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Abstract. We study the self-normalized sums of independent random vari-
ables from the perspective of the Malliavin calculus. We give the chaotic ex-
pansion for them and we prove a Berry-Esséen bound with respect to several
distances.
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1. Introduction

Let (Ω,F , P ) be a probability space and (Wt)t≥0 a Brownian motion on this space.
Let F be a random variable defined on Ω which is differentiable in the sense of the
Malliavin calculus. Then using the so-called Stein’s method introduced by Nourdin
and Peccati in [8] (see also [9] and [10]), it is possible to measure the distance
between the law of F and the standard normal law N (0, 1). This distance can be
defined in several ways, such as the Kolmogorov distance, the Wasserstein distance,
the total variation distance or the Fortet-Mourier distance. More precisely we have,
if L(F ) denotes the law of F ,

d(L(F ),N (0, 1)) ≤ c

√

E
(

1− 〈DF,D(−L)−1F 〉L2([0,1])

)2
.

Here D denotes the Malliavin derivative with respect to W , and L is the generator
of the Ornstein-Uhlenbeck semigroup. We will explain in the next section how these
operators are defined. The constant c is equal to 1 in the case of the Kolmogorov
distance as well as in the case of the Wasserstein distance, c = 2 for the total
variation distance and c = 4 in the case of the Fortet-Mourier distance.
Our purpose is to apply these techniques to self-normalized sums. Let us recall
some basic facts on this topic. We refer to [5] and the references therein for a
more detailed exposition. Let X1, X2, · · · be independent random variables. Set
Sn =

∑n
i=1Xi and V

2
n =

∑n
i=1X

2
i . Then

Sn

Vn
converges in distribution as n→ ∞ to

the standard normal law N (0, 1) if and only if E(X) = 0 and X is in the domain of
attraction of the standard normal law (see [5], Theorem 4.1). The “if” part of the
theorem has been known for a long time (it appears in [7]) while the “only if” part
remained open until its proof in [6]. The Berry-Esséen theorem for self-normalized
sums has been also widely studied. We refer to [2] and [12] (see also [1], [3] for the
situation where the random variables Xi are non i.i.d. ). These results say that the
Kolmogorov distance between the law of Sn

Vn
and the standard normal law is less

1
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than

C

(

B−2
n

N
∑

i=1

E
(

X2
i 1(|Xi|>Bn)

)

+B−3
n

N
∑

i=1

E
(

X3
i 1(|Xi|≥Bn)

)

)

where Bn =
∑n

i=1 E(X2
i ) and C is an absolute constant. We mention that, as

far as we know, these results only exist for the Kolmogorov distance. To use our
techniques based on the Malliavin calculus and multiple stochastic integrals, we will
put ourselves on a Gaussian space where we will consider the following particular
case: the random variables Xi are the increments of the Wiener process Xi =
Wi −Wi−1. The Berry-Esséen bound from above reduces to (see [5], page 53): for
2 < p ≤ 3

sup
z∈R

|P(Fn ≤ z)− Φ(z)| ≤ 25E (|Z|p)n1− p
2 (1)

where Z is a standard normal random variable and Φ is its repartition function. In
particular for p = 3 we get

sup
z∈R

|P(Fn ≤ z)− Φ(z)| ≤ 25E
(

|Z|3
)

n− 1
2 . (2)

We will compare our result with the above relation (2). The basic idea is as follows:
we are able to find the chaos expansion into multiple Wiener-Itô integrals of the
random variable Sn

Vn
for every n ≥ 2 and to compute its Malliavin derivative. Note

that the random variable Sn

Vn
has a decomposition into an infinite sum of multiple

integrals in contrast to the examples provided in the papers [4], [8], [9]. Then we

compute the Berry-Esséen bound given by

√

E
(

1− 〈DF,D(−L)−1F 〉L2([0,1])

)2
by

using properties of multiple stochastic integrals. Of course, we cannot expect to
obtain a rate of convergence better than c 1√

n
, but we have an explicit (although

complicated) expression of the constant appearing in this bound and our method
is available for several distances between the laws of random variables (not limited
to the Kolmogorov distance). This aspect of the problem seems to be new. This
computation of the Berry-Esséen bound is also interesting in and of itself as it brings
to light original relations involving Gaussian measure and Hermite polynomials. It
gives an exact expression of the chaos expansion of the self normalized sum and it
also shows that the convergence to the normal law of Sn

Vn
is uniform with respect to

the chaos, in the sense that every chaos of Sn

Vn
is convergent to the standard normal

law and that the rate is the same for every chaos.
We have organized our paper as follows: Section 2 contains the elements of the
Malliavin calculus needed in the paper and in Section 3 we discuss the chaos de-
composition of self-normalized sums as well as study the asymptotic behavior of
the coefficients appearing in this expansion. Section 4 contains the computation of
the Berry-Esséen bound given in terms of the Malliavin calculus.

2. Preliminaries

We will begin by describing the basic tools of multiple Wiener-Itô integrals and
Malliavin calculus that will be needed in our paper. Let (Wt)t∈[0,T ] be a classical

Wiener process on a standard Wiener space (Ω,F , P ). If f ∈ L2([0, T ]n) with
n ≥ 1 integer, we introduce the multiple Wiener-Itô integral of f with respect to
W . We refer to [11] for a detailed exposition of the construction and the properties
of multiple Wiener-Itô integrals.
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Let f ∈ Sn, which means that there exists n ≥ 1 integers such that

f :=
∑

i1,··· ,in
ci1,··· ,in1Ai1

×···×Ain

where the coefficients satisfy ci1,··· ,in = 0 if two indices ik and iℓ are equal and the
sets Ai ∈ B([0, T ]) are disjoints. For a such step function f we define

In(f) :=
∑

i1,··· ,in
ci1,··· ,inW (Ai1) · · ·W (Ain)

where we put W ([a, b]) = Wb −Wa. It can be seen that the application In con-
structed above from Sn equipped with the scaled norm 1√

n!
‖ · ‖L2([0,T ]n) to L2(Ω)

is an isometry on Sn, i.e. for m,n positive integers,

E (In(f)Im(g)) = n!〈f, g〉L2([0,T ]n) if m = n,

E (In(f)Im(g)) = 0 if m 6= n.

It also holds that

In(f) = In
(

f̃
)

where f̃ denotes the symmetrization of f defined by

f̃(x1, · · · , xx) =
1

n!

∑

σ∈Sn

f(xσ(1), · · · , xσ(n)).

Since the set Sn is dense in L2([0, T ]n) for every n ≥ 2, the mapping In can be
extended to an isometry from L2([0, T ]n) to L2(Ω) and the above properties hold
true for this extension. Note also that In can be viewed as an iterated stochastic
integral (this follows e.g. by Itô’s formula)

In(f) = n!

∫ 1

0

∫ tn

0

· · ·
∫ t2

0

f(t1, · · · , tn)dWt1 · · · dWtn

We recall the product for two multiple integrals (see [11]): if f ∈ L2([0, T ]n) and
g ∈ L2([0, T ]m) are symmetric, then it holds that

In(f)Im(g) =

m∧n
∑

ℓ=0

ℓ!Cℓ
mC

ℓ
nIm+n−2ℓ(f ⊗ℓ g) (3)

where the contraction f ⊗ℓ g belongs to L2([0, T ]m+n−2ℓ) for ℓ = 0, 1, · · · ,m ∧ n

and is given by

(f ⊗ℓ g)(s1, · · · , sn−ℓ, t1, · · · , tm−ℓ)

=

∫

[0,T ]ℓ
f(s1, · · · , sn−ℓ, u1, · · · , uℓ)g(t1, · · · , tm−ℓ, u1, · · · , uℓ)du1 · · · duℓ.

