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Abstract

In this paper we discuss the following problem: given a random variable Z = X+Y with Gamma law
such that X and Y are independent, we want to understand if then X and Y each follow a Gamma law.
This is related to Cramér’s theorem which states that if X and Y are independent then Z = X + Y
follows a Gaussian law if and only if Xand Y follow a Gaussian law. We prove that Cramér’s theorem
is true in the case of the Gamma distribution for random variables living in a Wiener chaos of fixed
order but the result is not true in general. We also give an asymptotic variant of our result.

1 Introduction

Cramér’s theorem (see [1]) says that the sum of two independent random variables is Gaussian if and
only if each summand is Gaussian. One direction is elementary to prove, that is, given two independent
random variables with Gaussian distribution, then their sum follows a Gaussian distribution. The
second direction is less trivial and its proof requires powerful results from complex analysis (see [1]).
In this paper, we treat the same problem for Gamma distributed random variables. A Gamma random
variable, denoted usually by Γ(a, λ), is a random variable with probability density function given by
fa,λ(x) = λa

Γ(a)x
a−1e−λx if x > 0 and fa,λ(x) = 0 otherwise. The parameters a and λ are strictly

positive and Γ denotes the usual Gamma function.
It is well known that if X ∼ Γ(a, λ) and Y ∼ Γ(b, λ) and X is independent of Y , then X + Y
follows the law Γ(a + b, λ). The purpose of this paper is to understand the converse implication, i.e.
whether or not (or under what conditions), ifX and Y are two independent random variables such that
X+Y ∼ Γ(a+b, λ) and E(X) = E (Γ(a, λ)) ,E

(
X2

)
= E

(
Γ(a, λ)2

)
and E(Y ) = E (Γ(b, λ)) ,E

(
Y 2

)
=

E
(
Γ(b, λ)2

)
, it holds that X ∼ Γ(a, λ) and Y ∼ Γ(b, λ).

We will actually focus our attention on the so-called centered Gamma distribution F (ν). We will call
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‘centered Gamma’ the random variables of the form

F (ν)
Law
= 2G(ν/2)− ν, ν > 0,

where G(ν/2) := Γ(ν/2, 1) has a Gamma law with parameters ν/2, 1. This means that G(ν/2) is

a (a.s. strictly positive) random variable with density g(x) = x
ν
2
−1e−x

Γ(ν/2) 1(0,∞)(x). The characteristic

function of the law F (ν) is given by

E
(
eiλF (ν)

)
=

(
e−iλ√
1− 2iλ

)ν
, λ ∈ R. (1)

We will find the following answer: if X and Y are two independent random variables, each living in a
Wiener chaos of fixed order (and these orders are allowed to be different) then the fact that the sum
X+Y follows a centered Gamma distribution implies that X and Y each follow a Gamma distribution.
On the other hand, for random variables having an infinite Wiener-Itô chaos decomposition, the result
is not true even in very particular cases (for so-called strongly independent random variables). We
construct a counter-example to illustrate this fact.
Our tools are based on a criterium given in [6] to characterize the random variables with Gamma
distribution in terms of Malliavin calculus.
Our paper is structured as follows. Section 2 contains some notations and preliminaries. In Section
3 we prove the Cramér theorem for Gamma distributed random variables in Wiener chaos of finite
orders and we also give an asymptotic version of this result. In Section 4 we show that the result does
not hold in the general case.

2 Some notations and definitions

Let (Wt)t∈T be a classical Wiener process on a standard Wiener space (Ω,F ,P). If f ∈ L2(Tn)
with n ≥ 1 integer, we introduce the multiple Wiener-Itô integral of f with respect to W . The basic
references are the monographs [3] or [4]. Let f ∈ Sn be an elementary function with n variables that
can be written as f =

∑
i1,...,in

ci1,...,in1Ai1
×...×Ain

where the coefficients satisfy ci1,...,in = 0 if two
indices ik and il are equal and the sets Ai ∈ B(T ) are pairwise disjoint. For such a step function f
we define

In(f) =
∑

i1,...,in

ci1,...,inW (Ai1) . . .W (Ain)

where we put W (A) =
∫ 1

0
1A(s)dWs. It can be seen that the application In constructed above from

Sn to L2(Ω) is an isometry on Sn in the sense

E (In(f)Im(g)) = n!〈f, g〉L2(Tn) if m = n (2)

and
E (In(f)Im(g)) = 0 if m 6= n.

Since the set Sn is dense in L2(Tn) for every n ≥ 1 the mapping In can be extended to an isometry
from L2(Tn) to L2(Ω) and the above properties hold true for this extension.
It also holds that In(f) = In

(
f̃
)
where f̃ denotes the symmetrization of f defined by

f̃(x1, . . . , xn) =
1

n!

∑

σ

f(xσ(1), . . . , xσ(n)),
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σ running over all permutations of {1, ..., n}. We will need the general formula for calculating products
of Wiener chaos integrals of any ordersm,n for any symmetric integrands f ∈ L2(Tm) and g ∈ L2(Tn),
which is

Im(f)In(g) =

m∧n∑

ℓ=0

ℓ!

