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GEOMETRY OF WARPED PRODUCTS

ABDELGHANI ZEGHIB

ABSTRACT. This is a survey on the geometry of warped products, withaut
essentially with only soft, calculation. Somewhere in tlapgr, the goal was
to give a synthetic account since existing approaches #rerranalytic. Some-
where else, we have interpreted statements, especiallydansof a physical
terminology. This is essentially heuristic, but we thinkritght be helpful in
both directions, that is, in going from a synthetic geontefrianguage to a rela-
tivistic one, and vice-versa.
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1. INTRODUCTION

The warped product is a construction in the class of pseudm&nian mani-
folds generalizing the direct product, and defined as faloet(L, ») and(N, g)
be two pseudo-Riemannian manifolds and L — R™ — {0} awarpingfunction.
The warped producd/ = L x,, N, is the topological product x N, endowed
with the metrich @ wg. The metric onM will be usually denoted by, ). Here,
we will be especially interested in the case whéfeis Lorentzian (a spacetime)
and sometimes Riemannian.

Previous works.There are several references on warped products, we mention
few: [2, 4, 8, 10, 21, 24]. Some of them are, like the present one, surveys, but, in
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2 A. ZEGHIB

general, they originate from different points of view. Theher met the subject
while working on p9] *.

Terminology. Usually, M is seen as a bundle ovér(the basig with fiber V. This
point of view is surely justified. However, it turns out thaiteosometimes needs to
project ontoN. Indeed, the distortion of the structure comes from thestrarse
structure of the foliation determined by the factorthe study of which involves
projecting onN (see§2). Here, motivated by the analogy with a group theoretic
situation (justified byl.1), and to emphasize its importance, we will callthe
normal factor of the warped product.

Let us introduce another useful terminology in this text. &ped produci/ =
Lx,,N is called a (globalpeneralized Robertson-Walker{GRW in short) space,
provided N is a pseudo-Riemannian manifold of constant curvature [(&gdor
another use of this terminology). Recall that classical &ktdon-Walker spaces
correspond to the case whekeis a Riemannian manifold of constant curvature,
andL is an interval ofR endowed with the metrie dt>. These Lorentz spacetimes
model an expanding universe.

Interests. The warped product construction has at least two inteiggtioperties.
Firstly, it has a practical interest, since it gives sopbtéded examples from simple
ones: calculation on warped products is easy (but noratjivBecondly, having a
large symmetry group generally involve a warped producicstire. Actually, be-
ing “simple” and having a large symmetry group, are critebbeauty. Therefore,
imposing a warped product structure is somewhat a fornaulaif a philosophical
and an aesthetical principle.

1.1. Two fundamental extension facts.As in the case of direct products, warped
products enjoy the two following properties:

e Dynamical property: extension of isometries.

e Geometric (static) property: extension of geodesic sulifolds.

In the present article, we will specially investigate thstfipoint. (We hope to
consider the second one in a subsequent paper).

Let f : N — N be a diffeomorphism. Consider thdvial (or product) exten-
sion:

fi(@y) e LxN = (z,f(y) e Lx N
With the notations above, we hayé(h @ wg) = h@ wf*g. In particular:

Trivial isometric extension 1.1. The trivial extensiory is an isometry of, x,, N
iff fis anisometry ofV.

Warped products are reminiscent of semi-direct productthéncategory of
groups, the factoV playing the role of the normal subgroup. Indeed, 1$8Mis
a normal subgroup of Isof{L x,, N), which designs the group of isometries of
L x,, N preserving the topological product. This justifies calliNgthe normal

1. The present article exists in fact since 1999, it was dedtto be published in the proceeding
of a conference on pseudo-Riemannian geometry. | came leaehtty around the subject and
discovered interest of some people who quote it; that is wéstimated it is worthwhile to revive
this paper.



GEOMETRY OF WARPED PRODUCTS 3

factor of the warped product.

The following is the second extension fact which will be grdvn §4.

Geodesic extension 1.2Let M = L x,, N be a warped product, and a sub-
manifold of V. ThenS'is geodesic inV iff L x S is geodesic in\/.

As a corollary, we obtain that a warped product has many naiat(i.e. with
dim > 1) geodesic submanifolds. This is the starting point of itgidf GRW
spaces.

1.2. Content and around the article. The article contains personnel points of
view rather than a standard survey on warped products. @he/fach seems to be
new in our approach here, is to consider local warped prostaattures, a notion
which belongs to the domain of foliations. This leads us ia gaper to fix some
known and used characterizations (but sometimes diffiouiind in literature) of
foliations with some transverse or tangential geometriecttires (geodesic, um-
bilical, transversally pseudo-Riemannian...).

In another direction, one may also consider analytic psdRidmannian mani-
folds, with a somewhere defined warped product structuge aidmitting an open
set which is a warped product. In the direct (non-warpedjipcocase, an analytic
continuation is easily defined in the whole universal co(€he reason is that we
get parallel plane fields which we extend by parallel trangpo

This is no longer true in the warped case. Firstly, in genengre is no mean
to “extend analytically” (somewhere defined) foliationsice this is not uniquely
defined even in the simply connected case, and also, bedsissgduld at most
give rise to singular objects.

In the case of a somewhere defined warped product structerbave a kind of
a “rigid geometric structure”, and one may use it as a modek then considers
points admitting charts isometric to it. We will meet§f a situation where the
technical realization of this idea works well.

Actually, one solves Einstein equations (i.e. spacetimiis some geometry)
in charts, which are, thanks to reasonable symmetry hypetheendowed with a
warped product structure. One, in general, observes sirigubf the metric writ-
ten in these co-ordinates systems. It is usual to call sungugarities”inessential
From our point of view, they are still singularities, but fbe warped product struc-
ture. So, itis an interersting and natural problem to sth@yktehaviour of analytic
extension of somewhere defined warped product: their degigmes (horizons!)
and their regenerations (but in a different physical natuféat is a question that
the present article would suggest to consider and study ystermatic way, how-
ever, we do here only a few in the particular case developé@.in

1.3. Preliminary examples.

1.3.1. Polar coordinates.This example illustrates how the presence of a warped
product structure is related to symmetry, and how then Liseful, as are the polar
coordinates. Let us start withi a Riemannian manifold, and lete M. Locally

M —{z} isisometric taR* x S"~1, endowed with a metrig = dr? @ g,., whereg,

is @ metric onS™~!. Observe tha©(n) acts naturally by A.(r,u)) — (r, A(u)).
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FAcT 1.3. Polar coordinates determine a warped product, that is, ¢hiera metric
gonS™!and afunctionu(r) such thay, = w(r)g, iff, the natural action 0O (n)

is isometric. It then follows thaj is, up to a multiplicative factor, the canonical
metric onS™~!, and that all the 2-planes at have the same sectional curvature.

Proof. Assume we have a warped product. In order to prove thaDiheg-action
is isometric, it suffices to show that it is isometric on egohesesS, = {r} x S" 1.
Let A € O(n). All these spheres are homothetic, and the metric distodfo4 is
the same on all of them. But this distortion tends to 1 when 0. Therefore,A
has distortion 1 on eachi., that isA acts isometrically. The remaining part of the
fact is standard.

O

For example, polar coordinates determine a warped produbei case of con-
stant curvature Riemannian spaces, the Euclidean casesponds taR™ x,.
Sl

The previous fact generalizes to pseudo-Riemannian mdsifMore precisely,
the polar coordinates at a pointof a pseudo-Riemannian manifold?:¢ of type
(p,q), give rise to a warped product structure, iff, the naturailoacof O(p, q) is
isometric. Let us calk in this case, a point ofomplete symmetryAll the non-
degenerate 2-planes at such a point have the same sectioveiuce.

