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We study the self-normalized sums of independent random variables from the perspective of the Malliavin calculus. We give the chaotic expansion for them and we prove a Berry-Esséen bound with respect to several distances.

Introduction

Let (Ω, F , P ) be a probability space and (W t ) t≥0 a Brownian motion on this space. Let F be a random variable defined on Ω which is differentiable in the sense of the Malliavin calculus. Then using the so-called Stein's method introduced by Nourdin and Peccati in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] (see also [START_REF] Nourdin | Stein's method and exact Berry-Esséen asymptotics for functionals of Gaussian fields[END_REF] and [START_REF] Nourdin | Stein's method meets Malliavin calculus: a short survey with new estimates[END_REF]), it is possible to measure the distance between the law of F and the standard normal law N (0, 1). This distance can be defined in several ways, such as the Kolmogorov distance, the Wasserstein distance, the total variation distance or the Fortet-Mourier distance. More precisely we have, if L(F ) denotes the law of F , d(L(F ), N (0, 1)) ≤ c E 1 -DF, D(-L) -1 F L 2 ([0,1]) 2 .

Here D denotes the Malliavin derivative with respect to W , and L is the generator of the Ornstein-Uhlenbeck semigroup. We will explain in the next section how these operators are defined. The constant c is equal to 1 in the case of the Kolmogorov distance as well as in the case of the Wasserstein distance, c = 2 for the total variation distance and c = 4 in the case of the Fortet-Mourier distance.

Our purpose is to apply these techniques to self-normalized sums. Let us recall some basic facts on this topic. We refer to [START_REF] De La Pena | Self normalized processes[END_REF] and the references therein for a more detailed exposition. Let X 1 , X 2 , • • • be independent random variables. Set S n = n i=1 X i and V 2 n = n i=1 X 2 i . Then Sn Vn converges in distribution as n → ∞ to the standard normal law N (0, 1) if and only if E(X) = 0 and X is in the domain of attraction of the standard normal law (see [START_REF] De La Pena | Self normalized processes[END_REF], Theorem 4.1). The "if" part of the theorem has been known for a long time (it appears in [START_REF] Maller | On the law of the iterated logarithm in the infinite variance cas[END_REF]) while the "only if" part remained open until its proof in [START_REF] Giné | When is the t-Student statistics asymptotically standard normal?[END_REF]. The Berry-Esséen theorem for self-normalized sums has been also widely studied. We refer to [START_REF] Bentkus | The Berry-Essén bound for Student's statistics[END_REF] and [START_REF] Shao | Explicit Berry-Esséen bound for Student's t-statistics via Stein method[END_REF] (see also [START_REF] Bentkus | A Berry-Esséen bound for Student's statistics in the non i.i.d. case[END_REF], [START_REF] Bentkus | Berry-Esseen bounds for statistics of weakly dependent samples[END_REF] for the situation where the random variables X i are non i.i.d. ). These results say that the Kolmogorov distance between the law of Sn Vn and the standard normal law is less than

C B -2 n N i=1 E X 2 i 1 (|Xi|>Bn) + B -3 n N i=1 E X 3 i 1 (|Xi|≥Bn)
where B n = n i=1 E(X 2 i ) and C is an absolute constant. We mention that, as far as we know, these results only exist for the Kolmogorov distance. To use our techniques based on the Malliavin calculus and multiple stochastic integrals, we will put ourselves on a Gaussian space where we will consider the following particular case: the random variables X i are the increments of the Wiener process X i = W i -W i-1 . The Berry-Esséen bound from above reduces to (see [START_REF] De La Pena | Self normalized processes[END_REF], page 53): for 2 < p ≤ 3 sup

z∈R |P(F n ≤ z) -Φ(z)| ≤ 25E (|Z| p ) n 1-p 2 ( 1 
)
where Z is a standard normal random variable and Φ is its repartition function. In particular for p = 3 we get

sup z∈R |P(F n ≤ z) -Φ(z)| ≤ 25E |Z| 3 n -1 2 . ( 2 
)
We will compare our result with the above relation [START_REF] Bentkus | The Berry-Essén bound for Student's statistics[END_REF]. The basic idea is as follows: we are able to find the chaos expansion into multiple Wiener-Itô integrals of the random variable Sn Vn for every n ≥ 2 and to compute its Malliavin derivative. Note that the random variable Sn Vn has a decomposition into an infinite sum of multiple integrals in contrast to the examples provided in the papers [START_REF] Bourguin | Berry-Esséen Bounds for Long Memory Moving Averages via Stein's Method and Malliavin Calculus[END_REF], [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], [START_REF] Nourdin | Stein's method and exact Berry-Esséen asymptotics for functionals of Gaussian fields[END_REF]. Then we compute the Berry-Esséen bound given by E 1 -DF, D(-L) -1 F L 2 ([0,1]) 2 by using properties of multiple stochastic integrals. Of course, we cannot expect to obtain a rate of convergence better than c 1

√

n , but we have an explicit (although complicated) expression of the constant appearing in this bound and our method is available for several distances between the laws of random variables (not limited to the Kolmogorov distance). This aspect of the problem seems to be new. This computation of the Berry-Esséen bound is also interesting in and of itself as it brings to light original relations involving Gaussian measure and Hermite polynomials. It gives an exact expression of the chaos expansion of the self normalized sum and it also shows that the convergence to the normal law of Sn Vn is uniform with respect to the chaos, in the sense that every chaos of Sn Vn is convergent to the standard normal law and that the rate is the same for every chaos. We have organized our paper as follows: Section 2 contains the elements of the Malliavin calculus needed in the paper and in Section 3 we discuss the chaos decomposition of self-normalized sums as well as study the asymptotic behavior of the coefficients appearing in this expansion. Section 4 contains the computation of the Berry-Esséen bound given in terms of the Malliavin calculus.

Preliminaries

We will begin by describing the basic tools of multiple Wiener-Itô integrals and Malliavin calculus that will be needed in our paper. Let (W t ) t∈[0,T ] be a classical Wiener process on a standard Wiener space (Ω, F , P ). If f ∈ L 2 ([0, T ] n ) with n ≥ 1 integer, we introduce the multiple Wiener-Itô integral of f with respect to W . We refer to [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF] for a detailed exposition of the construction and the properties of multiple Wiener-Itô integrals.

Let f ∈ S n , which means that there exists n ≥ 1 integers such that

f := i1,••• ,in c i1,••• ,in 1 Ai 1 ו••×Ai n
where the coefficients satisfy c i1,••• ,in = 0 if two indices i k and i ℓ are equal and the sets A i ∈ B([0, T ]) are disjoints. For a such step function f we define

I n (f ) := i1,••• ,in c i1,••• ,in W (A i1 ) • • • W (A in ) where we put W ([a, b]) = W b -W a .
It can be seen that the application I n constructed above from S n equipped with the scaled norm

1 √ n! • L 2 ([0,T ] n ) to L 2 (Ω)
is an isometry on S n , i.e. for m, n positive integers,

E (I n (f )I m (g)) = n! f, g L 2 ([0,T ] n ) if m = n, E (I n (f )I m (g)) = 0 if m = n.
It also holds that

I n (f ) = I n f
where f denotes the symmetrization of f defined by

f (x 1 , • • • , x x ) = 1 n! σ∈Sn f (x σ(1) , • • • , x σ(n) ).
Since the set S n is dense in L 2 ([0, T ] n ) for every n ≥ 2, the mapping I n can be extended to an isometry from L 2 ([0, T ] n ) to L 2 (Ω) and the above properties hold true for this extension. Note also that I n can be viewed as an iterated stochastic integral (this follows e.g. by Itô's formula)