(
m

ℓ

)(
n

ℓ

)
Im+n−2ℓ(f ⊗ℓ g) (3)

where the contraction f ⊗ℓ g is defined by

(f ⊗ℓ g)(s1, . . . , sm−ℓ, t1, . . . , tn−ℓ)

=

∫

Tm+n−2ℓ

f(s1, . . . , sm−ℓ, u1, . . . , uℓ)g(t1, . . . , tn−ℓ, u1, . . . , uℓ)du1 . . . duℓ. (4)

Note that the contraction (f ⊗ℓ g) is an element of L2(Tm+n−2ℓ) but it is not necessarily symmetric.
We will denote its symmetrization by (f⊗̃ℓg).
We recall that any square integrable random variable which is measurable with respect to the σ-algebra
generated by W can be expanded into an orthogonal sum of multiple stochastic integrals

F =
∑

n≥0

In(fn) (5)

where fn ∈ L2(Tn) are (uniquely determined) symmetric functions and I0(f0) = E (F ).
We denote by D the Malliavin derivative operator that acts on smooth functionals of the form F =
g(W (ϕ1), . . . ,W (ϕn)) (here g is a smooth function with compact support and ϕi ∈ L2(T ) for i =
1, .., n)

DF =

n∑

i=1

∂g

∂xi
(W (ϕ1), . . . ,W (ϕn))ϕi.

We can define the i-th Malliavin derivative D(i) iteratively. The operator D(i) can be extended to the
closure D

p,2 of smooth functionals with respect to the norm

‖F‖2p,2 = E
(
F 2

)
+

p∑

i=1

E
(
‖DiF‖2L2(T i)

)
.

The adjoint of D is denoted by δ and is called the divergence (or Skorohod) integral. Its domain
Dom(δ) coincides with the class of stochastic processes u ∈ L2(Ω× T ) such that

|E (〈DF, u〉)| ≤ c‖F‖2

for all F ∈ D
1,2 and δ(u) is the element of L2(Ω) characterized by the duality relationship

E(Fδ(u)) = E (〈DF, u〉) .

For adapted integrands, the divergence integral coincides with the classical Itô integral.
Let L be the Ornstein-Uhlenbeck operator defined on Dom(L) = D

2,2. We have

LF = −
∑

n≥0

nIn(fn)

if F is given by (5). There exists a connection between δ,D and L in the sense that a random variable
F belongs to the domain of L if and only if F ∈ D

1,2 and DF ∈ Dom(δ) and then δDF = −LF . Let
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us consider a multiple stochastic integral Iq(f) with symmetric kernel f ∈ L2(T q). We denote the
Malliavin derivative of Iq(f) by DIq(f). We have

DθIq(f) = qIq−1(f
(θ)),

where f (θ) = f(t1, ..., tq−1, θ) is the (q − 1)th order kernel obtained by parametrizing the qth order
kernel f by one of the variables.
For any random variable X,Y ∈ D

1,2 we use the following notations

GX = 〈DX,−DL−1X〉L2(T )

and

GX,Y = 〈DX,−DL−1Y 〉L2(T ).

Finally, we will use the notation X⊥Y to denote that two random variables X and Y are independent.

The following facts are key points in our proofs:

Fact 1: Let X = Iq1(f) and Y = Iq2(g) where f ∈ L2(T q1) and g ∈ L2(T q2) are symmetric
functions. Then X and Y are independent if and only if (see [8])

f ⊗1 g = 0 a.e. on T q1+q2−2.

Fact 2: Let X = Iq(f) with f ∈ L2(T q) symmetric. Assume that E
(
X2

)
= E(F (ν)2) = 2ν.

Then X follows a centered Gamma law F (ν) with ν > 0 if and only if (see [5])

‖DX‖2L2(T ) − 2qX − 2qν = 0 almost surely.

Fact 3: Let (fk)k≥1 be a sequence in L2(T q) such that E
(
Iq(fk)

2
)

−→
k→+∞

2ν. Then the sequence

Xk = Iq(fk) converges in distribution, as k → ∞, to a Gamma law, if and only if (see [5])

‖DXk‖2L2(T ) − 2qXk − 2qν −→
k→+∞

0 in L2(Ω).

Remark: In this particular paper, we will restrict ourselves to an underlying Hilbert space (to the
Wiener process we will be working with in the upcoming sections) of the form H = L2(T ) for the
sake of simplicity. However, all the results presented in the upcoming sections remain valid on a more
general separable Hilbert space as the underlying space.

3 (Asymptotic) Cramér theorem for multiple integrals

In this section, we will prove Cramér’s theorem for random variables living in fixed Wiener chaoses.
More precisely, our context is as follows: we assume that X = Iq1(f) and Y = Iq2(h) and X,Y are
independent. We also assume that E

(
X2

)
= E

(
F (ν1)

2
)
= 2ν1 and E

(
Y 2

)
= E

(
F (ν22)

)
= 2ν2. Here

ν, ν1, ν2 denotes three strictly positive numbers such that ν1 + ν2 = ν. We assume that X +Y follows
a Gamma law F (ν) and we will prove that X ∼ F (ν1) and Y ∼ F (ν2).
Let us first give the following two auxiliary lemmas that will be useful throughout the paper.
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Lemma 1 Let q1, q2 ≥ 1 be integers, and let X = Iq1(f) and Y = Iq2(h), where f ∈ L2(T q1) and
h ∈ L2(T q2) are symmetric functions. Assume moreover that X and Y are independent. Then, we
have DX⊥DY , X⊥DY and Y⊥DX.

Proof: From Fact 1 in Section 2, f ⊗1 h = 0 a.e on T q1+q2−2 and by extension f ⊗r h = 0 a.e
on T q1+q2−2r for every 1 ≤ r ≤ q1 ∧ q2. We will now prove that for every θ, ψ ∈ T , we also have
f (θ) ⊗1 h

(ψ) = 0 a.e on T q1+q2−4, f (θ) ⊗1 h = 0 a.e on T q1+q2−3 and f ⊗1 h
(ψ) = 0 a.e. on T q1+q2−3.

