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Abstract

In this paper, we describe a high-order cell-centered finite volume method for solving anisotropic
diffusion on two-dimensional unstructured grids. The resulting numerical scheme, named CCLAD
(Cell-Centered LAgrangian Diffusion), is characterized by a local stencil and cell-centered un-
knowns. It is devoted to the resolution of diffusion equation on distorted grids in the context of
Lagrangian hydrodynamics wherein a strong coupling occurs between gas dynamics and diffusion.
The space discretization relies on the introduction of two half-edge normal fluxes and two half-edge
temperatures per cell interface using the partition of each cell into sub-cells. For each cell, the two
half-edge normal fluxes attached to a node are expressed in terms of the half-edge temperatures
impinging at this node and the cell-centered temperature. This local flux approximation can be
derived through the use of either a sub-cell variational formulation or a finite difference approx-
imation, leading to the two variants CCLADS and CCLADNS. The elimination of the half-edge
temperatures is performed locally at each node by solving a small linear system which is obtained
by enforcing the continuity condition of the normal heat flux across sub-cell interface impinging at
the node. The accuracy and the robustness of the present scheme is assessed by means of various
numerical test cases.

Key words: Anisotropic diffusion, isotropic diffusion, cell-centered scheme, high-order finite
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1. Introduction

We present a finite volume scheme to solve diffusion equations on two-dimensional unstructured
grids. This scheme is the extension to anisotropic diffusion of the work initially described in [9]. In
deriving this numerical method, we aim at developing numerical modeling of physical phenomena
encountered in plasma physics. More precisely, we are concerned by heat transfer within laser-
heated plasma flows such as those obtained in the domain of direct drive Inertial Confinement
Fusion [7]. Let us emphasize that for such flows, the heat conduction equation is strongly coupled
to the gas dynamics equations describing the plasma motion. These latter equations, otherwise
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Breil)

Preprint submitted to Journal of Computational Physics May 8, 2011



called Lagrangian hydrodynamics equations, are solved employing a Lagrangian numerical method
wherein the computational grid is moving with the fluid. In addition, the thermodynamic variables,
that is, the density, the pressure, the specific internal energy and the temperature are located at
the cell center, refer to [34, 33, 32]. Bearing in mind this coupling between Lagrangian hydrody-
namics and diffusion, leads to the following requirements concerning the diffusion scheme under
consideration:

• It should be a finite volume scheme wherein the primary unknown, i.e., the temperature, is
located at the cell center.

• It should be sufficiently accurate and robust scheme to handle highly distorted grids which
result from the fluid motion.

The present work aims at describing a finite volume scheme which fulfils the previous requirements.
On that account, we denominate it using the acronym CCLAD which stands for Cell-Centered
LAgrangian Diffusion. Before describing the main features of CCLAD scheme, let us briefly give
an overview of the existing cell-centered diffusion schemes.

It is well known, see [16], that the standard finite volume algorithms, such as the five-point
scheme, behave poorly on highly skewed quadrilateral grids. In this situation, the five-point scheme
produces a numerical solution wherein the diffusion front is aligned with the grid distortions. This
undesirable behavior is due to the crude finite difference approximation used for discretization of
the face fluxes.

Kershaw, in his pioneering work [22] has proposed a nine-point scheme on structured quadri-
lateral grids, which partially resolves the above mentioned difficulties. His scheme consists of a
cell-centered variational method based on a smooth mapping between the logical mesh coordinates
and the spatial coordinates. This algorithm reduces to the classical five-point scheme on an orthog-
onal grid. In addition, it leads to a diffusion matrix, which is symmetric positive definite. Although
this method is restricted to structured quadrilateral grids, it has been successfully used in many
Lagrangian codes devoted to the numerical simulation of Inertial Confinement Fusion, see for in-
stance [37]. Note that Kershaw’s scheme has been recently extended to unstructured grids [46] and
to anisotropic diffusion [45]. However, the underlying assumption of a smooth mapping used by
Kershaw is too restrictive. As it has been shown in [35], a mesh refinement with Kershaw’s scheme
does not give a convergent solution unless the mesh becomes smooth as it is refined. Moreover, it
appears that the normal flux continuity across cell interfaces is not ensured.

These drawbacks have motivated the work of Morel and his co-authors. In [35] they developed
a cell-centered diffusion scheme, which treats rigorously material discontinuities and gives a second
order accuracy regardless of the smoothness of the mesh. However, this scheme has two disadvan-
tages: there are cell-edge unknowns in addition to the cell-centered unknowns and the diffusion
matrix is asymmetric.

A significant improvement was provided by Shashkov and Steinberg. In [52], [51] they derived an
algorithm using the Support Operators Method (SOM), also named mimetic finite difference method.
This method, see [50], constructs discrete analogs of the divergence and flux operators that satisfy
discrete analogs of important integral identities relating the continuum operators. By this way, the
discrete flux operator is the negative adjoint of the discrete divergence in an inner scalar product
weighted by the inverse conductivity. This SOM diffusion scheme gives the second order accuracy
on both smooth and non smooth meshes either with or without material discontinuities. It has
a non local stencil and a dense symmetric positive definite matrix representation for the diffusion
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operators. The introduction of both cell-centered and face-centered unknowns in [36] leads to a
variant of this scheme, which has a local stencil. Many extensions of this algorithm have been
recently developed. One can find in [21, 24, 26, 18, 27], developments that take into account non-
isotropic materials, polygonal and non-conformal meshes, and also polyhedral meshes. This method
has been also recently applied to solve the three-dimensional diffusion equation in multi-material
domains containing mixed cells [17].

In [38], the authors present mimetic preconditioners for mixed discretizations of the diffusion
equation. In this paper, SOM is used with two fluxes per edge in order to construct the local
flux discretization. Recently, Lipnikov, Shashkov and Yotov developed a local flux mimetic finite
difference method in [29, 30], which is very similar to our derivation. They also use two degrees
of freedom per edge to approximate the flux. They obtained a symmetric, cell-centered finite
difference scheme. Moreover, they demonstrated theoretically the second-order convergence for the
temperature in the case of simplicial meshes.

In [3],[4] and [2] Aavatsmark and co-authors have proposed an alternative approach named
Multi-Point Flux Approximation (MPFA). There, the flux is approximated by a multi-point flux
expression based on transmissibility coefficients. These coefficients are computed using continuity of
the flux and the temperature across the cell interfaces. This method has only cell-centered unknowns
and a local stencil. In [23], Klausen and Russel present the relationships between the Mixed
Finite Element Method (MFEM), the Control Volume Mixed Finite Element Method (CVMFEM),
the SOM and the MPFA. The latter can be applied in the physical space to quadrilateral and
to unstructured grids. For quadrilaterals, which are not parallelograms the MPFA provides a
second order scheme [5] but the diffusion matrix is non-symmetric. In [6], the authors develop a
MPFA method for quadrilateral grids in the reference space and its relationship to the MFEM.
This approach yields a system of equations with a symmetric matrix. It shows a second-order
convergence on smooth distorted grids. However for rough grids the reference space method suffers
from a reduction or loss of convergence.

The relation between the finite volume and the MFEM is also studied by Thomas and Trujillo
in [54]. These authors use a sub-triangulation, identical to the one used in the present paper.
They are also able to eliminate auxiliary unknowns. However, the degrees of freedom for the scalar
unknown are located on the vertices of the mesh.

Another class of finite volumes schemes for solving anisotropic diffusion equations on two and
three-dimensional unstructured grids has been developed by Hermeline [19, 20]. This type of
scheme, termed as Discrete Duality Finite Volume (DDFV) scheme, also arises from the construc-
tion of discrete analogs of the divergence and flux operators which fulfil the discrete counterpart of
vector calculus identities. However, this method requires to solve the diffusion equation not only
over the primal grid but also over a dual grid. Namely, there are both cell-centered and vertex
centered unknowns. Compared to a classical cell-centered finite volume scheme, the DDFV method
necessitates twice as much degrees of freedom over quadrangular grids. Let us point out that this
method might be difficult to use in the context of the coupling between Lagrangian hydrodynamics
and diffusion.

We also mention the papers [11] and [15] where local expressions for the diffusion flux has been
derived in the context of finite volume scheme for the diffusion equation. In the same framework,
Le Potier has derived a local flux approximation in [42] and [40] which is very similar to the MPFA
symmetric method and to our method.
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We conclude this non-exhaustive review by quoting recent works concerning the development of
monotone finite volume methods for diffusion equation which preserve the positivity of the solution.
It is well known that high-order linear methods, such as the multi-point flux approximation, mixed
finite element and mimetic finite difference methods, are not monotone on strongly anisotropic
meshes or for diffusion problems with strongly anisotropic coefficients. On the other hand, the
finite volume method with linear two-point flux approximation is monotone but not even first-
order accurate in these cases. This flaw has been corrected by constructing monotone finite volume
schemes wherein the discretization is based on a non-linear two-point flux approximation [41, 28, 31].
The drawback of these methods lies in the fact that they require the solution of a global non-linear
problem by means of an iterative procedure such as a fixed point algorithm, even in the case of a
linear diffusion equation.

Finally, it seems that the diffusion scheme derived from the SOM has the best combination of
ideal properties of any previous finite-difference scheme. The only drawback lies in the fact that
there are both cell-centered and face-centered unknowns. For instance, using a bi-dimensional com-
putational domain D paved with CD triangular (quadrangular) cells one has asymptotically 2.5CD

(3CD) unknowns. In addition, the treatment of the supplementary face-centered unknowns leads
to a more complicated algorithm than usual when coupling the diffusion scheme to hydrodynamics.

This disadvantage has motivated us to propose the CCLAD scheme, which retains as well as
possible the good properties of the SOM diffusion scheme.

The main feature of CCLAD scheme lies in the introduction of two half-edge normal fluxes and
two half-edge temperatures per edge. For each cell, the two half-edge normal fluxes impinging on a
node are expressed in terms of the two-half edge temperatures and the cell-centered temperature.
This discretization of the half-edge fluxes is derived using either a local variational formulation
written for each cell corner or a finite difference approximation based on a Taylor expansion. The
former numerical expression leads to the version of CCLAD scheme denoted CCLADS whereas
the latter numerical expression yields the version called CCLADNS. For both versions, the half-
edge temperatures are eliminated locally by invoking the continuity of the temperature and the
normal flux across each edge. This elimination procedure of the half-edge temperatures in terms
of the cell-centered temperature is achieved by solving a cyclic tridiagonal linear system at each
node. Collecting the contribution of each node allows to construct easily the global sparse diffusion
matrix. Let us emphasize that the node-based construction of CCLAD scheme is particularly well
adapted to cope with unstructured grids and also provide a natural treatment of the boundary
conditions. In summary, CLADD scheme, in its two versions CCLADS and CCLADNS, has the
following properties.

• It is characterized by cell-centered unknowns and a local stencil on two-dimensional unstruc-
tured grids; it reduces to a nine-point scheme on quadrangular distorted grids.

• For rectangular grids, in the case of isotropic diffusion, it reduces to the standard five-point
scheme and the treatment of discontinuous conductivity coefficients is equivalent to the well
known harmonic averaging procedure.

In addition, since CCLADS construction is based on a local variational formulation, it provides a
positive definite (resp. symmetric) representation of the discrete diffusion operator if the conduc-
tivity tensor is positive definite (resp. symmetric). In its semi-discrete version, this scheme satisfies
a L2 stability property. For triangular grids, it preserves linear solutions and it is characterized by a
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second-order accuracy. For smooth distorted quadrangular grids it exhibits an accuracy which is al-
most second-order. On the other hand, CCLADNS does not lead in general to a symmetric positive
definite discrete diffusion operator even if the conductivity tensor is symmetric positive definite.
Its semi-discrete version does not satisfy a L2 stability property. However, since the numerical flux
approximation is based on a Taylor expansion, it is characterized by a second-order accuracy on
general unstructured grids. It is interesting to note that CCLADS scheme, like the MPFA reference
space method [6] suffers from a reduction or the loss of convergence on quadrangular random grids
i.e., the grids with perturbations of order h, where h is the mesh size parameter. However, such
grids are seldom encountered in real life simulations wherein the numerical method solving the
diffusion equation is coupled to Lagrangian hydrodynamics. Moreover, let us point out that in the
context of Arbitrary Lagrangian Eulerian (ALE) computations, the rezoning procedure inherent
to the ALE algorithm produces smooth grid for which our scheme exhibits an almost second-order
convergence.

The remainder of this paper is organized as follows. In Section 2 we first give the problem
statement introducing the governing equations, the notation and assumptions and our motivation
regarding the underlying physical model, which is strongly linked to plasma physics. This is followed
by Section 3 which is devoted to the space discretization of CCLADS scheme. In this section, we
derive the half-edge fluxes approximation by means of a sub-cell-based variational formulation. We
also describe the elimination of the half-edge temperatures in terms of the cell-centered unknowns to
achieve the construction of the global discrete diffusion operator. After stating the main properties
of the semi-discrete scheme, we conclude this section by giving indications related to boundary
conditions implementation. In Section 4 we present the space discretization of CCLADNS scheme
wherein the half-edge fluxes approximation results from a finite difference approximation. We
pursue in Section 5 by describing the extension of CCLAD scheme to cylindrical geometry. The
time discretization is developed in Section 6. Finally, the robustness and the accuracy of CCLADS
and CCLADNS schemes are assessed using various representative test cases in Section 7.

2. Problem statement

2.1. Governing equations

Let D be an open set of the d-dimensional space IRd, occupied by a thermally and possibly
electrically conductive material. Let x denotes the vector position of an arbitrary point inside the
domain D and t > 0 the time. The unsteady thermal state of the domain under consideration is
described by means of the specific internal energy field ε = ε(x, t). In the absence of fluid motion,
heat propagation throughout the domain is governed by a partial differential equation, which is
known as the heat conduction equation and writes as

ρ
∂ε

∂t
+∇ · q = ρr. (1)

Here, ρ is a positive real valued function, which stands for the mass density of the material. The
source term, r, corresponds to the specific heat supplied to the material. Specific internal energy is
expressed in terms of the mass density and the temperature, T , through the use of an equation of
state written under the form ε = ε(ρ, T ). Introducing the specific heat capacity at constant volume
Cv = ( ∂ε

∂T
)ρ leads to rewrite the heat conduction equation as

ρCv
∂T

∂t
+∇ · q = ρr. (2)
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In writing this equation, we have assumed that either ε does not depend on density or ρ does
not depend on time. Let us note that Cv is a positive real valued function, it is also an intrinsic
material properties which may depend on temperature. In the sequel, we assume that ρ, Cv, and
r are known functions. The vector valued function, q, stands for the heat flux. It is expressed in
terms of the temperature gradient by means of the generalized Fourier law

q = −K∇T.

The second-order tensor K is the conductivity tensor which is also an intrinsic property of the
material under consideration. Let us point out that this representation for the flux based on the
linear relation between the flux and the temperature gradient fails if the particle mean free path
becomes comparable to the temperature scale length. This occurs very often in laser driven plasma
flows. There more complicated models are employed related either to local flux limitation (flux
limiters) or to the non-local relation between the flux and the temperature gradient, refer to [7].
In the sequel, we will study uniquely classical heat transfer phenomena wherein the heat flux is
described using the above Fourier law.

According to the Second Law of thermodynamics, Fourier law has to obey the constraint

q ·∇T ≤ 0. (3)

This requirement on the constitutive law of the heat flux simply states that heat flux direction is
opposite to temperature gradient, that is, heat flows from hot region to cold region. Mathematically
speaking, this thermodynamic constraint amounts to state that the conductivity tensor is a positive
definite tensor

Kφ · φ > 0, ∀φ ∈ IRd. (4)

Depending on the material under consideration, the conductivity tensor may be either symmetric,
i.e., Kt = K or may satisfy K(−B) = Kt(B) if the material is in the magnetic field B, [13]. For an
isotropic material, heat flux does not depend on the space directions and thus conductivity tensor
reduces to

K = κ Id, (5)

where κ denotes the heat conductivity, which is a positive scalar valued function and Id denotes
the unit tensor.

Being given the material properties, ρ, C,K and the heat supply r, we want to solve the heat
conduction equation (2) on the computational domain D. To do so, we need to define initial and
boundary conditions. The initial condition is prescribed as

T (x, 0) = T 0(x), ∀x ∈ IRd, (6)

where T 0 denotes the initial temperature field. Regarding the boundary conditions, three types can
be imposed on the boundary of the domain, ∂D. These are: Dirichlet, Neumann and Robin bound-
ary conditions, they consists in specifying respectively the temperature, the flux and a weighted
combination of the temperature and the flux. Introduction of the partition ∂D = ∂DD∪∂DN ∪∂DR

of the boundary domain, allows to write the boundary conditions as

T (x, t) = T ⋆(x, t), ∀x ∈ ∂DD, (7a)

q(x, t) · n = q⋆N (x, t), ∀x ∈ ∂DN , (7b)

αT (x, t) + βq(x, t) · n = q⋆R(x, t), ∀x ∈ ∂DR. (7c)
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Here, T ⋆, q⋆N and q⋆R denote respectively the prescribed temperature and fluxes. In addition,
α = α(x, t) and β = β(x, t) are real valued specified functions.