I n (f ) = n! 1 0 tn 0 • • • t2 0 f (t 1 , • • • , t n )dW t1 • • • dW tn
We recall the product for two multiple integrals (see [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]): if f ∈ L 2 ([0, T ] n ) and g ∈ L 2 ([0, T ] m ) are symmetric, then it holds that

I n (f )I m (g) = m∧n ℓ=0 ℓ!C ℓ m C ℓ n I m+n-2ℓ (f ⊗ ℓ g) (3) 
where the contraction f ⊗ ℓ g belongs to L 2 ([0, T ] m+n-2ℓ ) for ℓ = 0, 1, • • • , m ∧ n and is given by

(f ⊗ ℓ g)(s 1 , • • • , s n-ℓ , t 1 , • • • , t m-ℓ ) = [0,T ] ℓ f (s 1 , • • • , s n-ℓ , u 1 , • • • , u ℓ )g(t 1 , • • • , t m-ℓ , u 1 , • • • , u ℓ )du 1 • • • du ℓ .
We recall that any square integrable random variable that is measurable with respect to the σ-algebra generated by W can be expanded into an orthogonal sum of multiple stochastic integrals

F = n≥0 I n (f n ) (4)
where f n ∈ L 2 ([0, 1] n ) are (uniquely determined) symmetric functions and I 0 (f 0 ) = E (F ).

Let L be the Ornstein-Uhlenbeck operator

LF = - n≥0 nI n (f n ) and L -1 F = - n≥1 1 n I n (f n )
if F is given by (4). We denote by D the Malliavin derivative operator that acts on smooth functionals of the form

F = g(W (ϕ 1 ), • • • , W (ϕ n ))
where g is a smooth function with compact support and ϕ i ∈ L 2 ([0, 1]). For i = 1, • • • , n, the derivative operator is defined by

DF = n i=1 ∂g ∂x i (B(ϕ 1 ), • • • , B(ϕ n ))ϕ i .
The operator D can be extended to the closure D p,2 of smooth functionals with respect to the norm

F 2 p,2 = E F 2 + p i=1 E D i F 2 L 2 ([0,1] i )
where the i th order Malliavin derivative D i is defined iteratively. Let us recall how this derivative acts for random variables in a finite chaos. If

f ∈ L 2 ([0, T ] n
) is a symmetric function, we will use the following rule to differentiate in the Malliavin sense

D t I n (f ) = n I n-1 (f (•, t)), t ∈ R.
Let us also recall how the distances between the laws of random variables are defined. We have

d(L(X), L(Y )) = sup h∈A (|E (h(X)) -E (h(Y ))|)
where A denotes a set of functions. When A = {h : h L ≥ 1} (here • L is the Lipschitz norm) we obtain the Wasserstein distance, when A = {h : h BL ≥ 1} (with

• LB = • L + • ∞ )
we get the Fortet-Mourier distance, when A is the set of indicator functions of Borel sets we obtain the total variation distance, and when A is the set of indicator functions of the form 1 (-∞,z) with z ∈ R, we obtain the Kolmogorov distance that has been presented above.

Chaos decomposition of self-normalized sums

The tools of the Malliavin calculus presented above can be successfully applied in order to study self-normalized sums. Because of the nature of Malliavin calculus, we put ourselves in a Gaussian setting and we consider X i = W i -W i-1 to be the increments of a classical Wiener process W . We then consider the sums

S n = n i=1 X i and V 2 n = n i=1 X 2 i
as well as the self-normalized sum F n defined by

F n = S n V n = W n ( n i=1 (W i+1 -W i ) 2 ) 1 2 . ( 5 
)
Let us now concentrate our efforts on finding the chaotic decomposition of the random variable F n . This will be the key to computing Berry-Esséen bounds for the distance between the law of F n and the standard normal law in the next section.

Lemma 1. Let F n be given by ( 5) and let f : R n → R be given by

f (x 1 , • • • , x n ) = x 1 + • • • + x n (x 2 1 + • • • + x 2 n ) 1 2 . ( 6 
)
Then for every n ≥ 2, we have

F n = k≥0 1 k! n i1,••• ,i k =1 a i1,••• ,i k I k (ϕ i1 ⊗ • • • ⊗ ϕ i k ) with a i1,••• ,i k def = E ∂ k f ∂x i1 , • • • , x i k (W (ϕ 1 ), • • • , W (ϕ n )) . (7) 
Proof: We use the so-called Stroock's formula (see [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]). The Wiener chaos expansion of a smooth (in the sense of Malliavin calculus) random variable F is given by

F = k≥0 1 k! I k E D k F ( 8 
)
where D k denotes the k th iterated Malliavin derivative. Note that F n can be written as

F n = f (W (ϕ 1 ), • • • , W (ϕ n ))
where

ϕ i = 1 [i-1,i] , i = 1, • • • , n.
The chain rule for the Malliavin derivative (with

D s W (ϕ) = ϕ(s)) yields DF n = n i=1 ∂f ∂x i (W (ϕ 1 ), • • • , W (ϕ n )) ϕ i
and proceeding recursively leads to the formula

D k F n = n i1,••• ,i k =1 ∂ k f ∂x i1 , • • • , x i k (W (ϕ 1 ), • • • , W (ϕ n )) ϕ i1 ⊗ • • • ⊗ ϕ i k .
Thus we obtain

I k E(D k F n ) = n i1,••• ,i k =1 E ∂ k f ∂x i1 , • • • , x i k (W (ϕ 1 ), • • • , W (ϕ n )) I k (ϕ i1 ⊗ • • • ⊗ ϕ i k ) = n i1,••• ,i k =1 a i1,••• ,i k I k (ϕ i1 ⊗ • • • ⊗ ϕ i k )
where a i1,••• ,i k are defined by [START_REF] Maller | On the law of the iterated logarithm in the infinite variance cas[END_REF]. Thus from (8) it follows that,

F n = k≥0 1 k! n i1,••• ,i k =1 a i1,••• ,i k I k (ϕ i1 ⊗ • • • ⊗ ϕ i k ) .
Remark 1. The coefficients a i1,••• ,i k also depend on n. We omit n in their notation in order to simplify the presentation.

3.1.

Computing the coefficients in the chaos expansion. In this subsection, we explicitly compute the coefficients a i1,••• ,i k appearing in Lemma 1. Let H n (x) denote the n th Hermite polynomial:

H n (x) = (-1) n e x 2 /2 d n dx n e -x 2 /2 . Define W n def = W (ϕ 1 ) + W (ϕ 2 ) + • • • + W (ϕ n ) V n def = n i=1 W (ϕ i ) 2 1/2
Let us first give the following lemma that can be proved using integration by parts.