Indeed, we have
(
f (θ) ⊗1 h

(ψ)
)
(t1, . . . , tq1−2, s1, . . . , sq2−2) =

∫

T

f(t1, ..., tq1−2, u, θ)h(s1, ..., sq2−2, u, ψ)du

= 0

as a particular case of f ⊗1 h = 0 a.e.. By extension, we also have f (θ) ⊗r h(ψ) = 0 for 1 ≤ r ≤
(q1 − 1) ∧ (q2 − 1). Similarly,

(
f (θ) ⊗1 h

)
(t1, . . . , tq1−2, s1, . . . , sq2−1) =

∫

T

f(t1, ..., tq1−2, u, θ)h(s1, . . . , sq2−1, u)du

= 0. (6)

Clearly f (θ) ⊗r h = 0 for 1 ≤ r ≤ (q1 − 1)∧ q2. Given the symmetric roles played by f and h, we also
have f ⊗1 h

(ψ) = 0 and then f ⊗r h(ψ) = 0 for 1 ≤ r ≤ q1 ∧ (q2 − 1).
Let us now prove that DX⊥DY . Since for every θ, ψ ∈ T , DθX = q1Iq1−1(f

(θ)) and DψY =
q2Iq2−1(h

(ψ)), it suffices to show that the random variables Iq1−1(f
(θ)) and Iq2−1(h

(ψ)) are indepen-
dent. To do this, we will use the criterium for the independence of multiple integrals given in [8]. We
need to check that f (θ) ⊗1 h

(ψ) = 0 a.e. on T q1+q2−4 and this follows from above.
It remains to prove that X⊥DY and DX⊥Y . Given the symmetric roles played by X and Y , we will
only prove that X⊥DY . That is equivalent to the independence of the random variables Iq1(f) and
Iq2−1(h

(ψ)) for every θ ∈ T , which follows from [8] (see Fact 1 in Section 2) and (6). Thus, we have
X⊥DY and DX⊥Y .

Let us recall the following definition (see [7]).

Definition 1 Two random variables X =
∑
n≥0 In(fn) and Y =

∑
m≥0 Im(hm) are called strongly

independent if for every m,n ≥ 0, the random variables In(fn) and Im(hm) are independent.

We have the following lemma about strongly independent random variables.

Lemma 2 Let X =
∑
n≥0 In(fn) and Y =

∑
m≥0 Im(hm) (fn ∈ L2(Tn), hm ∈ L2(Tm) symmetric

for every n,m ≥ 1) be two centered random variables in the space D
1,2. Then, if X and Y are strongly

independent, we have

〈DX,−DL−1Y 〉L2(T ) = 〈DY,−DL−1X〉L2(T ) = 0.

Proof: We have, for every θ ∈ T ,

DθX =
∑

n≥1

nIn−1(f
(θ)
n ) and −DθL

−1Y =
∑

m≥1

Im−1(h
(θ)
m ).

Therefore, we can write

〈DX,−DL−1Y 〉L2(T ) =
∑

n,m≥1

n

∫

T

In−1(fn(t1, ..., tn−1, θ))Im−1(hm(t1, ..., tm−1, θ))dθ

=
∑

n,m≥1

n

∫

T

(n−1)∧(m−1)∑

r=0

r!

(
n− 1

r

)(
m− 1

r

)
In+m−2r−2(f

(θ)
n ⊗r h(θ)m )dθ.
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The strong independence of X and Y gives us that f
(θ)
n ⊗r h(θ)m = 0 for every 1 ≤ r ≤ (n−1)∧ (m−1).

Thus, we obtain

〈DX,−DL−1Y 〉L2(T ) =
∑

n,m≥1

n

∫

T

In+m−2(f
(θ)
n ⊗ h(θ)m )dθ.

Using a Fubini type result, we can write

〈DX,−DL−1Y 〉L2(T ) =
∑

n,m≥1

nIn+m−2(

∫

T

f (θ)n ⊗ h(θ)m dθ)

=
∑

n,m≥1

nIn+m−2(fn ⊗1 hm).

Again, the strong independence of X and Y gives us that fn ⊗1 hm = 0 a.e and we finally obtain
〈DX,−DL−1Y 〉L2(T ) = 0, and similarly 〈DY,−DL−1X〉L2(T ) = 0.

Let us first remark that the Cramér theorem holds for random variables in the same Wiener chaos of
fixed order.

Proposition 1 Let X = Im(f) and Y = Im(h) with m ≥ 2 fixed and f, h symmetric functions in
L2(Tm). Fix ν1, ν2, ν > 0 such that ν1 + ν2 = ν. Assume that X + Y follows the law F (ν) and X is
independent of Y . Also suppose that E

(
X2

)
= E

(
F (ν1)

2
)
= 2ν1 and E

(
Y 2

)
= E

(
F (ν2)

2
)
= 2ν2.

Then X ∼ F (ν1) and Y ∼ F (ν2).