Comment 1. Let us remark that the normal component of the heat flux at the interface between
two media 1 and 2 with different properties is continuous,

(K∇T )1 · n12 = (K∇T )2 · n12,

where n12 is the unit normal to the interface. The temperature itself is also continuous.

2.2. Underlying physical models

In deriving a numerical method to solve the heat conduction equation (2), we aim at developing
numerical modeling of physical phenomena encountered in plasma physics. More precisely, we are
concerned by heat transfer within laser-heated plasma flows such as those obtained in the domain
of direct drive Inertial Confinement Fusion, refer to [7]. In this context, the energy released by the
laser is transferred throughout the plasma flows by means of electron heat conduction. Omitting the
pressure work term, which results from coupling to hydrodynamics, the electron temperature, Te,
is governed by a heat conduction equation similar to (2). In the classical regime, the electron heat
flux, qe is given by the Spitzer-Härm law: qe = −κe∇Te, where the electron thermal conductivity,

κe, depends on the electron temperature as a power law, i.e., κe(Te) ∼ T
5

2
e , refer to [12, 56]. This

corresponds to an isotropic nonlinear heat conduction equation. However, in presence of magnetic
fields, this isotropic model for heat conduction is not valid anymore. Such a situation occurs
frequently for laser driven plasma wherein the density and pressure gradients are not colinear. In
this particular case, a self-generated magnetic field, B, is created by the rotational component
of the ambipolar electric field, E = − 1

eNe
∇Pe, where e is the electron charge, Ne is the electron

density per unit volume and Pe is the electron pressure, refer to [12]. Knowing that the magnetic
field is governed by the Faraday law, i.e., ∂B

∂t
+∇×E = 0, we deduce that the time evolution of

the magnetic field is governed by the following equation

∂B

∂t
=

1

e
∇(

1

Ne
)×∇Pe. (8)

The magnetic field dramatically modifies electron heat transport leading to a anisotropic electron
conductivity. It implies not only a reduction of the magnitude of the heat flux but also its rotation.
Using plasma kinetic theory, Braginskii [8] has obtained the following expression of the electron
heat flux with magnetic field

qe = −κ‖(∇Te · b)b− κ⊥[∇Te − (∇Te · b)b]− κ∧b×∇Te, (9)

where b = B
|B| is unit vector corresponding to the direction of the magnetic field and κ‖, κ⊥ and

κ∧ are scalar conductivities given in [8]. Let us consider a two-dimensional plasma flow in planar
geometry. Let (ex, ey, ez) be the orthonormal basis of IR3 and suppose that the two-dimensional
flow is contained in the frame (x, y) equipped with the orthonormal basis (ex, ey). By virtue of (8),
it is obvious that the self-generated magnetic field is transverse to the two-dimensional flow, that
is, B = Bez. Setting b = B

|B| , we have b = bez, where b
2 = 1. Bearing this in mind, the electron

heat flux expression (9) collapses to

qe = −κ⊥∇Te − κ∧b×∇Te. (10)
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Figure 1: Normalized Braginskii transport coefficients κ⊥ and κ∧ versus normalized parameter Ωeτei.

Developing the above equation over the Cartesian frame (x, y) allows to write the electronic heat
flux

qe = −Ke∇Te, (11)

where the second-order tensor Ke corresponds to the electronic conductivity defined by

Ke =

(
κ⊥ −bκ∧
bκ∧ κ⊥

)
. (12)

The Braginskii transport coefficients κ‖, κ⊥ and κ∧ can be expressed in terms of the Spitzer-Härm
conductivity, κe, as

κ‖ = κe, κ⊥ = κef⊥(Ωeτei), κ∧ = κef∧(Ωeτei),

where f⊥, f∧ are the functions describing the magnetization of the heat flux. In addition, Ωe ∼| B |,
is the electron cyclotron frequency and τei the electron-ion collision frequency. Note that Ωe has the
dimension of the reciprocal of time, thus parameter Ωeτei is dimensionless; it describes the effect of
the magnetic field on the electron heat conductivity as a ratio between the electron gyration time
in the magnetic field and the electron collision time. Bearing this in mind we have displayed in
Figure 1 the normalized Braginskii transport coefficients with respect to the normalized parameter
Ωeτei knowing that f⊥(x) =

1
1+x2 , f∧(x) =

x
1+x2 . For a weak magnetic field, that is, Ωeτei ∈ [0, 1],

we have κ⊥ > κ∧, whereas for a strong magnetic filed κ⊥ < κ∧. In the limit | B |→ 0, the
normalized parameter Ωeτei also tends to zero and the Braginskii coefficients behave as follows:
κ⊥ → κe and κ∧ → 0. In this regime, the anisotropic conductivity tensor Ke recovers the isotropic
Spitzer-Härm conductivity, i.e., Ke → κeI2.

We conclude this section by remarking that Ke is not symmetric and transforms as Ke(−b) =
Kt
e(b). This non-symmetry of the conductivity tensor is a consequence of the presence of the

magnetic field, this behavior is known as the Righi-Leduc effect, refer to [13] chapter XI. It rotates
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the heat flux vector without changing its absolute value. This property corresponds to the following
result: for all arbitrary vector φ

Keφ · φ = κ⊥ | φ |2 .

Since κ⊥ is positive, the above result shows that Ke is a positive definite tensor which satisfies the
thermodynamic requirement (4). It is interesting to note that for an arbitrary vector φ, Keφ can
be decomposed as follows

Keφ = κ⊥φ+ bκ∧Rπ
2
φ, (13)

where Rπ
2
denotes the counterclockwise rotation through the angle π

2 . The above equation states
that the anisotropic conductivity tensor acts as an isotropic conductivity tensor supplemented by
a rotation tensor which follows directly from the magnetic field. Finally, computing the divergence
of the anisotropic heat flux (10) yields

∇ · qe = −∇ · (κ⊥∇Te) +A ·∇Te, (14)

where A = [− ∂
∂y
(bκ∧),

∂
∂x
(bκ∧)]

t. Under this form the anisotropic diffusion operator appears as
the sum of an isotropic diffusion operator plus an advection operator characterized by the velocity-
like vector A. This decomposition suggests to solve the anisotropic heat conduction equation
discretizing separately the isotropic diffusion operator and the advection operator. However, such
a splitting strategy may suffer from a lack of robustness in case of strong magnetic fields, refer to
[48]. That is why, we prefer to develop a computational method devoted to the discretization of
the whole anisotropic diffusion operator. This computational method, which will be presented in
the sequel, is the natural extension to anisotropic heat conduction of the finite volume scheme that
has been initially derived in [9].

2.3. Notation and assumptions

Our motivation is to describe a finite volume scheme that solves the anisotropic heat conduction
equation on two-dimensional unstructured grids. Before we proceed any further, let us introduce
the notation and the assumptions required for the present work. Let D be an open set of the
two-dimensional space IR2. We aim at constructing a numerical scheme to solve the following
initial-boundary-value problem

ρCv
∂T

∂t
+∇ · q = ρr, (x, t) ∈ D × [0,T], (15a)

T (x, t) = T 0(x), x ∈ D, (15b)

T (x, t) = T ⋆(x, t), x ∈ ∂DD, (15c)

q(x, t) · n = q⋆N (x, t), x ∈ ∂DN , (15d)

where T > 0 denotes the final time. Equation (15a) is a partial differential parabolic equation of
second order for the temperature T , wherein the conductive flux, q, is defined according to

q = −K∇T. (16)

We suppose that the second-order tensor K is positive definite to ensure thermodynamic consistency.
In addition, we make the assumption that there exists h > 0 such that

Kφ · φ ≥ h | φ |2, ∀φ ∈ D. (17)
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Figure 2: Notation related to polygonal cell ωc and one of its sub-cell ωpc.

This condition states that the diffusion operator in (15a) is strongly elliptic [39], this ensures the
well-posedness of problem (15) by means of the Lax-Milgram theorem [44].

Having defined the problem we want to solve, let us introduce some notation necessary to
develop the discretization scheme. Let ∪cωc denotes a partition of the computational domain D
into polygonal cells ωc. The counterclockwise ordered list of vertices (points) of cell c is denoted
by P(c). In addition, p being a generic point, we define its position vector denoted as xp and the
set C(p) which contains all the cells surrounding point p. Being given p ∈ P(c), p− and p+ are
the previous and next points with respect to p in the ordered list of vertices of cell c. Let ωc be
a generic polygonal cell, for each vertex p ∈ P(c), we define the sub-cell ωpc by connecting the
centroid of ωc to the midpoints of edges [p−, p] and [p, p+] impinging at node p, refer to Figure 2.
In two dimensions the sub-cell, as just defined, is always a quadrilateral regardless of the type of
cells that compose the underlying grid. The boundaries of the cell ωc and the sub-cell ωpc are
denoted respectively ∂ωc and ∂ωpc. Finally, considering the intersection between the cell and sub-
cell boundaries, we introduce half-edge geometric data. As the name implies, a half-edge is a half
of an edge and is constructed by splitting an edge down its length. More precisely, we define the
two half-edges related to point p and cell c as ∂ω−

pc = ∂ωpc ∩ [p−, p] and ∂ω+
pc = ∂ωpc ∩ [p, p+]. The

unit outward normal and the length related to half-edge ∂ω±
pc are denoted respectively n±

pc and l
±
pc.

To proceed with the construction of numerical scheme, let us integrate (15a) over ωc and make
use of the divergence formula. This leads to the weak form of the heat conduction equation

d

dt

∫

ωc

ρCvT (x, t) dv +

∫

∂ωc

q · n ds =

∫

ωc

ρr(x, t)dv, (18)

where n denotes the unit outward normal to ∂ωc. We shall first discretize this equation in the
spatial variable x. The physical data, ρ, Cv and r are supposed to be known functions with respect
to space and time variables. We represent them using a piecewise constant approximation over
each cell ωc. The piecewise constant approximation of any variable will be denoted using subscript
c. The tensor conductivity K space approximation is also constructed using a piecewise constant
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representation over each cell, which is denoted by Kc. Concerning the unknown temperature field,
the discretization method we are going to use is the finite volume method for which the finite
dimensional space to which the approximate solution belongs is also the space of piecewise constant
functions. Bearing this in mind, (18) rewrites

mcCvc
d

dt
Tc +

∫

∂ωc

q · n ds = mcrc, (19)

Here, mc denotes the mass of the cell, that is, mc = ρc | ωc | where | ωc | stands for the volume of
the cell. Let us point out that Tc = Tc(t) is nothing but the mean value of the temperature over ωc

Tc(t) =
1

| ωc |

∫

ωc

T (x, t) dv.

To define completely the space discretization it remains to discretize the surface integral in the
above equation. To do so, let us introduce the following piecewise constant approximation of the
normal heat flux over each half-edge

q±pc =
1

l±pc

∫

∂ω±
pc

q · n ds. (20)

The scalar q±pc stands for the half-edge normal flux related to the half-edge ∂ω±
pc. Knowing that

∂ωc = ∪p∈P(c)∂ω
±
pc, the discretized heat conduction equation writes as

mcCvc
d

dt
Tc +

∑

p∈P(c)

l−pcq
−
pc + l+pcq

+
pc = mcrc. (21)

We conclude this paragraph by introducing as auxiliary unknowns the half-edge temperatures T±
pc

defined by

T±
pc =

1

l±pc

∫

∂ω±
pc

T (x, t) ds. (22)

In writing this equation, we have also assumed a piecewise constant approximation of the temper-
ature field over each half-edge.

By virtue of Comment 1, the piecewise constant approximations of the normal

heat flux and temperature along each edge are defined such that these half-edge-

based quantities are continuous across each edge. To exhibit these continuity conditions, let
us consider two neighboring cells, denoted by subscripts c and d, which share a given edge, refer to
Figure 3. This edge corresponds to the segment [p, p+], where p and p+ are two consecutive points
in the counterclockwise numbering attached to cell c. It also corresponds to the segment [r−, r],
where r− and r are two consecutive points in the counterclockwise numbering attached to cell d.
Obviously, these four labels define the same edge and thus their corresponding points coincide, i.e.,
p ≡ r, p+ ≡ r−. The sub-cell of cell c attached to point p ≡ r is denoted ωpc, whereas the sub-cell
of cell d attached to point r ≡ p is denoted ωrd. This double notation, in spite of its heaviness,
allows to define precisely the half-edge fluxes and temperatures at the half-edge corresponding to
the intersection of the two previous sub-cells. Namely, viewed from sub-cell ωpc (resp. ωrd), the
half-edge flux and temperature are denoted q+pc and T+

pc (resp. q−rd and T−
rd). Bearing this notation

11



T+
pc = T−

rd

ωpc

p−

n−
pc

r+

p+ = r−

q+pc + q−
rd

= 0

ωrd

p = r

n+
rd

n+
pcn−

rd

T+
rd

q−pc

T−
pc

q+
rd

Tc

ωc Td

ωd

Figure 3: Continuity conditions for the half-edges fluxes and temperatures at a half-edge shared by two sub-cells
attached to the same point. Labels c and d denote the indices of two neighboring cells. Labels p and r denote the
indices of the same point relatively to the local numbering of points in cell c and d. The neighboring sub-cells are
denoted by ωpc and ωrd. The half-edge fluxes, q±pc, q

±

rd and temperatures, T±
cp, T

±

rd are displayed using blue color.

in mind, continuity conditions at the half-edge (ωpc∪ωrd) for the half-edge fluxes and temperatures
write explicitly as

q+pc + q−rd = 0, (23a)

T+
pc = T−

rd. (23b)

The continuity condition for the heat flux follows from the definition of the unit outward normals
related to (ωpc ∪ ωrd), i.e., n

+
pc = −n−

rd.
To achieve the space discretization of (21), it remains to construct a consistent approximation

of the half-edge normal flux, that is, to define a numeric half-edge-based flux function h±pc such that

q−pc = h−pc(T
−
pc − Tc, T

+
pc − Tc), q+pc = h+pc(T

−
pc − Tc, T

+
pc − Tc). (24)

Here, h±pc denotes a real valued function which is continuous with respect to its arguments. Let us
note that we have expressed this function in terms of the temperature difference Tc − T±

pc since the
heat flux is proportional to the temperature gradient. The next steps in the design of our finite
volume scheme will be the following:

• Definition of an approximation of the half-edge numerical fluxes in terms of the half-edge
temperatures and the cell-centered temperature.

• Elimination of the half-edge temperatures through the use of the continuity condition (23)
across sub-cell interface.

These tasks will be the main topics of the next sections.

3. Space discretization of the CCLADS scheme

In this section, we present the space discretization of the CCLADS scheme, wherein the half-edge
fluxes approximation results from a local variational formulation. Before proceeding any further,
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we start by giving a useful and classical result concerning the representation of a vector in terms
of its normal components. This result leads to the expression of the standart inner product of two
vectors, which will be one the tools utilized to derive the sub-cell variational formulation.

3.1. Expression of a vector in terms of its normal components

Here, we recall briefly the methodology which has been thoroughly exposed by Shashkov in
[50, 36]. Let φ be an arbitrary vector of the two-dimensional space IR2 and φpc its piecewise
constant approximation over the sub-cell ωpc. Let φ

±
pc be the half-edge normal components of φpc,

that is,

φpc · n
−
pc = φ−pc,

φpc · n
+
pc = φ+pc.

Introducing the corner matrix Jpc = [n−
pc,n

+
pc], the above 2× 2 linear system rewrites

J
t
pcφ =

(
φ−pc
φ+pc

)
,

where superscript t denotes the transpose matrix. Provided that n−
pc and n

+
pc are not colinear, the

above system has always a unique solution written under the form

φpc = J
−t
pc

(
φ−pc
φ+pc

)
. (25)

This equation allows to express any vector in terms of its normal components on two non-colinear
unit vectors. This representation allows to compute the inner product of two vectors φpc and ψpc

as follows

φpc ·ψpc = (JtpcJpc)
−1

(
ψ−
pc

ψ+
pc

)
·

(
φ−pc
φ+pc

)
. (26)

The 2× 2 matrix Hpc = JtpcJpc is defined by

Hpc =

(
n−
pc · n

−
pc n−

pc · n
+
pc

n+
pc · n

−
pc n+

pc · n
+
pc

)
=

(
1 − cos θpc

− cos θpc 1

)
, (27)

where θpc denotes the measure of the angle between the two half-edges of sub-cell ωpc impinging
at point p, refer to Figure 4. This matrix admits an inverse provided that θpc 6= kπ, where k is an
integer. Under this condition, H−1

pc is readily obtained

H
−1
pc =

1

sin2 θpc

(
1 cos θpc

cos θpc 1

)
.

This matrix, which is symmetric definite positive, represents the local metric tensor associated to
the sub-cell ωpc. Let us remark that we have recovered exactly the expressions initially derived in
[36].
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3.2. Half-edge fluxes approximation based on a local variational formulation

3.2.1. Sub-cell-based variational formulation

We construct an approximation of the half-edge fluxes by means of a local variational formula-
tion written over the sub-cell ωpc. Contrary to the classical cell-based variational formulation used
in the context of Mimetic Finite Difference Method [21], the present sub-cell-based variational for-
mulation leads to a local explicit expression of the half-edges fluxes in terms of the half-edges
temperatures and the mean cell temperature. The local and explicit feature of the half-edge fluxes
expression is of great importance, since it allows to construct a numerical scheme with only one
unknown per cell.