We recall that any square integrable random variable that is measurable with re-
spect to the σ-algebra generated by W can be expanded into an orthogonal sum of
multiple stochastic integrals

F =
∑

n≥0

In(fn) (4)

where fn ∈ L2([0, 1]n) are (uniquely determined) symmetric functions and I0(f0) =
E (F ).
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Let L be the Ornstein-Uhlenbeck operator

LF = −
∑

n≥0

nIn(fn) and L
−1F = −

∑

n≥1

1

n
In(fn)

if F is given by (4). We denote by D the Malliavin derivative operator that acts
on smooth functionals of the form F = g(W (ϕ1), · · · ,W (ϕn)) where g is a smooth
function with compact support and ϕi ∈ L2([0, 1]). For i = 1, · · · , n, the derivative
operator is defined by

DF =

n
∑

i=1

∂g

∂xi
(B(ϕ1), · · · , B(ϕn))ϕi.

The operator D can be extended to the closure D
p,2 of smooth functionals with

respect to the norm

‖F‖2p,2 = E
(

F 2
)

+

p
∑

i=1

E
(

‖DiF‖2L2([0,1]i)

)

where the ith order Malliavin derivative Di is defined iteratively.
Let us recall how this derivative acts for random variables in a finite chaos. If
f ∈ L2([0, T ]n) is a symmetric function, we will use the following rule to differentiate
in the Malliavin sense

DtIn(f) = n In−1(f(·, t)), t ∈ R.

Let us also recall how the distances between the laws of random variables are
defined. We have

d(L(X),L(Y )) = sup
h∈A

(|E (h(X))−E (h(Y ))|)

where A denotes a set of functions. When A = {h : ‖h‖L ≥ 1} (here ‖ · ‖L is the
Lipschitz norm) we obtain the Wasserstein distance, when A = {h : ‖h‖BL ≥ 1}
(with ‖ · ‖LB = ‖ · ‖L + ‖ · ‖∞) we get the Fortet-Mourier distance, when A is the
set of indicator functions of Borel sets we obtain the total variation distance, and
when A is the set of indicator functions of the form 1(−∞,z) with z ∈ R, we obtain
the Kolmogorov distance that has been presented above.

3. Chaos decomposition of self-normalized sums

The tools of the Malliavin calculus presented above can be successfully applied in
order to study self-normalized sums. Because of the nature of Malliavin calculus,
we put ourselves in a Gaussian setting and we consider Xi =Wi −Wi−1 to be the
increments of a classical Wiener process W . We then consider the sums

Sn =

n
∑

i=1

Xi and V 2
n =

n
∑

i=1

X2
i

as well as the self-normalized sum Fn defined by

Fn =
Sn

Vn
=

Wn

(
∑n

i=1(Wi+1 −Wi)2)
1
2

. (5)

Let us now concentrate our efforts on finding the chaotic decomposition of the
random variable Fn. This will be the key to computing Berry-Esséen bounds for
the distance between the law of Fn and the standard normal law in the next section.
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Lemma 1. Let Fn be given by (5) and let f : Rn → R be given by

f(x1, · · · , xn) =
x1 + · · ·+ xn

(x21 + · · ·+ x2n)
1
2

. (6)

Then for every n ≥ 2, we have

Fn =
∑

k≥0

1

k!

n
∑

i1,··· ,ik=1

ai1,··· ,ikIk (ϕi1 ⊗ · · · ⊗ ϕik)

with

ai1,··· ,ik
def
= E

(

∂kf

∂xi1 , · · · , xik
(W (ϕ1), · · · ,W (ϕn))

)

. (7)

Proof: We use the so-called Stroock’s formula (see [11]). The Wiener chaos ex-
pansion of a smooth (in the sense of Malliavin calculus) random variable F is given
by

F =
∑

k≥0

1

k!
Ik
(

E
(

DkF
))

(8)

whereDk denotes the kth iterated Malliavin derivative. Note that Fn can be written
as

Fn = f (W (ϕ1), · · · ,W (ϕn))

where

ϕi = 1[i−1,i], i = 1, · · · , n.
The chain rule for the Malliavin derivative (with DsW (ϕ) = ϕ(s)) yields

DFn =

n
∑

i=1

∂f

∂xi
(W (ϕ1), · · · ,W (ϕn))ϕi

and proceeding recursively leads to the formula

DkFn =

n
∑

i1,··· ,ik=1

∂kf

∂xi1 , · · · , xik
(W (ϕ1), · · · ,W (ϕn))ϕi1 ⊗ · · · ⊗ ϕik .

Thus we obtain

Ik
(

E(DkFn)
)

=
n
∑

i1,··· ,ik=1

E

(

∂kf

∂xi1 , · · · , xik
(W (ϕ1), · · · ,W (ϕn))

)

Ik (ϕi1 ⊗ · · · ⊗ ϕik)

=
n
∑

i1,··· ,ik=1

ai1,··· ,ikIk (ϕi1 ⊗ · · · ⊗ ϕik)

where ai1,··· ,ik are defined by (7). Thus from (8) it follows that,

Fn =
∑

k≥0

1

k!

n
∑

i1,··· ,ik=1

ai1,··· ,ikIk (ϕi1 ⊗ · · · ⊗ ϕik ) .

�

Remark 1. The coefficients ai1,··· ,ik also depend on n. We omit n in their notation
in order to simplify the presentation.
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3.1. Computing the coefficients in the chaos expansion. In this subsection,
we explicitly compute the coefficients ai1,··· ,ik appearing in Lemma 1. Let Hn(x)
denote the nth Hermite polynomial:

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2.

Define

Wn
def

= W (ϕ1) +W (ϕ2) + · · ·+W (ϕn)

Vn
def

=
(

n
∑

i=1

W (ϕi)
2
)1/2

Let us first give the following lemma that can be proved using integration by parts.

Lemma 2. For every 1 ≤ i1, ., ik ≤ n, let ai1,···ik be as defined in (7). Let
dr, 1 ≤ r ≤ n denote the number of times the integer r appears in the sequence
{i1, i2, · · · , ik} with

∑n
r=1 dr = k. Then we have

ai1,···ik = E

(

Wn

Vn

n
∏

r=1

Hdr

(

W (ϕr)
)

)

.

Proof: If X ∼ N (0, 1), then for any g ∈ C(n)(R) with g and its derivatives having
polynomial growth at infinity, we have the Gaussian integration by parts formula

E(g(n)(X)) = E(g(X)Hn(X)).

where g(n)(x)
def

= dn

dxn g(x).
Notice that the function f defined in (6) satisfies |f(x)| ≤ C|x|, ∀x ∈ R

n for a
constant C, and thus applying the above integration by parts formula recursively
yields

ai1,···ik =
1

(
√
2π)n

∫

Rn

(

∂kf

∂xd1

1 , · · · , xdn
n

)

(x1, · · · , xn) e−
x2
1
2 · · · e−

x2
n
2 dx1 · · · dxn

=
1

(
√
2π)n

∫

Rn

(

∂kf

∂xd1

1 , · · · , x
dn−1

n−1

)

(x1, · · · , xn) Hdn
(xn) e

− x2
1
2 · · · e−

x2
n
2 dx1 · · · dxn

=
1

(
√
2π)n

∫

Rn

f(x1, · · · , xn)
n
∏

r=1

Hdr
(xr) e

−x2
1
2 · · · e−

x2
n
2 dx1 · · · dxn

= E

(

Wn

Vn

n
∏

r=1

Hdr

(

W (ϕr)
)

)

.

This concludes the proof of the Lemma. �

The next step in the calculation of the coefficient is to notice that ai1,···ik = 0 when
k is even. This is the object of the following Lemma.

Lemma 3. If k is even, then

ai1,···ik = 0.
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Proof: Let k be an even number and d1, d2, · · · , dn be as defined in Lemma 2. By
Lemma 2, we have

ai1,···ik =

n
∑

u=1

E

(

W (ϕu)

Vn

n
∏

r=1

Hdr

(

W (ϕr)
)

)

. (9)

Note that the product
∏n

r=1 Hdr

(

W (ϕr)) is an even function of (W (ϕ1),W (ϕ2), · · · ,W (ϕn)).