In particular, if all the points o/ are points of complete symmetry, theWd,has
a constant curvature. It is then natural to ask if there aretriaial, i.e. with non
constant curvature, examples of pseudo-Riemannian nidsifith at least one
point of complete symmetry. An averaging method works t@ gixamples, in the
Riemannian case, sin€&n) is compact. In the other cases, the “spheres” become
complicated, and a large isotropy group at some point, magterextra symmetry
elsewhere. However, nontrivial examples do exist, foranse, any Lorentz metric
on R? of the form F'(xy)dxdy, whereF is a positive real function defined on an
interval containing 0, admit), 0) as a point of complete symmetry. (The metric
is defined on an open subset®t delimited by hyperbolag:y = constant). A
celebrated example of this form is the Kruskal plane (sea&iance 21)).

More generally, in any dimension, one may consider Lorergtrias of the form
g = F(q)q whereq is a Lorentz form. The origin is a point of complete symmetry
for g. Let us however that the situation becomes really rigid & asks for many
points of complete symmetry.

1.3.2. Riemannian symmetric spacégle find the representation of the hyperbolic
(Riemannian) spaceE” as the warped produ@t x .« R" !, to be the nicest model
of it (hereR andR™~! are Euclidean). One amuzing fact coming from the theory of
geodesics in warped products, is how geodesics of the hgtedane are related

to solutions of mechanical systemé = ce™* (c is a constant) (se&6.6). Of
course the interest here is not to analytically solve thisaéiqn, but rather to see
how it can be solved geometricaly.

Remark 1.4 (Generalization) The situation of more general Riemannian symmet-
ric space is more subtle. It involves “multi-warped prodsict This means that
we have(L, h), and (N, g), endowed with7, . . . T}, supplementary subbundles of
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TN (=T & ... Ty), with restriction of the metric denoteg. We also have
warping functionsw, . .., w; defined onL, and construct from all, the metric
w1g1 D ... D wigk. All Riemannian symmetric spaces (eSti(n, R)/SO(n)) ad-
mit such a representation. The geometry of such “multi-wedrproducts” is quite
delicate, at least more than the somewhat usual definitigdheniterature, where
the plane fieldd; are assumed to be integrable. However, it is the non-intadgra
case that covers the case of symmetric spaces. We thinkattiswhile investigat-
ing this generalization.

2. LOCAL WARPED PRODUCTS

A pseudo-Riemannian manifold which is a warped product ipdrticular a
global topological product. This is so restrictive (fortausce for physical applica-
tions) and we are led to localize the notion of warped pralastfollows.

Definition 2.1. Let M be a pseudo-Riemannian manifold. A local warped product
structure on)M is a pair (£, ) of transversal foliations, such that the metric on
adapted flow-boxes is a warped product. More precisely, fyr@oint of M there
is a neighborhood/, and a warped product pseudo-Riemannian manifoid,, V,
and anisometry : U — Lx,,N, sending the foliatior (resp.\/) to the foliation
of L x N determined by the factat (resp. V).

A local warped product is called a local GRW structure if tlaetbr A/ has
a constant curvature (i.e. each leaf &f is a pseudo-Riemannian manifold of
constant curvature).

2.1. Geometry of submanifolds. In the sequel, we will investigate conditions on
a pair of foliations(£, NV) in order to determine a local warped structure. For this,
let M be a pseudo-Riemannian manifold, a®@ non-degenerate submanifold of
M, that is the metric restricted 6,5 is non-degenerate for anyec S. Recall that
thesecond fundamental form also called thehape tensoy atx is a bilinear map:
11, :T,5 xT,S — N,., whereN, is the normal space &S, which measures
how S is far from being geodesid ( is well defined because of the non-degeneracy
hypothesis).

The submanifoldS is umbilic if for any x € S, 11, has the form/ I, = (, )n,,
wheren, is some normal vector t6,.S. In this case, the vector field (alosg x —

n. is called theshapevector field. (the terminology force field is also pertinest a
may be seen from Theorefn3).

The (totally) geodesic submanifoldsorrespond to the case., = 0, for all
res.

We will also need the following notionS is said to bespherical, if it is umbilic,
and furthermore, the shape vector field S — n,, is parallel (alongS).

When we consider umbilic submanifolds, we will always assihat they have
dimension> 1. Indeed, every 1-dimensional submanifold is umbilic (begd not
to be spherical).

e Let us recall the geodesic invariance characteristic ptpmé geodesic sub-
maniflods. Letr € S, u € T, S, and lety :] — ¢, +¢[— M be the geodesic in/
determined by.. If S is geodesic, then the imageofs contained inS, for e suffi-
ciently small. This fact is true also whehis umbilic, if in additionw is isotropic
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This is a remarkable rigidity fact in pseudo-Riemannianmgety, which has no
counterpart in Riemannian geometry.

Example 2.2. Take M to be the pseudo-Euclidean space of typgy), i.e. RPH4
endowed with a pseudo-Euclidean fo€prof type (p, q).

A (connected) geodesic hypersurface is an open set of ae affperplane. The
(connected) umbilic hypersurfaces are contained in hy@etdyicsQ(z — O) = ¢,
whereO € RP? andc is a constant (the proof is formally the same as in the
Euclidean case). One can verify that such a hyperquadnitdd rthat is, it contains
the isotropic lines which are somewhere tangent to it.

In general, an umbilic submanifold is the intersection ofpdrquadric with an
affine plane of some dimension.

In particular, one sees in the case of pseudo-Euclidearespéat umbilic sub-
manifolds are spherical. This is true for all pseudo-Rieni@m manifolds of con-
stant curvature, but not true in the general case.

2.2. Tangential geometry of foliations. (See for instance5| 25, 27] for more
details). A foliation F is called geodesic, umbilic or spherical, if its leaves are
geodesic, umbilic or spherical, respectively.

Let X be a vector field defined on an open suldseC M. We say thatX is
a (F-) normal foliated vector field, if X is orthogonal taF, and its local flowy’
preservesF, i.e. it sends a leaf oF to a leaf of 7 (everything is restricted t0).

As in the case of an umbilic submanifold, an umbilic foliati@ has ashape
vector field7/ defined by the relatiodi/ = (,)7/, wherelT is the shape tensor.

Lemma 2.3. Let F be a non-degenerate foliation of a pseudo-Riemannian mani-
fold (M, (,)). Letf denote the first fundamental formf that is the tensor which
vanishes o7’ F+ and equals,) onT.F, and denote byl : TF x TF — TF*+
the second fundamental form.

Let X be a normal foliated vector field, then the Lie derivative f satisfies:

(LXf)(u7v) = —2(II(u,v),X>,

for all u,v € TF. (In other words, if¢ is the (local) flow ofX, then, at anyz,
%(gbif)xh:o = _2<II:B('> )>X>)

Proof. Let © andv be two vector fields tangent t& which commute withX.
Then by definition(Lx f)(u,v) = X.f(u,v), which also equals{.(u, v). Now,
X (u,v) = (Vxu,v) + (u, Vxv). By commutation, this become¥&/, X, v) +
(u, V, X). Since(X,v) = (u, X) =0, (Lx f)(u,v) = —(X,Vyv) — (X, Vyu),
and so by definition of I, we have:(Lx f)(u,v) = —2(II(u,v), X)

U

Corollary 2.4. If F is geodesic (resp. umbilic) then the flowofmaps isometri-
cally (resp. conformally) a leaf oF onto a leaf ofF.

Conversely, if the flow of any normal foliated vector field smagometrically
(resp. conformally) leaves of to leaves ofF, then Fis geodesic (resp. umbilic).

Proof. The proof is just the translation, with the above notatidrihe fact that the
flow ¢! maps isometrically (resp. conformally) leaves/fo leaves ofF, into the
equation:¢l f = f (resp.¢L f = af for some scalar function).
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Note however, that there is no a such characterization foerggal foliations.
For example, any (local) umbilic foliation of the Euclidegpace is spherical, as
it is just a foliation by round spheres. The flow of a normaldtad vector field
maps conformally a sphere to a sphere, but not more, for eleangb necessarily
homothetically.