Our starting point to derive the sub-cell-based variational formulation consists in writing the
partial differential equation satisfied by the flux. From the heat flux definition (16), it follows that
q satisfies

K
−1q +∇T = 0. (28)

Let us point out that the present approach is stronlgy linked to the mixed formulation utilized in
the context of mixed finite element discretization [54, 6, 29]. Dot-multiplying this equation by an
arbitrary vector φ ∈ D and integrating over the cell ωpc yields

∫

ωpc

φ · K−1q dv = −

∫

ωpc

φ ·∇T dv, ∀φ ∈ D. (29)

Integrating by part the right-hand side and applying the divergence formula leads to the following
variational formulation

∫

ωpc

φ · K−1q dv =

∫

ωpc

T∇ · φ dv −

∫

∂ωpc

Tφ · n ds, ∀φ ∈ D. (30)

This sub-cell-based variational formulation is the base to construct a local and explicit numerical
approximation of the half-edge fluxes. Replacing T by its piecewise constant approximation Tc
in the first integral of the right-hand side and applying the divergence formula to the remaining
volume integrals leads to

∫

ωpc

φ · K−1q dv = Tc

∫

∂ωpc

φ · n ds−

∫

∂ωpc

Tφ · n ds.

Partitioning the sub-cell boundary as ∂ωpc = (∂ωpc∩∂ωc)∪ (∂ωpc∩ωc) in the latter equation yields
∫

ωpc

φ ·K−1q dv = Tc

∫

∂ωpc∩∂ωc

φ ·n ds+Tc

∫

∂ωpc∩ωc

φ ·n ds−

∫

∂ωpc∩∂ωc

Tφ ·n ds−

∫

∂ωpc∩ωc

Tφ ·n ds.

Replacing T by Tc in the fourth surface integral of the right-hand side and noticing that the second
integral is equal to the last one allows to write the sub-cell-based variational formulation under the
form ∫

ωpc

φ · K−1q dv = Tc

∫

∂ωpc∩∂ωc

φ · n ds−

∫

∂ωpc∩∂ωc

Tφ · n ds. (31)

At this point it is interesting to remark that this sub-cell-based formulation is a sufficient condition
to recover the classical cell-based variational formulation. Since the set of sub-cells of ωc is a
partition of this cell, we have

ωc =
⋃

p∈P(c)

ωpc, ∂ωc =
⋃

p∈P(c)

(∂ωpc ∩ ∂ωc).
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q+pc

T+
pc

p

Tc

ωpc

n−
pc

n+
pc

p+

T−
pcq−pc

ωc

θpc

p−

Figure 4: Fragment of a polygonal cell ωc. Notation for the sub-cell ωpc: The half-edge fluxes, q±pc, and temperatures,
T±
pc are displayed using blue color.

Thus, by summing (31) over all the sub-cells of ωc, we obtain

∫

ωc

φ · K−1q dv = Tc

∫

∂ωc

φ · n ds−

∫

∂ωc

Tφ · n ds. (32)

This last equation corresponds to cell-based variational formulation of the partial differential equa-
tion (28). This form is used in the context of Mimetic Finite Difference Method [21] to obtain a
discretization of the heat flux. More precisely, it leads to a | P(c) | × | P(c) | linear system satisfied
by the edge-based normal components of the heat flux. This results in a non explicit expression of
the edge-based normal components of the flux with respect to the edge-based temperatures and the
mean cell temperature, which leads to a finite volume discretization characterized by edge-based
and cell-based unknowns. In contrast to this approach, the sub-cell based variational formulation
(31) yields a finite-volume discretization with one unknown per cell.

Returning to the sub-cell based variational formulation, we discretize the right-hand side of (31)
by introducing the half-edge normal components of φ and the piecewise constant approximation of
the half-edge temperatures as follows

∫

ωpc

φ · K−1q dv = −[l−pc(T
−
pc − Tc)φ

−
pc + l+pc(T

+
pc − Tc)φ

+
pc]. (33)

Assuming a piecewise constant representation of the test function allows to compute the volume
integral in the left-hand side thanks to the quadrature rule

∫

ωpc

φ · K−1q dv = wpcφpc · K
−1
c qpc, (34)

Here, Kc denotes the piecewise constant approximation of the conductivity tensor and φpc, qpc
are the piecewise constant approximations of vectors φ and q, refer to Figure 4. In addition, wpc
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denotes some positive corner volume related to sub-cell ωpc, which will be determined later. Note
that the corner volumes associated to the same cell ωc must satisfy the consistency condition

∑

p∈P(c)

wpc =| ωc | . (35)

Namely, the corner volumes of a cell sums to the volume of the cell. This is the minimal requirement
to ensure that constant functions are exactly integrated using the above quadrature rule. Now,
combining (34) and (33) and using the expression of the vectors q and φ in terms of their half-edge
normal components leads to the following variational formulation

wpc(J
t
pcKcJpc)

−1

(
q−pc
q+pc

)
·

(
φ−pc
φ+pc

)
= −

[
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

]
·

(
φ−pc
φ+pc

)
. (36)

Knowing that this variational formulation must hold for any vector φpc, this implies

(
q−pc
q+pc

)
= −

1

wpc
(JtpcKcJpc)

[
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

]
. (37)

This equation constitutes the approximation of the half-edge normal fluxes over a sub-cell. This
local approximation is coherent with expression of the constitutive law (16) in the sense that the
numerical approximation of the heat flux is equal to a tensor times a numerical approximation of
the temperature gradient. This tensor can be viewed as an effective conductivity tensor associated
to the sub-cell ωpc. Thus, it is natural to set

Kpc = J
t
pcKcJpc. (38)

Let us emphasize that this corner tensor inherits all the properties of the conductivity tensor Kc.
Namely, Kc being positive definite, Kpc is also positive definite. This comes from the fact that

Kpcφ · φ = Kc(Jpcφ) · (Jpcφ), ∀φ ∈ IR2.

Using a similar argument, note that if Kc is symmetric, Kpc is also symmetric. Recalling that
Jpc = [n−

pc,n
+
pc], we readily obtain the expression of the corner tensor Kpc in terms of the unit

normal n±
pc

Kpc =

(
Kcn

−
pc · n

−
pc Kcn

+
pc · n

−
pc

Kcn
−
pc · n

+
pc Kcn

+
pc · n

+
pc

)
. (39)

Let us remark that in the isotropic case, i.e, Kc = κcId, the corner tensor collapses to

Kpc = κcHpc, (40)

where κc denotes the piecewise constant scalar conductivity over cell ωc and Hpc is the second-order
tensor defined by (27).

We conclude by claiming that a sub-cell-based variational formulation has allowed to construct
the following numerical approximation of the half-edge normal fluxes

(
q−pc
q+pc

)
= −

1

wpc
Kpc

[
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

]
. (41)

Here, wpc is a positive volume weight, which will be determined later, and the corner conductivity
tensor, Kpc is expressed by (39).
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Comment 2. It is interesting to remark that the corner tensor Kpc is a linear function with respect
to the piecewise constant approximation of the conductivity tensor Kc. This follows directly from
(38). In addition, the corner tensor corresponding to the transpose of Kc is the transpose of Kpc,
i.e., Kpc(K

t
c) = Kt

pc(Kc).

3.2.2. Fundamental inequality satisfied by the discrete approximation of the half-edge fluxes

The goal of this paragraph is to show that the discrete approximation of the half-edges normal
fluxes (41) derived from the sub-cell-based variational formulation satisfies a discrete version of the
fundamental inequality (3), which follows from the Second Law of thermodynamics. This discrete
analogous of the fundamental inequality states that for half-edge fluxes defined according to (41)
the following inequality holds ∑

c∈C(p)

(l−pcq
−
pc + l+pcq

+
pc)Tc ≥ 0, (42)

where C(p) denotes the set of cells surrounding point p. To prove this inequality, let us introduce
Ip as being the nodal quantity defined by

Ip =
∑

c∈C(p)

(l−pcq
−
pc + l+pcq

+
pc)Tc. (43)

We shall prove that Ip is always non-negative using the sub-cell variational formulation derived in
Section 3.2. From (36) it follows that for all vector φ the following identity holds

wpcK
−1
pc

(
q−pc
q+pc

)
·

(
φ−pc
φ+pc

)
= −

[
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

]
·

(
φ−pc
φ+pc

)
,

where wpc is the positive volume weight and Kpc the definite positive corner conductivity tensor.
Applying this identity for φ = q and rearranging the right hand-side yields

wpcK
−1
pc

(
q−pc
q+pc

)
·

(
q−pc
q+pc

)
= (l−pcq

−
pc + l+pcq

+
pc)Tc − (l−pcq

−
pcT

−
pc + l+pcq

+
pcT

+
pc).

We notice that the left-hand side of the above equation is always non-negative since Kpc is positive
definite. Summing the above equation over all the cells surrounding point p leads to

∑

c∈P(c)

wpcK
−1
pc

(
q−pc
q+pc

)
·

(
q−pc
q+pc

)
=
∑

c∈P(c)

(l−pcq
−
pc + l+pcq

+
pc)Tc −

∑

c∈P(c)

(l−pcq
−
pcT

−
pc + l+pcq

+
pcT

+
pc). (44)

It is interesting to mention that the above equation is the discrete analogous of the following integral
identity

−

∫

ωp

∇T · q dv =

∫

ωp

T∇ · q dv −

∫

∂ωp

Tq · n ds, (45)

where ωp denotes the dual cell which results from the union of the sub-cells surrounding point p,
i.e., ωp =

⋃
c∈C(p) ωpc. Returning to (44), we observe that the second term in the right-hand side

vanishes due to the continuity condition of the fluxes at the half-edges impinging at point p, refer
to (23a). Finally, (44) turns to

Ip =
∑

c∈C(p)

wpcK
−1
pc

(
q−pc
q+pc

)
·

(
q−pc
q+pc

)
≥ 0. (46)
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Figure 5: Notation for a triangular cell. Half-edge degrees of freedom are displayed in blue color.

Let us emphasize that inequality (42) follows directly from the fact that we have used a variational
formulation to derive the numerical approximation of the flux. This inequality will be of great
importance to prove several crucial results regarding the properties of the finite volume scheme
CCLADS.

3.2.3. Volume weight computation

In this paragraph, we aim at deriving practical formulas to compute the volume weight, wpc,
present in the flux approximation (41). To begin with, let us consider a triangular cell, ωc, char-
acterized by its counterclockwise ordered vertices p−, p and p+, refer to Figure 5. We state that

the flux approximation (41) preserves linear fields over triangular cells provided that

the volume weight is such that

wtri
pc =

1

3
| ωc | . (47)

To prove this result, let us consider Th = Th(x) a piecewise linear approximation of the temperature
field, i.e.,

Th(x) = Tc + (∇T )c · (x− xc), ∀x ∈ ωc. (48)

Here, xc =
1
3(xp− +xp+xp+) is the centroid of ωc and Tc = Th(xc) denotes the mean temperature

of the cell. In addition, (∇T )c corresponds to the uniform temperature gradient of the cell. Using
the piecewise constant approximation of the conductivity tensor, Kc, this gradient is rewritten
(∇T )c = −K−1

c qc, where qc is the piecewise constant approximation of the flux. With this notation,
(48) transforms into

Th(x) = Tc − K
−1
c qc · (x− xc), ∀x ∈ ωc. (49)

Expressing the two vectors qc and (x−xc) in terms of their half-edge normal components by means
of (25) yields

Th(x) = Tc − K
−1
pc

(
q−pc
q+pc

)
·

[
(x− xc)

−
pc

(x− xc)
+
pc

]
, ∀x ∈ ωc, (50)
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where Kpc = JtpcKcJpc. Since this equation holds for all points in ωc, we apply it to x−
pc and x+

pc

given by

x−
pc =

2xp + xp−

3
, x+

pc =
2xp + xp+

3
. (51)

This results in

Th(x
±
pc)− Tc = −K

−1
pc

(
q−pc
q+pc

)
·

[
(x±

pc − xc)
−
pc

(x±
pc − xc)

+
pc

]
.

Knowing that

x−
pc − xc =

1

3
(xp − xp+) = −

2

3
l+pct

+
pc,

x+
pc − xc =

1

3
(xp − xp−) =

2

3
l−pct

−
pc,

where t±pc are the half-edge unit tangent vectors such that n±
pc × t

±
pc = ez, refer to Figure 5, using

t−pc · n
+
pc = sin θpc and t

+
pc · n

−
pc = − sin θpc leads to

Th(x
−
pc)− Tc = −

2

3
l+pc sin θpcK

−1
pc

(
q−pc
q+pc

)
·

(
1
0

)
,

Th(x
+
pc)− Tc = −

2

3
l−pc sin θpcK

−1
pc

(
q−pc
q+pc

)
·

(
0
1

)
.

Rearranging the above equations allows to express the half-edge normal components of the flux as
(
q−pc
q+pc

)
= −

3

2l−pcl
+
pc sin θpc

Kpc

[
l−pc(Th(x

−
pc)− Tc)

l+pc(Th(x
+
pc)− Tc)

]
. (52)

In writing this equation we have obtained an expression of the half-edge fluxes which is exact for
a linear approximation of the temperature field over a triangular cell. The comparison between
this formula and the general formula obtained previously shows that the volume weight is given
by wpc = 2

3 l
−
pcl

+
pc sin θpc, which is nothing but one third of the cell volume. In addition, this

comparison reveals that the piecewise constant half-edge approximations of the temperature have
a clear geometrical interpretation since T±

pc = Th(x
±
pc), refer to Figure 5.

Having defined the volume weight for triangular cells, we conclude this paragraph by giving
some indications about the volume weight definition for other types of cells. For quadrangular
cells, according to [21], a reasonable choice is to set

wquad
pc = l−pcl

+
pc sin θpc. (53)

This results in a corner volume equal to the half of the area of the triangle formed by points p−,
p and p+, refer to Fig 5. Unfortunately this choice does not allow to preserve linear solution on
quadrangular grids, except on grids made of parallelograms, refer to Comment 7. However, the
numerical results obtained on quadrangular grids with this choice appeared to be quite satisfactory
as we shall see in the section devoted to the numerical results. For general polygonal cells, two
possible choices are obtained setting

wpoly1
pc =

1

| P(c) |
| ωc |, (54a)

wpoly2
pc =| ωpc |, (54b)

where | P(c) | is the total number of sub-cells in cell c.
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Figure 6: Notation for sub-cells surrounding point p.

Comment 3. Let us point out that all these volume weights must be positive and consequently
they have been defined assuming that we are dealing with valid cells, that it, is convex cells. The
occurence of non-convex cells can be treated using the rough remedy which consists in replacing the
original volume weight by its absolute value.

3.3. Elimination of the half-edge temperatures

From (41), it appears that the numerical approximation of the half-edge fluxes at a corner
depends on the difference between the mean cell temperature and the half-edges temperatures. The
mean cell temperature is the primary unknown whereas the half-edge temperatures are auxiliary
unknowns, which can be eliminated by means of continuity argument (23a). Namely, we use the fact
that the half-edge normal fluxes are continuous across each half-edges impinging at a given point.
This local elimination procedure, which will be describe below, yields a linear system satisfied
by the half-edge temperatures. We will show that this system admits always a unique solution
which allows to express the half-edge temperatures in terms of the mean temperatures of the cells
surrounding the point under consideration. Therefore, this local elimination procedure results in a
finite volume discrete scheme with one unknown per cell.