Proof: By a result in [5] (see Fact 2 in Section 2), X + Y follows the law F (ν) is equivalent to

||DIm(f + h)||2L2(T ) − 2mIm(f + h)− 2mν = 0 a.s. . (7)

On the other hand

E
(
||DIm(f + h)||2L2(T ) − 2mIm(f + h)− 2mν

)2

= E
((

||DIm(f)||2L2(T ) + ||DIm(h)||2L2(T ) + 2〈DIm(f), DIm(h)〉L2(T )

−2mIm(f)− 2mIm(h)− 2m(ν1 + ν2))
2
)

= E

((
||DIm(f)||2L2(T ) − 2mIm(f)− 2mν1

)2
)
+E

((
||DIm(h)||2L2(T ) − 2mIm(h)− 2mν2

)2
)

+E
((

||DIm(f)||2L2(T ) − 2mIm(f)− 2mν1

)(
||DIm(h)||2L2(T ) − 2mIm(h)− 2mν2

))
. (8)

Above we used the fact that 〈DIm(f), DIm(h)〉L2(T ) = 0 as a consequence of Lemma 1. It is also easy
to remark that, from Lemma 1

E
((

||DIm(f)||2L2(T ) − 2mIm(f)− 2mν1

)(
||DIm(h)||2L2(T ) − 2mIm(h)− 2mν2

))

= E
(
||DIm(f)||2L2(T ) − 2mIm(f)− 2mν1

)
E
(
||DIm(h)||2L2(T ) − 2mIm(h)− 2mν2

)
= 0.

Using this and by combining (7) and (8), we obtain that

E

((
||DIm(f)||2L2(T ) − 2mIm(f)− 2mν1

)2
)
+E

((
||DIm(h)||2L2(T ) − 2mIm(h)− 2mν2

)2
)

= 0.
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The left hand side of this last equation is equal to zero and is the sum of two non negative quantities
(as expectations of squares). This implies that each of the summands are equal to zero. Thus,

E

((
||DIm(f)||2L2(T ) − 2mIm(f)− 2mν1

)2
)

= E

((
||DIm(h)||2L2(T ) − 2mIm(h)− 2mν2

)2
)

= 0

and consequently X ∼ F (ν1) and Y ∼ F (ν2).

Remark 1 Using Fact 3 in Section 2, an asymptotic variant of the above result can be stated. We
will state it here because it is a particular case of Theorem 4 proved later in our paper.

Theorem 1.2 in [5] gives a characterization of (asymptotically) centered Gamma random variable which
are given by a multiple Wiener-Itô integral. There is not such a characterization for random variable
living in a finite or infinite sum of Wiener chaos; only an upper bound for the distance between the
law of a random variable in D

1,2 and the Gamma distribution has been proven in [6], Theorem 3.11.
It turns out, that for the case of a sum of independent multiple integrals, it is possible to characterize
the relation between its distribution and the Gamma distribution. We will prove this fact in the
following theorem.

Theorem 1 Fix ν1, ν2, ν > 0 such that ν1+ν2 = ν and let F (ν) be a real-valued random variable with
characteristic function given by (1). Fix two even integers q1 ≥ 2 and q2 ≥ 2. For any symmetric
kernels f ∈ L2(T q1) and h ∈ L2(T q2) such that

E
(
Iq1(f)

2
)
= q1! ‖f‖2L2(T q1 ) = 2ν1 and E

(
Iq2(h)

2
)
= q2! ‖h‖2L2(T q2 ) = 2ν2, (9)

and such that X = Iq1(f) and Y = Iq2(h) are independent, define the random variable

Z = X + Y = Iq1(f) + Iq2(h).

Under those conditions, the following two conditions are equivalent:

(i) E

((
2ν + 2Z −

〈
DZ,−DL−1Z

〉
L2(T )

)2
)

= 0, where D is the Malliavin derivative operator and

L is the infinitesimal generator of the Ornstein-Uhlenbeck semigroup;

(ii) Z
Law
= F (ν);

Proof: Proof of (ii) → (i). Suppose that Z ∼ F (ν). We easily obtain that

E
(
Z3

)
= E

(
F (ν)3

)
= 8ν and E

(
Z4

)
= E

(
F (ν)4

)
= 12ν2 + 48ν. (10)

Consequently,
E
(
Z4

)
− 12E

(
Z3

)
= E

(
F (ν)4

)
− 12E

(
F (ν)3

)
= 12ν2 − 48ν. (11)

Then we will use the fact that for every multiple integral Iq(f)

E
(
Iq(f)

3
)
= q!(q/2)!

(
q

q/2

)2 〈
f, f⊗̃q/2f

〉
L2(T q)

. (12)

and

E
(
Iq(f)

4
)
= 3

[
q! ‖f‖2L2(T q)

]2
+

3

q

q−1∑

p=1

q2(p− 1)!

(
q − 1

p− 1

)2

p!

(
q

p

)2

(2q − 2p)!
∥∥f⊗̃pf

∥∥2
L2(T 2(q−p))

. (13)
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We will now compute E
(
Z3

)
, E

(
Z4

)
and E

(
Z4

)
− 12E

(
Z3

)
by using the above two relations (12)

and (13). We have Z2 = (Iq1(f) + Iq2(h))
2 = Iq1(f)

2 + Iq2(h)
2 +2Iq1(f)Iq2(h) and thus, by using the

independence between Iq1(f) and Iq2(h),

E
(
Z3

)
= E

(
Iq1(f)

3
)
+E

(
Iq2(h)

3
)
.

Using relation (12), we can write

E
(
Z3

)
= q1!(q1/2)!

(
q1
q1/2

)2 〈
f, f⊗̃q1/2f

〉
L2(T q1 )

+ q2!(q2/2)!