3. CHARACTERIZATION OF LOCAL WARPED PRODUCTS

The following theorem is due to S. Hiepko, but with a differproof, and espe-
cially with a purely “analytic” formulation. We said in a preus version of this
article, that this analytic formulation could explain winetarticle of Hiepko 15]
seems to be not sufficiently known in the literature. Aftemig we discover the
work [23] by R. Ponge and H. Reckziegel, which contains a geometpcoggh.

Theorem 3.1. Let (M, (,)) be a pseudo-Riemannian manifold endowed with a
pair (£, N) of non-degenerate foliations. This determines a local wdrprod-

uct structure with\V' as a normal factor, iff, the foliations are orthogonaf, is
geodesic, andV is spherical

Proof. Let £ and N be two orthogonal foliations. Locally, at a topological éév
we may suppose thadtl = L x N, and that the foliation€ and N correspond to
those determined by the factatsandN. Let (z, y) be afixed point in. x N. The
metric onM at(z,y) has the form, ., @ f(»), Whereh, ) (resp. fi, ) is a
metric onL x {y} (resp. on{xz} x N). Note that a normal foliated vector field for
L is just a vector field of the fornX (z,y) = (0, X (y)), whereX is a vector field
on N, and similarly for\.

By Corollary2.4, L is geodesic, iffy(, ) = hy. In the same way\ is umbilic,
iff there is a functiomuo(z, y) such thatf, ,, = w(z,y)f.. Therefore, the fact
that £ is geodesic andV is umbilic, is equivalent to that the metric) of M is a
twisted product i @ wg, whereh andg are metrics orl, and N respectively, and
w is a function onL x N.

By choosing a poin{zo, yo), we may suppose that = f
w(zg,y) =1,forally € N.

The fact that this metric is a warped product means exac#iihis a function
of z alone. Therefore, the statement of the theorem reducesaithwe £quivalence
between the two factsy being constant alongy’, and\ being spherical.

To check this, letX andY be two vector fields o, and N, respectively, and
let X andY be the corresponding vector fields &h, which are normal foliated
relatively toN and L, respectively.

Since N is umbilic, IT = fﬁ, wheref and I are the first and second funda-
mental forms fot\ respectively, and? is its shape vector field.

We haveY (77, X) = (Vy 7, X) + (1, VyX) = (Vy 7, X) + (7, VxY),
sinceX andY commute.

SinceL is geodesicV xY is orthogonal toZ, in particular,(ﬁ, VxY)=0.1t
then follows thaty (77, X) = (Vy 77, X).

zo0)» @nd hence
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Lemma2.3 says thatX.w = —2(7/, X), and henc&.(X.w) = (Vy 7, X).
By definition, \ is spherical iff(Vyﬁ,X> = 0, for all X andY’, which is thus
equivalent tar.(X.w) = 0. This last equality, applied to a fixéd, and an arbitrary
X, means tha¥".w is a function ofy only, sayY.w = a(y). But, sincew(xg,y) =
1, it follows thatY.w = 0. Applying this to an arbitrary’, leads to the fact that
does not depend an which in turn means that the metric is a warped product.

4. TRANSVERSE GEOMETRY OF FOLIATIONS

Theorem3.1is expressed by means of tangential properties of foliatioe.
by those of individual leaves. Sometimes, it is also int@mgsto consider the
transverse structure of these foliations, i.e. the pragsedf their holonomy maps
(see for instancelpP] as a reference about such notions). These holonomy maps are
especially easy to realize, for a foliatidfy when the orthogonal 7+ is integrable,
that is, when it determines a foliation s&y-. The holonomy maps oF are thus
just the local diffeomorphisms between leavesrdf, obtained by integratingF-
normal foliated vector fields (s&@.2for their definition).

The foliation F is said to beransversally pseudo-Riemanni#nts holonomy
preserves the pseudo-Riemannian metri@dfi-. Similarly one defines the fact
that F is transversally conformal (resp. transversally homathetUsing this lan-
guage, the previous developments imply straightforwatiayfollowing fact.

FACT 4.1. A pair (£, N) determines a local warped product structure, Affis
transversally homothetic anli” is transversally pseudo-Riemannian.

In general (i.e. in a not necessarily warped product siadtiwve have the fol-
lowing duality between tangential and transverse strestof foliations.

FACT 4.2. Let F be a foliation admitting an orthogonal foliatio . ThenF is
geodesic (resp. umbilic) ifF - is transversally pseudo-Riemannian (resp. confor-
mal), that is more precisely, the holonomy maps of the folaF, seen as local
diffeomorphisms between leaves/of preserve the metric (resp. the conformal
structure) induced on these leaves fof

4.1. Proof of Fact1.2 LetS be a submanifold ofV, andAM = L x,, N. In order
to prove the equivalence; a geodesic submanifold iV < L x S a geodesic
submanifold inM, it suffices to consider the case where the dimensiofi isf 1,
i.e. S a (hon-parameterized) geodesic (curve). Indeed the derasa reduces to
the 1-dimensional one by considering geodesic (curves) of

To simplify let us suppose thdY is Riemannian, the general case needs only
more notations.

A geodesic such aS can be locally extended to a 1-dimensional foliatibn
with an orthogonal foliationF . To see this, take a hypersurfasé C N which
is somewhere orthogonal &) then the leaves ofF - are the parallel hypersurfaces
of S+. More precisely, they are the levels of the distance functio— a(z) =
d(xz,S+). The leaves ofF are the trajectories o a, the gradient ofi. ThusF~
is a transversally pseudo-Riemannian foliatiom\af By taking the product of the
leaves ofF with L, one may defind. x F as a foliation ofM. The orthogonal
foliation (L x F)* of L x F is naturally identified withF (the leaf of(z,y) €
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L x Nis{z} x }"yL). From the form of the warped product metric, one sees that,

like 7+, (L x F)* is a transversally pseudo-Riemannian foliation. Theggfor
L x Fis a geodesic foliation, and in particularx S is geodesic in/.

The implication,. x S geodesic inM = S geodesic inV, is in fact easier
than its converse that we have just proved. Indee¥, i§ the connection oV,
and X, Y are vector fields tangent i8, thenV x Y is tangent tol. x S (since it
is geodesic), and hence its orthogonal projectior\ois tangent taS, that is,S' is
geodesic inV.

Remark 4.3. Although, we are not interested here in global aspects,dehantion

that there are many works about the structure of geodesidjliontransversally

Riemannian, transversally conformal foliations on contpaanifolds. As an ex-
ample, we may quote the referen¢@s9, 19].

5. ISOMETRIC ACTIONS OFLIE GROUPS

(Local) isometric actions of Lie groups on pseudo-Riemanmnanifolds gen-
erally give rise to a warped product structure. In some seths® phenomenon
is the converse of the trivial isometric extension Fad The following state-
ment may be used to settle a warped product structure in miagisns. It uni-
fies and generalizes most of the existing results on the cufgee for instance
[7,11, 13,16, 17, 22)).

Theorem 5.1. Let G be a Lie group acting (locally) isometrically on a pseudo-
Riemannian manifold/. Suppose that the orbits have a constant dimension and
thus determine a foliationV..

Suppose further that the leaves/dfare non-degenerate, and that the isotropy
group inG of anyz € M, actsabsolutely irreduciblyonT,.\, i.e. its complexified
representation is irreducible.

Suppose finally that the orthogonal &f is integrable, say it is tangent to a
foliation £. Then(£, ') determines a local warped product structure, withas
a normal factor.

Proof. The question is local, and so we can suppose the situatiapatagically
trivial. For two nearby leaves$V; and N,, there is a projectiop : N; — N,
defined by: p(z) is the unique point of the intersection 6f, (= A;-) with Ny
(for x € Ny). This projection commutes with the action @f The pull back by
p of the metric onT, N, (aty = p(x)) is another metric o1}, Ny, invariant by
G.. The fact that,, is absolutely irreducible just implies that the two metiéecs
proportional. Thereforp is conformal. But since commutes with the (transitive)
G-action onN; and N,, p must be homothetic.

It is easy to relate the projectigro the transverse holonomy gf(as developed
in §4), proving that( is transversally homothetic. It is equally straightfordar
to relate the transverse holonomy bf to the G-action, and deducing that is
transversally pseudo-Riemannian, and therefdre\') determines a local warped
product structure (by Faétl).