3.3.1. Local notation around a point

To derive the local elimination procedure, we shall introduce some convenient notation. Let
p denotes a generic point which is not located on the boundary ∂D. The treatment of boundary
points is postponed to Section 3.6, which is devoted to boundary conditions implementation. Let
C(p) be the set of cells that surround point p. The edges impinging at point p are labelled using the
subscript c ranging from 1 to Cp, where Cp denotes the total number of cells surrounding point p.
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The cell (sub-cell) numbering follows the edge numbering, that is, cell ωc (sub-cell ωpc) is located
between edges c and c+1, refer to Figure 6. The unit outward normal to cell ωc at edge c is denoted
by nc

c whereas the unit outward normal to cell ωc at edge c+ 1 is denoted by nc+1
c . Assuming the

continuity of the half-edge temperatures leads to denote by T c the unique half-edge temperature of
the half-edge c impinging at point p. Note that we have omitted the dependency on point p in the
indexing each time this is possible to avoid too heavy notion. With this notation, the expression
of the half-edge fluxes (41) turns into

(
qcc
qcc+1

)
= −

1

wpc
Kpc

[
lc(T c − Tc)

lc+1(T c+1 − Tc)

]
, ∀c ∈ C(p). (55)

Here, qcc (resp. qcc+1) denotes the half-edge normal flux at edge c (resp. c + 1) viewed from cell
c. In addition lc denotes the half of the length of edge c. In writing these equations, we assume
a periodic numbering around the point p. According to (39), the sub-cell conductivity tensor is
defined as

Kpc =

(
Kcn

c
c · n

c
c Kcn

c
c+1 · n

c
c

Kcn
c
c · n

c
c+1 Kcn

c
c+1 · n

c
c+1

)
, ∀c ∈ C(p), (56)

where Kc is the piecewise constant approximation of the conductivity tensor in cell c. Combining
(55) and (56) yields the explicit expressions

qcc = −αc[lc(Kcn
c
c · n

c
c)(T c − Tc) + lc+1(Kcn

c
c+1 · n

c
c)(T c+1 − Tc)], (57a)

qcc+1 = −αc[lc(Kcn
c
c · n

c
c+1)(T c − Tc) + lc+1(Kcn

c
c+1 · n

c
c+1)(T c+1 − Tc)], (57b)

where we have introduced the inverse of the volume weight setting αc =
1

wpc
. Shifting index c, i.e.,

c→ c− 1, in (57b) leads to the following expression for the half-edge normal flux at edge c viewed
from cell c− 1

qc−1
c = −αc−1[lc−1(Kc−1n

c−1
c−1 · n

c−1
c )(T c−1 − Tc−1) + lc(Kc−1n

c−1
c · nc−1

c )(T c − Tc−1)]. (58)

3.3.2. Linear system satisfied by the half-edge temperatures

Bearing this in mind, we are now in position to proceed with the elimination of the half-edge
temperatures by writing the continuity of the half-edge normal fluxes at each edge c. This continuity
condition at edge c reads as

lcq
c−1
c + lcq

c
c = 0, ∀c ∈ C(p). (59)

Let us remark that this continuity condition provides Cp equations for the Cp auxiliary unknowns
T c. Substituting (58) and (57a) into the continuity condition yields

αc−1lc−1lc(Kc−1n
c−1
c−1 · n

c−1
c )T c−1+

[αc−1l
2
c (Kc−1n

c−1
c · nc−1

c ) + αcl
2
c (Kcn

c
c · n

c
c)]T c+

αclclc+1(Kcn
c
c+1 · n

c
c)T c+1 =

αc−1lc[lc−1(Kc−1n
c−1
c−1 · n

c−1
c ) + lc(Kc−1n

c−1
c · nc−1

c )]Tc−1+

αclc[lc(Kcn
c
c · n

c
c) + lc+1(Kcn

c
c+1 · n

c
c)]Tc.

To write this equation under a more concise form, let us introduce T = (T1, . . . , TCp
)t as the vector

of the cell-centered temperatures around point p and T = (T 1, . . . , T Cp
)t as the vector of the half-

edge temperatures around point p. The continuity condition (59) amounts to write that T satisfies
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the following Cp × Cp linear system
MT = ST . (60)

Let us remark that M is a tridiagonal cyclic matrix. This cyclic form is natural consequence of
the periodic numbering we have used in solving continuity equations (59). The non-zero terms
corresponding to the cth row of this matrix write as





Mc,c−1 = αc−1lc−1lc(Kc−1n
c−1
c−1 · n

c−1
c ),

Mc,c = αc−1l
2
c (Kc−1n

c−1
c · nc−1

c ) + αcl
2
c (Kcn

c
c · n

c
c),

Mc,c+1 = αclclc+1(Kcn
c
c+1 · n

c
c).

(61)

From the first equation it follows that

Mc+1,c = αclclc+1(Kcn
c
c · n

c
c+1).

The comparison of this term with Mc,c+1 shows that M is symmetric if and only if the conductivity
tensor, Kc is also symmetric. Regarding S, it is a bidiagonal cyclic matrix, the non-zero terms
corresponding to the cth row are:

{
Sc,c−1 = αc−1lc[lc−1(Kc−1n

c−1
c−1 · n

c−1
c ) + lc(Kc−1n

c−1
c · nc−1

c )],

Sc,c = αclc[lc(Kcn
c
c · n

c
c) + lc+1(Kcn

c
c+1 · n

c
c)].

(62)

We remark that M can be decomposed as

M = LNL. (63)

Here, L is the diagonal matrix defined by Lc,d = lcδc,d, where δc,d denotes the Kronecker symbol,
i.e., δc,d = 1 if c = d and δc,d = 0 if c 6= d. Matrix N is also a tridiagonal cyclic matrix and its
non-zero components read as

Nc,c−1 = αc−1(Kc−1n
c−1
c−1 · n

c−1
c ),

Nc,c = αc−1(Kc−1n
c−1
c · nc−1

c ) + αc(Kcn
c
c · n

c
c),

Nc,c+1 = αc(Kcn
c
c+1 · n

c
c).

Let us write this matrix explicitly in the particular case Cp = 4, which corresponds to a point
surrounding by 4 cells

N =




α4(K4n
4
1
·n4

1
)+α1(K1n

1
1
·n1

1
) α1(K1n

1
2
·n1

1
) 0 α4(K4n

4
4
·n4

1
)

α1(K1n
1
1
·n1

2
) α1(K1n

1
2
·n1

2
)+α2(K2n

2
2
·n2

2
) α2(K2n

2
3
·n2

2
) 0

0 α2(K2n
2
2
·n2

3
) α2(K2n

2
3
·n2

3
)+α3(K3n

3
3
·n3

3
) α3(K3n

3
4
·n3

3
)

α4(K4n
4
1
·n4

4
) 0 α3(K3n

3
3
·n3

4
) α3(K3n

3
4
·n3

4
)+α4(K4n

4
4
·n4

4
)


 .

A closer inspection of the above matrix reveals an interesting block-structure. Namely, N can be
decomposed as

N =
4∑

c=1

αcNc,

where Nc are 4× 4 sparse matrices which read

N1 =




K1n
1
1 · n

1
1 K1n

1
2 · n

1
1 0 0

K1n
1
1 · n

1
2 K1n

1
2 · n

1
2 0 0

0 0 0 0
0 0 0 0


 , N2 =




0 0 0 0
0 K2n

2
2 · n

2
2 K2n

2
3 · n

2
2 0

0 K2n
2
2 · n

2
3 K2n

2
3 · n

2
3 0

0 0 0 0


 ,
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N3 =




0 0 0 0
0 0 0 0
0 0 K3n

3
3 · n

3
3 K3n

3
4 · n

3
3

0 0 K3n
3
3 · n

3
4 K3n

3
4 · n

3
4


 , N4 =




K4n
4
1 · n

4
1 0 0 K4n

4
4 · n

4
1

0 0 0 0
0 0 0 0

K4n
4
1 · n

4
4 0 0 K4n

4
4 · n

4
4


 .

This decomposition extends readily to the general case as

N =

Cp∑

c=1

αcNc, (64)

where Nc is the Cp × Cp defined by

Nc =




0 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · Kcn
c
c · n

c
c Kcn

c
c+1 · n

c
c . . . 0

0 · · · Kcn
c
c · n

c
c+1 Kcn

c
c+1 · n

c
c+1 . . . 0

...
...

...
. . .

...
0 · · · 0 0 · · · 0




. (65)

The non-zero terms of this matrix consist of 2 × 2 block which is located at the intersection of
the cth and c + 1th columns and rows. In addition, this 2 × 2 block coincides with the sub-cell
conductivity matrix Kpc defined by (56).

Bearing this decomposition in mind, we claim that M is a positive definite matrix, that is,

MT · T > 0, ∀T ∈ IRCp . (66)

To prove this fundamental result we proceed in two steps. First, we note that M is positive definite
if and only if N is positive definite. This first result follows from

MT · T =(LNL)T · T , thanks to (63)

=L[(NL)T ] · T

=N(LT ) · (LT ),

since L is symmetric, i.e., Lt = L. Second, we prove that N is positive definite by computing NT ·T
using the decomposition (64)

NT · T =

Cp∑

c=1

αcNcT · T

=

Cp∑

c=1

αcKpc

(
T c

T c+1

)
·

(
T c

T c+1

)
.

Since αc is positive and Kpc is positive definite, the right-hand side of the last equation is always
positive, which ends the proof. This shows that matrix M inherits the properties of the corner
conductivity matrix Kpc which results from the discretization of the half-edge normal fluxes. Par-
ticularly, M is symmetric provided that Kpc is also symmetric. This properties transfer from Kpc to
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M also emphasizes that the first step in the numerical scheme derivation, i.e., the half-edge normal
fluxes discretization, must be performed with great care. We state that the linear system (60)
has always a unique solution which provides the half-edge temperatures in terms of

the mean cell temperatures surrounding a given point p

T = (M−1
S)T , (67)

where the matrices M and S are defined respectively by (61) and (62). The solution of the corre-
sponding tridiagonal cyclic system is easily obtained by using the numerical algorithm proposed in
[43].

Comment 4. It is important to note that the solution of the linear system (67) has to preserve
uniform temperatures field. Thus, matrix M−1S satisfies the following property

(M−1
S)1Cp

= 1Cp
, (68)

where 1Cp
∈ IRCp is vector whose all entries are equal to 1. This means that 1Cp

is the eigenvector
of M−1S associated to the eigenvalue 1.

It is interesting to mention that matrices M et S exhibit a linear dependency on the conductivity
tensor K. This result is a direct consequence of the definitions (61) and (62). In addition, the matrix
M associated to the transpose of K corresponds to the transpose of the matrix M associated to K,
i.e.,

M(Kt
1, . . . , λK

t
Cp
) = M

t(K1, . . . ,KCp
). (69)

By way of contrast, the matrix S associated to the transpose of K does not correspond the transpose
of the matrix S associated to K since S is a bidiagonal matrix. In this case, we need to introduce
the new matrix S̃ defined as

S̃(K1, . . . ,KCp
) = S(Kt

1, . . . , λK
t
Cp
). (70)

From this definition and (61), the non-zero entries of S̃ write explicitly

{
S̃c,c−1 = αc−1lc[lc−1(Kc−1n

c−1
c · nc−1

c−1) + lc(Kc−1n
c−1
c · nc−1

c )],

S̃c,c = αclc[lc(Kcn
c
c · n

c
c) + lc+1(Kcn

c
c · n

c
c+1)].

(71)

Here, we have used the fact that Kt
cn ·m = Kcm ·n for all vectors (n,m) ∈ IR2 × IR2. Note that

S̃ = S if and only if the conductivity tensor is symmetric.

3.3.3. Maximum principle for the half-edge temperatures in the case of a symmetric positive definite
conductivity tensor

In this paragraph, we aim at deriving sufficient conditions such that the half-edges temperatures
satisfy a maximum principle, in the case of a symmetric positive definite conductivity tensor. More
precisely, suppose that the mean cell temperatures are such that 0 < Tc ≤ Θ for all c ∈ C(p), we
want to exhibit conditions related to matrices M and S so that the half-edge temperatures satisfy
also 0 < T c ≤ Θ for all c ∈ C(p), where Θ > 0 is a given temperature. To derive these sufficient
conditions, we need to introduce the notion of M-matrix. Following the definition of [55], a real
matrix A with non-positive off-diagonal entries is an M-matrix if A is non-singular and the entries of

24



A−1 are non-negative. A useful characterization of M-matrix is given by the following proposition:
if A is a symmetric positive definite matrix with non-positive off-diagonal entries, then it is an M-
matrix. This latter kind of matrix is sometimes called Stieltjes matrix [55]. Bearing this in mind,
we are going to find a sufficient condition to ensure that M is an M-matrix. First, let us point out
that M is symmetric definite positive since by assumption the conductivity tensor, Kc, is symmetric
definite positive. Thus, observing the off-diagonal entries of M given by (61), a sufficient condition
to ensure that M is an M-matrix consists in prescribing

(Kcn
c
c+1 · n

c
c) ≤ 0, ∀c ∈ C(p). (72)

Since Kc is symmetric positive definite, Schwartz inequality leads to

| (Kcn
c
c+1 · n

c
c) |

(Kcn
c
c+1 · n

c
c+1)

1

2 (Kcnc
c · n

c
c)

1

2

≤ 1.

Hence, there exists a unique νc ∈ [0, π] such that

cos νc = −
(Kcn

c
c+1 · n

c
c)

(Kcn
c
c+1 · n

c
c+1)

1

2 (Kcnc
c · n

c
c)

1

2

, ∀c ∈ C(p). (73)

Defining the symmetric positive definite tensor Uc as being the square root of Kc, i.e., Kc = U2
c ,

the angle νc rewrites as

cos νc = −
(Ucn

c
c+1 · Ucn

c
c)

(Ucn
c
c+1 · Ucn

c
c+1)

1

2 (Ucnc
c · Ucnc

c)
1

2

, ∀c ∈ C(p).

This shows that π − νc is the measure of the angle between the vectors Ucn
c
c+1 and Ucn

c
c, which

are the images of the unit normal vectors nc
c+1 and nc

c in the transformation associated to the
local metric defined by tensor Kc. With this notation, sufficient condition (72), turns into the more
explicit form

νc ∈ [−
π

2
,
π

2
], ∀c ∈ C(p). (74)

Assuming this condition, we have M
−1
c,d ≥ 0 for all (c, d) ∈ C2(p). Recalling that T = (M−1S)T ,

to ensure the maximum principle for T it remains to exhibit a sufficient condition such that the
entries of S are non-negative. Introducing the angle νc in the expressions of S entries (62), this
condition readily writes as

cos νc ≤ min(
lc

lc+1

(Kcn
c
c · n

c
c)

1

2

(Kcn
c
c+1 · n

c
c+1)

1

2

,
lc+1

lc

(Kcn
c
c+1 · n

c
c+1)

1

2

(Kcnc
c · n

c
c)

1

2

), ∀c ∈ C(p). (75)

This condition results in a limitation of the permitted values of νc, this limitation expressing in
terms of the cell aspect ratio with respect to the local metric defined by Kc.

Finally, we claim that the maximum principle for the half-edge temperatures holds provided
the sufficient conditions (74) and (75) are satisfied. Indeed, assuming (74) and (75) implies that
the entries of M−1S are non-negative. In addition, by virtue of Comment 68 we have

∑

d∈C(p)

(M−1S)c,d = 1, ∀c ∈ C(p).
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Thus, the entries of M−1S satisfy the following inequality

0 ≤ (M−1S)c,d ≤ 1, ∀(c, d) ∈ C(p)2.

Therefore, each component of T = M−1ST is a convex combination of the components of T since

T c =
∑

c∈C(p)

(M−1S)c,dTd.

Using the above arguments it is clear that if Td ∈ [0,Θ] then T c ∈ [0,Θ], which ends the proof.
We conclude by stating the following maximum principle for the half-edge temperatures: being

given a symmetric positive definite conductivity tensor and assuming that the following geometric
conditions hold for all c ∈ C(p)

νc ∈ [−
π

2
,
π

2
],

cos νc ≤ min(
lc

lc+1

(Kcn
c
c · n

c
c)

1

2

(Kcn
c
c+1 · n

c
c+1)

1

2

,
lc+1

lc

(Kcn
c
c+1 · n

c
c+1)

1

2

(Kcnc
c · n

c
c)

1

2

),

where νc is the angle defined by (73). If the mean cells temperature are such that Tc ∈ [0,Θ] for
all c ∈ C(p) then the half-edge temperatures satisfy T c ∈ [0,Θ] for all c ∈ C(p).

Let us notice that these geometric conditions are quite difficult to use since they also depend on
the local value of the conductivity tensor. We will see in the next paragraph that they are easier
to interpretate in the case of an isotropic conductivity.

3.3.4. The case of isotropic conductivity

It is interesting to investigate the particular case of an isotropic conductivity, i.e., Kc = κc Id,
where κc > 0 denotes the piecewise constant approximation of the scalar conductivity κ in cell c. If
θc denotes the measure of the angle between edges c and c+ 1 then nc

c ·n
c
c+1 = − cos θc. It follows

from (61) that the cth row of matrix M reduces to




Mc,c−1 = −αc−1κc−1lc−1lc cos θc−1,

Mc,c = αc−1κc−1l
2
c + αcκcl

2
c ,

Mc,c+1 = −αcκclclc+1 cos θc.

(76)

It turns out that M is a symmetric matrix. Using the result of the previous paragraphs, we know
that M is definite positive. However, it is quite instructive to demonstrate this directly. Recalling
that θc 6= kπ, where k is an integer, implies that Mc,c >| Mc,c−1 | + | Mc,c+1 | for all c ∈ C(p), thus
M is strictly diagonally dominant. Noticing that all the diagonal entries of M are positive real
numbers allows to claim that this matrix is nonsingular and all its eigenvalues are positive [55]. In
addition, the off-diagonal entries are negative provided that θc ∈ [−π

2 ,
π
2 ] for all c ∈ C(p). Namely,

M is an M-matrix provided that the previous angular condition holds. Let us note that we have
recovered the angular condition (74). Indeed by setting Kc = κc Id into the definition of νc (73), we
find that νc coincides with θc. Bearing this in mind, we deduce from the previous paragraph the
isotropic version of the maximum principle for the half-edge temperatures: under the geometric
conditions

∀c ∈ C(p),





θc ∈ [−
π

2
,
π

2
],

cos θc ≤ min(
lc+1

lc
,
lc

lc+1
),

(77)
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Figure 7: Limit angle θlimc versus sub-cell aspect ratio ζ = lc
lc+1

. The permitted angular domain to satisfy the

geometric condition (77) is the region located between the red and the blue curves.

if the mean cell temperatures are such that 0 < Tc ≤ Θ for all c ∈ C(p), then the half-edge
temperatures satisfy the inequality 0 < T c ≤ Θ, for all c ∈ C(p), where Θ > 0 is a given temperature.
Note the second condition ensure that the entries of S are non-negative. This condition could have
been obtained proceeding directly with S entries knowing that in the isotropic case they simply
write {

Sc,c−1 = αc−1κc−1lc(lc − lc−1 cos θc−1),

Sc,c = αcκclc(lc − lc+1 cos θc).
(78)

To investigate further the impact of the geometric conditions, being given the half-edge lengths lc
and lc+1, let us introduce the limit angle θlimc = arccos[min( lc+1

lc
, lc
lc+1

)]. Condition (77) is equivalent

to the requirement that θc ∈ [−π
2 ,−θ

lim
c ] ∪ [θlimc , π2 ]. In Figure 7, we have plotted the limit angle

variation in terms of the sub-cell aspect ratio ζ = lc
lc+1

. Note that we have only displayed the positive
value knowing that the negative value is obtained by symmetry about zero. The permitted values
of the sub-cell angle θc to ensure that the geometric conditions hold is the domain delimited at the
bottom by the curve θc = θlimc (ζ) and at the top by the straight line θc =

π
2 . This graph shows that

for moderate aspect ratios the geometric condition (77) is not too much restrictive. However, for
high aspect ratios, this conditions becomes very restrictive in the sense that the permitted angles
are closed to right angles.