Lemma 2. For every

1 ≤ i 1 , ., i k ≤ n, let a i1,•••i k be as defined in (7). Let d r , 1 ≤ r ≤ n denote the number of times the integer r appears in the sequence {i 1 , i 2 , • • • , i k } with n r=1 d r = k. Then we have a i1,•••i k = E W n V n n r=1 H dr W (ϕ r ) .
Proof: If X ∼ N (0, 1), then for any g ∈ C (n) (R) with g and its derivatives having polynomial growth at infinity, we have the Gaussian integration by parts formula

E(g (n) (X)) = E(g(X)H n (X)).
where

g (n) (x) def = d n dx n g(x)
. Notice that the function f defined in (6) satisfies |f (x)| ≤ C|x|, ∀x ∈ R n for a constant C, and thus applying the above integration by parts formula recursively yields

a i1,•••i k = 1 ( √ 2π) n R n ∂ k f ∂x d1 1 , • • • , x dn n (x 1 , • • • , x n ) e -x 2 1 2 • • • e -x 2 n 2 dx 1 • • • dx n = 1 ( √ 2π) n R n ∂ k f ∂x d1 1 , • • • , x dn-1 n-1 (x 1 , • • • , x n ) H dn (x n ) e -x 2 1 2 • • • e -x 2 n 2 dx 1 • • • dx n = 1 ( √ 2π) n R n f (x 1 , • • • , x n ) n r=1 H dr (x r ) e -x 2 1 2 • • • e -x 2 n 2 dx 1 • • • dx n = E W n V n n r=1 H dr W (ϕ r ) .
This concludes the proof of the Lemma.

The next step in the calculation of the coefficient is to notice that a i1,•••i k = 0 when k is even. This is the object of the following Lemma.

Lemma 3. If k is even, then a i1,•••i k = 0.
Proof: Let k be an even number and d 1 , d 2 , • • • , d n be as defined in Lemma 2. By Lemma 2, we have

a i1,•••i k = n u=1 E W (ϕ u ) V n n r=1 H dr W (ϕ r ) . (9) 
Note that the product

n r=1 H dr W (ϕ r )) is an even function of (W (ϕ 1 ), W (ϕ 2 ), • • • , W (ϕ n ))
. Indeed, since k is even and n r=1 d r = k, either all of the integers d r , r ≤ n are even or there is an even number of odd integers in d r , r ≤ n. In either case the product

n r=1 H dr W (ϕ r )) is an even function of (W (ϕ 1 ), W (ϕ 2 ), • • • , W (ϕ n )), since H m (x) = H m (-x) for all even m ∈ N and H m (x) = -H m (-x) for all odd m ∈ N. Thus for each u ≤ n, the expression W (ϕu) Vn n r=1 H dr W (ϕ r ) is an odd function of W (ϕ u
) and thus has expectation zero since W (φ u ) is a standard Gaussian random variable. The fact that ( 9) is a sum of such expectations concludes the proof.

As a consequence of Lemma 3, we have

F n = k≥0 1 (2k + 1)! n i1,••• ,i 2k+1 =1 a i1,••• ,i 2k+1 I 2k+1 ϕ i1 ⊗ • • • ⊗ ϕ i 2k+1 . ( 10 
)
This implies that in order to compute the coefficients a i1,•••i k , it suffices to focus on the case where k is odd. Before stating the first result in this direction, let us give the following technical lemma.

Lemma 4. Let k ≥ 0 be a positive integer and let d r , 1 ≤ r ≤ n denote the number of times the integer r appears in the sequence {i

1 , i 2 , • • • , i 2k+1 } with n r=1 d r = 2k + 1. Then, if there is more than one odd integer in the sequence d r , 1 ≤ r ≤ n, for each 1 ≤ i ≤ n, E 1 V n W (ϕ i )H d1 (W (ϕ 1 )) H d2 (W (ϕ 2 )) • • • H dn (W (ϕ n )) = 0.
Proof: Note that the equality n r=1 d r = 2k + 1 implies that there can only be an odd number of odd integers in the sequence d r , otherwise the sum n r=1 d r could not be odd. Therefore, more than one odd integer in the sequence d r means that there are at least three of them. We will prove the Lemma for this particular case of three odd integers in the sequence d r for the sake of readability of the proof, as the other cases follow with the exact same arguments. Hence, assume that there are three odd integers d i , d k and d l in the sequence d r , 1 ≤ r ≤ n. We will first consider the case where i is different than j, k, l. Then,

E 1 V n W (ϕ i )H d1 (W (ϕ 1 )) H d2 (W (ϕ 2 )) • • • H dn (W (ϕ n )) = 1 (2n) n 2 R n x i H d1 (x 1 ) • • • H dn (x n ) x 2 1 + • • • + x 2 n e -1 2 (x 2 1 +•••+x 2 n ) dx 1 • • • dx n = 1 (2n) n 2 R n-1 x i H d1 (x 1 ) • • • H dj-1 (x j-1 ) H dj+1 (x j+1 ) • • • H dn (x n ) × R H dj (x j ) x 2 1 + • • • + x 2 n e - x 2 j 2 dx j exp   - 1 2 n p=1 p =j x 2 p    dx 1 • • • dx j-1 dx j+1 • • • dx n .
d j beeing odd, H dj is an odd function of x j and x j →

H d j (xj ) √ x 2 1 +•••+x 2 n e - x 2 j 2
is also an odd function of x j . Thus, R

H d j (xj ) √ x 2 1 +•••+x 2 n e - x 2 j
2 dx j = 0 and finally

E 1 V n W (ϕ i )H d1 (W (ϕ 1 )) H d2 (W (ϕ 2 )) • • • H dn (W (ϕ n )) = 0.
The other cases one could encounter is when i = j or i = k or i = l and the proof follows based on the exact same argument.

We can now state the following key result that will allow us to perform further calculations in order to explicitly determine the coefficients a i1,•••i k .

Lemma 5. For every k ≥ 0 and for every

1 ≤ i 1 , • • • , i 2k+1 ≤ n, let d ⋆ r , 1 ≤ r ≤ n be the number of times the integer r appears in the sequence {i 1 , • • • , i 2k+1 }. Then, a 11,••• ,i 2k+1 = E 1 V n W (ϕ 1 )H d ⋆ 1 (W (ϕ 1 )) H d ⋆ 2 (W (ϕ 2 )) • • • H d ⋆ n (W (ϕ n )) ( 11 
)
if there is only one odd integer in the sequence d ⋆ r , 1 ≤ r ≤ n. If there is more than one odd integer in the sequence [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF], it might be understood that d ⋆ 1 is always the only odd integer in d ⋆ r , 1 ≤ r ≤ n. This is obviously not always the case and if d ⋆ 1 is not the odd integer but let's say, d ⋆ i with 1 < i ≤ n is, one can use the equality in law between W (ϕ i ) and W (ϕ 1 ) to perform an index swap (i ↔ 1) and the equality (11) remains unchanged. 

d ⋆ r , 1 ≤ r ≤ n, we have a 11,••• ,i 2k+1 = 0. Remark 2. Note that in
a 11,••• ,i 2k+1 = E 1 V n W (ϕ 1 )H 2d1+1 (W (ϕ 1 )) H 2d2 (W (ϕ 2 )) • • • H 2dn (W (ϕ n )) . (12) 
Proof: Since n r=1 d ⋆ r = 2k + 1, there is an odd number of odd integers in the sequence d ⋆ r , 1 ≤ r ≤ n. Recall that by Lemma 2, we have

a i1,•••i 2k+1 = n u=1 E W (ϕ u ) V n n r=1 H d ⋆ r W (ϕ r ) = E 1 V n W (ϕ 1 )H d ⋆ 1 (W (ϕ 1 )) H d ⋆ 2 (W (ϕ 2 )) . . . H d ⋆ n (W (ϕ n )) + E 1 V n W (ϕ 2 )H d ⋆ 1 (W (ϕ 1 )) H d ⋆ 2 (W (ϕ 2 )) • • • H d ⋆ n (W (ϕ n )) . . . + E 1 V n W (ϕ n )H d ⋆ 1 (W (ϕ 1 )) H d ⋆ 2 (W (ϕ 2 )) • • • H d ⋆ n (W (ϕ n )) .( 13 
)
Because of Lemma 4, for each i, the term