O
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Example 5.2. The absolute irreducibility hypothesis cannot be relaxedrt ordi-
nary irreducibility one. To see this I& be a Lie group, and l&t’ be the product
N x N acting onN by the left and the right, that i8y;,v2)x = ’yl_lx’yg. The
isotropy group of this action at the poinj is nothing but the adjoint action of
on itself. It is irreducible (resp. absolutely irreducipi N is a simple (resp.
an absolutely simple) Lie group (by definition). In the casas simple but non
absolutely simple, e.&L(2, C), the isotropy action preserves exactly (up to linear
combination) two non-degenerate quadratic forms, thogenddy the real and the
imaginary parts of the Killing form ofV, seen as a complex group. This gives two
G-invariant non-proportional metriesandg on V.

Let (L, h) be another pseudo-Riemannian manifold, andflet. — R be a
real function. Endow. x N with the metrich @(f« + 5). This is not a warped
product.

The following result describes an example of a situationreliee hypotheses
of Theoremb5.1are satisfied.

Theorem 5.3. Let G be a Lie group acting (locally) isometrically on a pseudo-
Riemannian manifoldi/. Suppose that the orbits are non-degenerate having a
constant dimension and so determine a foliatign

Suppose that the isotropy groupdhof anyx € M, acts absolutely irreducibly
onT, N, and that the metric on the orthogonal &f is definite (positive or nega-
tive), and in opposite the metric oXf is non-definite. Then, the orthogonal ot
is integrable, and the action determines a local warped poid

Proof. The warped product structure will follow from Theoréini once we show
that the orthogonal ofV is integrable. We will in fact prove this integrability,
under the hypothesis that the isotropy is irreducible (rextessarily absolutely
irreducible). Considetr : TNVt x TNt — TN the bilinear form (obstruction
to the integrability of ’A*) a(u, v) = the projection or'\V of the brackefu, v],
wherew and v are vector fields o/ with values inTA-. Letz € M, and
consider the subset, of T, which consists of the elementgu, v), for « and
v of length< 1. This set is compact, and is invariant by the isotropy gréyp
Sincea is equivariant,G,, acts precompactly o, since it acts so o, N*t.
It then follows thatGG, acts precompactly on the linear spaBg generated by
Az If A, = 0, a = 0, and we are done, if naB, = T, N by irreducibility.
Thus, G, preserves a positive scalar product’BaV. But, it also preserves the
initial non-definite pseudo-Riemannian product. Polatiue latter with respect to
the invariant positive scalar product, we get a diagonblz@ndomorphism, that
has both positive and negative eigenvalues since the pdeiadoannian product
is non-definite. This contradicts the irreducibility.

O

A similar argument yields the following useful fact.

FACT 5.4. LetSO(3) act isometrically on a-Lorentz manifold witf2-dimensional
orbits. Then, this determines a local warped product stritgtwith a local model

L x,, S? or L x,, RP%. (One may exclude the projective plane case by a suitable
orientability hypothesis).
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6. GEODESICS MAUPERTUIS PRINCIPLE

The goal here is to understand the geodesics of a warpedqitbfle= L x, N.
Let~(t) = (x(¢),y(t)) be such a geodesic.

Fact1.2 implies thaty(t) is a (non-parametrized) geodesicAn To see this,
let S be a (1-dimensional) geodesic &f such thaty(¢) is somewhere tangent to
L x S. Factl.2says thatl, x S is geodesic inV/, and therefore contains the whole
of v(t), which thus projects onto an open subset of the geodgsic

Now, it remains to draw equations, and especially to inttrggiem, forz(t),
and also determine the parameterizationy(@f. Here, the idea is to repladd by
L x4, S, which transforms the problem to a simpler one, that is tise eghereV
has dimensiori (sincelL x,, S is geodesic inV/, we do not need the rest 8f to
understand a geodesic contained.irx,, S').

Clairaut first integral. The previous discussion allows one to restrict the study
to warped products of the type x,, (R, cody?), wherey denotes the canonical
coordinate orR, andc is —1, +1 or 0. Of course, the casg = 0, i.e. when
the non-parameterized geodesig) is lightlike, does not really correspond to a
pseudo-Riemannian structure, so, let us asstys€ 0.

Actually, the geodesicS above in not necessarily complete, that is, it is not
parameterized bR but just by an open subset of it. However, our discussion here
is local in nature, so to simplify notation, we will assutsi€omplete.

The isometric action of (the group)on (R, cody?) extends to an isometric flow
onL x, (R, cody?) (by Factl.1).

The so called Clairaut first integral (for the geodesic flowtlmmtangent bundle
of L x, (R,cody?)) means here that/(t),0/dy) is constant, say, it equalg
(remembery(t) = (z(t),y(t) is our geodesic). Sincg(t) andd/dy are collinear,
it follows that:

/ 2 2
W),y = WL _a, 1
(0/0y,0/0y) ~ “co’ w(a(D))

In dimension 2, that is, dith = 1, the Clairaut integral together with the energy
integral: (v/(¢),~'(t)) = constant, suffice to understand completely the geodesics.
The remaining developments concern the case\dim?2.

The shape vector fieldThe distortion of the warped product structure, i.e. the
obstruction to being a direct product is encodedvitw, the gradient ofw (with
respect to the metric af).

Obviously, the fact that the foliation (i.e. that with leaves{z} x N) be
geodesic is also an obstruction for the warped product tdreetd The following
fact is a quantitative version of this obstruction.

FACT 6.1. The shape vector field of \ is a\/-foliated vector field. More exactly
(identifyingT’ M withT'L x T'N):

N —1 Vw(x)

ay) = 5 (o

70)

Proof. With the notations of Lemma.3 we havef = wg, and thus (by definition
of @) Lxwg = —27 f, and on the other hanblx (wg) = (X.w)g = %wg.
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Il
(Observe thaﬁu—w is well defined even for local warped product structures).

Projection ontoL. We consider the case wher¢t) andy(t) are regular curves,
since the question is local and the other cases are quiteredadierefore, these
curves generate a surfade;(t), y(s)), whose tangent bundle is generated by the
natural frame(X,Y). SinceX andY commute, we havd/xy(X +Y) =
VxX +2VxY + VyY.

SinceL is geodesicV xY is tangent to\ (indeed, ifZ is tangent taZ, then,
(VxY,Z) = XY, Z) + (Y,VxZ) = 0, becauseC is geodesic). By definition,
the projection oNVyY onT'L equals(Y, Y>ﬁ. From this and Fadi.1, we deduce
that the projection oV x.y (X + Y) on 7L equalsVxX — (1/2)(Y,Y)¥¥,
which must vanish in the geodesic case. Repla¢ing”) (= (v/'(¢),y'(t))) by its
expression above, we obtain:

1d, 1 Vu
2¢0 w(x(t)) w
This proves the following.

1z, 1

(V=) (x(t))

VxX = "0V

= (

FACT 6.2. The projections ontd, of the geodesics df x,, (R, cody?) are exactly
the trajectories of the mechanical systems/owith potentials, i.e. curves or’
satisfying an equation of the form:

2’ = =V(=)(z)

w
wherec runs overR™ (resp.R™) if g > 0 (resp. ifcy < 0).

From this, we deduce the following fact for a genekal

Theorem 6.3. [Maupertuis’ principle] The projections onté of the geodesics of
M = L x,, N are exactly the trajectories of the mechanical systemg.awth
potentials<, for ¢ € R if the metric on)V is non-definite, for: € R* if the metric
on N is positive definite, and far € R~ if the metric on/V is negative definite.