Comment 5. We note that in the case of a rectangular grid, the present scheme recovers the well
known five-point scheme. In this case, each vertex of the grid is surrounded by four rectangular
grids, thus θc = π

2 for all c = 1 . . . 4. Defining the volume weights wpc according to (53) yields
αc =

1
lclc+1

. We obtain that M reduces to the diagonal matrix defined as

Mc,d = lc(
κc−1

lc−1
+

κc

lc+1
)δc,d.
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Regarding S, its cth row writes as

Sc,c−1 = lc
κc−1

lc−1
, Sc,c = lc

κc

lc+1
.

The half-edge temperatures are readily deduced from the solution of the diagonal 4×4 linear system
(60)

T c =

κc−1

lc−1
Tc−1 +

κc

lc+1
Tc

κc−1

lc−1
+ κc

lc+1

.

Substituting the above result in the half-edge flux expression (57a) leads to

qcc =
1

lc−1

κc−1
+ lc+1

κc

(Tc − Tc−1).

We have recovered the expression of the normal flux which corresponds to the classical five-point
scheme characterized by a weighted harmonic averaging of the scalar conductivity at the cell inter-
face.

3.4. Construction of the diffusion matrix

After having expressed the half-edge temperatures in terms of the mean cell temperatures, we
are now in position to achieve the construction of the scheme by gathering the previous results.

3.4.1. Local diffusion matrix at a generic point

We start by deriving the local diffusion matrix at a generic point p. To this end, we first recall
the semi-discrete scheme which has been obtained in Section 2.3

mcCvc
d

dt
Tc +

∑

p∈P(c)

l−pcq
−
pc + l+pcq

+
pc = mcrc.

In this equation, the half-edge fluxes (q−pc, q
+
pc) attached to sub-cell ωpc, express in terms of the half-

edge temperatures by means of (41). In addition, the half-edge temperatures express in terms of
the mean cell temperatures surrounding point p through the use of the solution of the linear system
(67). Therefore, to write the semi-discrete scheme in terms of the primary unknowns, that is, the
mean cell temperatures, it remains to substitute the expression of the half-edge temperatures in
terms of the mean cell temperatures into the half-edge normal fluxes. To perform this substitution,
it is convenient to define the contribution of the sub-cell ωpc to the diffusion flux as

Qpc = l−pcq
−
pc + l+pcq

+
pc. (79)

Using the local notation at point p introduced in Section 3.3, it turns out that Qpc rewrites as

Qpc = lcq
c
c + lc+1q

c
c+1.

Using the expression of the half-edge fluxes in terms of the half-edge temperatures (57) yields

Qpc =− αclc[lc(Kcn
c
c · n

c
c) + lc+1(Kcn

c
c · n

c
c+1)](T c − Tc) (80)

− αclc+1[lc(Kcn
c
c+1 · n

c
c) + lc+1(Kcn

c
c+1 · n

c
c+1)](T c+1 − Tc).
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Recalling the definition of the matrix S̃ from (71)

S̃c,c−1 = αc−1lc[lc−1(Kc−1n
c−1
c · nc−1

c−1) + lc(Kc−1n
c−1
c · nc−1

c )],

S̃c,c = αclc[lc(Kcn
c
c · n

c
c) + lc+1(Kcn

c
c · n

c
c+1)],

leads to recast (80) under the more compact form

Qpc = −S̃c,c(T c − Tc)− S̃c+1,c(T c+1 − Tc).

Due to the sparse structure of S̃, this last equation turns into

Qpc = −
∑

d∈C(p)

S̃
t
c,d(T d − Tc).

Finally, recalling that the vector of half-edge temperatures, T , is expressed in terms of the vector
of the mean cell temperatures, T , through the use of the solution of the linear system (67), i.e.,
T = (M−1S)T , allows to write Qpc as

Qpc = −
∑

d∈C(p)

Γ
p
c,d(Td − Tc). (81)

Here, Γp denotes the Cp × Cp matrix defined at point p by

Γ
p = S̃

t
M

−1
S. (82)

In deriving (81), we have used that
∑

d∈C(p) Γ
p
c,d =

∑
d∈C(p) S̃

t
c,d which follows from the fact that

1C(p) is the eigenvector of M−1S associated to the eigenvalue 1, refer to Comment 4. Let us note
that the entries of Γp have the physical dimension of a conductivity. Thus, Γp can be viewed as
the effective conductivity tensor at point p. More precisely, it follows from (81) that the entry
Γp
c,d stands for the effective conductivity between cells c and d through the point p. We claim

that the effective conductivity tensor at point p, Γp, is symmetric positive definite

provided that the physical conductivity tensor is symmetric positive definite. To prove
this, observe that

Γ
pT · T =(S̃tM−1

S)T · T

=M
−1(ST ) · (S̃T ).

Since Kc is symmetric positive definite, by virtue of (70) one deduces that S̃ = S, in addition M is
symmetric positive definite, which ends the proof.

In the general case, for which the physical conductivity tensor, Kc, is only positive definite,
we make the conjecture that Γp is also positive definite since we are not able to prove this result
directly.

Comment 6. We want to mention that in the case of a symmetric positive definite conductivity
tensor, under the geometrical conditions (74) and (75), the entries of the matrix Γp are non-
negative.
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3.4.2. The global diffusion matrix

Gathering the previous results, leads to write the finite volume semi-discrete scheme over cell c
as follows

mcCvc
d

dt
Tc −

∑

p∈P(c)

∑

d∈C(p)

Γ
p
c,d(Td − Tc) = mcrc, (83)

where Γp is the effective conductivity tensor defined at point p by (82). To put the above equation
under a more compact form, let us introduce the following global notation. Let T be the vector
of the cell averaged temperatures, that is, T = (T1, . . . TCD

)t, where CD denotes the total number
of cells covering the domain D. Let us denote by M and Cv the CD × CD diagonal matrices
whose entries are given by mcδc,d and Cvcδc,d. We also introduce R = (r1, . . . , rCD

)t as the source
term vector. Finally, let A be the CD × CD matrix which stands for the global diffusion matrix
associated to the above semi-discrete scheme. Observing (83), we readily deduce that its diagonal
and off-diagonal entries write as

Ac,c =
∑

p∈P(c)

∑

d∈C(p)

Γ
p
c,d, (84a)

Ac,d = −
∑

p∈P(c)

Γ
p
c,d. (84b)

Bearing this notation in mind, our semi-discrete finite volume scheme reads

MCv
dT

dt
+ AT = MR. (85)

This results in a differential system satisfied by the vector of the cell averaged temperatures. Note
that the above system has been derived without taking into account the boundary conditions.

In writing the entries of the global diffusion matrix, we have to pay attention to the fact that
indices in the left-hand side of (84) refer to the global numbering of the cells, whereas in the right-
hand side they refer to the local numbering of cells surrounding point p. In addition, index p refers
to the local numbering of points belonging to cell c.

Let us point out that the global diffusion matrix results in assembling the small1 node-based
Cp × Cp matrices Γp. This node-based underlying data structure allows to handle easily general
unstructured grids. However, the assembling of the global diffusion matrix requires the knowledge
of the local matrix Γp at each grid point p. This matrix is computed as Γp = S̃tM−1S where matrices
S̃, M and S are sparse Cp×Cp matrices explicitly given by formulas (71), (62) and (61). Within the
framework of a time-marching algorithm, these matrices have to be stored at the beginning of each
time step for each grid point. In addition, the computation of the inverse matrix M−1 is performed
using an efficient algorithm well adapted to cyclic tridiagonal matrices [43].

The stencil of the finite volume discretization (83) results directly from the structure of the
above diffusion matrix. Being given a point p, its surrounding cells c and d are connected through
point p by means of the diffusion exchange term Γp

c,d. Therefore, the stencil of cell c corresponds to
the set of neighboring cell d which shares a point with itself, refer to Figure 8. For a quadrangular
grid, this results in a nine-point scheme.

1For quadrangular grids, Cp = 4.
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Figure 8: Stencil of the finite volume scheme for a given cell ωc in a fragment of an unstructured grid. The degrees of
freedom are displayed using red squares. The blue arrow shows the diffusion flux exchange through point p between
cell c and d.

3.5. Properties of the semi-discrete scheme

In this section, we state two fundamental properties which characterize our semi-discrete finite
volume scheme. The first one concerns the positive semi-definiteness of matrix A and the second
one consists of the L2-stability of the semi-discrete scheme.

3.5.1. Positive semi-definiteness of the global diffusion matrix

We claim that the global diffusion matrix is positive semi-definite, that is,

AT · T ≥ 0, ∀T ∈ IRCD . (86)

Let us emphasize that this statement will be of fundamental importance to ensure the solvability
of the linear system associated to the time discretziation of (85). This result follows directly from
the discrete inequality (42) satisfied by the numerical approximation of the half-edge fluxes (41).
To prove (86), let us remark that the cth entry of vector AT writes as

(AT )c =
∑

p∈P(c)

(l−pcq
−
pc + l+pcq

+
pc).

Using the above equation allows to rewrite the left-hand side of (86) as

AT · T =

CD∑

c=1

∑

p∈P(c)

(l−pcq
−
pc + l+pcq

+
pc)Tc.

Now, switching round the order of summation in the right-hand side leads to

AT · T =

PD∑

p

∑

c∈C(p)

(l−pcq
−
pc + l+pcq

+
pc)Tc,

=

PD∑

p

Ip,
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where PD denotes the total number of points inside D and Ip is given by (43). By virtue of
(42), the nodal quantity Ip is non-negative, thus the right-hand side of the above equation is also
non-negative, which ends the proof.

We conclude this paragraph by claiming that the global diffusion matrix inherits some properties
of the small matrix Γp. Namely, if Γp is symmetric positive definite2, A is also symmetric positive
but only semi-definite since by construction for a given row, the diagonal entry is equal to the sum
of the off-diagonal entries, refer to (84). In addition, under the geometrical conditions (74) and
(75), the diagonal entries of A are non-negative whereas the off-diagonal entries are non-positive,
refer to Comment 6.

3.5.2. L2-stability of the semi-discrete scheme

In this section, we prove the stability of our semi-discrete finite volume scheme, in absence of
source term, i.e., r = 0, in the sense of the discrete weighted L2 norm defined as follows

‖T ‖2w2 =

CD∑

c

mcCvcT
2
c , (87)

where mc and Cvc denote the piecewise constant approximation over cell c of the mass and the
specific heat capacity, which are positive quantities. To study the L2 stability of the semi-discrete
scheme, we first recall that in absence of source term, vector T satisfies the following semi-discrete
system

MCv
dT

dt
+ AT = 0,

where M and Cv are the diagonal mass and heat capacity matrix. Dot-multiplying the above
equation by T yields

MCv
dT

dt
· T + AT · T = 0.

Knowing that A is positive semi-definite leads to

d

dt
(MCvT · T ) ≤ 0. (88)

In writing this equation, we have supposed that M and Cv does not depend on time. In addition,
we are ignoring the contribution of the boundary terms, assuming for instance periodic boundary
conditions. Using the definition (87) of the weighted L2 norm, the above equations rewrites as

d

dt
(
1

2
‖T ‖2w2) ≤ 0. (89)

This inequality ensures that the weighted L2 norm of the semi-discrete solution remains bounded by
the weighted L2 norm of the initial data, which corresponds to the L2-stability of our semi-discrete
finite volume scheme. This L2-stability is a direct consequence of the half-edge normal fluxes
construction through the use of the sub-cell variational formulation. Once more, this shows the
great importance of deriving the numerical approximation of the normal fluxes using a variational
formulation.

2This is precisely the case when the physical conductivity tensor is symmetric positive definite.
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Figure 9: Fragment of an unstructured grid in the vicinity of a boundary point where are imposed Neumann boundary
conditions. The prescribed fluxes, q⋆1 and q⋆Cp+1 are displayed using green color.

3.6. Boundary conditions implementation

This section describes indications related to boundary conditions implementation. Let us point
out that boundary conditions treatment relies on a straightforward extension of the half-edge
temperatures elimination procedure which has been developed in Section 3.3 for internal nodes. The
boundary conditions are prescribed at the two boundary half-edges connected to a point located
on the boundary, they will be either of Neumann type (prescribed normal flux) or of Dirichlet
type (prescribed temperature). Here, we are going to expose the main steps of the Neumann
boundary conditions discretization without going into the detail of the computations. Concerning
the Dirichlet boundary conditions discretization the interesting reader can refer to [9].

Let us consider a boundary node, p, which is surrounded by internal cells. As before, we denote
by Cp the number of cells surrounding point p. Note that the number of half-edges impinging on
point p is equal to Cp+1. The edges impinging at point p are labelled using the subscript c ranging
from 1 to Cp+1. The cell (sub-cell) numbering follows the edge numbering, that is, cell ωc (sub-cell
ωpc) is located between edges c and c + 1, refer to Figure 9. The unit outward normal to cell ωc

at edge c is denoted by nc
c whereas the unit outward normal to cell ωc at edge c+ 1 is denoted by

nc+1
c . The prescribed heat fluxes on the first and the last half-edge are denoted respectively by q⋆1

and q⋆
Cp+1. Let us recall that the half-edge fluxes corresponding to the internal edges are expressed

in terms of the half-edge and the mean cells temperatures using for c = 2, . . . ,Cp

{
qc−1
c = −αc−1[lc−1(Kc−1n

c−1
c−1 · n

c−1
c )(T c−1 − Tc−1) + lc(Kc−1n

c−1
c · nc−1

c )(T c − Tc−1)],

qcc = −αc[lc(Kcn
c
c · n

c
c)(T c − Tc) + lc+1(Kcn

c
c+1 · n

c
c)(T c+1 − Tc)].

(90)

Here, qcc (resp. qc−1
c ) denotes the half-edge normal flux at edge c viewed from cell c (resp. c −

1). In addition, T c is the temperature on the cth half-edge whereas Tc corresponds to the mean
temperature of cell c.

The elimination of the half-edge temperatures is obtained by writing the flux continuity con-
ditions (59) for all internal half-edges. This system of Cp − 1 equations is completed by the two
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boundary conditions for the first and last half-edges. Finally, this results in the following system

l1q
1
1 = l1q

⋆
1, (91a)

lcq
c−1
c + lcq

c
c = 0, for c = 2, . . . ,Cp, (91b)

lC+1q
C
C+1 = lC+1q

⋆
C+1. (91c)

Substituting (90) into (91b) leads to the following (Cp+1)× (Cp+1) linear system satisfied by the
Cp + 1 half-edges temperatures

MT = ST −B. (92)

Here, T ∈ IRCp+1 denotes the vector of half-edge temperatures whereas T ∈ IRCp is the vector of
cell centered temperatures. In addition, M and S are respectively a (Cp + 1)× (Cp + 1) tridiagonal
matrix and a (Cp+1)×Cp bidiagonal matrix. Their entries are computed developing (91). Bound-
ary conditions are taken into account by means of B ∈ IRCp+1 with B = (l1q

⋆
1, . . . , lCp+1q

⋆
Cp+1)

t.

Proceeding with the matrices M and S as before, one can show that (92) always admits a unique
solution. This allows to compute the contribution of the sub-cell ωpc to the diffusion flux as

Qpc = −
∑

d∈C(p)

Γ
p
c,d(Td − Tc) + (S̃M−1B)c. (93)

Here, Γp denotes the effective conductivity tensor at boundary point p, it is a Cp×Cp matrix defined
by Γp = S̃tM−1S, where the matrix S̃ is deduced from S by means of (70). From the above equation,
we collect the contributions to the entries of the global diffusion matrix, A, following

Ac,c =
∑

p∈P(c)

∑

d∈C(p)

Γ
p
c,d,

Ac,d = −
∑

p∈P(c)

Γ
p
c,d.

Having taken into account the boundary conditions, the semi-discrete finite volume scheme (85)
turns into

MCv
dT

dt
+ AT = MR+ S,

where S ∈ IRCD is the source term vector which represents the boundary conditions contribution.
According to (93), its cth entry reads as Sc = −(S̃M−1B)c.