Indeed, since k is even and
∑n

r=1 dr = k, either all of the integers dr, r ≤ n are even
or there is an even number of odd integers in dr, r ≤ n. In either case the prod-
uct

∏n
r=1Hdr

(

W (ϕr)) is an even function of (W (ϕ1),W (ϕ2), · · · ,W (ϕn)), since
Hm(x) = Hm(−x) for all even m ∈ N and Hm(x) = −Hm(−x) for all odd m ∈ N.

Thus for each u ≤ n, the expression W (ϕu)
Vn

∏n
r=1 Hdr

(

W (ϕr)
)

is an odd function of

W (ϕu) and thus has expectation zero since W (φu) is a standard Gaussian random
variable. The fact that (9) is a sum of such expectations concludes the proof. �

As a consequence of Lemma 3, we have

Fn =
∑

k≥0

1

(2k + 1)!

n
∑

i1,··· ,i2k+1=1

ai1,··· ,i2k+1
I2k+1

(

ϕi1 ⊗ · · · ⊗ ϕi2k+1

)

. (10)

This implies that in order to compute the coefficients ai1,···ik , it suffices to focus on
the case where k is odd. Before stating the first result in this direction, let us give
the following technical lemma.

Lemma 4. Let k ≥ 0 be a positive integer and let dr, 1 ≤ r ≤ n denote the number
of times the integer r appears in the sequence {i1, i2, · · · , i2k+1} with

∑n
r=1 dr =

2k + 1. Then, if there is more than one odd integer in the sequence dr, 1 ≤ r ≤ n,
for each 1 ≤ i ≤ n,

E

[

1

Vn
W (ϕi)Hd1

(W (ϕ1))Hd2
(W (ϕ2)) · · ·Hdn

(W (ϕn))

]

= 0.

Proof: Note that the equality
∑n

r=1 dr = 2k+1 implies that there can only be an
odd number of odd integers in the sequence dr, otherwise the sum

∑n
r=1 dr could

not be odd. Therefore, more than one odd integer in the sequence dr means that
there are at least three of them. We will prove the Lemma for this particular case
of three odd integers in the sequence dr for the sake of readability of the proof, as
the other cases follow with the exact same arguments. Hence, assume that there
are three odd integers di, dk and dl in the sequence dr, 1 ≤ r ≤ n. We will first
consider the case where i is different than j, k, l. Then,

E

[

1

Vn
W (ϕi)Hd1

(W (ϕ1))Hd2
(W (ϕ2)) · · ·Hdn

(W (ϕn))

]

=
1

(2n)
n
2

∫

Rn

xiHd1
(x1) · · ·Hdn

(xn)
√

x21 + · · ·+ x2n
e−

1
2
(x2

1+···+x2
n)dx1 · · · dxn

=
1

(2n)
n
2

∫

Rn−1

xiHd1
(x1) · · ·Hdj−1

(xj−1)Hdj+1
(xj+1) · · ·Hdn

(xn)

×
(

∫

R

Hdj
(xj)

√

x21 + · · ·+ x2n
e−

x2
j
2 dxj

)

exp






−1

2

n
∑

p=1
p 6=j

x2p






dx1 · · · dxj−1dxj+1 · · · dxn.
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dj beeing odd, Hdj
is an odd function of xj and xj 7→ Hdj

(xj)√
x2
1
+···+x2

n

e−
x2
j
2 is also an

odd function of xj . Thus,
∫

R

Hdj
(xj)√

x2
1
+···+x2

n

e−
x2
j
2 dxj = 0 and finally

E

[

1

Vn
W (ϕi)Hd1

(W (ϕ1))Hd2
(W (ϕ2)) · · ·Hdn

(W (ϕn))

]

= 0.

The other cases one could encounter is when i = j or i = k or i = l and the proof
follows based on the exact same argument. �

We can now state the following key result that will allow us to perform further
calculations in order to explicitly determine the coefficients ai1,···ik .

Lemma 5. For every k ≥ 0 and for every 1 ≤ i1, · · · , i2k+1 ≤ n, let d⋆r , 1 ≤ r ≤ n

be the number of times the integer r appears in the sequence {i1, · · · , i2k+1}. Then,

a11,··· ,i2k+1
= E

[

1

Vn
W (ϕ1)Hd⋆

1
(W (ϕ1))Hd⋆

2
(W (ϕ2)) · · ·Hd⋆

n
(W (ϕn))

]

(11)

if there is only one odd integer in the sequence d⋆r , 1 ≤ r ≤ n. If there is more than
one odd integer in the sequence d⋆r , 1 ≤ r ≤ n, we have a11,··· ,i2k+1

= 0.

Remark 2. Note that in (11), it might be understood that d⋆1 is always the only
odd integer in d⋆r , 1 ≤ r ≤ n. This is obviously not always the case and if d⋆1 is not
the odd integer but let’s say, d⋆i with 1 < i ≤ n is, one can use the equality in law
betweenW (ϕi) and W (ϕ1) to perform an index swap (i↔ 1) and the equality (11)
remains unchanged.

Remark 3. If one is in the case where a11,··· ,i2k+1
6= 0, one can rewrite d⋆1, d

⋆
2, · · · , d⋆n

as 2d1 + 1, 2d2, · · · , 2dn and finally rewrite (11) as

a11,··· ,i2k+1
= E

[

1

Vn
W (ϕ1)H2d1+1 (W (ϕ1))H2d2

(W (ϕ2)) · · ·H2dn
(W (ϕn))

]

.

(12)

Proof: Since
∑n

r=1 d
⋆
r = 2k + 1, there is an odd number of odd integers in the

sequence d⋆r , 1 ≤ r ≤ n. Recall that by Lemma 2, we have

ai1,···i2k+1
=

n
∑

u=1

E

(

W (ϕu)

Vn

n
∏

r=1

Hd⋆
r

(

W (ϕr)
)

)

= E

[

1

Vn
W (ϕ1)Hd⋆

1
(W (ϕ1))Hd⋆

2
(W (ϕ2)) . . .Hd⋆

n
(W (ϕn))

]

+ E

[

1

Vn
W (ϕ2)Hd⋆

1
(W (ϕ1))Hd⋆

2
(W (ϕ2)) · · ·Hd⋆

n
(W (ϕn))

]

...

+ E

[

1

Vn
W (ϕn)Hd⋆

1
(W (ϕ1))Hd⋆

2
(W (ϕ2)) · · ·Hd⋆

n
(W (ϕn))

]

.(13)

Because of Lemma 4, for each i, the term

E

[

1

Vn
W (ϕi)Hd⋆

1
(W (ϕ1))Hd⋆

2
(W (ϕ2)) · · ·Hd⋆

n
(W (ϕn))

]
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is non null if and only if d⋆i is the only odd integer in d⋆r , 1 ≤ r ≤ n. Thus,
a11,··· ,i2k+1

6= 0 if there is only one odd integer in d⋆r , 1 ≤ r ≤ n. Let d⋆i with
1 ≤ i ≤ n be this only odd integer. Then, if j 6= i, by Lemma 4,

E

[

1

Vn
W (ϕj)Hd⋆

1
(W (ϕ1))Hd⋆

2
(W (ϕ2)) · · ·Hd⋆

n
(W (ϕn))

]

= 0.

Thus, using (13) yields

a11,··· ,i2k+1
= E

[

1

Vn
W (ϕi)Hd⋆

1
(W (ϕ1))Hd⋆

2
(W (ϕ2)) · · ·Hd⋆

n
(W (ϕn))

]

if there is only one odd integer in the sequence d⋆r , 1 ≤ r ≤ n and a11,··· ,i2k+1
= 0

if there is more than one odd integer in the sequence d⋆r , 1 ≤ r ≤ n. Using the
equality in law between W (ϕi) and W (ϕ1), one can perform an index swap (i↔ 1)
to finally obtain the desired result. �

In the following lemma, we compute the L2 norm of Fn. This technical result will
be needed in the next section.