Equations. In the case wherg(t) is not lightlike, its parameterization is fully de-
termined, whenevet(t) is known, by using the first integrdy/(¢), 9/0y) = c1.
Indeed one can identify’(¢) with y/(¢)9/dy, and thus with help of the notation
abovey'(t) = 7oy a7 @) = wu(sm)”

There is no analogous equation in the case whétgis lightlike. Let us de-
rive the general equation in another way which covers thdlilige case. From the
calculation before Fadi.2, we haveVyY + 2Vy X = 0. Now, for all Z tan-
gent toN, (Vy X, Z) = —(X,VyZ) = —(X, W)Y, Z). Therefore,VyX =

—(X, 7)Y = 2Ny which proves:

w

FACT 6.4. The curvey(t) has a geodesic support, and its parameterization is cou-
pled with the companion curvgt) by means of the equation:

i

' =~ o log w)(a(t)y
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Mechanics onM. The previous discussion relates the geodesicd/a trajec-
tories of mechanical systems dn Let us now start with a mechanical system
v"'=-VVonM = L x, N itself. We assume that the potentialis constant on
the leaveqz} x N, and thus may be identified with a function én Essentially,
by the same arguments, one proves.

Proposition 6.5. Consider onM = L x,, N, the equatiomy” = —VV, where

V is a function onL. Then, the projections of its trajectories avi are non-
parameterized geodesics df, and their projections orl. are trajectories of me-
chanical systems of with potentials of the fornv’ + =, wherec runs overRr if
the metric onV is nondefinite, and otherwisehas the same sign as the metric of
N.

Corollary 6.6. If M = L x,, N, has dimension 2, i.e.l. and N are locally
isometric toR, +=dt?), then, the trajectories of the equatighf = —VV/, whereV/
is a function onL are completely determined by means of:

i) their projection onL satisfyz” =V + £, and

ii) they satisfy the the energy conservation ley(t),~'(¢)) + V (y(t)) = con-
stant

Example 6.7. This applies in particular to solve the geodesic equatiotherhy-
perbolic plane? = R x . R.

7. EXAMPLES. EXACT SOLUTIONS

In the sequel, we will in particular consider examples of wear product struc-
tures on exact solutions, i.e. explicit 4-Lorentz manigoldth an explicit Einstein
tensor (for details, one may for instance considfi[[18], [21]...). In fact, warped
products are omnipresent in cosmological models, becduseio simplicity and
symmetry advantages, as explained in the introduction. édew the most impor-
tant use of warped product is in formulating expanding uises. This needs the
warped product to be of “physical” type. Let us formulategisely what we mean
by this.

Definition 7.1. We say that a warped product structure on a Lorentz manifold
M = L x,, N is physical if the metrics on both the factos and NV are definite
(one positive and the other negative). Otherwise, the wppeduct structure is
called anti physical. The same definitions apply for local warped products and
GRW structures.

Equivalently, the warped product is physicalNf is spacelike or locally iso-
metric to (R, —dt?). The dynamical counterpart in the first case, i.e. whers
spacelike, is that of a universe in expansidn.{), and in opposite, a warped prod-
uct structure for whichV is locally isometric to(R, —dt?), corresponds to a static
universe §7.2).

The warped product! = L x,, N is anti physical iff one of the factors or V
is Lorentzian.
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7.1. Expanding universes: classical Robertson-Walker spaceties. Here, L is

an interval(I, —dt?), and N a 3-Riemannian manifold of constant curvature. Re-
call that the -energy tensor satisfies (or say, it is defingdHsyEinstein equation:

T = (1/87)(Ric — £ Rg) (Ric and R are respectively the Ricci and scalar curva-
ture of (,)). Here, it has the form of a perfect fluid: = (u + p)w @ w + p(,),
wherew = the dual 1-form of% (with respect to the metri¢, )) and the func-
tions i (energy density) angd (pressure), are determined by the warping function
w (by means of the Einstein equation). In fact, the conditlmat &V has a constant
curvature is exactly needed to get a perfect fluid.

7.2. Static universes. Not only expanding universes involve a warped product
structure, but also the static ones, which are defined ag thuacetimes having
non-singular timelike Killing fields with an integrable bagonal distribution. The
fact that this gives a local warped structure with the triajges of the given Killing
field as a normal foliation, is a special elementary case ebfém5.1

Conversely, by the isometric extension Fact, a warped producd! = L x,,
N, with N locally isometric to(R, —dt?) (essentiallyN is an interval endowed
with a negative metric) is static. Note however that a locaiped product with
a normal factor locally isometric tR, —dt?) is not necessarily static, since there
is an ambiguity in defining a global Killing field as desiredhelnatural notion
that can be considered here is that of a locally static spaegetvhich will thus be
equivalent to having a local warped product structure wittoamal factor locally
isometric to(R, —dt?).

7.2.1. A naive gravitational modelConsider the warped produst = (R3, Eu-
clidean) x,.(R, —dt?), wherew = r : R* — R is the radius function. (The
warped product metric is non-degenerate onlyifos= 0, so more exactlyM
equals(R?® — {0}) x, R).

From Theoren®.3, the projection of the geodesics bf are the trajectories of
the mechanical systems on the Euclidean spaGewith potentials of the form
V = ¢/r, wherec is a non-positive constant. By this, one obtains in partictte
trajectories of the Newtonian potentil= —1/r.

In fact, this process gives a (naive) relativistic staticdelol x,, (R, —dt?)
associated to any negative potenfidl= —1/w : L — R~ on a Riemannian
manifold L.

One flaw of such a model is that it is not characteristic of tiiai potentiall/,
since it cannot distinguish between the potentidfsfor different (non-negative)
constants:, and it recovers in particular the geometrylgffor ¢ = 0. In fact, ex-
cept for exceptional cases, two warped products,, R andL x ., R are isometric
by means of thaeiniguemapping(x,t) — (x,ct), which acts as a time dilation.
Therefore, the model would be specific of the potential if arieoduces an extra
structure breaking time dilations.

It seems interesting to investigate some features of thesees, especially from
the viewpoint of being perfect fluids.
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“Newtonian spacetimes” (see for instand€]| §12) were introduced by E. Car-
tan for the goal of making geodesic the dynamics under a nmézdilasystem de-
rived from a potential. The structure there is that of an affiannection, which is
poor, compared to the Lorentz structure here.

We think it is worthwhile investigating a synthesis of alketlapproaches to
geodesibility processes of dynamical systems.

7.3. Polar coordinates. The polar coordinates at 0 endow the Minkowski space
(R™1, (,)) with awarped product structure defined away from the ligheda: / (z, x) =
0}. Inside the cone, the structure is physical, with a normetiofahomothetic to
the hyperbolic spacE"”, and outside the cone, the structure is anti-physical, with
a normal factor homothetic to the de Sitter spaeé(x, ) = +1}.

7.4. Spaces of constant curvature.(See for instance?f] for some facts on this
subject). The spaces of constant curvature are alreadylsibut one may need
for some calculations to write them as (non-trivial) wargedducts, for instance
polar coordinates on these spaces give rise to warped grsiauctures defined on
some open sets.

Recall that for these spaces, umbilic submanifolds (withafision> 2) are
spherical, and also have constant curvature. In particalearped product struc-
ture in this case is a GRW structure. (In dimension 4, andafrtbrmal factor is
spacelike, one obtains a classical Robertson-Walkertatei;7.1. The perfect
fluid has in this case constant density and pressure).

One can prove the following fact which classifies the warpestipcts in this
setting. (SeeZ¢6] for a study of global warped products of physical type).

FACT 7.2. Let N be an umbilic (non-degenerate) submanifold in a space of con
stant curvatureX. Consider the foliationC, defined on a neighborhoa® (V) of
N, having as leaves the geodesic submanifolds orthogonal. to

Then, the orthogonal distribution df is integrable, say it is tangent to a folia-
tion V. Moreover,(£, N') determines a GRW structure.

Furthermore, V' is the orbit foliation of the isometric action of a naturallsu
groupT'(NV) of Isom( X) preservingN. In the case wherd&' is a geodesic subman-
ifold, T'(IV) is the group generated by the transvections along the gézsiesN .

(A transvection along a geodesic is an isometry which indyaeallel translation
along it).