We conclude by stating that using similar arguments to those employed in Section 3.5, it is
possible to show that matrix A is still positive semi-definite. Moreover, for homogeneous Neumann
boundary conditions, i.e., q⋆1 = q⋆

Cp+1 = 0, the L2-stability of the semi-discrete scheme still holds.

4. Space discretization of the CCLADNS scheme

Here, we describe briefly the space discretization of the CCLADNS scheme which is obtained
by employing a numerical expression of the half-edge normal fluxes resulting from a finite difference
approximation. Our main motivation is to derive a finite difference approximation of the half-edge
fluxes which preserves linear solutions regardless the shape of the cell. Doing so, we enforce the
accuracy of our space discretization. However, since this approximation does not result from a
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variational formulation, in general, we cannot insure the transfer of the good properties of the
conductivity tensor to the discrete approximation, i.e., its positive definiteness. For instance, it
will not be possible to ensure that the inequality (42) holds for a finite difference approximation of
the fluxes.

4.1. Half-edge fluxes expression by means of a finite difference approximation

Let ωc be an arbitrary cell and ωpc its sub-cell associated to point p. To define a finite differ-
ence approximation which is linear preserving, we reuse the piecewise linear approximation of the
temperature over ωc introduced in the latter paragraph as

Th(x) = Tc − K
−1
c qc · (x− xc), ∀x ∈ ωc.

Let us recall, that xc is the centroid of the cell, i.e., xc =
1

|ωc|

∫
ωc
x dv, and Tc is the cell averaged

temperature. In writing the above equation we have used the piecewise constant definition of
the heat flux, i.e., qc = −Kc(∇T )c. Let i± denotes the midpoint of the segment [p, p±] and
xi± its corresponding position vector. Assuming that the half-edge temperature T±

pc is given by
T±
pc = Th(xi±) leads to

T−
pc − Tc = −K

−1
c qc · (x

−
i − xc),

T+
pc − Tc = −K

−1
c qc · (x

+
i − xc).

(94)

Setting µ±
pc = x±

i − xc and using (25), we transform (94) by expressing the vectors qc and µ±
pc in

terms of their normal components

T−
pc − Tc = −K

−1
c J

−t
pc

(
q−pc
q+pc

)
· J−t

pc

(
µ−
pc · n

−
pc

µ−
pc · n

+
pc

)
,

T+
pc − Tc = −K

−1
c J

−t
pc

(
q−pc
q+pc

)
· J−t

pc

(
µ+
pc · n

−
pc

µ+
pc · n

+
pc

)
.

Introducing the sub-cell conductivity tensor Kpc defined by (38) and after some manipulations, the
above equation rewrites as

(
T−
pc − Tc
T+
pc − Tc

)
= −

(
µ−
pc · n

−
pc µ−

pc · n
+
pc

µ+
pc · n

−
pc µ+

pc · n
+
pc

)
K
−1
pc

(
q−pc
q+pc

)
.

The rows of the first matrix in the right-hand side corresponds to the half-edge normal components
of vectors µ−

pc and µ+
pc. This matrix is non-singular provided these two vectors are not colinear.

Assuming this and solving the above linear system leads to the final expression of the half-edge
normal fluxes (

q−pc
q+pc

)
= −

1

∆pc
Kpc

(
µ+
pc · n

+
pc −µ−

pc · n
+
pc

−µ+
pc · n

−
pc µ−

pc · n
−
pc

)(
T−
pc − Tc
T+
pc − Tc

)
, (95)

where ∆pc = (µ−
pc ·n

−
pc)(µ

+
pc ·n

+
pc)− (µ−

pc ·n
+
pc)(µ

+
pc ·n

−
pc) is the determinant of the matrix defined by

the normal components of µ±
pc. Equation (95) constitutes a finite difference approximation of the

half-edge normal fluxes which is linear preserving since it has been deduced from a piecewise linear
approximation of the temperature field. However, the matrix form of this approximation reveals
that the property transfer, which characterizes the flux approximation derived through the use of
variational formulation, does not hold here. This is due to the fact that the matrix defined by the
normal components of µ±

pc is not a symmetric positive definite matrix in general. Using such an
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approximation for the normal flux, leads to a finite volume discretization characterized in general
by a non-symmetric discrete diffusion operator, which renders the resolution of the corresponding
linear system less obvious. The main advantage in using this scheme lies in the fact that it preserves
linear solution regardless the shape of the cells.

Comment 7. It is interesting to investigate further the finite difference approximation (4) in the
case where ωpc is a parallelogram. In this particular case, we have µ−

pc = −l+pct
+
pc and µ+

pc = l−pct
−
pc

where t−pc and t
+
pc denote the unit tangent vectors to the two half-edges impinging at point p. Bearing

this in mind, we have µ−
pc · n

−
pc = −l+pc sin θpc and µ+

pc · n
+
pc = l−pc sin θpc. Using these results, the

finite difference approximation (4) turns into

(
q−pc
q+pc

)
= −

1

l−pcl
+
pc sin θpc

Kpc

(
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

)
. (96)

We have recovered a form which coincides with the one resulting from the variational formulation
(41). In addition, we can identify the volume weight as being wpc = l−pcl

+
pc sin θpc, which is exactly

the weight (53) introduced in Section 3.2.3. This shows, that the flux approximation resulting from
the sub-cell-based variational formulation, with the latter definition of the volume weight, is able to
preserve linear solution on quadrangular grids made of parallelograms.

4.2. Construction of the CCLADNS scheme

Let us point out that the half-edge normal fluxes expression (95) can be rewritten under the
following form (

q−pc
q+pc

)
= −

1

w̃pc
K̃pc

[
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

]
. (97)

Here, w̃pc denotes the volume weight which is defined by w̃pc = ∆pc, and the matrix K̃pc reads

K̃pc = Kpc




µ+
pc

l−pc
· n+

pc −
µ−

pc

l+pc
· n+

pc

−
µ+

pc

l−pc
· n−

pc

µ−
pc

l+pc
· n−

pc


 .

We note that this expression is very similar to the one derived using the local variational formulation,
refer to (41). The only difference lies in the expression and the property of the volume weight and
the corner matrix K̃pc. Using (97), it is possible to perform a local elimination of the half-edge
temperatures, around each node, invoking the continuity of the half-edge normal fluxes. This
elimination procedure follows exactly the methodology described in Section 3.2. Namely, the half-
edge fluxes continuity condition leads to a cyclic tridiagonal linear system. However, it will not
be possible to prove that this linear system is invertible due to the lack of positive definiteness of
matrix K̃pc. Finally, collecting the contribution of each node, we construct as previously the global
diffusion matrix. Once more, we are not able to prove that this matrix is positive definite due the
lack of positive definiteness of the corner matrix K̃pc.

5. Extension to cylindrical geometry

The purpose of this section is to present the extension of CCLAD scheme to cylindrical geometry.
Note that the extension to cylindrical geometry of the mimetic finite difference method has been
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Figure 10: Notation related to cylindrical geometry.

derived many years ago in [36]. We note that the case of Cartesian or cylindrical geometry can
be combined by introducing the pseudo Cartesian frame (O, x, y), equipped with the orthonormal
basis (ex, ey), through the use of the pseudo radius

R(y) = 1− α+ αy,

where α = 1 for cylindrical geometry and α = 0 for Cartesian geometry. We remark that y
corresponds to the radial coordinate in the cylindrical case. This means that we assume rotational
symmetry about x axis, refer to Figure 10. We note that if we refer to standard cylindrical
coordinates, (r, z), then x corresponds to z and y to r. In this framework, the volume v is obtained
by rotating the area a about the x axis. Thus, the volume element, dv, writes dv = R da, where
da = dxdy is the area element with respect to Cartesian coordinates (x, y). Note that we have
omitted the factor 2π due to the integration in the azimuthal direction, namely we consider all
integrated quantities to be defined per unit radian. The surface s, which bounds the volume v, is
obtained by rotating, l, the boundary of the area a, about the x axis. Thus, the surface element,
ds, writes ds = R dl, where dl is the line element along the perimeter of a.

In view of subsequent spatial discretization, we shall express the volume integral associated to
the divergence operator using the Green formula. We recall that, in the pseudo Cartesian frame,
for an arbitrary vector φ ∈ IR2, the divergence operator writes

∇ · φ =
∂φ

∂x
+

1

R

∂

∂y
(Rψ)

=
∂φ

∂x
+
∂ψ

∂y
+ α

ψ

R

=
1

R

[
∂

∂x
(Rφ) +

∂

∂y
(Rψ)

]
,

where (φ, ψ) are the components of the vector φ. The gradient operator writes as usual

∇T =
∂T

∂x
ex +

∂T

∂y
ey.
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Let us replace the volume integral form of the divergence operator by its surface integral form,
employing the previous notation

∫

v

∇ · φ dv =

∫

a

1

R

[
∂

∂x
(Rφ) +

∂

∂y
(Rψ)

]
R da

=

∫

a

[
∂

∂x
(Rφ) +

∂

∂y
(Rψ)

]
da

=

∫

l

φ · nR dl,

where n is the unit outward normal to the contour l. Thus, the Green formula using pseudo
Cartesian coordinates reads ∫

v

∇ · φ dv =

∫

l

φ · nR dl. (98)

Applying this Green formula, the weak form of the heat conduction equation (18) rewrites as

d

dt

∫

ωc

ρCvT (x, t) dv +

∫

∂ωc

q · nR dl =

∫

ωc

ρr(x, t)dv, (99)

where ωc denotes a generic cell of the computational domain, ∂ω its boundary and n the corre-
sponding unit outward. Introducing as before a piecewise constant approximation of the physical
variables allows to transform (99) into

mcCvc
d

dt
Tc +

∫

∂ωc

q · nR dl = mcrc, (100)

where the mass of the cell is given as usual by mc = ρc | ωc |, whereas the cell volume is obtained
rotating the polygonal cell ωc about x axis, i.e, | ωc |=

∫
ωc

dv =
∫
ωc

R da. In addition, Tc = Tc(t)
denotes the mean cell temperature defined by

Tc(t) =
1

| ωc |

∫

ωc

T (x, t) dv.

To complete the space discretization it remains to discretize the surface integral in the above
equation. To this end, we proceed as before introducing the piecewise constant approximation of
the normal heat flux over each half-edge impinging on point p

q±pc =
1

l±pc

∫

∂ω±
pc

q · n dl. (101)

The scalar q±pc stands for the half-edge normal flux related to the half-edge ∂ω±
pc, refer to Figure 2.

Note that the above piecewise constant approximation of the half-edge fluxes, coincides exactly
with the one used in Cartesian geometry, refer to (20). Using the partition of the cell into sub-cells,
i.e., ∂ωc = ∪p∈P(c)∂ω

±
pc, the discretized heat conduction equation writes as

mcCvc
d

dt
Tc +

∑

p∈P(c)

Rp(l
−
pcq

−
pc + l+pcq

+
pc) = mcrc, (102)
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where Rp = 1 − α + αyp and yp is the y-coordinate of point p. Note that the above equation has
been derived by means of the following quadrature rule

∫

∂ω−
pc∪∂ω

+
pc

q · nR dl = Rp(l
−
pcq

−
pc + l+pcq

+
pc).

Now, the space discretization is achieved by using the half-edge flux approximations which have
been previously constructed in Section 3.2 and Section 4. Then, the construction of the scheme is
performed using the same steps than before. Let us point out that the above quadrature rule has
been specifically chosen to ensure spherical symmetry preservation when solving heat conduction
equation over equal angle polar grids. In addition, one has to use the volume weight defined for
quadrangular cells by (53), as it has been already noticed in [36].

6. Time discretization

In this section, we describe the time discretization related to the finite volume scheme CCLAD.
Let us recall that the semi-discrete scheme resulting from the space discretization writes under the
form of the following system of differential equations

MCv
dT

dt
+ AT = MR+ S, (103)

where T is the cell centered temperatures vector, M and Cv denote respectively the diagonal mass
and heat capacity matrices, whereas A is the global diffusion matrix. In addition, R is the heat
supply vector and S is the vector taking into account the prescribed boundary conditions. The
above system is completed by prescribing the initial condition T (0) = T

0. We solve the previous
system over the time interval [0,T] using the subdivision

0 = t1 < t2 < . . . < tn < tn+1 < . . . < tN = T.

We denote by ∆tn the generic time step, i.e., ∆tn = tn+1−tn. The time approximation of a quantity
at time tn is denoted using the superscript n, for instance T n = T (tn). Knowing that explicit time
discretization of the diffusion operator requires a stability constraint on the time step which is
quadratic with respect to the smallest cell size, we prefer to use an implicit time discretization for
this term. Depending on whether the heat capacity and the conductivity tensor depend on the
temperature or not, the above system might be linear or not with respect to temperature. This
leads us to separate the description of the time discretization in two cases.

6.1. Linear case

In this case, we assume that the heat capacity and the conductivity tensor does not depend on
temperature. Integrating (103) over the time interval [tn, tn+1] yields the first-order time implicit
discrete scheme

MCv
T

n+1 − T
n

∆tn
+ AT

n+1 = MRn + S
n. (104)

The cell centered temperatures vector is updated by solving the following linear system

(
MCv

∆tn
+ A)T n+1 =

MCv

∆tn
T

n +MRn + S
n.
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For CCLADS, A is positive semi-definite. Knowing that the entries of the diagonal matrix MCv is
always positive, we deduce that matrix MCv

∆tn
+ A is positive definite which implies that the above

linear system always admits a unique solution. Note that, if A is symmetric, the matrix of the linear
system is also symmetric. In this latter case, it also interesting to mention that in the absence of
source term and for homogeneous boundary conditions, if the geometric conditions (74) and (75)
hold, then MCv

∆tn
+ A is an M-matrix, which means that the positivity of the temperature field is

preserved by the scheme.

6.2. Non-linear case

In this case, which frequently occurs in plasma physics, the material properties depend on
temperature. It is more convenient to rewrite the heat conduction equation using the specific
internal energy as

ρ
∂ε

∂t
+∇ · q = ρr.

Let us recall that the specific internal energy, ε, expresses in terms of the density and the tem-
perature by means of an equation of state written under the form ε = ε(ρ, T ). Here, the specific
heat capacity is computed as the partial derivative of the specific internal energy with respect to
temperature, the density being fixed, i.e., Cv = ( ∂ε

∂T
)ρ. The semi-discrete system corresponding to

the above partial differential equation writes

M
dE

dt
+ AT = MR+ S, (105)

where E denotes the specific internal energy vector which depends on ρ and T through the use
of the equation of state. Assuming the absence of fluid motion, E exhibits only a non-linear
dependency on T . Integrating (105) over the time interval [tn, tn+1] leads to the first-order time
implicit discretization

M
E
n+1 − E

n

∆tn
+ A

n
T

n+1 = MRn + S
n. (106)

In writing this equation, we have made the choice of an explicit treatment of the non-linear de-
pendency on temperature of the diffusion matrix. Namely, An corresponds to an evaluation of
the diffusion matrix wherein the conductivity tensor has been computed using the temperature
at the beginning of the time step. The above equation results in a non-linear system of differen-
tial equations, which requires an iterative method to be solved. This iterative method consists in
defining a sequence of approximations of (106) by using a Newton-like method. To this end, let us
denote by T

q the sequence of temperatures vector, where q is natural integer. We initialize this
sequence by setting for q = 0, T 0 = T

n. Introducing the increment of the temperatures vector as
∆T = T

q+1 − T
q allows to define the specific internal energies vector increment as

E(T q+1) = E(T q) + Cv(T
q)∆T . (107)

This equation has been obtained through the use of the first-order Taylor expansion

ε[T q
c + (∆T )c] = ε(T q

c ) + (
∂ε

∂T
)ρ(T

q
c )(∆T )c,

where (∆T )c is the cth entry of vector ∆T . Substituting, the Taylor expansion (107) into (106)
leads to the following linear system satisfied by ∆T

[
M

∆tn
Cv(T

q) + A
n

]
∆T = −

{
M

∆tn
[E(T q)− E

n] + A
n
T

q −MRn − S
n

}
. (108)
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Let us point out that this linear system admits always a unique solution since the matrix between
bracket in the left-hand side is positive definite. The updated value of the sequence, T

q+1, is
computed as T q+1 = T

q+∆T by solving the above linear system in ∆T . This process is repeated
until a sufficiently accurate solution is reached. More precisely, we assess the convergence of the
iterative method by computing the value of a residual characterizing the accuracy at which the
non-linear equation is solved. A relevant choice for the residual consists in defining it as being
equal to a certain norm of the left-hand side. Setting

R
q =

M

∆tn
[E(T q)− E

n] + A
n
T

q −MRn − S
n,

we define the stopping criterion of the iterative procedure as

‖Rq‖

‖R0‖
≤ η, (109)

where η is a fixed in advance positive real number. The usually employed norm is the maximum
norm, i.e., ‖Rq‖∞ = maxc(R

q
c). The main advantage in using this stopping criterion lies in the

fact that it provides an indication on the accuracy at which the energy conservation is ensured.

Comment 8. In both linear and non-linear cases, the numerical solution requires to solve a sparse
linear system. If the matrix related to the linear system is symmetric positive definite, we make
use of an Incomplete Cholesky Conjugate Gradient (ICCG) [25] to solve the corresponding linear
system. On the other hand, if the matrix is non-symmetric, the linear system is solved by means
of the Generalized Minimal Residual method (GMRES) available in the PETSc library [47, 1].

