemannian foliation. Therefore,
L×F is a geodesic foliation, and in particularL× S is geodesic inM .

The implication,L × S geodesic inM =⇒ S geodesic inN , is in fact easier
than its converse that we have just proved. Indeed, if∇ is the connection onN ,
andX, Y are vector fields tangent toS, then∇XY is tangent toL × S (since it
is geodesic), and hence its orthogonal projection onN is tangent toS, that is,S is
geodesic inN .

Remark 4.3. Although, we are not interested here in global aspects, let us mention
that there are many works about the structure of geodesic, umbilic, transversally
Riemannian, transversally conformal foliations on compact manifolds. As an ex-
ample, we may quote the references[6, 9, 19].

5. ISOMETRIC ACTIONS OFL IE GROUPS

(Local) isometric actions of Lie groups on pseudo-Riemannian manifolds gen-
erally give rise to a warped product structure. In some sense, this phenomenon
is the converse of the trivial isometric extension Fact1.1. The following state-
ment may be used to settle a warped product structure in many situations. It uni-
fies and generalizes most of the existing results on the subject (see for instance
[7, 11, 13, 16, 17, 22]).

Theorem 5.1. Let G be a Lie group acting (locally) isometrically on a pseudo-
Riemannian manifoldM . Suppose that the orbits have a constant dimension and
thus determine a foliationN .

Suppose further that the leaves ofN are non-degenerate, and that the isotropy
group inG of anyx ∈ M , actsabsolutely irreduciblyonTxN , i.e. its complexified
representation is irreducible.

Suppose finally that the orthogonal ofN is integrable, say it is tangent to a
foliation L. Then(L,N ) determines a local warped product structure, withN as
a normal factor.

Proof. The question is local, and so we can suppose the situation is topologically
trivial. For two nearby leavesN1 andN2, there is a projectionp : N1 → N2,
defined by: p(x) is the unique point of the intersection ofLx (= N⊥

x ) with N2

(for x ∈ N1). This projection commutes with the action ofG. The pull back by
p of the metric onTyN2 (at y = p(x)) is another metric onTxN1, invariant by
Gx. The fact thatGx is absolutely irreducible just implies that the two metricsare
proportional. Thereforep is conformal. But sincep commutes with the (transitive)
G-action onN1 andN2, p must be homothetic.

It is easy to relate the projectionp to the transverse holonomy ofL (as developed
in §4), proving thatL is transversally homothetic. It is equally straightforward
to relate the transverse holonomy ofN to theG-action, and deducing thatN is
transversally pseudo-Riemannian, and therefore(L,N ) determines a local warped
product structure (by Fact4.1).

�
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Example 5.2. The absolute irreducibility hypothesis cannot be relaxed to an ordi-
nary irreducibility one. To see this letN be a Lie group, and letG be the product
N × N acting onN by the left and the right, that is(γ1, γ2)x = γ−1

1 xγ2. The
isotropy group of this action at the point1, is nothing but the adjoint action ofN
on itself. It is irreducible (resp. absolutely irreducible) iff N is a simple (resp.
an absolutely simple) Lie group (by definition). In the caseN is simple but non
absolutely simple, e.g.SL(2,C), the isotropy action preserves exactly (up to linear
combination) two non-degenerate quadratic forms, those given by the real and the
imaginary parts of the Killing form ofN , seen as a complex group. This gives two
G-invariant non-proportional metricsα andβ onN .

Let (L, h) be another pseudo-Riemannian manifold, and letf : L → R be a
real function. EndowL ×N with the metrich

⊕

(fα + β). This is not a warped
product.

The following result describes an example of a situation where the hypotheses
of Theorem5.1are satisfied.

Theorem 5.3. Let G be a Lie group acting (locally) isometrically on a pseudo-
Riemannian manifoldM . Suppose that the orbits are non-degenerate having a
constant dimension and so determine a foliationN .

Suppose that the isotropy group inG of anyx ∈ M , acts absolutely irreducibly
onTxN , and that the metric on the orthogonal ofN is definite (positive or nega-
tive), and in opposite the metric onN is non-definite. Then, the orthogonal ofN
is integrable, and the action determines a local warped product.

Proof. The warped product structure will follow from Theorem5.1once we show
that the orthogonal ofN is integrable. We will in fact prove this integrability,
under the hypothesis that the isotropy is irreducible (not necessarily absolutely
irreducible). Considerα : TN⊥ × TN⊥ → TN the bilinear form (obstruction
to the integrability ofTN⊥) α(u, v) = the projection onTN of the bracket[u, v],
whereu and v are vector fields onM with values inTN⊥. Let x ∈ M , and
consider the subsetAx of TxN which consists of the elementsα(u, v), for u and
v of length≤ 1. This set is compact, and is invariant by the isotropy groupGx.
Sinceα is equivariant,Gx acts precompactly onAx since it acts so onTxN⊥.
It then follows thatGx acts precompactly on the linear spaceBx generated by
Ax. If Ax = 0, α = 0, and we are done, if notBx = TxN by irreducibility.
Thus,Gx preserves a positive scalar product onTxN . But, it also preserves the
initial non-definite pseudo-Riemannian product. Polarizethis latter with respect to
the invariant positive scalar product, we get a diagonalizable endomorphism, that
has both positive and negative eigenvalues since the pseudo-Riemannian product
is non-definite. This contradicts the irreducibility.

�

A similar argument yields the following useful fact.