Lemma 6. Let ai1,··· ,i2k+1
be as given in (10). Then, for every n ∈ N, we have

‖Fn‖2L2(Ω) =
∑

k≥0

1

(2k + 1)!

n
∑

i1,··· ,i2k+1=1

a2i1,··· ,i2k+1
= 1.

Proof: Firstly, using the isometry of multiple stochastic integrals and the orthog-
onality of the kernels ϕi, one can write

E
(

F 2
n

)

=
∑

k≥0

(

1

(2k + 1)!

)2

(2k + 1)!

n
∑

i1,··· ,i2k+1=1
j1,··· ,j2k+1=1

ai1,··· ,i2k+1
aj1,··· ,j2k+1

×
〈

ϕi1 ⊗ · · · ⊗ ϕi2k+1
, ϕj1 ⊗ · · · ⊗ ϕj2k+1

〉

L2([0,1]2k)

=
∑

k≥0

1

(2k + 1)!

n
∑

i1,··· ,i2k+1=1

a2i1,··· ,i2k+1
.

Secondly, using the fact that F 2
n =

W 2
n

V 2
n
, we have

E
(

F 2
n

)

=
1

(2π)
n
2

∫

Rn

(x1 + · · ·+ xn)
2

x21 + · · ·+ x2n
e−

1
2
(x2

1+···+x2
n)dx1 · · · dxn

=
1

(2π)
n
2

∫

Rn

x21 + · · ·+ x2n
x21 + · · ·+ x2n

e−
1
2
(x2

1+···+x2
n)dx1 · · · dxn = 1

because the mixed terms vanish as in the proof of Lemma 3. �

Recall that if X is a Chi-squared random variable with n degrees of freedom (de-
noted by χ2

n) then for any m ≥ 0,

E (Xm) = 2m
Γ(m+ n

2 )

Γ(n2 )
.

where Γ(·) denotes the standard Gamma function.
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When k = 0, the coefficients ai1,··· ,i2k+1
can be easily computed. Indeed, notic-

ing that V 2
n has a χ2

n distribution, we obtain

n
∑

i=1

ai = E

(

n
∑

i=1

1

Vn
W (ϕi)

2

)

= E
(

(V 2
n )

1
2

)

= 2
1
2

Γ(12 + n
2 )

Γ(n2 )
.

Since a1 = a2 = · · · = an we obtain that for every i = 1, .., n

ai =
2

1
2

n

Γ(12 + n
2 )

Γ(n2 )
.

The following lemma is the second key result in our goal of calculating the coeffi-
cients. It will be used repeatedly in the sequel.

Lemma 7. Let {a1, a2, · · ·an} be non-negative numbers. Then it holds that

E
(

W (ϕ1)
2a1W (ϕ2)

2a2 ···W (ϕn)
2an

Vn

)

= 1

(2π)
n
2
2a1+···+an+

n−1

2
Γ(a1+···+an+

n−1

2 )
Γ(a1+···+an+

n
2 )

Γ
(

a1 +
1
2

)

· · ·Γ
(

an + 1
2

)

.

Proof: By definition, we have

E

(

W (ϕ1)
2a1W (ϕ2)

2a2 · · ·W (ϕn)
2an

Vn

)

=
1

(2π)
n
2

∫

Rn

x2a1

1 x2a2

2 · · ·x2an
n

√

x21 + x22 + · · ·+ x2n
e−

1
2
(x2

1+x2
2+···+x2

n)dx1dx2 · · · dxn

=
1

(2π)
n
2

I.

To compute the above integral I, we introduce n-dimensional polar coordinates.
Set

x1 = r cos θ1

xj = r cos θj

j−1
∏

r=1

sin θr, j = 2, · · · , n− 2

xn−1 = r sinψ

n−2
∏

r=1

sin θr, xn = r cosψ

n−2
∏

r=1

sin θr

with 0 ≤ r < ∞, 0 ≤ θi ≤ π and 0 ≤ ψ ≤ 2π. It can be easily verified that
x21 + x22 + · · ·+ x2n = r2. The Jacobian of the above transformation is given by

J = rn−1
n−2
∏

k=1

sink θn−1−k .

Therefore our integral denoted by I becomes
∫ ∞

0

r2(a1+···+an)+n−2e−
r2

2 dr

∫ 2π

0

(sinψ)2an−1+2an(cosψ)2andψ

n−1
∏

k=2

∫ π

0

(sin θn−k)
2an+2an−1+···+2an−k+1+k−1(cos θn−k)

2an−kdθn−k.
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Let us compute the first integral with respect to dr. Using the change of variables
r2

2 = y, we get

∫ ∞

0

r2(a1+···+an)+n−2e−
r2

2 dr = 2a1+···+an+
n−1

2
−1

∫ ∞

0

dyya1+···+an+
n−1

2
−1e−y

= 2a1+···+an+
n−1

2
−1Γ

(

a1 + · · ·+ an +
n− 1

2

)

.

Let us now compute the integral with respect to dψ. We use the following formula:
for every a, b ∈ Z, it holds that

∫ 2π

0

(sin θ)a(cos θ)bdθ = 2β
(

a+1
2 , b+1

2

)

if m and n are even

= 0, if m or n are odd.

This implies that

∫ 2π

0

(sinψ)2an−1+2an(cosψ)2andψ = 2β

(

an +
1

2
, an−1 +

1

2

)

.

Finally, we deal with the integral with respect to dθi for i = 1 to n− 2. Using the
fact that, for a, b > −1, it holds that

∫ π
2

0

(sin θ)a(cos θ)bdθ =
1

2
β

(

a+ 1

2
,
b+ 1

2

)

yields

∫ π

0

(sin θn−k)
2an+2an−1+···+2an−k+1+k−1(cos θn−k)

2an−kdθn−k

=

∫ π
2

0

(sin θn−k)
2an+2an−1+···+2an−k+1+k−1(cos θn−k)

2an−kdθn−k

+

∫ π

π
2

(sin θn−k)
2an+2an−1+···+2an−k+1+k−1(cos θn−k)

2an−kdθn−k

=
1

2
β

(

an + · · ·+ an−k+1 +
k

2
, an−k +

1

2

)

+

∫ π
2

0

(sin(θn−k +
π

2
))2an+2an−1+···+2an−k+1+k−1(cos(θn−k +

π

2
))2an−kdθn−k

= β

(

an + · · ·+ an−k+1 +
k

2
, an−k +

1

2

)



MALLIAVIN CALCULUS AND SELF NORMALIZED SUMS July 2, 2011 12

because sin(θ + π
2 ) = cos θ and cos(θ + π

2 ) = − sin(θ). By gathering the above
calculations, the integral I becomes

I = 2a1+···+an+
n−1

2 Γ

(

a1 + · · ·+ an +
n− 1

2

)

β

(

an +
1

2
, an−1 +

1

2

)

×
n−1
∏

k=2

β

(

an + · · ·+ an−k+1 +
k

2
, an−k +

1

2

)

= 2a1+···+an+
n−1

2 Γ

(

a1 + · · ·+ an +
n− 1

2

)

Γ
(

an + 1
2

)

Γ
(

an−1 +
1
2

)

Γ (an + an−1 + 1)

×
n−1
∏

k=2

Γ
(

an + · · ·+ an−k+1 +
k
2

)

Γ
(

an−k +
1
2

)

Γ
(

an + an−1 + · · ·+ an−k +
k+1
2

)

= 2a1+···+an+
n−1

2

Γ
(

a1 + · · ·+ an + n−1
2

)

Γ
(

a1 + · · ·+ an + n
2

) Γ

(

a1 +
1

2

)

· · ·Γ
(

an +
1

2

)

.

This concludes the proof. �

The following result gives the asymptotic behavior of the coefficients when n→ ∞.