7. Numerical results

The aim of this section is to assess the robustness and the accuracy of CCLAD scheme against
analytical test cases using various types of triangular, quadrangular and polygonal grids. We will
present results obtained using two versions of CCLAD scheme, that is the symmetric version named
CCLADS wherein the flux discretization is derived using the sub-cell-based variational formulation,
refer to Section 3.2 and the non-symmetric version for which the flux discretization is obtained
by means of a finite difference approximation, refer to Section 4. After evaluating the accuracy of
CCLADS and CCLADNS using various test cases in Cartesian geometry, we show numerical results
related to the extension of both schemes to cylindrical geometry. Finally, we conclude this section
by presenting two tests which are not very far from the problems encountered in the context of
the numerical simulation of Inertial Confinement Fusion. We also want to mention that CCLADS
scheme has been successfully used within a set of two-dimensional hydrodynamic simulations, which
were performed to reproduce experimental measurements resulting from laser plasma experiments,
wherein electron heat transport was strongly modified by self-generated magnetic fields, refer to
[49].

7.1. Methodology for convergence analysis

Most of the test cases presented in this section are performed using a standard test problem
which consists in solving the following diffusion equation over the domain D = [0, 1]2

ρCv
∂T

∂t
−∇ · (K∇T ) = ρr, (110a)

T (x, 0) = T 0(x), (110b)
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where r = r(x) is a source term. Most of the analytical solutions being stationary, we compute
them starting with the initial condition T 0(x) = 0, and we run the numerical simulation until the
steady state is reached. Density and the specific heat capacity are specified such that ρ = 1 and
Cv = 1. The boundary conditions, the source term and the heat conductivity tensor, K, will be
prescribed for each test case.

Bearing this in mind, let us describe the methodology used to perform the convergence analysis.
Knowing that the computational domain is paved using CD cells, we define the mesh resolution as

h =

√
| D |

CD

,

where | D | denotes the domain volume. Let T̂ = T̂ (x) be the steady analytical solution of (110).
Being given a computational grid characterized by h, we denote by T̂ h

c the value of the analytical
solution computed at the centroid of the cell ωc, i.e., T̂

h
c = T̂ (xc). If T

h
c denotes the cell averaged

temperature corresponding to the numerical solution obtained by the finite volume scheme, we
define the asymptotic numerical errors based on the maximum norm and the l2 norm as

Eh
max = max

c=1...CD

| T h
c − T̂ h

c |, (111a)

Eh
l2 =

√√√√
CD∑

c=1

(T h
c − T̂ h

c )
2 | ωc |. (111b)

The asymptotic error for both norms is estimated by

Eh
α = Cαh

qα +O(hqα+1), for α = max, l2,

where qα denotes the order of truncation error and Cα the convergence rate-constant which is
independent of h. Having computed the asymptotic errors corresponding to two different grids
characterized by mesh resolutions h1 and h2 < h1, we deduce an estimation of the order of trunca-
tion error as

qα =
log(E

h1
α

E
h2
α

)

log(h1

h2
)
. (112)

7.2. Anisotropic linear problem with discontinuous conductivity tensor

This problem consists in finding the steady solution of (110) with r = 0 and an anisotropic
discontinuous conductivity tensor given by

K(x, y) =





(
Kxx
l K

xy
l

K
yx
l K

yy
l

)
if 0 ≤ x ≤ 1

2 ,

(
Kxx
r K

xy
r

K
yx
r K

yy
r

)
if 1

2 ≤ x ≤ 1.

42



The one-dimensional solution, i.e., T̂ = T̂ (x) which corresponds to Dirichlet boundary conditions:
T̂ (0) = 0 and T̂ (1) = 1, writes as

T̂ (x) =





2Kxx
r

Kxx
l + Kxx

r

x, if 0 ≤ x ≤
1

2
,

Kxx
r − Kxx

l

Kxx
r + Kxx

l

+
2Kxx

l

Kxx
l + Kxx

r

x, if
1

2
≤ x ≤ 1.

This is a linear continuous solution for which the heat flux q̂ = −K∇T writes as

q̂ = −







2

Kxx
l Kxx

r

Kxx
l + Kxx

r

2
K
yx
l Kxx

r

Kxx
l + Kxx

r


 if 0 ≤ x ≤ 1

2 ,



2

Kxx
l Kxx

r

Kxx
l + Kxx

r

2
Kxx
l K

yx
r

Kxx
l + Kxx

r


 if 1

2 ≤ x ≤ 1.

The normal component of the heat flux is continuous at the interface x = 1
2 whereas its tangential

component undergone a jump discontinuity since in general Kyx
l Kxx

r 6= Kxx
l K

yx
r .

The boundary conditions applied on the top and the bottom boundaries of the computational
domain are Dirichlet boundary conditions deduced from the analytical solution. For the numerical
applications we have defined the entries of the conductivity tensor as Kxx

l = 1, Kxy
l = K

yx
l = −1,

K
yy
l = 4 and Kxx

r = 10, Kxy
r = K

yx
r = −3, Kyy

r = 2. This test case is characterized by a linear
solution. Since CCLADNS scheme by construction preserves linear solution, we uniquely assess the
ability of CCLADS scheme to preserve the above linear solution. Using this scheme, we run the
present test problem on a triangular grid and on various quadrangular grids.

7.2.1. Triangular grid

We compute the steady numerical solution using a triangular grid which is made of 246 cells. The
grid is displayed in Figure 11(a). Note that the unstructured grid has been constructed such that
the interface x = 1

2 coincides with the cell interfaces. The temperature contours of the numerical
solution are plotted in Figure 11(b). These are vertical straight lines which match perfectly with the
analytical solution. In addition, we observe that the obtained asymptotic errors are equal to zero
up to machine precision. As expected, CCLADS preserves linear solutions on triangular

grids.

7.2.2. Quadrangular grids

The numerical solution computed using a 10 × 10 Cartesian grid also matches perfectly with
the analytical solution and the temperature isolines plot is identical to the one obtained previously,
refer to Figure 11(b). This result is coherent with the fact that the flux approximation used in
our finite volume scheme preserves linear solutions on cells which are parallelograms. Next, we
study the accuracy of our scheme for a sequence of distorted grids which result from an analytical
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(b) Temperature contours of the numerical solution.

Figure 11: Anisotropic linear problem with discontinuous conductivity tensor on triangular grid.

transformation of Cartesian grids. Following the approach described in [52], we first introduce the
smooth distorted grids resulting from the mapping defined on the unit square by

{
x(ξ, η) = ξ + a0 sin(2πξ) sin(2πη),

y(ξ, η) = η + a0 sin(2πξ) sin(2πη).
(113)

The three smooth grids resulting from this mapping with a0 = 0.1 are displayed in Figure 12. We
also define randomly distorted grids by means of the following mapping defined on the unit square
by {

x(ξ, η) = ξ + a0h cos(2πθ),

y(ξ, η) = η + a0h sin(2πθ),
(114)

where h corresponds to the mesh spacing of the initial Cartesian grid and θ is a random number
chosen in [0, 1]. We have plotted the three random grids obtained with this mapping for a0 = 0.2 in
Figure 13. Note that we do not apply this mapping to the nodes located on the line ξ = 0.5 in order
to preserve the interface. The convergence analysis for smooth grids is performed computing the
asymptotic errors and the corresponding orders of truncation error using formulas (111) and (112).
The results displayed in Table 1(a) show that the convergence rate is almost second-order in the
l2 norm and a little bit less in the maximum norm. Proceeding with the convergence analysis for
random grids as before, we have displayed the corresponding results in Table 1(b). We observe an
erratic behavior regarding the asymptotic errors and the rate of convergence in both norms which
clearly shows a lack of convergence for our scheme with this type of random grids. Note that this
behavior has been already observed in the case of isotropic diffusion test cases [9].

7.2.3. Polygonal grids

Now, we study the convergence of CCLADS scheme using a sequence of three polygonal grids
displayed in Figure 14. The volume weight used in the numerical approximation of the half-edge
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Figure 12: Smooth distorted quadrangular grids.
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(c) 40× 40 cells.

Figure 13: Random distorted quadrangular grids with interface ξ = 1

2
preserved.
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(c) 1600 cells.

Figure 14: Polygonal grids with interface x = 1

2
preserved.

normal fluxes is defined according to (54b). The polygonal grids have been obtained by means of a
Voronoi tesselation using an incremental algorithm which is described in [53]. More precisely, these
polygonal grids have been derived applying the Lloyd’s algorithm [14] in order to achieve a better
uniformity. Doing so, we obtain polygonal grids which are almost centroidal Voronoi tesselations,
i.e., tesselations wherein the generator attached to a cell coincides with its centroid. Note that
we do not apply this algorithm to the cells located around the line x = 0.5 in order to preserve
the interface. The convergence analysis for polygonal grids is performed computing the asymptotic
errors and the corresponding orders of truncation error using formulas (111) and (112). The results
displayed in Table 1(c) show that CCLADS scheme is converging and the convergence rate is only
first-order in both l2 norm and maximum norms.

7.3. Anisotropic linear problem with a non-uniform symmetric positive definite conductivity tensor

This test problem has been initially presented in [41]. Once more, it consists in finding the
steady solution of (110). However, it is characterized by an anisotropic non-uniform conductivity
tensor which writes for all (x, y) ∈ [0, 1]2

K(x, y) =

(
y2 + ηx2 −(1− η)xy

−(1− η)xy x2 + ηy2

)
,

where η is a positive parameter characterizing the level of anisotropy. This tensor is symmetric
positive definite. Its eigenvalues are λ+ = x2+y2 and λ− = η(x2+y2). Thus, its condition number
which is equal to 1

η
characterizes the anisotropy ratio. The source term, r, is computed such that

the analytical solution (110) is given by

T̂ (x, y) = sin2(πx) sin2(πy).

We apply a homogeneous Dirichlet boundary condition on the boundaries of the computational
domain, i.e., T (x, t) = 0, ∀x ∈ ∂D. For numerical applications, we choose η = 10−2. We assess
the accuracy of CCLADS and CCLADNS schemes by running this test problem on sequence of
triangular and distorted quadrangular grids.
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Table 1: Anisotropic linear problem with discontinuous conductivity tensor: asymptotic errors in both maximum and
l2 norms and corresponding truncation error orders for quadrangular and polygonal grids.

(a) Smooth grids.

h Eh
max qhmax Eh

l2 qhl2
1.00D-1 7.86D-3 1.83 2.38D-3 1.72

5.00D-2 2.2D-3 1.53 7.2D-4 1.85

2.50D-2 7.6D-4 - 2.D-4 -

(b) Random grids.

h Eh
max qhmax Eh

l2
qhl2

1.00D-1 1.2D-2 0.79 3.02D-3 0.73

5.00D-2 6.9D-3 0.61 1.82D-3 0.74

2.50D-2 4.5D-3 - 1.09D-3 -

(c) Polygonal grids.

h Eh
max qhmax Eh

l2
qhl2

1.00D-1 1.75D-2 0.91 5.91D-3 1.19

5.00D-2 9.33D-3 1.00 2.58D-3 1.25

2.50D-2 4.65D-3 - 1.08D-3 -

CCLADS CCLADNS

h Eh
max qmax Eh

l2 ql2 Eh
max qmax Eh

l2 ql2

6.27D-2 9.92D-2 2.73 2.61D-2 2.59 1.01 0.44 0.28 1.51

3.18D-2 1.55D-2 1.31 4.48D-3 2.26 0.75 -0.63 0.1 0.79

1.58D-2 6.19D-3 - 9.2D-4 - 1.17 - 5.74D-2 -

Table 2: Anisotropic linear problem with a non-uniform symmetric positive definite conductivity tensor: asymptotic
errors in both maximum and l2 norms and corresponding truncation error orders for triangular grids.

7.3.1. Triangular grids

We run this test problem on a sequence of three triangular grids which are displayed in Fig-
ure 15. The convergence analysis results corresponding to the numerical simulations using the three
triangular grids and both schemes CCLADS and CCLADNS are displayed in Table 2. First, they
show that CCLADS scheme has a second-order convergence rate in l2 norm on triangular grids.
Second, we observe that CCLADNS is not converging, we point out that its order of convergence
in maximum norm becomes negative. This fact is probably a consequence of the oscillatory behav-
ior of this scheme. We point out that CCLADS scheme satisfies a L2-stability property whereas
CCLADNS does not. This fact is clearly illustrated by the numerical results displayed in Fig-
ure 16 where we can observe the spurious oscillations produced by CCLADNS scheme, refer to
Figure 16(b).

7.3.2. Quadrangular grids

Concerning the quadrangular grids we perform the convergence analysis on three types of grids:
rectangular, smooth and random. We start by giving in Table 3(a) the convergence analysis data for
a sequence of three rectangular grids. These data demonstrate that both CCLADS and CCLADNS
schemes exhibit a second-order rate of convergence on rectangular grids.
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Figure 15: Triangular grids.
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(a) CCLADS scheme.
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(b) CCLADNS scheme.

Figure 16: Anisotropic linear problem with a non-uniform symmetric positive definite conductivity tensor. Numerical
results obtained using the triangular grid displayed in Figure 15(a).
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Figure 17: Random distorted quadrangular grids.

Next, we pursue our investigations using the sequence of the three smooth distorted grids plotted
in Figure 12. The convergence analysis results obtained with these three grids are presented in
Table 3(b). Once more, we observe a second-order convergence rate in l2 norm for both schemes,
whereas the convergence rate in maximum norm is almost second-order for CCLADS whereas it is
second-order for CCLADNS.

Finally, we achieve the convergence analysis of the present problem by performing computations
on a sequence of three random grids which are displayed in Figure 17. Note that these grids differ
from the previous ones plotted in Figure 13 since this time all the nodes have been displaced
according to (114). The results of the convergence analysis corresponding to this sequence of
random grids are given in Table3(c). In comparison to the previous results, these ones show that
the accuracy of CCLADNS scheme is superior to the accuracy of CCLADS which exhibits an order
of convergence between first and second-order.

7.3.3. Polygonal grids

Concerning the polygonal grids we perform the convergence analysis on a sequence of three
polygonal grids displayed in Figure 18. As previously, these polygonal grids have been obtained
using centroidal Voronoi tesselation by means of the Llyod’s algorithm. The numerical results are
presented in Table 4. These data demonstrate that CCLADNS scheme exhibits a second-order rate
of convergence on polygonal grids whereas CCLADS has an order of convergence in between first
and second-order.

7.4. Anisotropic linear problem with a non-uniform and non-symmetric conductivity tensor

Here, we aim at assessing the accuracy of our finite volume scheme on an analytical problem
characterized by a non-symmetric positive definite conductivity tensor which writes for all (x, y) ∈
[0, 1]2 as

K(x, y) =

(
a by

−by a

)
,

where a and b are positive real numbers. Note that this tensor is always positive definite since
for all φ ∈ IR2 we have Kφ · φ = a | φ |2. The interest of this test case lies in the fact that the
above non-symmetric positive definite tensor is representative of the structure of the electron heat
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Table 3: Anisotropic linear problem with a non-uniform symmetric positive definite conductivity tensor: asymptotic
errors in both maximum and l2 norms and corresponding truncation error orders for quadrangular grids.

(a) Rectangular grids.

CCLADS CCLADNS

h Eh
max qmax Eh

l2 ql2 Eh
max qmax Eh

l2 ql2

1.00D-1 3.97D-2 2.08 1.69D-2 2.07 3.97D-2 2.08 1.69D-2 2.07

5.00D-2 9.40D-3 2.02 4.03D-3 2.02 9.40D-3 2.02 4.03D-3 2.02

2.50D-2 2.32D-3 - 9.95D-4 - 2.32D-3 - 9.95D-4 -

(b) Smooth grids.

CCLADS CCLADNS

h Eh
max qmax Eh

l2 ql2 Eh
max qmax Eh

l2 ql2

1.00D-1 1.09D-1 1.84 2.65D-2 2.07 1.1D-1 2.11 2.88D-2 2.26

5.00D-2 3.04D-2 1.88 6.29D-3 2.02 2.54D-2 2.04 6.01D-3 2.03

2.50D-2 8.26D-3 - 1.55D-3 - 6.17D-3 - 1.47D-3 -

(c) Random grids.

CCLADS CCLADNS

h Eh
max qmax Eh

l2 ql2 Eh
max qmax Eh

l2 ql2

1.00D-1 7.88D-2 1.12 2.83D-2 1.62 8.74D-2 1.62 2.89D-2 1.98

5.00D-2 3.62D-2 1.38 9.23D-3 1.38 2.84D-2 1.83 7.32D-3 1.96

2.50D-2 1.39D-2 - 3.53D-3 - 7.95D-3 - 1.88D-3 -
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Figure 18: Polygonal grids.