FACT 5.4. LetSO(3) act isometrically on a4-Lorentz manifold with2-dimensional
orbits. Then, this determines a local warped product structure, with a local model
L×w S2 or L×w RP 2. (One may exclude the projective plane case by a suitable
orientability hypothesis).
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6. GEODESICS. MAUPERTUIS’ PRINCIPLE

The goal here is to understand the geodesics of a warped productM = L×wN .
Let γ(t) = (x(t), y(t)) be such a geodesic.

Fact1.2 implies thaty(t) is a (non-parametrized) geodesic inN . To see this,
let S be a (1-dimensional) geodesic ofN such thatγ(t) is somewhere tangent to
L×S. Fact1.2says thatL×S is geodesic inM , and therefore contains the whole
of γ(t), which thus projects onto an open subset of the geodesicS.

Now, it remains to draw equations, and especially to interpret them, forx(t),
and also determine the parameterization ofy(t). Here, the idea is to replaceM by
L×w S, which transforms the problem to a simpler one, that is the case whereN
has dimension1 (sinceL×w S is geodesic inM , we do not need the rest ofM to
understand a geodesic contained inL×w S!).

Clairaut first integral. The previous discussion allows one to restrict the study
to warped products of the typeL ×w (R, c0dy

2), wherey denotes the canonical
coordinate onR, andc0 is −1, +1 or 0. Of course, the casec0 = 0, i.e. when
the non-parameterized geodesicy(t) is lightlike, does not really correspond to a
pseudo-Riemannian structure, so, let us assumec0 6= 0.

Actually, the geodesicS above in not necessarily complete, that is, it is not
parameterized byR but just by an open subset of it. However, our discussion here
is local in nature, so to simplify notation, we will assumeS complete.

The isometric action of (the group)R on(R, c0dy2) extends to an isometric flow
onL×w (R, c0dy

2) (by Fact1.1).
The so called Clairaut first integral (for the geodesic flow onthe tangent bundle

of L ×w (R, c0dy
2)) means here that〈y′(t), ∂/∂y〉 is constant, say, it equalsc1

(rememberγ(t) = (x(t), y(t) is our geodesic). Sincey′(t) and∂/∂y are collinear,
it follows that:

〈y′(t), y′(t)〉 = 〈y(t)′, ∂/∂y〉2
〈∂/∂y, ∂/∂y〉 = (

c21
c0
)

1

w(x(t))

In dimension 2, that is, dimL = 1, the Clairaut integral together with the energy
integral: 〈γ′(t), γ′(t)〉 = constant, suffice to understand completely the geodesics.
The remaining developments concern the case dimN ≥ 2.

The shape vector field.The distortion of the warped product structure, i.e. the
obstruction to being a direct product is encoded in∇w, the gradient ofw (with
respect to the metric ofL).

Obviously, the fact that the foliationN (i.e. that with leaves{x} × N ) be
geodesic is also an obstruction for the warped product to be direct. The following
fact is a quantitative version of this obstruction.

FACT 6.1. The shape vector field−→n ofN is aN -foliated vector field. More exactly
(identifyingTM with TL× TN ):

−→n (x, y) =
−1

2
(
∇w(x)

w
, 0)

Proof. With the notations of Lemma2.3, we havef = wg, and thus (by definition
of −→n ) LXwg = −2−→n f , and on the other handLX(wg) = (X.w)g = X.w

w wg.
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�

(Observe that∇w
w is well defined even for local warped product structures).

Projection ontoL. We consider the case wherex(t) andy(t) are regular curves,
since the question is local and the other cases are quite easier. Therefore, these
curves generate a surface,(x(t), y(s)), whose tangent bundle is generated by the
natural frame(X,Y ). SinceX andY commute, we have∇X+Y (X + Y ) =
∇XX + 2∇XY +∇Y Y .

SinceL is geodesic,∇XY is tangent toN (indeed, ifZ is tangent toL, then,
〈∇XY,Z〉 = X〈Y,Z〉 + 〈Y,∇XZ〉 = 0, becauseL is geodesic). By definition,
the projection of∇Y Y onTL equals〈Y, Y 〉−→n . From this and Fact6.1, we deduce
that the projection of∇X+Y (X + Y ) on TL equals∇XX − (1/2)〈Y, Y 〉∇w

w ,
which must vanish in the geodesic case. Replacing〈Y, Y 〉 (= 〈y′(t), y′(t)〉) by its
expression above, we obtain:

∇XX = (
1

2

c21
c0
)

1

w(x(t))

∇w

w
= (−1

2

c21
c0
)(∇ 1

w
)(x(t))

This proves the following.

FACT 6.2. The projections ontoL of the geodesics ofL×w (R, c0dy
2) are exactly

the trajectories of the mechanical systems onL with potentials c
w , i.e. curves onL

satisfying an equation of the form:

x′′ = −∇(
c

w
)(x)

wherec runs overR+ (resp.R−) if c0 > 0 (resp. ifc0 < 0).

From this, we deduce the following fact for a generalN .

Theorem 6.3. [Maupertuis’ principle] The projections ontoL of the geodesics of
M = L ×w N are exactly the trajectories of the mechanical systems onL with
potentials c

w , for c ∈ R if the metric onN is non-definite, forc ∈ R
+ if the metric

onN is positive definite, and forc ∈ R
− if the metric onN is negative definite.

Equations. In the case wherey(t) is not lightlike, its parameterization is fully de-
termined, wheneverx(t) is known, by using the first integral〈y′(t), ∂/∂y〉 = c1.
Indeed one can identifyy′(t) with y′(t)∂/∂y, and thus with help of the notation
above,y′(t) = c1

〈∂/∂y,∂/∂y〉(x(t)) = c1
c0w(x(t)) .