Lemma 8. For every 1 ≤ i1, · · · , i2k+1 ≤ n, let ai1,··· ,i2k+1
be as defined in (7). As

in (12), let 2d1 + 1, 2d2, · · · , 2dr, · · · , 2dn denote the number of times the integer r
appears in the sequence {i1, i2, · · · , i2k+1} with

∑n
r=1 dr = k. Then when n→ ∞,

ai1,··· ,i2k+1
∼ 1

k!
(2k − 1)!!

(2d1 + 1)!(2d2)! · · · (2dn)!
(d1!d2! · · · dn!)2

× 2−2k(−1)k





n
∏

j=0

dj
∑

lj=0

(−1)ljC
lj
dj
l
dj

j





1

n
1
2
+|A| (14)

where

A := {2d1 + 1, 2d2, · · · , 2dn} \ {0, 1}
and |A| is the cardinal of A.

Proof: We recall the following explicit formula for the Hermite polynomials

Hd(x) = d!

[ d
2
]

∑

l=0

(−1)l

2ll!(d− 2l)!
xd−2l. (15)

Using (15) and (12) we can write

ai1,··· ,i2k+1
= E

[

1

Vn
W (ϕ1)H2d1+1 (W (ϕ1))H2d2

(W (ϕ2)) · · ·H2dn
(W (ϕn))

]

= (2d1 + 1)!(2d2)! · · · (2dn)!
d1
∑

l1=0

d2
∑

l2=0

· · ·
dn
∑

ln=0

(−1)l1+l2+···+ln

2l1+l2+···+ln l1! · · · ln!

×
E
[

1
Vn
W (ϕ1)

2d1+2−2l1W (ϕ2)
2d2−2l2 · · ·W (ϕn)

2dn−2ln
]

(2d1 + 1− 2l2)!(2d2 − 2l2)! · · · (2dn − 2ln)!
.

At this point, we use Lemma 7 to rewrite the expectation in the last equation.
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E

[

1

Vn
W (ϕ1)H2d1+1 (W (ϕ1))H2d2

(W (ϕ2)) · · ·H2dn
(W (ϕn))

]

= (2d1 + 1)!(2d2)! · · · (2dn)!
d1
∑

l1=0

d2
∑

l2=0

· · ·
dn
∑

ln=0

(−1)l1+l2+···+ln

2l1+l2+···+ln l1! · · · ln!

× 2d1+1+d2+···+dn−(l1+l2+···+ln)+
n−1

2

(2π)
n
2 (2d1 + 1− 2l2)!(2d2 − 2l2)! · · · (2dn − 2ln)!

×Γ
(

d1 + 1 + d2 + · · ·+ dn − (l1 + l2 + · · ·+ ln) +
n−1
2

)

Γ
(

d1 + 1 + d2 + · · ·+ dn − (l1 + l2 + · · ·+ ln) +
n
2

)

×Γ

(

d1 + 1− l1 +
1

2

)

Γ

(

d2 − l2 +
1

2

)

· · ·Γ
(

dn − ln +
1

2

)

= (2d1 + 1)!(2d2)! · · · (2dn)!
d1
∑

l1=0

d2
∑

l2=0

· · ·
dn
∑

ln=0

(−1)l1+l2+···+ln

22(l1+l2+···+ln)l1! · · · ln!

× 2d1+1+d2+···+dn− 1
2

π
n
2 (2d1 + 1− 2l2)!(2d2 − 2l2)! · · · (2dn − 2ln)!

×Γ
(

d1 + 1 + d2 + · · ·+ dn − (l1 + l2 + · · ·+ ln) +
n−1
2

)

Γ
(

d1 + 1 + d2 + · · ·+ dn − (l1 + l2 + · · ·+ ln) +
n
2

)

×Γ

(

d1 + 1− l1 +
1

2

)

Γ

(

d2 − l2 +
1

2

)

· · ·Γ
(

dn − ln +
1

2

)

.

We claim that for any integers d ≥ l,

(−1)l

2−2ll!(2d− 2l)!
Γ

(

d− l +
1

2

)

=
√
π
2−2d(−1)l

d!
Cl

d. (16)

Recall the relation satisfied by the Gamma function: for every z > 0,

Γ(z + 1) = zΓ(z) and Γ(z)Γ(z +
1

2
) =

√
π21−2zΓ(2z). (17)

Then

(−1)l

2−2ll!(2d− 2l)!
Γ

(

d− l +
1

2

)

=
(−1)l

2−2ll!(2d− 2l)!

Γ
(

d− l+ 1 + 1
2

)

d− l − 1
2

=
(−1)l

2−2ll!(2d− 2l)!

Γ(2d− 2l+ 2)

Γ(d− l+ 1)

√
π21−2(d−l+1)

=
√
π2−2d (−1)l

l!(2d− 2l)!

(2d− 2l + 1)!

(d− l)!(2d− 2l+ 1)

=
√
π
2−2d(−1)l

d!
Cl

d

and (16) is proved. In the same way, using only the second relation in (17), we
obtain

(−1)l1

2−2l1 l1!(2d1 + 1− 2l1)!
Γ

(

d1 + 1− l1 +
1

2

)

=
√
π
2−1−2d1(−1)l1

d1!
Cl1

d1
. (18)
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Putting together (16) and (18) we find

E

[

1

Vn
W (ϕ1)H2d1+1 (W (ϕ1))H2d2

(W (ϕ2)) · · ·H2dn
(W (ϕn))

]

=
(2d1 + 1)!(2d2)! · · · (2dn)!

d1!d2! · · · dn!
2−(d1+···+dn)− 1

2

d1
∑

l1=0

d2
∑

l2=0

· · ·
dn
∑

ln=0

(−1)l1+l2+···+lnCl1
d1

· · ·Cln
dn

×Γ
(

d1 + 1 + d2 + · · ·+ dn − (l1 + l2 + · · ·+ ln) +
n−1
2

)

Γ
(

d1 + 1 + d2 + · · ·+ dn − (l1 + l2 + · · ·+ ln) +
n
2

) .

By Stirling’s formula, when n goes to infinity, we have

Γ
(

d1 + 1 + d2 + · · ·+ dn − (l1 + l2 + · · ·+ ln) +
n−1
2

)

Γ
(

d1 + 1 + d2 + · · ·+ dn − (l1 + l2 + · · ·+ ln) +
n
2

) ∼ 1
√

k + 1− (l1 + · · ·+ ln) +
n
2

.

Therefore we need to study the behavior of the sequence

tn :=

d1
∑

l1=0

d2
∑

l2=0

· · ·
dn
∑

ln=0

(−1)l1+l2+···+lnCl1
d1

· · ·Cln
dn

1
√

k + 1− (l1 + · · ·+ ln) +
n
2

as n→ ∞. We can write

tn =
1√
n

√
2g(

1

n
)

where

g(x) =

d1
∑

l1=0

d2
∑

l2=0

· · ·
dn
∑

ln=0

(−1)l1+l2+···+lnCl1
d1

· · ·Cln
dn

1
√

2k + 2− (l1 + · · ·+ ln)x+ 1
.

Since for every d ≥ 1
d
∑

l=0

(−1)lCl
d = 0

we clearly have g(0) = 0. The qth derivative of g at zero is

g(q)(0) = (−1)q
(2q − 1)!!

2q
[2k + 2− (l1 + · · ·+ ln)]

q
.

Repeatedly using the relation Ck
n = n

kC
k−1
n−1 we can prove that

d
∑

l=0

(−1)lCl
dl

q = 0

for every q = 0, 1, · · · , d − 1. Therefore the first non-zero term in the Taylor
decomposition of the function g around zero is

d1
∑

l1=0

d2
∑

l2=0

· · ·
dn
∑

ln=0

(−1)l1+l2+···+lnCl1
d1

· · ·Cln
dn
ld1

1 · · · ldn
n

which appears when we take the derivative of order d1 + d2 + · · ·+ dn. We obtain
that, for x close to zero,

g(x) ∼ (−1)d1+···+dn
(2(d1 + · · ·+ dn)− 1)!!