(
q2
q2/2

)2 〈
h, h⊗̃q2/2h

〉
L2(T q2 )

. (14)

For E
(
Z4

)
, we combine relations (9) and (13) with the independence between Iq1(f) and Iq2(h) to

obtain

E
(
Z4

)
= E

(
Z2Z2

)
= E

(
Iq1(f)

4
)
+E

(
Iq2(h)

4
)
+ 6E

(
Iq1(f)

2Iq2(h)
2
)

= 3
[
q1! ‖f‖2L2(T q1 )

]2
+

3

q1

q1−1∑

p=1

q21(p− 1)!

(
q1 − 1

p− 1

)2

p!

(
q1
p

)2

(2q1 − 2p)!
∥∥f⊗̃pf

∥∥2
L2(T 2(q1−p))

+ 3
[
q2! ‖h‖2L2(T q2 )

]2
+

3

q2

q2−1∑

p=1

q22(p− 1)!

(
q2 − 1

p− 1

)2

p!

(
q2
p

)2

(2q2 − 2p)!
∥∥h⊗̃ph

∥∥2
L2(T 2(q2−p))

+ 24ν1ν2.

Using the fact that q1! ‖f‖2L2(T q1 ) = 2ν1 and q2! ‖h‖2L2(T q2 ) = 2ν2, we can write

E
(
Z4

)
− 12E

(
Z3

)
= 12ν21 + 12ν22 − 48ν1 − 48ν2 + 24ν1ν2

+
3

q1

q1−1∑

p=1,p 6=q1/2
q21(p− 1)!

(
q1 − 1

p− 1

)2

p!

(
q1
p

)2

(2q1 − 2p)!
∥∥f⊗̃pf

∥∥2
L2(T 2(q1−p))

+
3

q2

q2−1∑

p=1,p 6=q2/2
q22(p− 1)!

(
q2 − 1

p− 1

)2

p!

(
q2
p

)2

(2q2 − 2p)!
∥∥h⊗̃ph

∥∥2
L2(T 2(q2−p))

+24q1! ‖f‖2L2(T q1 ) + 3q1(q1/2− 1)!

(
q1 − 1

q1/2− 1

)2

(q1/2)!

(
q1
q1/2

)2

q1!
∥∥f⊗̃q1/2f

∥∥2
L2(T q1 )

+24q2! ‖h‖2L2(T q2 ) + 3q2(q2/2− 1)!

(
q2 − 1

q2/2− 1

)2

(q2/2)!

(
q2
q2/2

)2

q2!
∥∥h⊗̃q2/2h

∥∥2
L2(T q2 )

−12q1!(q1/2)!

(
q1
q1/2

)2 〈
f, f⊗̃q1/2f

〉
L2(T q1 )

−12q2!(q2/2)!

(
q2
q2/2

)2 〈
h, h⊗̃q2/2h

〉
L2(T q2 )

. (15)
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Recall that ν = ν1 + ν2 and note that 12ν21 + 12ν22 − 48ν1 − 48ν2 + 24ν1ν2 = 12ν2 − 48ν. Also note
that

24q1! ‖f‖2L2(T q1 ) + 3q1(q1/2− 1)!

(
q1 − 1

q1/2− 1

)2

(q1/2)!

(
q1
q1/2

)2

q1!
∥∥f⊗̃q1/2f

∥∥2
L2(T q1 )

−12q1!(q1/2)!

(
q1
q1/2

)2 〈
f, f⊗̃q1/2f

〉
L2(T q1 )

=
3

2

(q1!)
5

((q1/2)!)
6

∥∥f⊗̃q1/2f − cq1f
∥∥2
L2(T q1 )

,

where cq1 is defined by cq1 = 1

(q1/2)!( q1−1

q1/2−1)
2 = 4

(q1/2)!( q1
q1/2)

2 and a similar relation holds for the function

h with q2, cq2 instead of q1, cq1 respectively, where cq2 = 1

(q2/2)!( q2−1

q2/2−1)
2 = 4

(q2/2)!( q2
q2/2)

2 .

E
(
Z4

)
− 12E

(
Z3

)
= 12ν2 − 48ν

+
3

q1

q1−1∑

p=1,p 6=q1/2
q21(p− 1)!

(
q1 − 1

p− 1

)2

p!

(
q1
p

)2

(2q1 − 2p)!
∥∥f⊗̃pf

∥∥2
L2(T 2(q1−p))

+
3

2

(q1!)
5

((q1/2)!)
6

∥∥f⊗̃q1/2f − cq1f
∥∥2
L2(T q1 )

+
3

q2

q2−1∑

p=1,p 6=q2/2
q22(p− 1)!

(
q2 − 1

p− 1

)2

p!

(
q2
p

)2

(2q2 − 2p)!
∥∥h⊗̃ph

∥∥2
L2(T 2(q2−p))

+
3

2

(q2!)
5

((q2/2)!)
6

∥∥h⊗̃q2/2h− cq2h
∥∥2
L2(T q2 )

.

From (ii), it follows that

3

q1

q1−1∑

p=1,p 6=q1/2
q21(p− 1)!

(
q1 − 1

p− 1

)2

p!

(
q1
p

)2

(2q1 − 2p)!
∥∥f⊗̃pf

∥∥2
L2(T 2(q1−p))

+
3

2

(q1!)
5

((q1/2)!)
6

∥∥f⊗̃q1/2f − cq1f
∥∥2
L2(T q1 )

+
3

q2

q2−1∑

p=1,p 6=q2/2
q22(p− 1)!

(
q2 − 1

p− 1

)2

p!