7.5. Schwarzschild spacetime.The building of Schwarzschild spacetime gives
an excellent example of how various warped product strastunay be involved.
We will essentially study it from this point of view. This sptime models a rela-
tivistic one body universe (a star). Its construction isameplished by translating
the physical content into geometrical structures, and ngpht each stage “neces-
sary” topological simplifying assumptions.

The spatial isotropy around the star leads to the first geierstructure, for-
mulated by the fact th&80(3) acts isometrically with 2-dimensional orbits. From
Fact5.4, we get a local warped product of the tyjpex,, S? (one excludes the
RP2-case by an appropriate orientability extra hypothesishe @en makes the
topological simplifying hypothesis that the warped pradeglobal.
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This warped product (in particular the functiar) is canonical (it has a physical
meaning) and is in particular compatible with the additisteuctures.

The second geometrical hypothesis on the spacetime isttisastatic (which
in fact leads to another local warped product structure wittormal factor locally
isometric to(R, —dt?)).

The compatibility between structures, implies, essdwgjitiat the surfacd. it-
selfis static. Thus (after topological simplificatioh)s a warped produdR, g) x,,
(R, —dt?). (whereg is some metric OfR).

By compatibility, the warping functionv is invariant by the Killing timelike
field % on L. Its gradient is thus tangent to the first factorof L. Another
topological simplification consists in assuming thais regular, namely; = \/w
is a global coordinate function dh (the first factor ofL). We write the metric on
this factor agy = g(r)dr? (g is now a function orR).

The metric on the spacetime has thus the fotmdr? — v(r)dt? + r?do? (do?
is the canonical metric 062).

The third geometrical hypothesis is that the spacetime iptgrfa vacuum),
i.e. Ricci flat, leading to differential relations on the &@tions g andv. They
imply thatg = m and thatvg equals a constant (here one has to perform
some computation). This last constant must equal to 1, byotlmth geometrical
hypothesis saying that the spacetime is asymptoticallykMirskian.

We have thereforel, =|2m, +o00[ xR, endowed with the metric:

1
mdrz — (1 — (2m/7“))dt2
The warped produck x,» S? is called theSchwarzschild exteriospacetime.

It is natural to ask if other solutions exist without our tégmical simplifica-
tion hypotheses. This is essentially equivalent to askefgpacetime. x,» S
admits non-trivial extensions. One easily sees that no statlt extensions exist.
However non-trivial analytic (and thus Ricci flat) extensioactually exist. They
(essentially) correspond to analytic extensions of thehtar surfacd..

The obvious one is given by adding- =|0, 2m[xR, endowed with the met-
ric defined by the same formula. The warped prodlct x,» S? is called the
Schwarzschild black hale

It has been observed (firstly by Lemaitre, see for instahép {hat the metric
on L U L~ admits an analytic extension to il +oo[xR.

Next, a larger extensioh , which turns out to be “maximal”, was discovered by
Kruskal. It can be described, at a “topological level” asdal. EndowR? with
coordinategx, y) and a Lorentz scalar product (at@)dy. Then,L is the part of
R? defined by an inequalityy > c(m), wherec(m) is a negative constant. The
metric has the forn¥'(zy)dxdy, whereF' :]c(m),+oo[— R is an analytic real
function which tends teo at c¢(m). (It turns out that a coordinate system where
the metric has this form is unique up to a linear diagonaldsfi@mmnation.)

From the form of the metric, the flow®(z, y) = (e®z, e~ *y) acts isometrically
on L. This corresponds to the analytic extension of the Killimjd‘i% defined on
L.
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The time functiont on L has the forné(z,y) = aln {, wherea is a constant
(which depends on the coordinate system).

The radius functiom looks like a Lorentz radius, indeed it has the forrfy;, y) =
b(zy) + 2m, for some analytic functio : [¢(m),4+oo[— [—2m,+oo], with
b(0) = 0. (A natural Lorentz radius fofR?, dxdy) is v/|zy]).

Our initial surfaceL is identified with the positive quadramty > 0.

The warped product structure (determined by the fiswon L — {zy = 0})
is physical onzy > 0, and anti-physical oy < 0. In fact, this structure is
conformal to that determined by the polar coordinate$ih dzdy) (§§1.3.1, and

7.3.

7.5.1. Geodesic foliationsThe factor L determines a geodesic foliation of the
Kruskal spacetimd. x> S2.

The static structure (oh x,2 S?) determines a geodesic foliatidhwith leaves
t = constant, or equivalentlg = constant. Thus a leaf has the forfi:= R x S2,

whereR C L is a ray emanating from 0.

This foliation extends tqZ — 0) x S? (and to the whole Kruskal spacetime
L x,2 52, as a singular geodesic foliation).

The causal character of a le&fis the same as that of the rd. In particular,
lightlike leaves correspond to lightlike rays, i.e. the boate axis.

7.5.2. Geodesics.To determine all the geodesics bfx,2 52, one uses Theorem
6.3which reduces the problem to the calculation of the trajgesoof mechanical
systems on the surfadedefined by the potentials;.

Now, sincel itself is a warped product, one applies Coroll&rg to solve me-
chanical systems with potential§ over it. This reduces to use the energy con-

servation, and solve the mechanical systems with potem:tliql_(zlw + czr% on

(R, Ty dt%)-
Proposition6.5 applies to these potentials (consideribgs a warped product),

which allows one to fully explicit the geodesics.

7.6. Motivations for anti-physical warped products. We think there is no rea-
son to be troubled by anti-physical warped products. Thectiglg anti-physical
must not suggest that they are “non physical”, but rathdirttiey are “mirror trans-
form” of physical ones (to be found?). This clearly happenghe case of polar
coordinates in the Minkowski space, where one sees how ti@laysical part of
the GRW structure is dual to the physical o§é.8). A similar duality holds be-
tween the interior and the exterior of the Schwarzshild spiare. The exterior is
static, by the existence of a timelike Killing field, whichdmnes spacelike in the
interior. The interior of a black hole is anti-physical.

Let us enumerate further (physical) motivations of antigital warped prod-
ucts:

¢ With respect to the goal of constructing simple exact sohdj the calculations
are formally the same, in the physical as well as in the thiemnysical cases. So,
one may calculate, and forget that it is an anti-physicalpedmproduct!
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e As was said before, the abundance of symmetries leads tompewvaroduct
structure, but actually, large symmetry groups involva-physical warped prod-
ucts. For example, non-proper isometry groups lead to arphgsical warped
product (see for instanc&]). Roughly speaking, non-proper means that the sta-
bilizers are non-compact. Let us however say that only femcesgolutions have
non-proper isometry groups. It seems that this is the casg for spaces of con-
stant curvature and some gravitational plane waves.

e Finally, it seems interesting to formulate a complexifigatirick which ex-
changes anti-physical by physical structures. The veryenaiea starts by con-
sidering a Riemannian analytic submanifdéfdin the Euclidean spade’, taking
its “complexification” V¢ and then inducing on it the holomorphic metric@f
which as a real metric is pseudo-Riemannian. (The comptetifin is defined
only locally but one may approximate by algebraic objectsrofer to get a global
thing, see for instancel ] for related questions).

8. BIG-BANGS IN ANTI-PHYSICAL WARPED PRODUCTS

Consider the example of polar coordinates around 0 in thekdtiski space
R™! (§7.3). When an interior point approaches the light cone (andaaihe0), the
warping function collapses, and the warped product straatisappears. However,
the spacetime itself persists, beyond this “false big-bafigseems interesting to
know situations where a “true big bang” (i.e. a disappeaoifittye spacetime) must
follow from a disappearing of the warped product structuiidne results below
provide an example of such a situation, but let us beforeotgivte a more precise
definition.

Definition 8.1. Let(£, ) be a warped product structure on a pseudo-Riemannian
manifold M. We say that it has amessential big-bangif there is an isometric
embedding of\/ in another pseudo-Riemannian manifdiéf, as an opermproper
subset, such that the shape vector f@d)f/\/, is non-bounded in some compact
subset of\/’.