E 1 V n W (ϕ i )H d ⋆ 1 (W (ϕ 1 )) H d ⋆ 2 (W (ϕ 2 )) • • • H d ⋆ n (W (ϕ n )) is non null if and only if d ⋆ i is the only odd integer in d ⋆ r , 1 ≤ r ≤ n. Thus, a 11,••• ,i 2k+1 = 0 if there is only one odd integer in d ⋆ r , 1 ≤ r ≤ n. Let d ⋆ i with 1 ≤ i ≤ n be this only odd integer. Then, if j = i, by Lemma 4, E 1 V n W (ϕ j )H d ⋆ 1 (W (ϕ 1 )) H d ⋆ 2 (W (ϕ 2 )) • • • H d ⋆ n (W (ϕ n )) = 0.
Thus, using (13) yields

a 11,••• ,i 2k+1 = E 1 V n W (ϕ i )H d ⋆ 1 (W (ϕ 1 )) H d ⋆ 2 (W (ϕ 2 )) • • • H d ⋆ n (W (ϕ n ))
if there is only one odd integer in the sequence d ⋆ r , 1 ≤ r ≤ n and a 11,••• ,i 2k+1 = 0 if there is more than one odd integer in the sequence d ⋆ r , 1 ≤ r ≤ n. Using the equality in law between W (ϕ i ) and W (ϕ 1 ), one can perform an index swap (i ↔ 1) to finally obtain the desired result.

In the following lemma, we compute the L 2 norm of F n . This technical result will be needed in the next section. Lemma 6. Let a i1,••• ,i 2k+1 be as given in [START_REF] Nourdin | Stein's method meets Malliavin calculus: a short survey with new estimates[END_REF]. Then, for every n ∈ N, we have

F n 2 L 2 (Ω) = k≥0 1 (2k + 1)! n i1,••• ,i 2k+1 =1 a 2 i1,••• ,i 2k+1 = 1.
Proof: Firstly, using the isometry of multiple stochastic integrals and the orthogonality of the kernels ϕ i , one can write

E F 2 n = k≥0 1 (2k + 1)! 2 (2k + 1)! n i1,••• ,i 2k+1 =1 j1,••• ,j 2k+1 =1 a i1,••• ,i 2k+1 a j1,••• ,j 2k+1 × ϕ i1 ⊗ • • • ⊗ ϕ i 2k+1 , ϕ j1 ⊗ • • • ⊗ ϕ j 2k+1 L 2 ([0,1] 2k ) = k≥0 1 (2k + 1)! n i1,••• ,i 2k+1 =1 a 2 i1,••• ,i 2k+1 .
Secondly, using the fact that

F 2 n = W 2 n V 2 n , we have E F 2 n = 1 (2π) n 2 R n (x 1 + • • • + x n ) 2 x 2 1 + • • • + x 2 n e -1 2 (x 2 1 +•••+x 2 n ) dx 1 • • • dx n = 1 (2π) n 2 R n x 2 1 + • • • + x 2 n x 2 1 + • • • + x 2 n e -1 2 (x 2 1 +•••+x 2 n ) dx 1 • • • dx n = 1
because the mixed terms vanish as in the proof of Lemma 3.

Recall that if X is a Chi-squared random variable with n degrees of freedom (denoted by χ 2 n ) then for any m ≥ 0,

E (X m ) = 2 m Γ(m + n 2 ) Γ( n 2 )
.

where Γ(•) denotes the standard Gamma function.

When k = 0, the coefficients a i1,••• ,i 2k+1 can be easily computed. Indeed, noticing that V 2 n has a χ 2 n distribution, we obtain

n i=1 a i = E n i=1 1 V n W (ϕ i ) 2 = E (V 2 n ) 1 2 = 2 1 2 Γ( 1 2 + n 2 ) Γ( n 2 )
.

Since a 1 = a 2 = • • • = a n we obtain that for every i = 1, .., n

a i = 2 1 2 n Γ( 1 2 + n 2 ) Γ( n 2 )
.

The following lemma is the second key result in our goal of calculating the coefficients. It will be used repeatedly in the sequel.

Lemma 7. Let {a 1 , a 2 , • • • a n } be non-negative numbers. Then it holds that

E W (ϕ1) 2a 1 W (ϕ2) 2a 2 •••W (ϕn) 2an Vn = 1 (2π) n 2 2 a1+•••+an+ n-1 2 Γ(a1+•••+an+ n-1 2 ) Γ(a1+•••+an+ n 2 ) Γ a 1 + 1 2 • • • Γ a n + 1 2 .
Proof: By definition, we have

E W (ϕ 1 ) 2a1 W (ϕ 2 ) 2a2 • • • W (ϕ n ) 2an V n = 1 (2π) n 2 R n x 2a1 1 x 2a2 2 • • • x 2an n x 2 1 + x 2 2 + • • • + x 2 n e -1 2 (x 2 1 +x 2 2 +•••+x 2 n ) dx 1 dx 2 • • • dx n = 1 (2π) n 2 I.
To compute the above integral I, we introduce n-dimensional polar coordinates. Set

x 1 = r cos θ 1 x j = r cos θ j j-1 r=1 sin θ r , j = 2, • • • , n -2 x n-1 = r sin ψ n-2 r=1 sin θ r , x n = r cos ψ n-2 r=1 sin θ r with 0 ≤ r < ∞, 0 ≤ θ i ≤ π and 0 ≤ ψ ≤ 2π. It can be easily verified that x 2 1 + x 2 2 + • • • + x 2 n = r 2 .
The Jacobian of the above transformation is given by

J = r n-1 n-2 k=1 sin k θ n-1-k .
Therefore our integral denoted by I becomes

∞ 0 r 2(a1+•••+an)+n-2 e -r 2 2 dr 2π 0 (sin ψ) 2an-1+2an (cos ψ) 2an dψ n-1 k=2 π 0 (sin θ n-k ) 2an+2an-1+•••+2a n-k+1 +k-1 (cos θ n-k ) 2a n-k dθ n-k .
Let us compute the first integral with respect to dr. Using the change of variables

r 2 2 = y, we get ∞ 0 r 2(a1+•••+an)+n-2 e -r 2 2 dr = 2 a1+•••+an+ n-1 2 -1 ∞ 0 dyy a1+•••+an+ n-1 2 -1 e -y = 2 a1+•••+an+ n-1 2 -1 Γ a 1 + • • • + a n + n -1 2 .
Let us now compute the integral with respect to dψ. We use the following formula: for every a, b ∈ Z, it holds that This implies that 2π 0

(sin ψ) 2an-1+2an (cos ψ) 2an dψ = 2β a n + 1 2 , a n-1 + 1 2 .
Finally, we deal with the integral with respect to dθ i for i = 1 to n -2. Using the fact that, for a, b > -1, it holds that

π 2 0 (sin θ) a (cos θ) b dθ = 1 2 β a + 1 2 , b + 1 2 yields π 0 (sin θ n-k ) 2an+2an-1+•••+2a n-k+1 +k-1 (cos θ n-k ) 2a n-k dθ n-k = π 2 0 (sin θ n-k ) 2an+2an-1+•••+2a n-k+1 +k-1 (cos θ n-k ) 2a n-k dθ n-k + π π 2 (sin θ n-k ) 2an+2an-1+•••+2a n-k+1 +k-1 (cos θ n-k ) 2a n-k dθ n-k = 1 2 β a n + • • • + a n-k+1 + k 2 , a n-k + 1 2 + π 2 0 (sin(θ n-k + π 2 )) 2an+2an-1+•••+2a n-k+1 +k-1 (cos(θ n-k + π 2 )) 2a n-k dθ n-k = β a n + • • • + a n-k+1 + k 2 , a n-k + 1 2
because sin(θ + π 2 ) = cos θ and cos(θ + π 2 ) =sin(θ). By gathering the above calculations, the integral I becomes