(
q2
p

)2

(2q2 − 2p)!
∥∥h⊗̃ph

∥∥2
L2(T 2(q2−p))

+
3

2

(q2!)
5

((q2/2)!)
6

∥∥h⊗̃q2/2h− cq2h
∥∥2
L2(T q2 )

= 0,

which leads to the conclusion as all the summands are positive, that is
∥∥f⊗̃q1/2f − cq1f

∥∥
L2(T q1 )

=
∥∥h⊗̃q2/2h− cq2h

∥∥
L2(T q2 )

= 0 and
∥∥f⊗̃pf

∥∥
L2(T 2(q1−p))

=
∥∥h⊗̃rh

∥∥
L2(T 2(q2−p))

= 0 (16)

for every p = 1, ..., q1 − 1 such that p 6= q1/2 and for every r = 1, ..., q2 − 1 such that r 6= q2/2; This
implies

∥∥f⊗̃q1/2f − cq1f
∥∥
L2(T q1 )

=
∥∥h⊗̃q2/2h− cq2h

∥∥
L2(T q2 )

= 0 and

‖f ⊗p f‖L2(T 2(q1−p)) = ‖h⊗r h‖L2(T 2(q2−p)) = 0 (17)
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for every p = 1, ..., q1 − 1 such that p 6= q1/2 and for every r = 1, ..., q2 − 1 such that r 6= q2/2 (see [5],
Theorem 1.2.).

We will compute E
(
(2ν + 2Z −GZ)

2
)
. Let us start with GZ .

GZ =
〈
DZ,−DL−1Z

〉
L2(T )

=
〈
DIq1(f) +DIq2(h),−DL−1Iq1(f)−DL−1Iq2(h)

〉
L2(T )

=
〈
DIq1(f),−DL−1Iq1(f)

〉
L2(T )

+
〈
DIq2(h),−DL−1Iq2(h)

〉
L2(T )

+
〈
DIq1(f),−DL−1Iq2(h)

〉
L2(T )

+
〈
DIq2(h),−DL−1Iq1(f)

〉
L2(T )

.

From Lemma 2, it follows that
〈
DIq1(f),−DL−1Iq2(h)

〉
L2(T )

=
〈
DIq2(h),−DL−1Iq1(f)

〉
L2(T )

= 0.

Thus,

GZ = q−1
1 ‖DIq1(f)‖

2
L2(T ) + q−1

2 ‖DIq2(h)‖
2
L2(T ) .

It follows that

E
(
(2ν + 2Z −GZ)

2
)

= E

((
2ν1 + 2ν2 + 2Iq1(f) + 2Iq2(h)− q−1

1 ‖DIq1(f)‖
2
L2(T ) − q−1

2 ‖DIq2(h)‖
2
L2(T )

)2
)

= E

((
q−1
1 ‖DIq1(f)‖

2
L2(T ) − 2Iq1(f)− 2ν1

)2
)

+E

((
q−1
2 ‖DIq2(h)‖

2
L2(T ) − 2Iq2(h)− 2ν2

)2
)

+2E
((
q−1
1 ‖DIq1(f)‖

2
L2(T ) − 2Iq1(f)− 2ν1

)(
q−1
2 ‖DIq2(h)‖

2
L2(T ) − 2Iq2(h)− 2ν2

))
.

We use Lemma 1 to write

E
((
q−1
1 ‖DIq1(f)‖

2
L2(T ) − 2Iq1(f)− 2ν1

)(
q−1
2 ‖DIq2(h)‖

2
L2(T ) − 2Iq2(h)− 2ν2

))
= 0.

Thus,

E
(
(2ν + 2Z −GZ)

2
)

= q−1
1 E

((
‖DIq1(f)‖

2
L2(T ) − 2q1Iq1(f)− 2q1ν1

)2
)

+q−1
2 E

((
‖DIq2(h)‖

2
L2(T ) − 2q2Iq2(h)− 2q2ν2

)2
)
.

Relation (17) and the calculations contained in [5] imply that the above two summands vanish.
It finally follows from this that

E
(
(2ν + 2Z −GZ)

2
)
= 0.

Proof of (i) → (ii). Suppose that (ii) holds. We have proven that

E
(
(2ν + 2Z −GZ)

2
)
= 0 ⇒





E

((
‖DIq1(f)‖

2
L2(T ) − 2q1Iq1(f)− 2q1ν1

)2
)

= 0

E

((
‖DIq2(h)‖

2
L2(T ) − 2q2Iq2(h)− 2q2ν2

)2
)

= 0.
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From Theorem 1.2 in [5] it follows that Iq1(f) ∼ F (ν1) and Iq2(h) ∼ F (ν2). Iq1(f) and Iq2(h)
being independent, we use the convolution property of Gamma random variables to state that Z =
Iq1(f) + Iq2(h) ∼ F (ν1 + ν2) ∼ F (ν).

Remark 2 The proof of the above theorem shows that the affirmations (i) and (ii) are equivalent with
relations (10), (11), (16) and (17).

Following exactly the lines of the proof of Theorem 1 it is possible to characterize random variables
given by a sum of independent multiple integrals that converges in law to a Gamma distribution.