2d1+···+dn

n
∏

j=0

dj
∑

lj=0

(−1)ljC
lj
dj
l
dj

j ×H(d1, · · · , dn)x|A|
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where
A = {d1, · · · , dn} \ {0} = {2d1 + 1, 2d2, · · · , 2dn} \ {0, 1}

and H(d1, · · · , dn) is the coefficient of ld1

1 · · · ldn
n in the expansion of (l1 + · · · +

ln)
d1+···+dn . That is

H(d1, · · · , dn) = Cd1

d1+···+dn
Cd2

d2+···+dn
· · ·Cdn−1

dn−1+dn
=

(d1 + · · ·+ dn)!

d1! · · · dn!
.

We finally have

ai1,··· ,i2k+1
=

(2d1 + 1)!(2d2)! · · · (2dn)!
(d1!d2! · · · dn!)2

2−(d1+···+dn)(−1)d1+···+dn
(2(d1 + · · ·+ dn)− 1)!!

2d1+···+dn

×





n
∏

j=0

dj
∑

lj=0

(−1)ljC
lj
dj
l
dj

j





(d1 + · · ·+ dn)!

d1! · · · dn!
1

n
1
2
+|A|

= k!(2k − 1)!!
(2d1 + 1)!(2d2)! · · · (2dn)!

(d1!d2! · · · dn!)2
2−2k(−1)k





n
∏

j=0

dj
∑

lj=0

(−1)ljC
lj
dj
l
dj

j





1

n
1
2
+|A|

= k!(2k − 1)!!
(2d1 + 1)!(2d2)! · · · (2dn)!

(d1!d2! · · · dn!)2
2−2k(−1)k





n
∏

j=0

t(dj)





1

n
1
2
+|A|

with for i = 1, · · · , n

t(dj) :=

dj
∑

lj=0

(−1)ljC
lj
dj
l
dj

j . (19)

�

4. Computation of the Berry-Esséen bound

Let us first recall the following result (see [5], page 53): for 2 < p ≤ 3,

sup
z∈R

|P (Fn ≤ z)− Φ(z)| ≤ 25E (|Z|p)n1− p
2 (20)

where Z is a standard normal random variable and Φ is its repartition function. In
particular for p = 3 we get

sup
z∈R

|P (Fn ≤ z)− Φ(z)| ≤ 25E
(

|Z|3
)

n− 1
2 .

We now compute the Berry-Essen bound obtained via Malliavin calculus in order
to compare it with (20). Formula (10) yields

DαFn =
∑

k≥0

2k + 1

(2k + 1)!

n
∑

i1,··· ,i2k+1=1

ai1,··· ,i2k+1
I2k ((ϕi1 ⊗ · · · ⊗ ϕi2k=1

)∼) (·, α) (21)

(here (ϕi1 ⊗· · ·⊗ϕi2k=1
)∼ denotes the symmetrization of the function ϕi1 ⊗· · ·⊗ϕik

with respect to its k variables) and

Dα(−L)−1Fn =
∑

k

1

(2k + 1)!

n
∑

i1,··· ,i2k+1=1

ai1,··· ,i2k+1
I2k
(

(ϕi1 ⊗ · · · ⊗ ϕi2k+1
)∼
)

(·, α).

(22)
It is now possible to calculate the quantity

E
(

1− 〈DFn, D(−L)−1Fn〉
)2
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more explicitly by using the product formula (3) and the isometry of multiple
stochastic integrals.

Lemma 9. For every n ≥ 2,

E
(

1− 〈DFn, D(−L)−1Fn〉
)2

=
∑

m≥1

(2m)!

n
∑

i1,··· ,i2m=1





2m
∑

k=0

1

k!

1

(2m− k)!

∑

r≥0

1

r!

1

2m− k + r + 1

n
∑

u1,··· ,ur+1=1

au1,u2,··· ,ur+1,i1,··· ,ikau1,u2,··· ,ur+1,ik+1,··· ,i2m

)2

.

Proof: Using (21) and (22), we can calculate the following quantity.

〈DFn, D(−L)−1Fn〉 =
∑

k,l≥0

1

(2k)!

1

(2l + 1)!

n
∑

i1,··· ,i2k+1=1

ai1,··· ,i2k+1

n
∑

j1,··· ,j2l+1=1

aj1,··· ,j2l+1

×
∫ ∞

0

dαI2k
(

(ϕi1 ⊗ · · · ⊗ ϕi2k+1
)∼
)

(·, α)I2l
(

(ϕj1 ⊗ · · · ⊗ ϕj2l+1
)∼
)

(·, α)

=
∑

k,l≥0

1

(2k)!

1

(2l + 1)!

n
∑

u=1

n
∑

i1,··· ,i2k=1

au,i1,··· ,i2k

n
∑

j1,··· ,j2l=1

au,j1,··· ,j2l

×I2k ((ϕi1 ⊗ · · · ⊗ ϕi2k )) I2l
(

(ϕj1 ⊗ · · · ⊗ ϕj2j )
)

.

The product formula (3) applied to the last equality yields

n
∑

i1,··· ,i2k=1

au,i1,··· ,i2k

n
∑

j1,··· ,j2l=1

au,j1,··· ,j2lI2k ((ϕi1 ⊗ · · · ⊗ ϕi2k)) I2l
(

(ϕj1 ⊗ · · · ⊗ ϕj2j )
)

=

(2k)∧(2l)
∑

r=0

r!Cr
2kC

r
2l

n
∑

u1,··· ,ur=1

n
∑

i1,··· ,i2k−r=1

n
∑

j1,··· ,j2l−r=1

au,u1,··· ,ur ,i1,··· ,i2k−r
au,u1,··· ,ur,j1,··· ,j2l−r

×I2k+2l−2r

(

ϕi1 ⊗ · · · ⊗ ϕi2k−r
⊗ ϕj1 ⊗ · · · ⊗ ϕj2l−r

)

and therefore we obtain

〈DFn, D(−L)−1Fn〉

=
∑

k,l≥0

1

(2k)!

1

(2l+ 1)!

(2k)∧(2l)
∑

r=0

r!Cr
2kC

r
2l

×
n
∑

u1,··· ,ur+1=1

n
∑

i1,··· ,i2k−r=1

n
∑

j1,··· ,j2l−r=1

au1,u2,··· ,ur+1,i1,··· ,i2k−r
au1,u2,··· ,ur+1,j1,··· ,j2l−r

×I2k+2l−2r

(

ϕi1 ⊗ · · · ⊗ ϕi2k−r
⊗ ϕj1 ⊗ · · · ⊗ ϕj2l−r

)

. (23)

Remark 4. The chaos of order zero in the above expression is obtained for k = l

and r = 2k. It is therefore equal to

∑

k≥0

1

(2k)!

1

(2k + 1)!
(2k)!

n
∑

i1,··· ,i2k+1=1

a2i1,··· ,i2k+1
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which is also equal to 1 as follows from Lemma 6. Therefore it will vanish when
we consider the difference 1 − 〈DFn, D(−L)−1Fn〉. This difference will have only
chaoses of even orders.

By changing the order of summation and by using the changes of indices 2k−r = k′

and 2l− r = l′, we can write

〈DFn, D(−L)−1Fn〉

=
∑

r≥0

r!
∑

2k≥r

∑

2l≥r

1

(2k)!

1

(2l + 1)!
Cr

2kC
r
2l

×
n
∑

u1,··· ,ur+1=1

n
∑

i1,··· ,i2k−r=1

n
∑

j1,··· ,j2l−r=1

au1,u2,··· ,ur+1,i1,··· ,i2k−r
au1,u2,··· ,ur+1,j1,··· ,j2l−r

×I2k+2l−2r

(

ϕi1 ⊗ · · · ⊗ ϕi2k−r
⊗ ϕj1 ⊗ · · · ⊗ ϕj2l−r

)

=
∑

r≥0

∑

k,l≥0

1

(k + r)!