I = 2 a1+•••+an+ n-1 2 Γ a 1 + • • • + a n + n -1 2 β a n + 1 2 , a n-1 + 1 2 × n-1 k=2 β a n + • • • + a n-k+1 + k 2 , a n-k + 1 2 = 2 a1+•••+an+ n-1 2 Γ a 1 + • • • + a n + n -1 2 Γ a n + 1 2 Γ a n-1 + 1 2 Γ (a n + a n-1 + 1) × n-1 k=2 Γ a n + • • • + a n-k+1 + k 2 Γ a n-k + 1 2 Γ a n + a n-1 + • • • + a n-k + k+1 2 = 2 a1+•••+an+ n-1 2 Γ a 1 + • • • + a n + n-1 2 Γ a 1 + • • • + a n + n 2 Γ a 1 + 1 2 • • • Γ a n + 1 2 .
This concludes the proof.

The following result gives the asymptotic behavior of the coefficients when n → ∞.

Lemma 8. For every

1 ≤ i 1 , • • • , i 2k+1 ≤ n, let a i1,••
• ,i 2k+1 be as defined in [START_REF] Maller | On the law of the iterated logarithm in the infinite variance cas[END_REF]. As in [START_REF] Shao | Explicit Berry-Esséen bound for Student's t-statistics via Stein method[END_REF], let

2d 1 + 1, 2d 2 , • • • , 2d r , • • • , 2d n denote the number of times the integer r appears in the sequence {i 1 , i 2 , • • • , i 2k+1 } with n r=1 d r = k. Then when n → ∞, a i1,••• ,i 2k+1 ∼ 1 k! (2k -1)!! (2d 1 + 1)!(2d 2 )! • • • (2d n )! (d 1 !d 2 ! • • • d n !) 2 × 2 -2k (-1) k   n j=0 dj lj =0 (-1) lj C lj dj l dj j   1 n 1 2 +|A| ( 14 
)
where

A := {2d 1 + 1, 2d 2 , • • • , 2d n } \ {0, 1}
and |A| is the cardinal of A.

Proof: We recall the following explicit formula for the Hermite polynomials

H d (x) = d! [ d 2 ] l=0 (-1) l 2 l l!(d -2l)! x d-2l . (15) 
Using ( 15) and ( 12) we can write

a i1,••• ,i 2k+1 = E 1 V n W (ϕ 1 )H 2d1+1 (W (ϕ 1 )) H 2d2 (W (ϕ 2 )) • • • H 2dn (W (ϕ n )) = (2d 1 + 1)!(2d 2 )! • • • (2d n )! d1 l1=0 d2 l2=0 • • • dn ln=0 (-1) l1+l2+•••+ln 2 l1+l2+•••+ln l 1 ! • • • l n ! × E 1 Vn W (ϕ 1 ) 2d1+2-2l1 W (ϕ 2 ) 2d2-2l2 • • • W (ϕ n ) 2dn-2ln (2d 1 + 1 -2l 2 )!(2d 2 -2l 2 )! • • • (2d n -2l n )! .
At this point, we use Lemma 7 to rewrite the expectation in the last equation.

E 1 V n W (ϕ 1 )H 2d1+1 (W (ϕ 1 )) H 2d2 (W (ϕ 2 )) • • • H 2dn (W (ϕ n )) = (2d 1 + 1)!(2d 2 )! • • • (2d n )! d1 l1=0 d2 l2=0 • • • dn ln=0 (-1) l1+l2+•••+ln 2 l1+l2+•••+ln l 1 ! • • • l n ! × 2 d1+1+d2+•••+dn-(l1+l2+•••+ln)+ n-1 2 (2π) n 2 (2d 1 + 1 -2l 2 )!(2d 2 -2l 2 )! • • • (2d n -2l n )! × Γ d 1 + 1 + d 2 + • • • + d n -(l 1 + l 2 + • • • + l n ) + n-1 2 Γ d 1 + 1 + d 2 + • • • + d n -(l 1 + l 2 + • • • + l n ) + n 2 ×Γ d 1 + 1 -l 1 + 1 2 Γ d 2 -l 2 + 1 2 • • • Γ d n -l n + 1 2 = (2d 1 + 1)!(2d 2 )! • • • (2d n )! d1 l1=0 d2 l2=0 • • • dn ln=0 (-1) l1+l2+•••+ln 2 2(l1+l2+•••+ln) l 1 ! • • • l n ! × 2 d1+1+d2+•••+dn-1 2 π n 2 (2d 1 + 1 -2l 2 )!(2d 2 -2l 2 )! • • • (2d n -2l n )! × Γ d 1 + 1 + d 2 + • • • + d n -(l 1 + l 2 + • • • + l n ) + n-1 2 Γ d 1 + 1 + d 2 + • • • + d n -(l 1 + l 2 + • • • + l n ) + n 2 ×Γ d 1 + 1 -l 1 + 1 2 Γ d 2 -l 2 + 1 2 • • • Γ d n -l n + 1 2 .
We claim that for any integers d ≥ l,

(-1) l 2 -2l l!(2d -2l)! Γ d -l + 1 2 = √ π 2 -2d (-1) l d! C l d . ( 16 
)
Recall the relation satisfied by the Gamma function: for every z > 0,

Γ(z + 1) = zΓ(z) and Γ(z)Γ(z + 1 2 ) = √ π2 1-2z Γ(2z). ( 17 
) Then (-1) l 2 -2l l!(2d -2l)! Γ d -l + 1 2 = (-1) l 2 -2l l!(2d -2l)! Γ d -l + 1 + 1 2 d -l -1 2 = (-1) l 2 -2l l!(2d -2l)! Γ(2d -2l + 2) Γ(d -l + 1) √ π2 1-2(d-l+1) = √ π2 -2d (-1) l l!(2d -2l)! (2d -2l + 1)! (d -l)!(2d -2l + 1) = √ π 2 -2d (-1) l d! C l d
and ( 16) is proved. In the same way, using only the second relation in (17), we obtain

(-1) l1 2 -2l1 l 1 !(2d 1 + 1 -2l 1 )! Γ d 1 + 1 -l 1 + 1 2 = √ π 2 -1-2d1 (-1) l1 d 1 ! C l1 d1 . ( 18 
)
Putting together ( 16) and ( 18) we find

E 1 V n W (ϕ 1 )H 2d1+1 (W (ϕ 1 )) H 2d2 (W (ϕ 2 )) • • • H 2dn (W (ϕ n )) = (2d 1 + 1)!(2d 2 )! • • • (2d n )! d 1 !d 2 ! • • • d n ! 2 -(d1+•••+dn)-1 2 d1 l1=0 d2 l2=0 • • • dn ln=0 (-1) l1+l2+•••+ln C l1 d1 • • • C ln dn × Γ d 1 + 1 + d 2 + • • • + d n -(l 1 + l 2 + • • • + l n ) + n-1 2 Γ d 1 + 1 + d 2 + • • • + d n -(l 1 + l 2 + • • • + l n ) + n 2 .
By Stirling's formula, when n goes to infinity, we have