In other words, we se@/ as an open subset dff’, then, an inessential big-
bang holds if there is a compakt in M/’ such thafr/ is not bounded ods N M.
(Observe that one may speak of bounded vector fields on cdreg@ovithout any
reference to metrics). We have the following result.

Theorem 8.2. An analytic anti-physical GRW structure with non-positveurved
normal factor, has no inessential big-bangs.

Let us give a purely mathematical essentially equivaleatestent.

Theorem 8.3. ([29]) Let M be an analytic Lorentz manifold such that some open
subset/ of M is isometric to a warped produdt x,, N, whereN (is Lorentzian
and) has a constant non-positive curvature (i.&! is locally isometric to the
Minkowski or the anti de Sitter spaces). Then, every point/ohas a neigh-
borhood isometric to a warped product of the same type. Maoeeigely, if M

is simply connected, then the warped product structurd/oextends to a local
warped product (of the same type) bh.
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Let us give another formulation in the vein of detecting siagties of a space-
time from that of a warped product structure on it.

Corollary 8.4. Let M be a simply connected manifold, afhdan open subset
of M endowed with an analytic Lorentz metgic Suppose thatl, g) is a warped
product as above, and letbe a point in the boundary &f. If the warping function

w tends tooo or 0 nearz, then (not only the warped product structure, but also)
the Lorentz metrig does not extend analytically near

Remark 8.5. The case of polar coordinates on the Minkowski space shoats th
the hypotheses that the GRW structure is anti-physical hachormal factor of
non-positive curvature are necessary.

In the sequel, we will give the proof of Theore®i3, and also details on the
tools behind it, especially about lightlike Killing fields.

9. PROOF OFTHEOREM 8.3
9.1. Beginning.

9.1.1. Trivial extension.Let £4! denote the simply connected complete Lorentz
space of constant curvaturgsee for instance?] for more details).

In the case: # 0, we assume that > 1, that is, the dimension of the space is
> 3. In fact, in dimension 2, the sign of the curvature is irralayv

LetU = L x,, N be as in the statement of Theorénd. By hypothesisV is
locally isometric togg“r1 for somec < 0. We can restrict/ so thatN becomes
identified to an open subset f1!.

By the trivial extension of isometries, Fattl, Isom (V) acts onU. However,
becauseV is a “small” open subset @?*!, Isom V') may be dramatically small,
and for this, it is better to consider infinitesimal isomedtii.e. Killing vector
fields. Indeed, like isometries, Killing vector fields of, trivially extend toU.
Now the Killing algebra ofV (i.e. the algebra of Killing fields) is the same as that
of £9+1 which we denote by¢*!. Therefore there is amfinitesimal action of
Gé*1lonU, i.e. a homomorphism which fak € G¢*+! associates an elemefit
of the Killing algebra ofU.

Note that, for our purpose, only the signois relevant, that is we can assume
c = —1, whenever < 0.

Recall thatGd™, the Killing Lie algebra of the Minkowski spac& ™, is iso-
morphic to a semi-direct produdt’™! x o(1, d), and that the Killing Lie algebra
of the anti de Sitter spac&’!! is G%1! = 0(2,d)

9.1.2. Analytic extension Henceforth, we will assume thaf is simply connected
and analytic (it suffices just to pass to the universal coxgri A classical result
[20] states that an analytic Killing field defined on an open stlegéends as a
Killing field to the whole of)M.

By individual extension of Killing fields, we get an infiniiesal analytic iso-
metric action ofG on the whole of\/.

However, this action does not a priori determine a reguliatfon, namely, the
dimension of the orbits is not necessarily constant.
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Let us first observe that the analyticity implies thatl, i.e. the dimension of the
orbits of the points ot/, is the generic dimension of orbits, that is, the dimensson i
everywhere< d+1. Indeed, ifXy, ..., X411 € G, thenX (z)A.. . AXgi2(z) =0
for x € U, and hence everywhere (of course, we implicitly assume ahadur
spaces here are connected).

Proposition 9.1. LetG = G+ act infinitesimally isometrically on a Lorentz man-
ifold M (herecis not assumed to b€ 0), with a generic orbit dimensioq d + 1.
assume that all (the restrictions of the metrics on) the tsrbre non-degenerate.
In the case: > 0, assume further that at least one orbit is of Lorentzian tyiffeen,
theG-action determines a regular (i.e. with constant dimenjfohiation, which is
the normal foliation of a GRW structure.

Proof. Observe that an orbit is @-locally homogeneous space. So, the proof of
the proposition follows from Theorem 3 and from the following classical fact.

FACT 9.2. If a pseudo-Riemannian manifold of dimensiond, has a Killing al-
gebra of the same dimension as that of a pseudo-Riemanniaiialaleof constant
curvature and dimensiod, then this manifold is necessarily of dimensiband
has the same constant curvature.

Proof. Recall that all the orthogonal algebra&, ¢), with p + ¢ = d’ have the
same dimension, which equals in particular dif@’). Let 2 be a point of the
given pseudo-Riemannian manifold. Its stabilizer algataa be identified to a
subalgebra of some&(p, q), with p + ¢ < d. But by hypothesis, this stabilizer has
a dimensior> dim o(d). It follows thatp + ¢ = d, and that the stabilizer i(p, q)
itself. One deduces, in particular, that the dimension efritanifold equalgl. To
check that the curvature is constant, one observesifaty) acts transitively on
the space of spacelike 2-planescat O

O

9.2. Lightlike Killing fields. The following notion will be useful.

Definition 9.3. A Killing field X on a pseudo-Riemannian manifold is called geo-
desic (resp. lightlike) iV x X = 0 (resp. (X, X) = 0).

FACT 9.4. AKilling field X is geodesic iff, it has geodesic orbits, iff, it has constant
length (i.e.(X, X) is constant). In particular a lightlike Killing field is geedic.

Proof. Let V denote the Levi-Civita connection. Recall that a KillingldieX is
characterized by the fact th&tX is antisymmetric, thatigVy X, Z)+(Y, V2 X) =
0, for any vector field§” andZ. In particular,(Vx X,Y) + (Vy X, X) = 0, and
hence(VxX,Y) = —(1/2)Y.(X, X). ThereforeVx X = 0 is equivalent to that
(X, X) is constant.

O

9.2.1. Singularities. A geodesic Killing field with a somewhere non-vanishing
length is non-singular (since it has a constant length)s Tddt extends to lightlike
Killing fields on Lorentzian manifolds.
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Indeed, near a singularity, the situation looks like thathef Minkowskian case.
In this case, the Killing field preserves (i.e. is tangenth®) “spheres” around the
singularity, but some of these spheres are spacelike,adtiation!

As it is seen in this sketch of proof, the fact actually extetm non-spacelike
Killing fields, i.e. (X, X) < 0:

FACT 9.5. ([3], see alsd1] and[30]) A non-trivial non-spacelike Killing field on
a Lorentz manifold is singularity free.

9.2.2. Curvature.

FACT 9.6. Let X be a geodesic Killing field, then, for any vecitor
(R(X,Y)X,Y)=(VyX,VyX)

If M is Lorentzianor Riemannian and X is non-spacelike (i.e.(X,X) <
0), then(R(X,Y)X,Y) > 0. In particular, Ric(X, X) > 0, with equality (i.e.
everywhereRic( X, X) = 0), iff, the direction ofX is parallel.

Inthe caseV/ is lorentzian andX is lightlike, the curvature of any non-degenerate
2-plane containingX is < 0.

Proof. Let v be a geodesic tangent 6. Consider the surfacé, obtained by
saturatingy by the flow of X, i.e. if ¢ is the flow of X, thenS., = U,¢!(v) (here
we assume thak is transversal t@).

Take a geodesic parameterizatiomofand continue to denote By, the vector
field on S, obtained first, by parallel translating alongand then, saturating by
¢' (alongS,).

We have:X andY commuteVyY = 0, andV x X = 0 (sinceX is a geodesic
Killing field). It remains to estimat&/’ xY (= Vy X). We have) = Y (X, X) =
2(Vy X, X) (since(X, X) is constant by Fac®®.4) and X (Y, Y) = 2(VxY,Y),
since by constructioY, Y") is constant along.,. ThereforeVxY (= Vy X) is
orthogonal taS,.