1

(l + r + 1)!
Cr

k+rC
r
l+r

×
n
∑

u1,··· ,ur+1=1

n
∑

i1,··· ,ik=1

n
∑

j1,··· ,jl=1

au1,u2,··· ,ur+1,i1,··· ,ikau1,u2,··· ,ur+1,j1,··· ,jl

×I2k+2l−2r (ϕi1 ⊗ · · · ⊗ ϕik ⊗ ϕj1 ⊗ · · · ⊗ ϕjl)

=
∑

k,l≥0

∑

r≥0

r!
1

(k + r)!

1

(l + r + 1)!
Cr

k+rC
r
l+r

×
n
∑

u1,··· ,ur+1=1

n
∑

i1,··· ,ik=1

n
∑

j1,··· ,jl=1

au1,u2,··· ,ur+1,i1,··· ,ikau1,u2,··· ,ur+1,j1,··· ,jl

×Ik+l (ϕi1 ⊗ · · · ⊗ ϕik ⊗ ϕj1 ⊗ · · · ⊗ ϕjl) .

Once again using a change of indices (k + l = m), we obtain

〈DFn, D(−L)−1Fn〉

=
∑

m≥0

m
∑

k=0

∑

r≥0

r!
1

(k + r)!

1

(m− k + r + 1)!
Cr

k+rC
r
m−k+r

×
n
∑

u1,··· ,ur+1=1

n
∑

i1,··· ,ik=1

n
∑

j1,··· ,jm−k=1

au1,u2,··· ,ur+1,i1,··· ,ikau1,u2,··· ,ur+1,j1,··· ,jm−k

×Im
(

ϕi1 ⊗ · · · ⊗ ϕik ⊗ ϕj1 ⊗ · · · ⊗ ϕjm−k

)

=
∑

m≥0

m
∑

k=0

1

k!

1

(m− k)!

∑

r≥0

1

r!

1

m− k + r + 1

n
∑

u1,··· ,ur+1=1

n
∑

i1,··· ,im=1

×au1,u2,··· ,ur+1,i1,··· ,ikau1,u2,··· ,ur+1,ik+1,··· ,imIm
(

ϕi1 ⊗ · · · ⊗ ϕik ⊗ ϕik+1
⊗ · · · ⊗ ϕim

)

where at the end we renamed the indices j1, · · · , jm−m as ik+1, · · · , im. We obtain

〈DFn, D(−L)−1Fn〉 =
∑

m≥0

Im(h(n)m )
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where

h(n)m =

m
∑

k=0

1

k!

1

(m− k)!

∑

r≥0

1

r!

1

m− k + r + 1

n
∑

u1,··· ,ur+1=1

n
∑

i1,··· ,im=1

au1,u2,··· ,ur+1,i1,··· ,ikau1,u2,··· ,ur+1,ik+1,··· ,im
ϕi1 ⊗ · · · ⊗ ϕik ⊗ ϕik+1

⊗ · · · ⊗ ϕim (24)

Let us make some comments about this result before going any further. These
remarks will simplify the expression that we have just obtained. As follows from
Lemma 2, the coefficients ai1,··· ,ik are zero if k is even. Therefore, the numbers
r+1+k and r+1+m−k must be odd. This implies that m must be even and this
is coherent with our previous observation (see Remark 4) that the chaos expansion
of 〈DFn, D(−L)−1Fn〉 only contains chaoses of even orders. The second comment
concerns the chaos of order zero. If m = 0 then k = 0 and we obtain

h
(n)
0 =

∑

r≥0

n
∑

u1,··· ,ur+1=1

1

r!

1

r + 1
a2u1,··· ,ur+1

=
∑

r≥1

1

r!

n
∑

u1,··· ,ur=1

a2u1,··· ,ur
.

Thus, because the summand
∑

r≥1
1
r!

∑n
u1,··· ,ur=1 a

2
u1,··· ,ur

− 1 is zero by using
Lemma 6,

〈DFn, D(−L)−1Fn〉 − 1 =





∑

r≥1

1

r!

n
∑

u1,··· ,ur=1

a2u1,··· ,ur
− 1



+
∑

m≥1

I2m(h
(n)
2m)

=
∑

m≥1

I2m(h
(n)
2m)

with h
(n)
2m given by (24).

Using the isometry formula of multiple integrals in order to compute the L2 norm

of the above expression and noticing that the function h
(n)
2m is symmetric, we find

that

E
(

(

〈DFn, D(−L)−1Fn〉 − 1
)2
)

=
∑

m≥1

(2m)!〈h(n)2m, h
(n)
2m〉L2([0,1]2m)

=
∑

m≥1

(2m)!

2m
∑

k,l=0

1

k!

1

l!

1

(2m− k)!

1

(2m− l)!

∑

r,q≥0

1

r!

1

q!

1

2m− k + r + 1

1

2m− l + q + 1

×
n
∑

u1,··· ,ur+1=1

n
∑

v1,··· ,vq+1=1

n
∑

i1,··· ,i2m=1

×au1,u2,··· ,ur+1,i1,··· ,ikau1,u2,··· ,ur+1,ik+1,··· ,i2mav1,v2,··· ,vq+1,i1,··· ,ikav1,v2,··· ,vq+1,ik+1,··· ,i2m

=
∑

m≥1

(2m)!

n
∑

i1,··· ,i2m=1





2m
∑

k=0

1

k!

1

(2m− k)!

∑

r≥0

1

r!

1

2m− k + r + 1

n
∑

u1,··· ,ur+1=1

au1,u2,··· ,ur+1,i1,··· ,ikau1,u2,··· ,ur+1,ik+1,··· ,i2m
)2
,

which is the desired result. �

Before proving our main result, let us discuss a particular case as an exemple
in order to better understand the general phenomenon. This is both useful and
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important in order to have a good overview of the functioning of a simple case.
Assume that k = 0 and l = 1. The corresponding summand in (23) reduces to

1

3!

n
∑

u=1

au

n
∑

j1,j2=1

au,j1,j2I2 (ϕj1 ⊗ ϕj2 ) .

Its L2-norm is

1

3

n
∑

j1,j2=1

(

n
∑

u=1

auau,j1,j2

)2

=
1

3

n
∑

j1=1

(

n
∑

u=1

auau,j1,j1

)2

because au,j1,j2 = 0 if j1 6= j2. Using (14), it reduces to a quantity equivalent to

1

3
(na21a

2
1,1,1 + n((n− 1)a1a1,1,2)

2)

which, using (14) again, is of order

n

(

1√
n

)2(
1

n
3
2

)2

+ n

(

(n− 1)
1√
n

1

n
3
2

)2

∼ n−1.

The following theorem, which gathers all of the previous results of the paper, is the
general equivalent of the toy exemple presented above.

Theorem. For any integer n ≥ 2,

E
(

(

〈DFn, D(−L)−1Fn〉 − 1
)2
)

≤ c0

n

with

c0 =
∑

m≥1

(2m)!





2m
∑

k=0

1

2k!

1

(2m− 2k)!

∑

r≥0

1

(2r)!

1

2m− 2k + 2r + 1
c(k, r,m)





2

(25)

+





2m
∑

k=0

1

(2k + 1)!

1

(2m− 2k − 1)!

∑

r≥0

1

(2r − 1)!

1

2m− 2k + 2r + 1
c(k, r,m)





2

and where c(k, r,m) is given by (28).

Proof: Observe that the integers r+1+ k and r+1+2m− k both have to be odd
numbers (otherwise the coefficients au1,u2,··· ,ur+1,i1,··· ,ik and au1,u2,··· ,ur+1,ik+1,··· ,i2m
vanish). This implies two cases: either r is even and k is even or r is odd and k is
odd. Thus, we can write

E
(

(

〈DFn, D(−L)−1Fn〉 − 1
)2
)

=
∑

m≥1

(2m)!
n
∑

i1,··· ,i2m=1





2m
∑

k=0

1

2k!