There is no analogous equation in the case wherey(t) is lightlike. Let us de-
rive the general equation in another way which covers the lightlike case. From the
calculation before Fact6.2, we have∇Y Y + 2∇Y X = 0. Now, for all Z tan-
gent toN , 〈∇Y X,Z〉 = −〈X,∇Y Z〉 = −〈X,−→n 〉〈Y,Z〉. Therefore,∇YX =

−〈X,−→n 〉Y = dw(X)
2w Y , which proves:

FACT 6.4. The curvey(t) has a geodesic support, and its parameterization is cou-
pled with the companion curvex(t) by means of the equation:

y′′ = − ∂

∂t
(logw)(x(t))y′
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Mechanics onM . The previous discussion relates the geodesics ofM to trajec-
tories of mechanical systems onL. Let us now start with a mechanical system
γ′′ = −∇V onM = L×wN itself. We assume that the potentialV is constant on
the leaves{x} ×N , and thus may be identified with a function onL. Essentially,
by the same arguments, one proves.

Proposition 6.5. Consider onM = L ×w N , the equationγ′′ = −∇V , where
V is a function onL. Then, the projections of its trajectories onN are non-
parameterized geodesics ofN , and their projections onL are trajectories of me-
chanical systems onL with potentials of the formV + c

w , wherec runs overR if
the metric onN is nondefinite, and otherwise,c has the same sign as the metric of
N .

Corollary 6.6. If M = L ×w N , has dimension 2, i.e.L and N are locally
isometric toR,±dt2), then, the trajectories of the equationγ′′ = −∇V , whereV
is a function onL are completely determined by means of:

i) their projection onL satisfyx′′ = V + c
w , and

ii) they satisfy the the energy conservation law〈γ′(t), γ′(t)〉 + V (γ(t)) = con-
stant

Example 6.7. This applies in particular to solve the geodesic equation onthe hy-
perbolic planeH2 = R×et R.

7. EXAMPLES. EXACT SOLUTIONS

In the sequel, we will in particular consider examples of warped product struc-
tures on exact solutions, i.e. explicit 4-Lorentz manifolds with an explicit Einstein
tensor (for details, one may for instance consult [14], [18], [21]...). In fact, warped
products are omnipresent in cosmological models, because of their simplicity and
symmetry advantages, as explained in the introduction. However, the most impor-
tant use of warped product is in formulating expanding universes. This needs the
warped product to be of “physical” type. Let us formulate precisely what we mean
by this.

Definition 7.1. We say that a warped product structure on a Lorentz manifold
M = L ×w N is physical if the metrics on both the factorsL andN are definite
(one positive and the other negative). Otherwise, the warped product structure is
called anti physical. The same definitions apply for local warped products and
GRW structures.

Equivalently, the warped product is physical ifN is spacelike or locally iso-
metric to(R,−dt2). The dynamical counterpart in the first case, i.e. whenN is
spacelike, is that of a universe in expansion (§7.1), and in opposite, a warped prod-
uct structure for whichN is locally isometric to(R,−dt2), corresponds to a static
universe (§7.2).

The warped productM = L×w N is anti physical iff one of the factorsL orN
is Lorentzian.



14 A. ZEGHIB

7.1. Expanding universes: classical Robertson-Walker spacetimes. Here,L is
an interval(I,−dt2), andN a 3-Riemannian manifold of constant curvature. Re-
call that the -energy tensor satisfies (or say, it is defined by) the Einstein equation:
T = (1/8π)(Ric − 1

2Rg) (Ric andR are respectively the Ricci and scalar curva-
ture of 〈, 〉). Here, it has the form of a perfect fluid:T = (µ + p)ω

⊗

ω + p〈, 〉,
whereω = the dual 1-form of ∂∂t (with respect to the metric〈, 〉) and the func-
tionsµ (energy density) andp (pressure), are determined by the warping function
w (by means of the Einstein equation). In fact, the condition thatN has a constant
curvature is exactly needed to get a perfect fluid.

7.2. Static universes. Not only expanding universes involve a warped product
structure, but also the static ones, which are defined as those spacetimes having
non-singular timelike Killing fields with an integrable orthogonal distribution. The
fact that this gives a local warped structure with the trajectories of the given Killing
field as a normal foliation, is a special elementary case of Theorem5.1

Conversely, by the isometric extension Fact1.1, a warped productM = L ×w

N , with N locally isometric to(R,−dt2) (essentiallyN is an interval endowed
with a negative metric) is static. Note however that a local warped product with
a normal factor locally isometric to(R,−dt2) is not necessarily static, since there
is an ambiguity in defining a global Killing field as desired. The natural notion
that can be considered here is that of a locally static spacetime, which will thus be
equivalent to having a local warped product structure with anormal factor locally
isometric to(R,−dt2).

7.2.1. A naive gravitational model.Consider the warped productM = (R3, Eu-
clidean)×r(R,−dt2), wherew = r : R

3 → R is the radius function. (The
warped product metric is non-degenerate only forr 6= 0, so more exactly,M
equals(R3 − {0}) ×r R).

From Theorem6.3, the projection of the geodesics ofM are the trajectories of
the mechanical systems on the Euclidean spaceR

3, with potentials of the form
V = c/r, wherec is a non-positive constant. By this, one obtains in particular the
trajectories of the Newtonian potentialV = −1/r.

In fact, this process gives a (naive) relativistic static model L ×w (R,−dt2)
associated to any negative potentialV = −1/w : L → R

− on a Riemannian
manifoldL.

One flaw of such a model is that it is not characteristic of the initial potentialV ,
since it cannot distinguish between the potentialscV for different (non-negative)
constantsc, and it recovers in particular the geometry ofL, for c = 0. In fact, ex-
cept for exceptional cases, two warped productsL×wR andL×cwR are isometric
by means of theuniquemapping(x, t) → (x, ct), which acts as a time dilation.
Therefore, the model would be specific of the potential if oneintroduces an extra
structure breaking time dilations.