Γ d 1 + 1 + d 2 + • • • + d n -(l 1 + l 2 + • • • + l n ) + n-1 2 Γ d 1 + 1 + d 2 + • • • + d n -(l 1 + l 2 + • • • + l n ) + n 2 ∼ 1 k + 1 -(l 1 + • • • + l n ) + n 2 .
Therefore we need to study the behavior of the sequence

t n := d1 l1=0 d2 l2=0 • • • dn ln=0 (-1) l1+l2+•••+ln C l1 d1 • • • C ln dn 1 k + 1 -(l 1 + • • • + l n ) + n 2 as n → ∞. We can write t n = 1 √ n √ 2g( 1 n ) 
where

g(x) = d1 l1=0 d2 l2=0 • • • dn ln=0 (-1) l1+l2+•••+ln C l1 d1 • • • C ln dn 1 2k + 2 -(l 1 + • • • + l n )x + 1 .
Since for every d ≥ 1

d l=0 (-1) l C l d = 0
we clearly have g(0) = 0. The q th derivative of g at zero is

g (q) (0) = (-1) q (2q -1)!! 2 q [2k + 2 -(l 1 + • • • + l n )] q .
Repeatedly using the relation

C k n = n k C k-1 n-1 we can prove that d l=0 (-1) l C l d l q = 0 for every q = 0, 1, • • • , d -1.
Therefore the first non-zero term in the Taylor decomposition of the function g around zero is

d1 l1=0 d2 l2=0 • • • dn ln=0 (-1) l1+l2+•••+ln C l1 d1 • • • C ln dn l d1 1 • • • l dn n
which appears when we take the derivative of order

d 1 + d 2 + • • • + d n .
We obtain that, for x close to zero,

g(x) ∼ (-1) d1+•••+dn (2(d 1 + • • • + d n ) -1)!! 2 d1+•••+dn n j=0 dj lj =0 (-1) lj C lj dj l dj j ×H(d 1 , • • • , d n )x |A| where A = {d 1 , • • • , d n } \ {0} = {2d 1 + 1, 2d 2 , • • • , 2d n } \ {0, 1} and H(d 1 , • • • , d n ) is the coefficient of l d1 1 • • • l dn n in the expansion of (l 1 + • • • + l n ) d1+•••+dn . That is H(d 1 , • • • , d n ) = C d1 d1+•••+dn C d2 d2+•••+dn • • • C dn-1 dn-1+dn = (d 1 + • • • + d n )! d 1 ! • • • d n ! .
We finally have

a i1,••• ,i 2k+1 = (2d 1 + 1)!(2d 2 )! • • • (2d n )! (d 1 !d 2 ! • • • d n !) 2 2 -(d1+•••+dn) (-1) d1+•••+dn (2(d 1 + • • • + d n ) -1)!! 2 d1+•••+dn ×   n j=0 dj lj =0 (-1) lj C lj dj l dj j   (d 1 + • • • + d n )! d 1 ! • • • d n ! 1 n 1 2 +|A| = k!(2k -1)!! (2d 1 + 1)!(2d 2 )! • • • (2d n )! (d 1 !d 2 ! • • • d n !) 2 2 -2k (-1) k   n j=0 dj lj =0 (-1) lj C lj dj l dj j   1 n 1 2 +|A| = k!(2k -1)!! (2d 1 + 1)!(2d 2 )! • • • (2d n )! (d 1 !d 2 ! • • • d n !) 2 2 -2k (-1) k   n j=0 t(d j )   1 n 1 2 +|A| with for i = 1, • • • , n t(d j ) := dj lj =0 (-1) lj C lj dj l dj j . (19) 

Computation of the Berry-Esséen bound

Let us first recall the following result (see [START_REF] De La Pena | Self normalized processes[END_REF], page 53): for 2 < p ≤ 3,

sup z∈R |P (F n ≤ z) -Φ(z)| ≤ 25E (|Z| p ) n 1-p 2 ( 20 
)
where Z is a standard normal random variable and Φ is its repartition function. In particular for p = 3 we get

sup z∈R |P (F n ≤ z) -Φ(z)| ≤ 25E |Z| 3 n -1 2 .
We now compute the Berry-Essen bound obtained via Malliavin calculus in order to compare it with (20). Formula (10) yields

D α F n = k≥0 2k + 1 (2k + 1)! n i1,••• ,i 2k+1 =1 a i1,••• ,i 2k+1 I 2k ((ϕ i1 ⊗ • • • ⊗ ϕ i 2k=1 ) ∼ ) (•, α) (21) (here (ϕ i1 ⊗ • • •⊗ ϕ i 2k=1 ) ∼ denotes the symmetrization of the function ϕ i1 ⊗ • • •⊗ ϕ i k with respect to its k variables) and D α (-L) -1 F n = k 1 (2k + 1)! n i1,••• ,i 2k+1 =1 a i1,••• ,i 2k+1 I 2k (ϕ i1 ⊗ • • • ⊗ ϕ i 2k+1 ) ∼ (•, α). (22)
It is now possible to calculate the quantity E 1 -DF n , D(-L) -1 F n more explicitly by using the product formula (3) and the isometry of multiple stochastic integrals. Lemma 9. For every n ≥ 2,

E 1 -DF n , D(-L) -1 F n 2 = m≥1 (2m)! n i1,••• ,i2m=1   2m k=0 1 k! 1 (2m -k)! r≥0 1 r! 1 2m -k + r + 1 n u1,••• ,ur+1=1 a u1,u2,••• ,ur+1,i1,••• ,i k a u1,u2,••• ,ur+1,i k+1 ,••• ,i2m 2 .
Proof: Using (21) and ( 22), we can calculate the following quantity.

DF n , D(-L) -1 F n = k,l≥0 1 (2k)! 1 (2l + 1)! n i1,••• ,i 2k+1 =1 a i1,••• ,i 2k+1 n j1,••• ,j 2l+1 =1 a j1,••• ,j 2l+1 × ∞ 0 dαI 2k (ϕ i1 ⊗ • • • ⊗ ϕ i 2k+1 ) ∼ (•, α)I 2l (ϕ j1 ⊗ • • • ⊗ ϕ j 2l+1 ) ∼ (•, α) = k,l≥0 1 (2k)! 1 (2l + 1)! n u=1 n i1,••• ,i 2k =1 a u,i1,••• ,i 2k n j1,••• ,j 2l =1 a u,j1,••• ,j 2l ×I 2k ((ϕ i1 ⊗ • • • ⊗ ϕ i 2k )) I 2l (ϕ j1 ⊗ • • • ⊗ ϕ j2j ) .
The product formula (3) applied to the last equality yields

n i1,••• ,i 2k =1 a u,i1,••• ,i 2k n j1,••• ,j 2l =1 a u,j1,••• ,j 2l I 2k ((ϕ i1 ⊗ • • • ⊗ ϕ i 2k )) I 2l (ϕ j1 ⊗ • • • ⊗ ϕ j2j ) = (2k)∧(2l) r=0 r!C r 2k C r 2l n u1,••• ,ur=1 n i1,••• ,i 2k-r =1 n j1,••• ,j 2l-r =1 a u,u1,••• ,ur ,i1,••• ,i 2k-r a u,u1,••• ,ur,j1,••• ,j 2l-r ×I 2k+2l-2r ϕ i1 ⊗ • • • ⊗ ϕ i 2k-r ⊗ ϕ j1 ⊗ • • • ⊗ ϕ j 2l-r
and therefore we obtain

DF n , D(-L) -1 F n = k,l≥0 1 (2k)! 1 (2l + 1)! (2k)∧(2l) r=0 r!C r 2k C r 2l × n u1,••• ,ur+1=1 n i1,••• ,i 2k-r =1 n j1,••• ,j 2l-r =1 a u1,u2,••• ,ur+1,i1,••• ,i 2k-r a u1,u2,••• ,ur+1,j1,••• ,j 2l-r ×I 2k+2l-2r ϕ i1 ⊗ • • • ⊗ ϕ i 2k-r ⊗ ϕ j1 ⊗ • • • ⊗ ϕ j 2l-r . ( 23 
)
Remark 4. The chaos of order zero in the above expression is obtained for k = l and r = 2k. It is therefore equal to

k≥0 1 (2k)! 1 (2k + 1)! (2k)! n i1,••• ,i 2k+1 =1 a 2 i1,••• ,i 2k+1
which is also equal to 1 as follows from Lemma 6. Therefore it will vanish when we consider the difference 1 -DF n , D(-L) -1 F n . This difference will have only chaoses of even orders.