1

(2m− 2k)!

∑

r≥0

1

(2r)!

1

2m− 2k + 2r + 1

n
∑

u1,··· ,u2r+1=1

au1,u2,··· ,u2r+1,i1,··· ,i2kau1,u2,··· ,u2r+1,i2k+1,··· ,i2m
)2

+
∑

m≥1

(2m)!

n
∑

i1,··· ,i2m=1





2m
∑

k=0

1

(2k + 1)!

1

(2m− 2k − 1)!

∑

r≥0

1

(2r − 1)!

1

2m− 2k + 2r + 1

n
∑

u1,··· ,u2r=1

au1,u2,··· ,u2r ,i1,··· ,i2k+1
au1,u2,··· ,u2r,i2k+2,··· ,i2m

)2
. (26)
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Let us treat the first part of the sum (26). Assume that the number of common num-
bers occurring in the sets {u1, · · · , u2r+1} and {i1, · · · , i2k} is x and and the number
of common numbers occurring in the sets {u1, · · · , u2r+1} and {i2k+1, · · · , i2m−2k}
is y. This can be formally written as

|{u1, · · · , u2r+1} ∩ {{i1, · · · , i2k}| = x

and

|{u1, · · · , u2r+1} ∩ {i2k+1, · · · , i2m−2k}| = y.

It is clear that

x ≤ (2r + 1) ∧ 2k and y ≤ (2r + 1) ∧ 2m− 2k.

This also implies x + y ≤ 2m. According to the definitions of x and y, it can be
observed that x and y must be even. We will denote them by 2x and 2y from now
on.
The next step in the proof is to determine how many distinct sequences of numbers
can occur in the set

{u1, · · · , u2r+1, i1, · · · , i2k}.
We can have sequences of lengths (all of the lengths that we consider from now
on are greater or equal to one) 2c1, 2c2, · · · , 2cl1 with 2(c1 + · · ·+ cl1) = 2x in the
set {u1, · · · , u2r+1} ∩ {i1, · · · , i2k} but also sequences of lengths 2d1, 2d2, · · · , 2dl2
with 2(d1 + · · ·+ dl2) = 2k− 2x in the set {i1, · · · , i2k} \ {u1, · · · , u2r+1} as well as
sequences of lengths 2e1+1, 2e2, · · · , 2el3 with 1+2(e1+ · · ·+ el3) = 2r+1− 2x in
the set {u1, · · · , u2r+1} \ {i1, · · · , i2k}. In this last sequence we have one (and only
one) length equal to 1 (because we are allowed to choose only one odd number in
the set {u1, · · · , u2r+1} \ {i1, · · · , i2k}). We will have, if we have a configuration as
above,

au1,u2,··· ,u2r+1,i1,··· ,i2k ≤ c(r, c, e)n− 1
2
−l1−l2−l3

where

c(r, c, e) = r!(2r−1)!!
(2c1)! · · · (2cl1)!(2e1 + 1)!(2e2)! · · · (2el3)!

(c1! · · · cl1 !e1! · · · el3 !)2
t(c1) · · · t(cl1)t(e1) · · · t(el3)

(27)
and the constants t are given by (19).
In the same way, assuming that we have sequences of lengths 2f1, 2f2, · · · , 2fl4 with
2(f1 + · · ·+ fl4) = 2m− 2k − 2y in the set {i2k+1, · · · , i2m} \ {u1, · · · , u2r+1} and
sequences of lengths 2g1 + 1, 2g2, · · · , 2gl5 with 1 + 2(g1 + · · · + g5) = 2r + 1 − 2y
in the set {u1, · · · , u2r+1} \ {i2k+1, · · · , i2m}. We will obtain

au1,u2,··· ,u2r+1,i2k+1,··· ,i2n ≤ c(k, c, d)n− 1
2
−l1−l4−l5+1

with c(k, c, d) defined as in (27). The sum over u1, · · · , ur+1 from 1 to n reduces to
a sum of l1 + l3 + l5 − 1 distinct indices from 1 to n. Therefore we get

n
∑

u1,··· ,u2r+1=1

au1,u2,··· ,u2r+1,i1,··· ,i2kau1,u2,··· ,u2r+1,i2k+1,··· ,i2n

≤ c(k, r,m)n−l1−l2−l4

with

c(k, r,m) =
∑

x+y=2m

∑

c1+···+cl1=x

∑

d1+···+dl2
=y

∑

e1+···+el3=r−x

c(r, c, e)c(k, c, d). (28)
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We need to consider the sum i1, · · · , i2m from 1 to n. It reduces to a sum over
l2 + l4 distinct indices. Thus

n
∑

i1,··· ,i2m=1





2m
∑

k=0

1

2k!

1

(2m− 2k)!

∑

r≥0

1

(2r)!

1

2m− 2k + 2r + 1

n
∑

u1,··· ,u2r+1=1

n
∑

u1,··· ,u2r+1=1

au1,u2,··· ,u2r+1,i1,··· ,i2kau1,u2,··· ,u2r+1,i2k+1,··· ,i2m
)2

≤ nl2+l4

(

1

n2l1+l2+l4

)2 2m
∑

k=0

1

2k!

1

(2m− 2k)!

∑

r≥0

1

(2r)!

1

2m− 2k + 2r + 1
c(k, r,m)

=
1

n2l1+l2+l4





2m
∑

k=0

1

2k!

1

(2m− 2k)!

∑

r≥0

1

(2r)!

1

2m− 2k + 2r + 1
c(k, r,m)





2

.

Note that either l1 + l2 ≥ 1 or l1 + l4 ≥ 1 (this is true because m ≥ 1). Then this
term is at most of order of n−1.
Let us now look at the second part of the sum in (26). Suppose that in the
sets {u1, · · · , u2r}∩ {i1, · · · , i2k+1}, {i1, · · · , i2k+1} \ {u1, · · · , u2r}, {u1, · · · , u2r} \
{i1, · · · , i2k+1}, {i2k+2, · · · , i2m−2k}\{u1, · · · , u2r}, {u1, · · · , u2r}\{i2k+2, · · · , i2m−2k}
we have sequences with lengths

p1, p2, p3, p4, p5

respectively (the analogous of l1, · · · , l5 above). Then the behavior with respect to
n of

n
∑

u1,··· ,u2r=1

au1,u2,··· ,u2r ,i1,··· ,i2k+1
au1,u2,··· ,u2r ,i2k+2,··· ,i2m

is of order of np1+p3 1
n2p1+p3+p4

. Therefore the behavior with respect to n of the
second sum in (26) is of order

np2+1+p4+1

(

1

n1 + 2p1 + p2 + p4

)2

=
1

n2p1+p2+p4
.

Again, since either p1 + p2 ≥ 1 or p1 + p4 ≥ 1, the behavior of the term is at most
of order n−1. Therefore

E
(

(

〈DFn, D(−L)−1Fn〉 − 1
)2
)

≤ c0

n

where the constant c0 is given by (25). The fact that the sum over m is finite is
a consequence of the following argument: 〈DFn, D(−L)−1Fn〉 belongs to D

∞,2(Ω)
(which is true based on the derivation rule - Exercise 1.2.13 in [11]- and since
Fn belongs to D

∞,2 as a consequence of Proposition 1.2.3 in [11]), this implies

that
∑

mm!mk‖h(n)m ‖22 <∞ for every k where h
(n)
m is given by (24). Therefore, the

constant c(m, k, r) defined in (28) behaves at most as a power function with respect
to m. �

Corollary 1. Let Jm(Fn) denotes the projection on the mth Wiener chaos of the
random variable Fn. Then for every m ≥ 1 the sequence Jm(Fn) converges as
n→ ∞ to a standard normal random variable.

Proof: The proof is a consequence of the proof of Theorem 4. �
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