It seems interesting to investigate some features of these spaces, especially from
the viewpoint of being perfect fluids.
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“Newtonian spacetimes” (see for instance [18], §12) were introduced by E. Car-
tan for the goal of making geodesic the dynamics under a mechanical system de-
rived from a potential. The structure there is that of an affine connection, which is
poor, compared to the Lorentz structure here.

We think it is worthwhile investigating a synthesis of all the approaches to
geodesibility processes of dynamical systems.

7.3. Polar coordinates. The polar coordinates at 0 endow the Minkowski space
(Rn,1, 〈, 〉) with a warped product structure defined away from the light cone{x/〈x, x〉 =
0}. Inside the cone, the structure is physical, with a normal factor homothetic to
the hyperbolic spaceHn, and outside the cone, the structure is anti-physical, with
a normal factor homothetic to the de Sitter space{x/〈x, x〉 = +1}.

7.4. Spaces of constant curvature.(See for instance [28] for some facts on this
subject). The spaces of constant curvature are already “simple”, but one may need
for some calculations to write them as (non-trivial) warpedproducts, for instance
polar coordinates on these spaces give rise to warped product structures defined on
some open sets.

Recall that for these spaces, umbilic submanifolds (with dimension≥ 2) are
spherical, and also have constant curvature. In particular, a warped product struc-
ture in this case is a GRW structure. (In dimension 4, and if the normal factor is
spacelike, one obtains a classical Robertson-Walker structure, §7.1. The perfect
fluid has in this case constant density and pressure).

One can prove the following fact which classifies the warped products in this
setting. (See [26] for a study of global warped products of physical type).

FACT 7.2. LetN be an umbilic (non-degenerate) submanifold in a space of con-
stant curvatureX. Consider the foliationL, defined on a neighborhoodO(N) of
N , having as leaves the geodesic submanifolds orthogonal toN .

Then, the orthogonal distribution ofL is integrable, say it is tangent to a folia-
tion N . Moreover,(L,N ) determines a GRW structure.

Furthermore,N is the orbit foliation of the isometric action of a natural sub-
groupT (N) of Isom(X) preservingN . In the case whereN is a geodesic subman-
ifold, T (N) is the group generated by the transvections along the geodesics ofN .
(A transvection along a geodesic is an isometry which induces parallel translation
along it).

7.5. Schwarzschild spacetime.The building of Schwarzschild spacetime gives
an excellent example of how various warped product structures may be involved.
We will essentially study it from this point of view. This spacetime models a rela-
tivistic one body universe (a star). Its construction is accomplished by translating
the physical content into geometrical structures, and making at each stage “neces-
sary” topological simplifying assumptions.

The spatial isotropy around the star leads to the first geometric structure, for-
mulated by the fact thatSO(3) acts isometrically with 2-dimensional orbits. From
Fact5.4, we get a local warped product of the typeL ×w S2 (one excludes the
RP 2-case by an appropriate orientability extra hypothesis). One then makes the
topological simplifying hypothesis that the warped product is global.
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This warped product (in particular the functionw) is canonical (it has a physical
meaning) and is in particular compatible with the additional structures.

The second geometrical hypothesis on the spacetime is that it is static (which
in fact leads to another local warped product structure witha normal factor locally
isometric to(R,−dt2)).

The compatibility between structures, implies, essentially, that the surfaceL it-
self is static. Thus (after topological simplification)L is a warped product(R, g)×v

(R,−dt2). (whereg is some metric onR).
By compatibility, the warping functionw is invariant by the Killing timelike

field ∂
∂t on L. Its gradient is thus tangent to the first factorR of L. Another

topological simplification consists in assuming thatw is regular, namely,r =
√
w

is a global coordinate function onR (the first factor ofL). We write the metric on
this factor asg = g(r)dr2 (g is now a function onR).

The metric on the spacetime has thus the formg(r)dr2 − v(r)dt2 + r2dσ2 (dσ2

is the canonical metric onS2).
The third geometrical hypothesis is that the spacetime is empty (a vacuum),

i.e. Ricci flat, leading to differential relations on the functions g and v. They
imply that g = 1

1−(2m/r) , and thatvg equals a constant (here one has to perform
some computation). This last constant must equal to 1, by thefourth geometrical
hypothesis saying that the spacetime is asymptotically Minkowskian.

We have therefore,L =]2m,+∞[×R, endowed with the metric:

1

1− (2m/r)
dr2 − (1− (2m/r))dt2

The warped productL×r2 S
2 is called theSchwarzschild exteriorspacetime.

It is natural to ask if other solutions exist without our topological simplifica-
tion hypotheses. This is essentially equivalent to ask if the spacetimeL ×r2 S2

admits non-trivial extensions. One easily sees that no suchstaticextensions exist.
However non-trivial analytic (and thus Ricci flat) extensions actually exist. They
(essentially) correspond to analytic extensions of the Lorentz surfaceL.

The obvious one is given by addingL− =]0, 2m[×R, endowed with the met-
ric defined by the same formula. The warped productL− ×r2 S2 is called the
Schwarzschild black hole.

It has been observed (firstly by Lemaı̂tre, see for instance [18]) that the metric
onL ∪ L− admits an analytic extension to all]0,+∞[×R.