By changing the order of summation and by using the changes of indices 2k -r = k ′ and 2lr = l ′ , we can write

DF n , D(-L) -1 F n = r≥0 r! 2k≥r 2l≥r 1 (2k)! 1 (2l + 1)! C r 2k C r 2l × n u1,••• ,ur+1=1 n i1,••• ,i 2k-r =1 n j1,••• ,j 2l-r =1 a u1,u2,••• ,ur+1,i1,••• ,i 2k-r a u1,u2,••• ,ur+1,j1,••• ,j 2l-r ×I 2k+2l-2r ϕ i1 ⊗ • • • ⊗ ϕ i 2k-r ⊗ ϕ j1 ⊗ • • • ⊗ ϕ j 2l-r = r≥0 k,l≥0 1 (k + r)! 1 (l + r + 1)! C r k+r C r l+r × n u1,••• ,ur+1=1 n i1,••• ,i k =1 n j1,••• ,j l =1 a u1,u2,••• ,ur+1,i1,••• ,i k a u1,u2,••• ,ur+1,j1,••• ,j l ×I 2k+2l-2r (ϕ i1 ⊗ • • • ⊗ ϕ i k ⊗ ϕ j1 ⊗ • • • ⊗ ϕ j l ) = k,l≥0 r≥0 r! 1 (k + r)! 1 (l + r + 1)! C r k+r C r l+r × n u1,••• ,ur+1=1 n i1,••• ,i k =1 n j1,••• ,j l =1 a u1,u2,••• ,ur+1,i1,••• ,i k a u1,u2,••• ,ur+1,j1,••• ,j l ×I k+l (ϕ i1 ⊗ • • • ⊗ ϕ i k ⊗ ϕ j1 ⊗ • • • ⊗ ϕ j l ) .
Once again using a change of indices (k + l = m), we obtain

DF n , D(-L) -1 F n = m≥0 m k=0 r≥0 r! 1 (k + r)! 1 (m -k + r + 1)! C r k+r C r m-k+r × n u1,••• ,ur+1=1 n i1,••• ,i k =1 n j1,••• ,j m-k =1 a u1,u2,••• ,ur+1,i1,••• ,i k a u1,u2,••• ,ur+1,j1,••• ,j m-k ×I m ϕ i1 ⊗ • • • ⊗ ϕ i k ⊗ ϕ j1 ⊗ • • • ⊗ ϕ j m-k = m≥0 m k=0 1 k! 1 (m -k)! r≥0 1 r! 1 m -k + r + 1 n u1,••• ,ur+1=1 n i1,••• ,im=1 ×a u1,u2,••• ,ur+1,i1,••• ,i k a u1,u2,••• ,ur+1,i k+1 ,••• ,im I m ϕ i1 ⊗ • • • ⊗ ϕ i k ⊗ ϕ i k+1 ⊗ • • • ⊗ ϕ im
where at the end we renamed the indices j

1 , • • • , j m-m as i k+1 , • • • , i m . We obtain DF n , D(-L) -1 F n = m≥0 I m (h (n) m )
where

h (n) m = m k=0 1 k! 1 (m -k)! r≥0 1 r! 1 m -k + r + 1 n u1,••• ,ur+1=1 n i1,••• ,im=1 a u1,u2,••• ,ur+1,i1,••• ,i k a u1,u2,••• ,ur+1,i k+1 ,••• ,im ϕ i1 ⊗ • • • ⊗ ϕ i k ⊗ ϕ i k+1 ⊗ • • • ⊗ ϕ im (24) 
Let us make some comments about this result before going any further. These remarks will simplify the expression that we have just obtained. As follows from Lemma 2, the coefficients a i1,••• ,i k are zero if k is even. Therefore, the numbers r + 1 + k and r + 1 + mk must be odd. This implies that m must be even and this is coherent with our previous observation (see Remark 4) that the chaos expansion of DF n , D(-L) -1 F n only contains chaoses of even orders. The second comment concerns the chaos of order zero. If m = 0 then k = 0 and we obtain

h (n) 0 = r≥0 n u1,••• ,ur+1=1 1 r! 1 r + 1 a 2 u1,••• ,ur+1 = r≥1 1 r! n u1,••• ,ur =1 a 2 u1,••• ,ur .
Thus, because the summand

r≥1 1 r! n u1,••• ,ur=1 a 2 u1,••• ,ur -1 is zero by using Lemma 6, DF n , D(-L) -1 F n -1 =   r≥1 1 r! n u1,••• ,ur =1 a 2 u1,••• ,ur -1   + m≥1 I 2m (h (n) 2m ) = m≥1 I 2m (h (n) 2m ) with h (n) 
2m given by (24).

Using the isometry formula of multiple integrals in order to compute the L 2 norm of the above expression and noticing that the function h

2m is symmetric, we find that

E DF n , D(-L) -1 F n -1 2 = m≥1 (2m)! h (n) 2m , h (n) 2m L 2 ([0,1] 2m ) = m≥1 (2m)! 2m k,l=0 1 k! 1 l! 1 (2m -k)! 1 (2m -l)! r,q≥0 1 r! 1 q! 1 2m -k + r + 1 1 2m -l + q + 1 × n u1,••• ,ur+1=1 n v1,••• ,vq+1=1 n i1,••• ,i2m=1 ×a u1,u2,••• ,ur+1,i1,••• ,i k a u1,u2,••• ,ur+1,i k+1 ,••• ,i2m a v1,v2,••• ,vq+1,i1,••• ,i k a v1,v2,••• ,vq+1,i k+1 ,••• ,i2m = m≥1 (2m)! n i1,••• ,i2m=1   2m k=0 1 k! 1 (2m -k)! r≥0 1 r! 1 2m -k + r + 1 n u1,••• ,ur+1=1 a u1,u2,••• ,ur+1,i1,••• ,i k a u1,u2,••• ,ur+1,i k+1 ,••• ,i2m 2 ,
which is the desired result.

Before proving our main result, let us discuss a particular case as an exemple in order to better understand the general phenomenon. This is both useful and important in order to have a good overview of the functioning of a simple case. Assume that k = 0 and l = 1. The corresponding summand in (23) reduces to

1 3! n u=1 a u n j1,j2=1 a u,j1,j2 I 2 (ϕ j1 ⊗ ϕ j2 ) . Its L 2 -norm is 1 3 n j1,j2=1 n u=1 a u a u,j1,j2 2 = 1 3 n j1=1 n u=1 a u a u,j1,j1 2 
because a u,j1,j2 = 0 if j 1 = j 2 . Using (14), it reduces to a quantity equivalent to

1 3 (na 2 1 a 2 1,1,1 + n((n -1)a 1 a 1,1,2 ) 2 )
which, using (14) again, is of order

n 1 √ n 2 1 n 3 2 2 + n (n -1) 1 √ n 1 n 3 2 2 ∼ n -1 .
The following theorem, which gathers all of the previous results of the paper, is the general equivalent of the toy exemple presented above.