CCLADS CCLADNS

h Eh
max qmax Eh

l2 ql2 Eh
max qmax Eh

l2 ql2

1.00D-1 4.87D-2 1.67 1.69D-2 1.91 3.83D-2 1.94 1.58D-2 1.95

5.00D-2 1.53D-2 1.03 4.5D-3 1.91 9.96D-3 1.99 4.1D-3 1.92

2.50D-2 7.51D-3 - 1.2D-3 - 2.51D-3 - 1.08D-3 -

Table 4: Anisotropic linear problem with a non-uniform symmetric positive definite conductivity tensor: asymptotic
errors in both maximum and l2 norms and corresponding truncation error orders for polygonal grids.
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Table 5: Anisotropic linear problem with a non-uniform non-symmetric conductivity tensor: asymptotic errors in
both maximum and l2 norms and corresponding truncation error orders for quadrangular grids.

(a) Smooth grids.

CCLADS CCLADNS

h Eh
max qmax Eh

l2 ql2 Eh
max qmax Eh

l2 ql2

1.00D-1 1.64D-2 1.13 7.35D-3 1.51 1.19D-2 1.7 5.08D-3 1.75

5.00D-2 7.48D-3 1.6 2.58D-3 1.82 3.66D-3 1.9 1.51D-3 1.92

2.50D-2 2.47D-3 - 7.31D-4 - 9.79D-4 - 3.99D-4 -

(b) Kershaw grids.

CCLADS CCLADNS

h Eh
max qmax Eh

l2 ql2 Eh
max qmax Eh

l2 ql2

1.67D-1 8.99D-2 1.44 3.63D-2 1.54 5.91D-2 1.35 2.1D-2 1.65

5.55D-2 1.83D-2 1.67 6.66D-3 1.78 1.34D-2 1.71 3.4D-3 1.89

2.78D-2 5.65D-3 - 1.95D-3 - 4.11D-3 - 9.23D-4 -

(c) Random grids.

CCLADS CCLADNS

h Eh
max qmax Eh

l2 ql2 Eh
max qmax Eh

l2 ql2

1.00D-1 1.14D-2 0.45 4.D-3 0.96 6.04D-3 1.59 2.28D-3 1.81

5.00D-2 8.34D-3 0.65 2.06D-3 0.58 2.01D-3 1.59 6.49D-4 1.95

2.50D-2 5.3D-3 - 1.38D-3 - 6.65D-4 - 1.68D-4 -

conductivity tensor used in plasma physics in the presence of a magnetic field, refer to Section 2.2.
Setting r = 0, the one-dimensional analytical steady solution of (110) corresponding to the Dirichlet
boundary conditions, T̂ (0) = 0 and T̂ (1) = 1, writes as

T̂ (x) =
exp( b

a
x)− 1

exp( b
a
)− 1

, ∀x ∈ [0, 1].

The boundary conditions prescribed at the top and bottom boundaries of the computational do-
main are Dirichlet boundary conditions deduced from the above analytical solution. For numerical
applications, we choose a = 1 and b = 2.

This test problem is used to perform a convergence analysis for both CCLADS and CCLADNS
schemes employing three different types of quadrangular grids. We reuse the smooth and the
random grids which has been introduced previously, refer to Figures 12 and 17. We also make
use of the Kershaw grids [22], which are highly skewed grids displayed in Figure 19. For each
type of grids, we perform a sequence of three computations increasing the mesh refinement. The
resulting asymptotic errors and rate of convergence in both maximum and l2 norms are displayed
respectively in Tables 5(a) and 5(b) for smooth and Kershaw grids. From these results it follows
that both schemes exhibit a rate of convergence which is located between first-order and second-
order for these types of grids. Note that the rate of convergence of CCLADNS scheme is the
greatest. The results associated to the sequence of random grids are displayed in Table 5(c). Once
more, they reveal an erratic behavior of CCLADS scheme regarding its convergence on random
grids whereas CCLADNS scheme is converging whith a rate which is quite close to second-order.
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(a) 36 cells.
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(b) 324 cells.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) 1296 cells.

Figure 19: Kershaw grids.

7.5. Isotropic linear problem in cylindrical geometry

Here, we assess the accuracy of CCLADS and CCLADNS schemes in cylindrical geometry. To
this end, let us denote by T̂ = T̂ (r) the analytical solution of the following steady heat equation
with one-dimensional spherical symmetry

−
1

r2
d

dr
(κr2

dT̂

dr
) +

α

r2
T̂ = 0, r ∈ [r1, r2], (115a)

− κ
dT̂

dr
(r1) = 0, −κ

dT̂

dr
(r2) = −φ (115b)

Here, r1 > r2 > 0, κ > 0 is the heat conductivity and α > 0. We determine the analytical solution
by means of the change of variable r = exp(z) for r > 0. With this new variable, T̂ = T̂ (z) satisfies
the ordinary linear differential equation

κT̂ ′′(z) + κT̂ ′(z)− αT̂ (z) = 0.

Its solution writes as
T̂ (z) = A exp(q+z) +B exp(q−z),

where q− and q+ are given by

q± =
1

2κ
(−κ±

√
κ2 + 4ακ).

Returning to the initial variable, the solution writes

T̂ (r) = Arq
+

+Brq
−

.

The integration constants A and B are computed by means of the boundary conditions (115b)

A = −
φ

κ

q−r
q−−1
1

q+r
q+−1
1 q−r

q−−1
2 − q−r

q−−1
1 q+r

q+−1
2

,

B =
φ

κ

q+r
q+−1
1

q+r
q+−1
1 q−r

q−−1
2 − q−r

q−−1
1 q+r

q+−1
2

.
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(a) 10× 10 cells.
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(b) 20× 20 cells.
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(c) 40× 40 cells.

Figure 20: Polar grids used for solving the isotropic linear problem in cylindrical geometry.
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(a) 10× 10 cells.
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(b) 20× 20 cells.
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(c) 40× 40 cells.

Figure 21: Random distorted polar grids.

For numerical applications we will use the following values of the parameters: r1 = 0.1, r2 = 1,
φ = 10, κ = 2 and α = 1. This test case is run using both CCLADS and CCLADNS schemes
on a sequence of regular and random distorted polar grids displayed respectively in Figure 20 and
Figure 21. Using the aforementioned analytical solution, we perform the convergence analysis
for both CCLADS and CCLADNS using regular and random distorted polar grids displayed in
Figure 20 and Figure 21. The asymptotic errors and the trunction error orders are gathered in
Table 6(a) for the regular grids and in Table 6(b) for the random distorted grids. Concerning
regular grids, we observe that the order of convergence for both schemes is quite close to second-
order. For random distorted grids, CCLADS scheme is not converging, whereas CCLADNS is still
converging with a truncation error order quite close to second-order.

53



Table 6: Isotropic linear problem in cylindrical geometry: asymptotic errors in both maximum and l2 norms and
corresponding truncation error orders for polar grids.

(a) Regular polar grids.

CCLADS CCLADNS

h Eh
max qmax Eh

l2 ql2 Eh
max qmax Eh

l2 ql2

7.77D-2 3.D-2 1.83 3.68D-2 1.82 3.85D-2 1.73 2.06D-2 1.71

3.88D-2 8.4D-3 1.94 1.04D-2 1.94 1.15D-2 1.93 6.27D-3 1.92

1.94D-2 2.18D-3 - 2.7D-3 - 3.01D-3 - 1.66D-3 -

(b) Random distorted polar grids.

CCLADS CCLADNS

h Eh
max qmax Eh

l2 ql2 Eh
max qmax Eh

l2 ql2

7.77D-2 7.71D-2 0.94 3.18D-2 0.91 4.34D-2 1.80 2.12D-2 1.80

3.88D-2 4.D-2 0.2 1.69D-2 -0.42 1.24D-2 1.90 6.04D-3 1.90

1.94D-2 3.47D-2 - 2.26D-2 - 3.32D-3 - 1.62D-3 -

7.6. Isotropic non-linear problem

In this section, we investigate the numerical solution of the following non-linear heat conduction
equation

ρCv
∂T

∂t
−∇ · (κ(T )∇T ) = 0,

T (x, 0) = T 0(x).

The isotropic heat conductivity, κ, is a non-linear function with respect to temperature. Here, we
set κ(T ) = T

5

2 , this type of non-linearity corresponds to the so-called Spitzer-Härm conductivity
which is frequently used in plasma physics to describe electron thermal heat flux in the local regime,
refer to [56].

The above diffusion equation is solved over a cylindrical domain D defined by r ∈ [0, 1] and
θ ∈ [0, π2 ], where (r, θ) denote the classical polar coordinates, which express in terms of the Cartesian

coordinates (x, y) as r =
√
x2 + y2 and θ = arctan y

x
. The mass density and the heat capacity are

given by ρ = 1 and Cv = 1. The initial condition is defined by T 0(x) = 1. We prescribe symmetry
boundary conditions along axis x = 0 and y = 0 and we impose the normal flux q⋆ = 1000 at the
outer radius r = 1. The unsteady solution is computed until time T = 3. 10−3. At this time a
non-linear heat wave has propagated into the cold medium. This wave is characterized by a sharp
transition zone displaying a strong temperature gradient. Due to the boundary conditions and the
geometry of the domain, the solution of the diffusion equation exhibits a cylindrical symmetry,
namely T (x) ≡ T (r).

Unfortunately, the non-linear equation under consideration does not admit exact analytic so-
lutions. That is why, we compute with our finite volume scheme a reference numerical solution
using a 50 × 40 polar grid which is displayed in Figure 22(a). Note that this numerical solution
preserves perfectly the cylindrical symmetry. Next, we construct a distorted grid from the polar
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(a) 50× 40 regular polar grid.
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(b) 50× 40 distorted polar grid.

Figure 22: Polar grids for the isotropic non-linear problem.

grid applying the following mapping: (x, y) ∈ D 7−→ (x′, y′) ∈ D such that

x′ = r

(
1 + a0 cos(nθ)max

(
1− 2 | r −

1

2
|, 0

))
cos θ,

y′ = r

(
1 + a0 cos(nθ)max

(
1− 2 | r −

1

2
|, 0

))
sin θ,

where (r, θ) are the polar coordinates corresponding to the Cartesian coordinates (x, y). The
corresponding distorted grid obtained setting a0 = 0.25 and n = 8 is plotted in Figure 22(b). Now,
we compute the numerical solution of the non-linear test problem on the above distorted grid, using
two different schemes. These are: the classical five-point scheme and the CCLADS scheme which
reduces to a nine-point scheme on quadrangular grids. The numerical solution resulting from the
five-point scheme is plotted in Figure 23 using blue dots. We have displayed the temperatures in
all cells as function of the cell center radius versus the reference solution. In this figure, we observe
the main flaw of the five-point scheme: in spite of its robustness, it produces a numerical solution
wherein the temperature front is aligned with the grid distortion. The corresponding numerical
solution is not able to preserve the cylindrical symmetry. In addition, the comparison to the
reference solution, shows that the timing of the thermal wave is completely wrong. Let us emphasize
that this test case is not a fake problem. It is representative of situations which frequently occur in
the framework of plasma physics simulation wherein the heat conduction equation is coupled with
a numerical method solving Lagrangian hydrodynamics equations. In this case, grid distortions
are induced by fluid motion and thus the use of the five-point scheme to solve the heat conduction
equation leads to a very bad result. This weakness of the five-point scheme follows from the fact
that its construction is based on a two-point flux approximation3, which becomes inaccurate in the

3The two-point flux approximation corresponds to a finite difference approximation of the normal flux at an edge,
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Figure 23: Isotropic non-linear problem: temperatures in all the cells versus cell center radius at the stopping time
T = 3. 10−3. The one-dimensional reference solution is computed on regular polar grid and dipslayed with red crosses.
The numerical solutions on the distorted polar grid are computed using the five-point scheme (blue dots) and the
CCLADS scheme (black dots).

presence of strong grid distortions. The correction of this flaw requires the use of finite volume
schemes based on more accurate flux approximations. As it can be observed in Figure 23, our
method, which is a nine-point scheme on quadrangular grids, brings us the expected improvement
since it matches very well to the one-dimensional reference solution.

7.7. Anisotropic non-linear problem

The goal of this paragraph consists in assessing our finite volume scheme CCLADS against a
test case which is representative of electron heat transport in a magnetized plasma [10]. In this
situation, the classical isotropic Spitzer-Härm conductivity has to be replaced by the anisotropic
Braginskii tensor conductivity, refer to Section 2.2. We aim at solving the electron heat conduction
equation in this particular context to assess the ability of our finite volume scheme to handle such
a physical phenomenon. To this end, let us consider a two-dimensional plasma at rest and confined
in the domain D = [0, δ]× [0, δ], where δ = 20µm. The initial electron temperature of the plasma
is defined for all x ∈ D as

T 0
e (x) =

{
103K if 0 ≤ x ≤ 18µm,

3 107K if 18µm ≤ x ≤ 20µm.

The density and the specific heat capacity of the plasma are given by ρ = 0.025 g/cm3 and
Cv = 5107 erg/K/g. Let us point out that these values correspond roughly to a layer of a hot

wherein the gradient is approximated through the use of the temperatures of the two cells sharing that edge.
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Figure 24: Anisotropic non-linear problem: contours of z-component of the prescribed magnetic field.

underdense Deuterium-Tritium plasma contacting with the cold material of the same density. The
magnetization of the plasma results from the prescribed magnetic field B = Bz(x, y)ez, where the
z-component is given by Bz(x, y) = B0 exp(−4 r

δ
)4 with r2 = (x− δ

2)
2 + (y− δ

2)
2 and B0 = −107G.

The Bz(x, y) contours are plotted in Figure 24. The electron temperature, Te(x, t) is governed by
the anisotropic heat conduction equation

ρCv
∂Te

∂t
−∇ · (Ke∇Te) = 0.

According to (12) the anisotropic Braginskii conductivity tensor, Ke, writes

Ke =

(
κ⊥ κ∧
−κ∧ κ⊥

)
,

where the Braginskii transport coefficients are expressed in terms of the Spitzer-Härm conductivity
by means of functions describing the magnetization of the heat flux, refer to Figure 1 and [8]. To
better understand the action of the above anisotropic conductivity tensor, observe that for any
arbitrary vector φ ∈ IR2

Keφ = κ⊥φ− κ∧Rπ
2
φ,

whereRπ
2
is the counterclockwise rotation through the angle π

2 . This equation shows that the action
of Ke decomposes in an isotropic part, which corresponds to a multiplication by κ⊥, completed by
a rotation. This last term follows directly from the magnetic field since κ∧ is directly proportional
to the magnitude of the magnetic field. This corresponds to the so-called Righi-Leduc effect.

Bearing this in mind, we proceed to compute numerical solutions of the above problem using
our finite volume scheme. The computational domain has been paved using a 50×50 Cartesian grid
and stopping time is T = 25 10−12 s. We prescribe Neumann homogeneous boundary conditions
at the boundaries of the computational domain. The first computation has been done suppressing
the Righi-Leduc term, that is, setting κ∧ = 0. In this case the conductivity tensor reduces to the
isotropic form Ke = κ⊥ Id. The corresponding temperature contours are displayed in Figure 25(a)
wherein we can observe a leftward thermal wave propagating from hot to cold region. Note that
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(a) Anisotropic conductivity tensor without
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(b) Anisotropic conductivity tensor with Righi-
Leduc term.

Figure 25: Anisotropic non-linear problem: temperature contours at time T = 25 10−12 s.

the propagation of the thermal wave is strongly inhibited by the presence of the magnetic field.
This follows from the fact that the Braginskii coefficient κ⊥ is a decreasing function with respect
to the magnitude of magnetic field, refer to Figure 1. The second computation is performed using
the complete form of the anisotropic conductivity tensor, that is, including the Righi-Leduc effect.
This term, as it can be observed in Figure 25(b), rotates the temperature contours.

8. Conclusion

In this paper, we have presented a high-order cell-centered finite volume scheme called CCLAD,
which aims at solving anisotropic diffusion equation on two-dimensional distorted grids. This
scheme is characterized by a local stencil and cell-centered unknowns. Its main feature lies in
the introduction of two half-edge normal fluxes and two half-edge temperatures per cell interface.
Two versions of this scheme are available. In the first version, named CCLADS, the half-edge
fluxes expression is derived using a local variational formulation whereas in the second one, called
CCLADNS, it is obtained by means of a finite difference approximation. For both versions, the
half-edge normal fluxes related to a cell corner are expressed in terms of the half-edge temperatures
and the cell-centered temperature. In both cases, the final scheme results from the elimination of
the half-edge temperatures in terms of the cell-centered temperatures by enforcing the continuity of
the half-edge normal fluxes across the edge impinging at a given node. This elimination procedure
amounts to solve a local linear system at each node. The main differences between these two
versions are the following:

• CCLADS scheme in its semi-discrete version satisfies a L2-stability property. It is also char-
acterized by a global diffusion matrix which is positive semi-definite. Moreover, this scheme
preserves linear field uniquely for triangular grids. Its accuracy is almost second-order on
smooth distorted unstructured grids.
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• CCLADNS scheme does not share the good stability properties of CCLADS. However, the
flux discretization has been derived in a such a fashion that this scheme preserves linear fields
regardless the shape of the cell. Namely, it shows a second-order rate of convergence on
general unstructured grids.

We have assessed the accuracy and the robustness of both schemes on various representative nu-
merical test cases.

In future, we intend to extend CCLAD scheme capability to cope with two-dimensional non-
conformal grids. We also plan to investigate the extension of CCLAD scheme to three-dimensional
unstructured grids.
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