Next, a larger extension̂L , which turns out to be “maximal”, was discovered by
Kruskal. It can be described, at a “topological level” as follows. EndowR

2 with
coordinates(x, y) and a Lorentz scalar product (at 0)dxdy. Then,L̂ is the part of
R
2 defined by an inequalityxy > c(m), wherec(m) is a negative constant. The

metric has the formF (xy)dxdy, whereF :]c(m),+∞[→ R is an analytic real
function which tends to∞ at c(m). (It turns out that a coordinate system where
the metric has this form is unique up to a linear diagonal transformation.)

From the form of the metric, the flowφs(x, y) = (esx, e−sy) acts isometrically
on L̂. This corresponds to the analytic extension of the Killing field ∂

∂t defined on
L.
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The time functiont on L has the formt(x, y) = a ln x
y , wherea is a constant

(which depends on the coordinate system).
The radius functionr looks like a Lorentz radius, indeed it has the form,r(x, y) =

b(xy) + 2m, for some analytic functionb : [c(m),+∞[→ [−2m,+∞[, with
b(0) = 0. (A natural Lorentz radius for(R2, dxdy) is

√

|xy|).
Our initial surfaceL is identified with the positive quadrantx, y > 0.
The warped product structure (determined by the flowφs on L̂ − {xy = 0})

is physical onxy > 0, and anti-physical onxy < 0. In fact, this structure is
conformal to that determined by the polar coordinates on(R2, dxdy) (§§1.3.1, and
7.3).

7.5.1. Geodesic foliations.The factorL̂ determines a geodesic foliation of the
Kruskal spacetimêL×r2 S

2.
The static structure (onL×r2 S

2) determines a geodesic foliationF with leaves
t = constant, or equivalentlyxy = constant. Thus a leaf has the form:F = R×S2,

whereR ⊂ L̂ is a ray emanating from 0.
This foliation extends to(L̂ − 0) × S2 (and to the whole Kruskal spacetime

L̂×r2 S
2, as a singular geodesic foliation).

The causal character of a leafF is the same as that of the rayR. In particular,
lightlike leaves correspond to lightlike rays, i.e. the coordinate axis.

7.5.2. Geodesics.To determine all the geodesics ofL×r2 S
2, one uses Theorem

6.3which reduces the problem to the calculation of the trajectories of mechanical
systems on the surfaceL defined by the potentialscr2 .

Now, sinceL itself is a warped product, one applies Corollary6.6 to solve me-
chanical systems with potentialsc

r2
over it. This reduces to use the energy con-

servation, and solve the mechanical systems with potentials c1 1
1−(2m/r) + c2

1
r2

on

(R, 1
1−(2m/r)dt

2).
Proposition6.5applies to these potentials (consideringL as a warped product),

which allows one to fully explicit the geodesics.

7.6. Motivations for anti-physical warped products. We think there is no rea-
son to be troubled by anti-physical warped products. The adjective anti-physical
must not suggest that they are “non physical”, but rather that they are “mirror trans-
form” of physical ones (to be found?). This clearly happens in the case of polar
coordinates in the Minkowski space, where one sees how the anti-physical part of
the GRW structure is dual to the physical one (§7.3). A similar duality holds be-
tween the interior and the exterior of the Schwarzshild spacetime. The exterior is
static, by the existence of a timelike Killing field, which becomes spacelike in the
interior. The interior of a black hole is anti-physical.

Let us enumerate further (physical) motivations of anti-physical warped prod-
ucts:

• With respect to the goal of constructing simple exact solutions, the calculations
are formally the same, in the physical as well as in the the anti-physical cases. So,
one may calculate, and forget that it is an anti-physical warped product!
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• As was said before, the abundance of symmetries leads to a warped product
structure, but actually, large symmetry groups involve anti-physical warped prod-
ucts. For example, non-proper isometry groups lead to an anti-physical warped
product (see for instance [29]). Roughly speaking, non-proper means that the sta-
bilizers are non-compact. Let us however say that only few exact solutions have
non-proper isometry groups. It seems that this is the case, only for spaces of con-
stant curvature and some gravitational plane waves.

• Finally, it seems interesting to formulate a complexification trick which ex-
changes anti-physical by physical structures. The very naive idea starts by con-
sidering a Riemannian analytic submanifoldV in the Euclidean spaceRN , taking
its “complexification”V C and then inducing on it the holomorphic metric ofC

N ,
which as a real metric is pseudo-Riemannian. (The complexification is defined
only locally but one may approximate by algebraic objects inorder to get a global
thing, see for instance [12] for related questions).

8. BIG-BANGS IN ANTI-PHYSICAL WARPED PRODUCTS

Consider the example of polar coordinates around 0 in the Minkowski space
R
n,1 (§7.3). When an interior point approaches the light cone (and especially 0), the

warping function collapses, and the warped product structure disappears. However,
the spacetime itself persists, beyond this “false big-bang”. It seems interesting to
know situations where a “true big bang” (i.e. a disappearingof the spacetime) must
follow from a disappearing of the warped product structure.The results below
provide an example of such a situation, but let us before try to give a more precise
definition.

Definition 8.1. Let(L,N ) be a warped product structure on a pseudo-Riemannian
manifoldM . We say that it has aninessential big-bangif there is an isometric
embedding ofM in another pseudo-Riemannian manifoldM ′, as an openproper
subset, such that the shape vector field−→n of N , is non-bounded in some compact
subset ofM ′.

In other words, we seeM as an open subset ofM ′, then, an inessential big-
bang holds if there is a compactK in M ′ such that−→n is not bounded onK ∩M .
(Observe that one may speak of bounded vector fields on compact sets without any
reference to metrics). We have the following result.

Theorem 8.2.An analytic anti-physical GRW structure with non-positively curved
normal factor, has no inessential big-bangs.