Theorem. For any integer n ≥ 2,

E DF n , D(-L) -1 F n -1 2 ≤ c 0 n with c 0 = m≥1 (2m)!   2m k=0 1 2k! 1 (2m -2k)! r≥0 1 (2r)! 1 2m -2k + 2r + 1 c(k, r, m)   2 (25) +   2m k=0 1 (2k + 1)! 1 (2m -2k -1)! r≥0 1 (2r -1)! 1 2m -2k + 2r + 1 c(k, r, m)   2
and where c(k, r, m) is given by (28).

Proof: Observe that the integers r + 1 + k and r + 1 + 2mk both have to be odd numbers (otherwise the coefficients a u1,u2,••• ,ur+1,i1,••• ,i k and a u1,u2,••• ,ur+1,i k+1 ,••• ,i2m vanish). This implies two cases: either r is even and k is even or r is odd and k is odd. Thus, we can write It is clear that

E DF n , D(-L) -1 F n -1 2 = m≥1 ( 
x ≤ (2r + 1) ∧ 2k and y ≤ (2r + 1) ∧ 2m -2k.

This also implies x + y ≤ 2m. According to the definitions of x and y, it can be observed that x and y must be even. We will denote them by 2x and 2y from now on. The next step in the proof is to determine how many distinct sequences of numbers can occur in the set

{u 1 , • • • , u 2r+1 , i 1 , • • • , i 2k }.
We can have sequences of lengths (all of the lengths that we consider from now on are greater or equal to one) 2c 

Remark 3 .

 3 If one is in the case where a 11,••• ,i 2k+1 = 0, one can rewrite d ⋆ 1 , d ⋆ 2 , • • • , d ⋆ n as 2d 1 + 1, 2d 2 , • • • , 2d n and finally rewrite (11) as

2π 0 (

 0 sin θ) a (cos θ) b dθ = 2β a+1 2 , b+1 2 if m and n are even = 0, if m or n are odd.

a

  u1,u2,••• ,u2r+1,i1,••• ,i 2k a u1,u2,••• ,u2r+1,i 2k+1 ,••• ,i2m •• ,u2r =1 a u1,u2,••• ,u2r ,i1,••• ,i 2k+1 a u1,u2,••• ,u2r,i 2k+2 ,••• ,i2m 2 . (26)Let us treat the first part of the sum (26). Assume that the number of common numbers occurring in the sets {u 1 , • • • , u 2r+1 } and {i 1 , • • • , i 2k } is x and and the number of common numbers occurring in the sets{u 1 , • • • , u 2r+1 } and {i 2k+1 , • • • , i 2m-2k } is y.This can be formally written as|{u 1 , • • • , u 2r+1 } ∩ {{i 1 , • • • , i 2k }| = x and |{u 1 , • • • , u 2r+1 } ∩ {i 2k+1 , • • • , i 2m-2k }| = y.

1 , 1 2

 11 2c 2 , • • • , 2c l1 with 2(c 1 + • • • + c l1 ) = 2x in the set {u 1 , • • • , u 2r+1 } ∩ {i 1 , • • • , i 2k } but also sequences of lengths 2d 1 , 2d 2 , • • • , 2d l2 with 2(d 1 + • • • + d l2 ) = 2k -2x in the set {i 1 , • • • , i 2k } \ {u 1 , • • • , u 2r+1 } as well as sequences of lengths 2e 1 + 1, 2e 2 , • • • , 2e l3 with 1 + 2(e 1 + • • • + e l3 ) = 2r + 1 -2x in the set {u 1 , • • • , u 2r+1 } \ {i 1 , • • • , i 2k }.In this last sequence we have one (and only one) length equal to 1 (because we are allowed to choose only one odd number in the set{u 1 , • • • , u 2r+1 } \ {i 1 , • • • , i 2k }).We will have, if we have a configuration as above,a u1,u2,••• ,u2r+1,i1,••• ,i 2k ≤ c(r, c, e)n --l1-l2-l3wherec(r, c, e) = r!(2r-1)!! (2c 1 )! • • • (2c l1 )!(2e 1 + 1)!(2e 2 )! • • • (2e l3 )! (c 1 ! • • • c l1 !e 1 ! • • • e l3 !) 2 t(c 1 ) • • • t(c l1 )t(e 1 ) • • • t(e l3 )(27) and the constants t are given by (19). In the same way, assuming that we have sequences of lengths 2f1 , 2f 2 , • • • , 2f l4 with 2(f 1 + • • • + f l4 ) = 2m -2k -2y in the set {i 2k+1 , • • • , i 2m } \ {u 1 , • • • , u 2r+1 } and sequences of lengths 2g 1 + 1, 2g 2 , • • • , 2g l5 with 1 + 2(g 1 + • • • + g 5 ) = 2r + 1 -2y in the set {u 1 , • • • , u 2r+1 } \ {i 2k+1 , • • • , i 2m }. We will obtain a u1,u2,••• ,u2r+1,i 2k+1 ,••• ,i2n ≤ c(k, c, d)n -1 2 -l1-l4-l5+1with c(k, c, d) defined as in (27). The sum over u 1 , • • • , u r+1 from 1 to n reduces to a sum of l 1 + l 3 + l 5 -1 distinct indices from 1 to n. Therefore we getn u1,••• ,u2r+1=1 a u1,u2,••• ,u2r+1,i1,••• ,i 2k a u1,u2,••• ,u2r+1,i 2k+1 ,••• ,i2n≤ c(k, r, m)n -l1-l2-l4 with c(k, r, m) = x+y=2m c1+•••+c l 1 =x d1+•••+d l 2 =y e1+•••+e l 3 =r-x c(r, c, e)c(k, c, d). (28)
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 July 2, 2011 21We need to consider the sum i 1 , • • • , i 2m from 1 to n. It reduces to a sum over l 2 + l 4 distinct indices. Thus

Note that either l 1 + l 2 ≥ 1 or l 1 + l 4 ≥ 1 (this is true because m ≥ 1). Then this term is at most of order of n -1 .

Let us now look at the second part of the sum in (26). Suppose that in the sets

we have sequences with lengths

respectively (the analogous of l 1 , • • • , l 5 above). Then the behavior with respect to

is of order of n p1+p3

1 n 2p 1 +p 3 +p 4 . Therefore the behavior with respect to n of the second sum in (26) is of order

Again, since either p 1 + p 2 ≥ 1 or p 1 + p 4 ≥ 1, the behavior of the term is at most of order n -1 . Therefore

where the constant c 0 is given by (25). The fact that the sum over m is finite is a consequence of the following argument: DF n , D(-L) -1 F n belongs to D ∞,2 (Ω) (which is true based on the derivation rule -Exercise 1.2.13 in [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]-and since F n belongs to D ∞,2 as a consequence of Proposition 1.2.3 in [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]), this implies that m m!m k h

m is given by (24). Therefore, the constant c(m, k, r) defined in (28) behaves at most as a power function with respect to m. Corollary 1. Let J m (F n ) denotes the projection on the m th Wiener chaos of the random variable F n . Then for every m ≥ 1 the sequence J m (F n ) converges as n → ∞ to a standard normal random variable.

Proof: The proof is a consequence of the proof of Theorem 4.