Theorem 2 Fix ν1, ν2, ν > 0 such that ν1 + ν2 = ν and let F (ν) be a real-valued random variable
with characteristic function given by (1). Fix two even integers q1 ≥ 2 and q2 ≥ 2. For any sequence
(fk)k≥1 ⊂ L2(T q1) and (hk)k≥1 ⊂ L2(T q2) (fk and hk are symmetric for every k ≥ 1) such that

E
(
Iq1(fk)

2
)
= q1! ‖fk‖2L2(T q1 ) −→

k→+∞
2ν1 and E

(
Iq2(hk)

2
)
= q2! ‖hk‖2L2(T q2 ) −→

k→+∞
2ν2,

and such that Xk = Iq1(fk) and Yk = Iq2(hk) are independent for any k ≥ 1, define the random
variable

Zk = Xk + Yk = Iq1(fk) + Iq2(hk) ∀k ≥ 1.

Under those conditions, the following two conditions are equivalent:

(i) E

((
2ν + 2Zk −

〈
DZk,−DL−1Zk

〉
L2(T )

)2
)

−→
k→+∞

0;

(ii) Zk
Law−→

k→+∞
F (ν);

Cramér’s theorem for Gamma random variables in the setting of multiple stochastic integrals is a
corollary of Theorem 1. We have the following :

Theorem 3 Let Z = X + Y = Iq1(f) + Iq2(h), q1, q2 ≥ 2, f ∈ L2(T q1), h ∈ L2(T q2) symmetric, be
such that X,Y are independent and

E
(
Z2

)
= 2ν,E

(
X2

)
= q1! ‖f‖2L2(T q1 ) = 2ν1,E

(
Y 2

)
= q2! ‖h‖2L2(T q2 ) = 2ν2

with ν = ν1 + ν2. Furthermore, let’s assume that Z ∼ F (ν). Then,

X ∼ F (ν1) and Y ∼ F (ν2).

Proof: Theorem 1 states that Z ∼ F (ν) ⇔ E
(
(2ν + 2Z −GZ)

2
)
= 0 and we proved that

E
(
(2ν + 2Z −GZ)

2
)
= E

(
(2ν1 + 2X −GX)

2
)
+E

(
(2ν2 + 2Y −GY )

2
)
.

Both summands being positive, it follows that

E
(
(2ν1 + 2X −GX)

2
)
= 0 and E

(
(2ν2 + 2Y −GY )

2
)
= 0.

Applying theorem 1 to X and Y separately gives us E
(
(2ν1 + 2X −GX)

2
)

⇔ X ∼ F (ν1) and

E
(
(2ν2 + 2Y −GY )

2
)
⇔ Y ∼ F (ν2).

It is immediate to give an asymptotic version of Theorem 3.
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Theorem 4 Let Zk = Xk+Yk = Iq1(fk)+ Iq2(hk), fk ∈ L2(T q1), hk ∈ L2(T q2) symmetric for k ≥ 1,
q1, q2 ≥ 2, be such that Xk, Yk are independent for every k ≥ 1 and

E
(
Z2
k

)
−→
k→+∞

2ν,E
(
X2
k

)
= q1! ‖f‖2L2(T q1 ) −→

k→+∞
2ν1,E

(
Y 2
k

)
= q2! ‖h‖2L2(T q2 ) −→

k→+∞
2ν2

with ν = ν1 + ν2. Furthermore, let’s assume that Zk −→
k→+∞

F (ν) in distribution. Then,

Xk −→
k→+∞

F (ν1) and Yk −→
k→+∞

F (ν2).

Remark 3 i) From Corollary 4.4. in [5] it follows that actually there are no Gamma distributed
random variables in a chaos of order bigger or equal than 4. (We actually conjecture that a Gamma
distributed random variable given by a multiple integral can only live in the second Wiener chaos).
In this sense Theorem 3 contains a limited number of examples. By contrary, the asymptotic Cramér
theorem (Theorem 4) is more interesting and more general since there exists a large class of variables
which are asymptotically Gamma distributed.
ii) Theorem 3 cannot be applied directly to random variables with law Γ(a, λ) (as defined in the Intro-
duction) because such random variables are not centered and then they cannot live in a finite Wiener
chaos. But, it is not difficult to understand that if X = Iq1 + c is a random variable which is indepen-
dent of Y = Iq2 + d (and assume that the first two moments of X and Y are the same as the moment
of the corresponding Gamma distributions), and if X + Y ∼ Γ(a + b, λ) then X has the distribution
Γ(a, λ) and Y has the distribution Γ(b, λ).
iii) Several results of the paper (Lemmas 1 and 2) holds for strongly independent random variables.
Nevertheless, the key results (Theorems 1 and 2 that allows to prove Cramér’s theorem and its asymp-
totic variant are not true for strongly independent random variables (actually the implication ii) → i)
in these results, whose proof is based on the differential equation satisfied by the characteristic function
of the Gamma distribution, does not work.

4 Counterexample in the general case

We will see in this section that Theorem 3 does not hold for random variables which have a chaos
decomposition into an infinite sum of multiple stochastic integrals. We construct a counterexample
in this sense. What is more interesting is that the random variables defined in the below example are
not only independent, they are strongly independent (see the definition above).

Example 1 Let ǫ(λ) denote the exponential distribution with parameter λ and let b(p) denote the
Bernoulli distribution with parameter p. Let X = A−1 and Y = 2̟B−1, where A ∼ ǫ(1), B ∼ ǫ(1),
̟ ∼ b( 12 ) and A, B and ̟ are mutually independent. This implies that X and Y are independent.
We have E(X) = E(Y ) = 0 as well as E(X2) = 1 and E(Y 2) = 3. Consider also Z = X + Y .
Observe that X,Y and Z match every condition of theorem 3, but X and Y are not multiple stochastic
integrals in a fixed Wiener chaos (see the next proposition for more details). We have the following :
Z ∼ F (2), but Y is not Gamma distributed.