Let us give a purely mathematical essentially equivalent statement.

Theorem 8.3. ([29]) LetM be an analytic Lorentz manifold such that some open
subsetU of M is isometric to a warped productL×w N , whereN (is Lorentzian
and) has a constant non-positive curvature (i.e.N is locally isometric to the
Minkowski or the anti de Sitter spaces). Then, every point ofM has a neigh-
borhood isometric to a warped product of the same type. More precisely, ifM
is simply connected, then the warped product structure onU extends to a local
warped product (of the same type) onM .
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Let us give another formulation in the vein of detecting singularities of a space-
time from that of a warped product structure on it.

Corollary 8.4. Let M be a simply connected manifold, andU an open subset
of M endowed with an analytic Lorentz metricg. Suppose that(U, g) is a warped
product as above, and letx be a point in the boundary ofU . If the warping function
w tends to∞ or 0 nearx, then (not only the warped product structure, but also)
the Lorentz metricg does not extend analytically nearx.

Remark 8.5. The case of polar coordinates on the Minkowski space shows that
the hypotheses that the GRW structure is anti-physical and the normal factor of
non-positive curvature are necessary.

In the sequel, we will give the proof of Theorem8.3, and also details on the
tools behind it, especially about lightlike Killing fields.

9. PROOF OFTHEOREM 8.3

9.1. Beginning.

9.1.1. Trivial extension.Let Ed+1
c denote the simply connected complete Lorentz

space of constant curvaturec (see for instance [28] for more details).
In the casec 6= 0, we assume thatd > 1, that is, the dimension of the space is

≥ 3. In fact, in dimension 2, the sign of the curvature is irrelevant.
Let U = L ×w N be as in the statement of Theorem8.3. By hypothesisN is

locally isometric toEd+1
c for somec ≤ 0. We can restrictU so thatN becomes

identified to an open subset ofEd+1
c .

By the trivial extension of isometries, Fact1.1, Isom(N) acts onU . However,
becauseN is a “small” open subset ofEd+1

c , Isom(N) may be dramatically small,
and for this, it is better to consider infinitesimal isometries, i.e. Killing vector
fields. Indeed, like isometries, Killing vector fields ofN , trivially extend toU .
Now the Killing algebra ofN (i.e. the algebra of Killing fields) is the same as that
of Ed+1

c which we denote byGd+1
c . Therefore there is aninfinitesimal action of

Gd+1
c onU , i.e. a homomorphism which forX ∈ Gd+1

c associates an element̄X
of the Killing algebra ofU .

Note that, for our purpose, only the sign ofc is relevant, that is we can assume
c = −1, wheneverc < 0.

Recall thatGd+1
0 , the Killing Lie algebra of the Minkowski spaceEd+1

0 , is iso-
morphic to a semi-direct productRd+1

⋊ o(1, d), and that the Killing Lie algebra
of the anti de Sitter spaceEd+1

−1 is Gd+1
−1 = o(2, d)

9.1.2. Analytic extension.Henceforth, we will assume thatM is simply connected
and analytic (it suffices just to pass to the universal covering). A classical result
[20] states that an analytic Killing field defined on an open subset extends as a
Killing field to the whole ofM .

By individual extension of Killing fields, we get an infinitesimal analytic iso-
metric action ofG on the whole ofM .

However, this action does not a priori determine a regular foliation, namely, the
dimension of the orbits is not necessarily constant.
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Let us first observe that the analyticity implies thatd+1, i.e. the dimension of the
orbits of the points ofU , is the generic dimension of orbits, that is, the dimension is
everywhere≤ d+1. Indeed, ifX1, . . . ,Xd+1 ∈ G, thenX̄(x)∧. . .∧X̄d+2(x) = 0
for x ∈ U , and hence everywhere (of course, we implicitly assume thatall our
spaces here are connected).

Proposition 9.1. LetG = Gd+1
c act infinitesimally isometrically on a Lorentz man-

ifold M (herec is not assumed to be≤ 0), with a generic orbit dimension≤ d+1.
assume that all (the restrictions of the metrics on) the orbits are non-degenerate.
In the casec > 0, assume further that at least one orbit is of Lorentzian type. Then,
theG-action determines a regular (i.e. with constant dimension) foliation, which is
the normal foliation of a GRW structure.

Proof. Observe that an orbit is aG-locally homogeneous space. So, the proof of
the proposition follows from Theorem5.3and from the following classical fact.

FACT 9.2. If a pseudo-Riemannian manifold of dimension≤ d, has a Killing al-
gebra of the same dimension as that of a pseudo-Riemannian manifold of constant
curvature and dimensiond, then this manifold is necessarily of dimensiond and
has the same constant curvature.

Proof. Recall that all the orthogonal algebraso(p, q), with p + q = d′ have the
same dimension, which equals in particular dimo(d′). Let x be a point of the
given pseudo-Riemannian manifold. Its stabilizer algebracan be identified to a
subalgebra of someo(p, q), with p + q ≤ d. But by hypothesis, this stabilizer has
a dimension≥ dim o(d). It follows thatp+ q = d, and that the stabilizer iso(p, q)
itself. One deduces, in particular, that the dimension of the manifold equalsd. To
check that the curvature is constant, one observes thatO(p, q) acts transitively on
the space of spacelike 2-planes atx. �

�

9.2. Lightlike Killing fields. The following notion will be useful.

Definition 9.3. A Killing field X on a pseudo-Riemannian manifold is called geo-
desic (resp. lightlike) if∇XX = 0 (resp.〈X,X〉 = 0).

FACT 9.4. A Killing fieldX is geodesic iff, it has geodesic orbits, iff, it has constant
length (i.e.〈X,X〉 is constant). In particular a lightlike Killing field is geodesic.