One may restrict consideration to the case witerées non-degenerate, since, if
not, one may approximatg, by non-degenerat§.,,, by choosing an appropriate
sequence of geodesigs.

The previous calculation implies that, is intrinsically flat, since the orthog-
onal projection of the ambient connection vanishes (alldtnariant derivatives
obtained fromX andY” are orthogonal t@',)..

The curvature equality follows from the Gaul3 equation.

Now, VxY is orthogonal toX, and hence it is spacelike wheneVEris non-
spacelike and// is Riemannian or Lorentzian.

Recall thatRic(X, X) equals the trace of the linear endomorphiBm- A(Y) =
R(X,Y)X. Now, (A(Y),Y) > 0implies that traced) > 0, and it is also straight-
forward to see that iRic(X, X) = 0, thenVy X0 is isotropic for allY". We have
in addition that(Vy X, X) = 0, and hencéVy X is proportional toX. This is
exactly the analytic translation of the fact that the diatfield determined by
is parallel.

Finally, the sectional curvature of the plane generated landY” is X,

which has the opposite sign 0R(X,Y)X,Y).

n?

(RIX,Y)X)Y)
XYY Y)—(X,Y)2?
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g

9.2.3. The constant curvature caséet R”? denoteR™ (n = p + ¢), endowed
with the standard forn) = —a3 —... — a3 +x2, +... 23, of signature(p, ¢). A
Killing field X onRP4 is of the formz — Az +a, wherea € R", andA € o(p, q).
Recall thatA € o(p, q), iff, AJ + JA* = 0, where

(-1, 0
=5

We haveV x X = A?, and henceX is geodesic, iff, A% = 0.

In the Lorentzian case (i.e. the Minkowski spage)s 1, the equatiomd? = 0,
has no non-trivial solution, that is, it € o(1,p), and A2 = 0, then, A = 0.
One may show this by a straightforward calculation, or bylypg Fact9.6 to
S1P(+1), which will be defined below. It follows that a geodesic Kilij field is
parallel, i.e. it has the fornX : * — a, and it is lightlike if furthermorea is
isotropic.

In the non-Lorentzian case, non-trivial solutions4f = 0 exist. Let us con-
sider the case dt?2. The standard fornd) is equivalent taQ’ = dxdz + dydt.
Consider¢®(x,y, z,t) = (x,y, z + sz,t + sy). This is a one-parameter group of
orthogonal transformations @J'. Its infinitesimal generator:

B =

o O O
o O O
O O =
o = O

00 0O

satisfiesB%2 = 0. Thus, a conjugatel of B belongs too(2,2) and satisfies
A% = (0 A standard argument shows to thé®, 2) is in fact generated by elements
satisfying the equatiorl? = 0. By the same argument one proves:

FACT 9.7.Forp > 2,q > 2, o(p, q) is generated (as a linear space) by its elements
satisfyingA? = 0. (Note that the condition op andq is equivalent to thab(p, q)
has real rank> 2).

ConsiderX, = SP(c) = {x/Q(z,z) = c}. Then, forc # 0, X, is non-
degenerate, and the metric on it has signature — 1) if ¢ > 0, and signature
(p—1,q) if ¢ <O0. Ithas curvaturel—, and Killing algebrao(p, ¢). The universal
pseudo-Riemannian space of the same signature and cexvistarcyclic (maybe
trivial) covering of X.. The Killing algebra of the universal cover is the same as
that of X.. (see R8g)).

A Killing field A € o(p, q) is geodesic (with respect t&,), iff, A2 = \I, for
some constamt. It is lightlike, iff, A% = 0.

For example, in the Riemannian case, pe= 0, solutions of4% = AI in o(n)
exist exactly ifn is even, which give Hopf fibrations on odd dimensional sphere
For the Lorentz case, we have, with the previous notatigfis! = S14+1(c),

if ¢ > 0, and&4*! is the universal cover o§%4(c), if ¢ < 0.

In particular, a solution ofi> = 0 in o(1, p) corresponds to a lightlike Killing

field on the de Sitter space=(£4+! = S14+1(¢)). But, since this latter space is
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Lorentzian and has positive curvature, such a non-trivibilng field does not exist
by Fact9.6. Summarizing:

FACT 9.8. The de Sitter space has no lightlike (or even geodesic)iiflields.

A lightlike Killing field on the Minkowski space is parallelttvisotropic trans-
lation vector.

The Killing algebra of the anti de Sitter space is generatesla linear space,
by its lightlike Killing fields.

9.3. End of the proof of Theorem 8.3. Observe that ifX € GZ*! is lightlike, as
a Killing field on £4F1, then its trivial extensiorX, is a lightlike Killing field on
M.

Suppose by contradiction that there is a degenerate Bghitf the GZ+! -action.

From§9.1.2 Ny has dimensior< d + 1. Observe first that didvy > 0, since
lightlike Killing fields are singularity free.

The metric onlVy is positive non-definite, with kernel of dimension 1 (since
the metric onM is Lorentzian). This determines a 1-dimensional foliatibn
called thecharacteristic foliation of Ny. The tangent direction of is the unique
isotropic direction tangent tdVy. It then follows that if X is a lightlike Killing
field, then the restriction ok to IV, is tangent toF (equivalently, the flow of such
a Killing field preserves individually the leaves &f). Therefore, from Fac®.4,
the leaves ofF are lightlike geodesics (in/).

The anti de Sitter casen the case: < 0, G¢! is generated by lightlike Killing
fields, and hencg?*! itself preserves individually the leaves &. Thus, by
definition, Ny has dimension 1. However, it is known that there isgfdl-
homogeneous space of dimension 1. This is particularly #asge in the present
situation. Indeed, herg?*! preserves the affine structure of the lightlike geodesic
Ny, and hence&*+! embeds in the Lie algebra of the affine grougrofwhich is
impossible.

The flat casellf Ny has dimension 1, we get a contradiction as in the anti der Sitte
case. If not (i.e. dimVy > 1), consider the (local) quotient spaQe= Ny /F. (The
global quotient does not necessarily exist, but becauseeakvdth infinitesimal
actions, we can restrict everything to a small open subs#f ofT hegg“—action
on Ny factors through a faithful action ef(1, d) (= G&™ /R*) on Q.

Observe thaf) inherits a natural Riemannian metric. Indeed, the Lorerdizim
restricted toNy is positive degenerate, with kern€lF. But F is parameterized
by any lightlike fieldX € gg+1 (this is the meaning of the fact that the flow &f
preserves individually the leaves 8). Therefore the projection of this metric on
Q is well defined.

This metric is invariant by the(1, d)-action. As in the proof of Fa@.2, since
dim@ < d, we have ding) = d, and furthermore() has constant curvature. Also,
we recognize from the list of Killing algebras of constantvauure manifolds that
() has constant negative curvature, iigis a hyperbolic space.

It then follows that dindVy = d, and in particular that the orbits @[f}“ deter-
mine a regular foliation neav,.
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Now, the contradiction lies in the fact thét is hyperbolic, but the analogous
guotient for generic leaves of ttﬁg*l-action, are flat. More precisely, l1&f €
R gg+1 be a translation timelike Killing field. Considér’ the (local) space
of orbits of X (instead of the whole a#/, we take a small open subset intersecting
Ny, where everything is topologically trivial). Tr%”l—orbit foliation projects to
a foliation G’ of M’. For example(Q is a leaf ofG’ which is just the projection
of Ny. In fact, as in the case @), the projection of the metric on tr%l“-orbits
endows the leaves @’ with a Riemannian metric. Now, a generic leaf @f
is (locally) isometric to the quotient of the Minkowski sgek®! by a timelike
translation flow, which is thus a Euclidean space (of dinmmg). But the leaf)
is hyperbolic which contradicts the obvious continuity fact the analyticity) of
the leafwise metric off’. ¢
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