Proof: We know that

E
(
eitX

)
= E

(
eit(A−1)

)
= e−itE

(
eitA

)
=

e−it

1− it
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and that

E
(
eitY

)
= E

(
eit(2̟B−1)

)
= e−itE

(
eit2̟B

)
= e−it

(
1

2
E
(
eit2B

)
+

1

2

)

= e−it
(
1

2

1

1− 2it
+

1

2

)
= e−it

1− it

1− 2it
.

Observe at this point that the characteristic function of Y proves that Y is not Gamma distributed.
Let us compute the characteristic function of Z. We have

E
(
eitZ

)
= E

(
eit(X+Y )

)
= E

(
eitX

)
E
(
eitY

)
=

e−it

1− it
e−it

1− it

1− 2it
=

e−2it

1− 2it
= E

(
eitF (2)

)
.

Remark 4 It is also possible to construct a similar example for the laws Γ(a, λ),Γ(b, λ) instead of
F (ν1), F (ν2).

The following proposition shows that this counterexample accounts for independent random variables
but also for strongly independent random variables.

Proposition 2 X and Y as defined in Example 1 are strongly independent.

Proof: In order to prove that X and Y are strongly independent, we need to compute their
Wiener chaos expansions in order to emphasize the fact that all the components of these Wiener
Chaos expansions are mutually independent. Consider a standard Brownian motion B indexed on
L2(T ) = L2((0, T )). Consider h1, ..., h5 ∈ L2(T ) such that ‖hi‖L2(T ) = 1 for every 1 ≤ i ≤ 5 and

such that W (hi) and W (hj) are independent for every 1 ≤ i, j ≤ 5, i 6= j. First notice that the
random variables A = 1

2

(
W (h1)

2 +W (h2)
2
)
and B = 1

2

(
W (h4)

2 +W (h5)
2
)
are independent (this

is obvious) and have the exponential distribution with parameter 1. Also, note that the random
variable ̟ = 1

2 sign(W (h3)) +
1
2 has the Bernoulli distribution and is independent from A and B. As

in Example 1, set X = A− 1 and Y = 2̟B − 1. X and Y are as defined in Example 1. Let us now
compute their Wiener chaos decompositions. We have

A =
1

2

(
W (h1)

2 +W (h2)
2
)
=

1

2

(
I1(h1)

2 + I1(h2)
2
)
=

1

2

(
2 + I2(h

⊗2
1 ) + I2(h

⊗2
2 )

)
,

and similarly B = 1
2

(
2 + I2(h

⊗2
4 ) + I2(h

⊗2
5 )

)
. Therefore, we have

X = I2

(
h⊗2
1 + h⊗2

2

2

)
.

From [2], Lemma 3, we know that

sign(W (h3)) =
∑

k≥0

b2k+1I2k+1(h
⊗(2k+1)
3 ),
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where b2k+1 = 2(−1)k

(2k+1)
√
2πk!2k

. It follows that ̟ = 1
2 + 1

2

∑
k≥0 b2k+1I2k+1(h

⊗(2k+1)
3 ), and

Y = (1 +
∑

k≥0

b2k+1I2k+1(h
⊗(2k+1)
3 ))(1 +

1

2
I2(h

⊗2
4 ) +

1

2
I2(h

⊗2
5 ))− 1

=
1

2
I2(h

⊗2
4 ) +

1

2
I2(h

⊗2
5 ) +

∑

k≥0

b2k+1I2k+1(h
⊗(2k+1)
3 ) +

1

2

∑

k≥0

b2k+1I2k+1(h
⊗(2k+1)
3 )I2(h

⊗2
4 )

+
1

2

∑

k≥0

b2k+1I2k+1(h
⊗(2k+1)
3 )I2(h

⊗2
5 ).

Using the multiplication formula for multiple stochastic integrals, we obtain

Y =
1

2
I2(h

⊗2
4 ) +

1

2
I2(h

⊗2
5 ) +

∑

k≥0

b2k+1I2k+1(h
⊗(2k+1)
3 )

+
1

2

∑

k≥0

b2k+1

(2k+1)∧2∑

r=0

r!

(
2

r

)(
2k + 1

r

)
I2k+3−2r(h

⊗(2k+1)
3 ⊗r h⊗2

4 )

+
1

2

∑

k≥0

b2k+1

(2k+1)∧2∑

r=0

r!

(
2

r

)(
2k + 1

r

)
I2k+3−2r(h

⊗(2k+1)
3 ⊗r h⊗2

5 ).

At this point, it is clear that X and Y are strongly independent.
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[1] H. Cramér (1936): Über eine Eigenschaft der normalen Verteilungsfunction. Math. Z., 41(2),
405-414.

[2] Y. Hu and D. Nualart (2005): Some processes associated with fractional Bessel processes. Journal
of Theoretical Probability, 18 no. 2, 377-397.

[3] P. Malliavin (1997): Stochastic Analysis. Springer-Verlag.

[4] D. Nualart (2006): Malliavin Calculus and Related Topics. Second Edition. Springer.

[5] I. Nourdin and G. Peccati (2009): Noncentral convergence of multiple integrals. The Annals of
Probability, 37 no. 4, 1412-1426.

[6] I. Nourdin and G. Peccati (2007): Stein’s method on Wiener chaos. Probability Theory and
Related Fields. 145 (1-2), 75-118.

[7] C.A. Tudor (2008): Asymptotic Cramér’s theorem and analysis on Wiener space. Preprint, to
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