Proof. Let ∇ denote the Levi-Civita connection. Recall that a Killing field X is
characterized by the fact that∇X is antisymmetric, that is,〈∇Y X,Z〉+〈Y,∇ZX〉 =
0, for any vector fieldsY andZ. In particular,〈∇XX,Y 〉+ 〈∇Y X,X〉 = 0, and
hence,〈∇XX,Y 〉 = −(1/2)Y.〈X,X〉. Therefore,∇XX = 0 is equivalent to that
〈X,X〉 is constant.

�

9.2.1. Singularities. A geodesic Killing field with a somewhere non-vanishing
length is non-singular (since it has a constant length). This fact extends to lightlike
Killing fields on Lorentzian manifolds.
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Indeed, near a singularity, the situation looks like that ofthe Minkowskian case.
In this case, the Killing field preserves (i.e. is tangent to)the “spheres” around the
singularity, but some of these spheres are spacelike, contradiction!

As it is seen in this sketch of proof, the fact actually extends to non-spacelike
Killing fields, i.e. 〈X,X〉 ≤ 0:

FACT 9.5. ([3], see also[1] and [30]) A non-trivial non-spacelike Killing field on
a Lorentz manifold is singularity free.

9.2.2. Curvature.

FACT 9.6. LetX be a geodesic Killing field, then, for any vectorY ,

〈R(X,Y )X,Y 〉 = 〈∇Y X,∇Y X〉
If M is Lorentzianor Riemannian, and X is non-spacelike (i.e.〈X,X〉 ≤

0), then〈R(X,Y )X,Y 〉 ≥ 0. In particular, Ric(X,X) ≥ 0, with equality (i.e.
everywhereRic(X,X) = 0), iff, the direction ofX is parallel.

In the caseM is lorentzian andX is lightlike, the curvature of any non-degenerate
2-plane containingX is≤ 0.

Proof. Let γ be a geodesic tangent toY . Consider the surfaceSγ obtained by
saturatingγ by the flow ofX, i.e. if φt is the flow ofX, thenSγ = ∪tφ

t(γ) (here
we assume thatX is transversal toγ).

Take a geodesic parameterization ofγ, and continue to denote byY , the vector
field onSγ , obtained first, by parallel translating alongγ, and then, saturating by
φt (alongSγ).

We have:X andY commute,∇Y Y = 0, and∇XX = 0 (sinceX is a geodesic
Killing field). It remains to estimate∇XY (= ∇YX). We have0 = Y 〈X,X〉 =
2〈∇Y X,X〉 (since〈X,X〉 is constant by Fact9.4) andX〈Y, Y 〉 = 2〈∇XY, Y 〉,
since by construction〈Y, Y 〉 is constant alongSγ . Therefore,∇XY (= ∇Y X) is
orthogonal toSγ .

One may restrict consideration to the case whereSγ is non-degenerate, since, if
not, one may approximateSγ by non-degenerateSγn , by choosing an appropriate
sequence of geodesicsγn.

The previous calculation implies thatSγ is intrinsically flat, since the orthog-
onal projection of the ambient connection vanishes (all thecovariant derivatives
obtained fromX andY are orthogonal toSγ)..

The curvature equality follows from the Gauß equation.
Now, ∇XY is orthogonal toX, and hence it is spacelike wheneverX is non-

spacelike andM is Riemannian or Lorentzian.
Recall thatRic(X,X) equals the trace of the linear endomorphismY → A(Y ) =

R(X,Y )X. Now,〈A(Y ), Y 〉 ≥ 0 implies that trace(A) ≥ 0, and it is also straight-
forward to see that ifRic(X,X) = 0, then∇Y X0 is isotropic for allY . We have
in addition that〈∇Y X,X〉 = 0, and hence∇YX is proportional toX. This is
exactly the analytic translation of the fact that the direction field determined byX
is parallel.

Finally, the sectional curvature of the plane generated byX andY is 〈R(X,Y )X,Y 〉
〈X,X〉〈Y,Y 〉−〈X,Y 〉2

,

which has the opposite sign of〈R(X,Y )X,Y 〉.
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�

9.2.3. The constant curvature case.Let Rp,q denoteRn (n = p + q), endowed
with the standard formQ = −x21− . . .−x2p+x2p+1+ . . . x2n, of signature(p, q). A
Killing field X onR

p,q is of the formx → Ax+a, wherea ∈ R
n, andA ∈ o(p, q).

Recall thatA ∈ o(p, q), iff, AJ + JA∗ = 0, where

J =

(

−Ip 0
0 Iq

)

We have,∇XX = A2, and hence,X is geodesic, iff,A2 = 0.
In the Lorentzian case (i.e. the Minkowski space),p = 1, the equationA2 = 0,

has no non-trivial solution, that is, ifA ∈ o(1, p), andA2 = 0, then,A = 0.
One may show this by a straightforward calculation, or by applying Fact9.6 to
S1,p(+1), which will be defined below. It follows that a geodesic Killing field is
parallel, i.e. it has the formX : x → a, and it is lightlike if furthermorea is
isotropic.

In the non-Lorentzian case, non-trivial solutions ofA2 = 0 exist. Let us con-
sider the case ofR2,2. The standard formQ is equivalent toQ′ = dxdz + dydt.
Considerφs(x, y, z, t) = (x, y, z + sx, t + sy). This is a one-parameter group of
orthogonal transformations ofQ′. Its infinitesimal generator:

B =









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









satisfiesB2 = 0. Thus, a conjugateA of B belongs too(2, 2) and satisfies
A2 = 0 A standard argument shows to thato(2, 2) is in fact generated by elements
satisfying the equationA2 = 0. By the same argument one proves:

FACT 9.7. For p ≥ 2, q ≥ 2, o(p, q) is generated (as a linear space) by its elements
satisfyingA2 = 0. (Note that the condition onp andq is equivalent to thato(p, q)
has real rank≥ 2).

ConsiderXc = Sp,q(c) = {x/Q(x, x) = c}. Then, forc 6= 0, Xc is non-
degenerate, and the metric on it has signature(p, q − 1) if c > 0, and signature
(p − 1, q) if c < 0. It has curvature1c , and Killing algebrao(p, q). The universal
pseudo-Riemannian space of the same signature and curvature, is a cyclic (maybe
trivial) covering ofXc. The Killing algebra of the universal cover is the same as
that ofXc (see [28]).

A Killing field A ∈ o(p, q) is geodesic (with respect toXc), iff, A2 = λI, for
some constantλ. It is lightlike, iff, A2 = 0.

For example, in the Riemannian case, i.e.p = 0, solutions ofA2 = λI in o(n)
exist exactly ifn is even, which give Hopf fibrations on odd dimensional spheres.

For the Lorentz case, we have, with the previous notations,Ed+1
c = S1,d+1(c),

if c > 0, andEd+1
c is the universal cover ofS2,d(c), if c < 0.

In particular, a solution ofA2 = 0 in o(1, p) corresponds to a lightlike Killing
field on the de Sitter space (= Ed+1

c = S1,d+1(c)). But, since this latter space is
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Lorentzian and has positive curvature, such a non-trivial Killing field does not exist
by Fact9.6. Summarizing:

FACT 9.8. The de Sitter space has no lightlike (or even geodesic) Killing fields.
A lightlike Killing field on the Minkowski space is parallel with isotropic trans-

lation vector.
The Killing algebra of the anti de Sitter space is generated,as a linear space,

by its lightlike Killing fields.

9.3. End of the proof of Theorem 8.3. Observe that ifX ∈ Gd+1
c is lightlike, as

a Killing field on Ed+1
c , then its trivial extension̄X , is a lightlike Killing field on

M .
Suppose by contradiction that there is a degenerate orbitN0 of theGd+1

c -action.
From §9.1.2, N0 has dimension≤ d + 1. Observe first that dimN0 > 0, since

lightlike Killing fields are singularity free.
The metric onN0 is positive non-definite, with kernel of dimension 1 (since

the metric onM is Lorentzian). This determines a 1-dimensional foliationF ,
called thecharacteristic foliation of N0. The tangent direction ofF is the unique
isotropic direction tangent toN0. It then follows that ifX is a lightlike Killing
field, then the restriction of̄X toN1 is tangent toF (equivalently, the flow of such
a Killing field preserves individually the leaves ofF). Therefore, from Fact9.4,
the leaves ofF are lightlike geodesics (inM ).

The anti de Sitter case.In the casec < 0, Gd+1
c is generated by lightlike Killing

fields, and henceGd+1
c itself preserves individually the leaves ofF . Thus, by

definition, N0 has dimension 1. However, it is known that there is noGd+1
c -

homogeneous space of dimension 1. This is particularly easyto see in the present
situation. Indeed, here,Gd+1

c preserves the affine structure of the lightlike geodesic
N0, and henceGd+1

c embeds in the Lie algebra of the affine group ofR, which is
impossible.

The flat case.If N0 has dimension 1, we get a contradiction as in the anti de Sitter
case. If not (i.e. dimN0 > 1), consider the (local) quotient spaceQ = N0/F . (The
global quotient does not necessarily exist, but because we deal with infinitesimal
actions, we can restrict everything to a small open subset ofM ). TheGd+1

0 -action
onN0 factors through a faithful action ofo(1, d) (= Gd+1

0 /Rd+1) onQ.
Observe thatQ inherits a natural Riemannian metric. Indeed, the Lorentz metric

restricted toN0 is positive degenerate, with kernelTF . But F is parameterized
by any lightlike fieldX ∈ Gd+1

0 (this is the meaning of the fact that the flow ofX̄
preserves individually the leaves ofF). Therefore the projection of this metric on
Q is well defined.

This metric is invariant by theo(1, d)-action. As in the proof of Fact9.2, since
dimQ ≤ d, we have dimQ = d, and furthermore,Q has constant curvature. Also,
we recognize from the list of Killing algebras of constant curvature manifolds that
Q has constant negative curvature, i.e.Q is a hyperbolic space.

It then follows that dimN0 = d, and in particular that the orbits ofGd+1
c deter-

mine a regular foliation nearN0.
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Now, the contradiction lies in the fact thatQ is hyperbolic, but the analogous
quotient for generic leaves of theGd+1

0 -action, are flat. More precisely, letX ∈
R
d+1 ⊂ Gd+1

0 be a translation timelike Killing field. ConsiderM ′ the (local) space
of orbits ofX (instead of the whole ofM , we take a small open subset intersecting
N0, where everything is topologically trivial). TheGd+1

0 -orbit foliation projects to
a foliation G′ of M ′. For example,Q is a leaf ofG′ which is just the projection
of N0. In fact, as in the case ofQ, the projection of the metric on theGd+1

0 -orbits
endows the leaves ofG′ with a Riemannian metric. Now, a generic leaf ofG′

is (locally) isometric to the quotient of the Minkowski space R
d,1 by a timelike

translation flow, which is thus a Euclidean space (of dimension d). But the leafQ
is hyperbolic which contradicts the obvious continuity (infact the analyticity) of
the leafwise metric ofG′. ♦
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