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Abstract: 

In this paper we propose a new approach to evaluate the predictable components 

in stock indices using a boosting-based classification technique, and we use this method 

to examine causality among the three main stock market indices in the world during 

periods of large positive and negative price changes. The empirical evidence seems to 

indicate that the Standard & Poors 500 index contains incremental information that is not 

present in either the FTSE 100 index or the Nikkei 225 index, and that could be used to 

enhance the predictability of the large positive and negative returns in the three main 

stock market indices in the world. This in turn would suggest a causality relationship 

running from the Standard & Poors 500 index to both the FTSE 100 and the Nikkei 225 

indices.  
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1. Introduction 

Interdependence among national stock markets is an important concern for investors 

since in recent years the global market has became more integrated as a result of a broad 

tendency toward liberalisation and deregulation in the money and capital markets of 

developed as well as developing countries, thereby reducing the opportunities for 

international diversification. Furthermore, market co-movements can also lead to market 

contagion as investors incorporate information about price changes in other markets into 

their trading decisions in an attempt to form a complete information set, carrying the risk 

that errors in one market may be transmitted elsewhere (see, e. g., King and Wadhwani, 

1990). 

 

As traders place orders and take positions simultaneously using different indices, one 

expects that different indices would be closely linked by both hedging activities and 

cross-market arbitrage (see, e. g., Karoly and Stulz, 1996). Furthermore, modern 

technological advancements and computerised trading systems have greatly facilitated 

the transfer of information from market to market. 

 

One strand of research has examined long-term interdependence in international stock 

markets using multivariate cointegration techniques [see, Kasa (1992), Corhay, Rad and 

Urbain (1993), Blackman, Holden and Thomas (1994), Bachman, Choi, Jeon and 

Kopecky (1996) and Fernández-Serrano and Sosvilla-Rivero (2001, 2003), among 

others]. The other main area of research has attempted to investigate short-run market 

Page 2 of 24

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

relationships through correlation tests [see, e. g., DeFusco et al. (1996) and Aggarwall et 

al. (1999)] or price and volatility spillovers using variations of the GARCH approach 

[see, e. g., Hamo, Masulis and Ng (1990), Koutmos and Booth (1994), Chiang and 

Chiang (1996) and Fratzscher (2002)].  

 

More recently, there has been a growing interest in the market dynamics and the 

transmission mechanism driving international market linkages [see, e. g., Eun and Shim 

(1989), Arshanapalli and Doukas (1993), Masih and Masih (1997) and Connolly and 

Wang (2002)]. 

 

Recent advances in machine learning and statistics have contributed to the appearance 

of robust classification and evaluation techniques. In particular, these techniques allow us 

to focus on the predictability of specific price changes (codified into populations). 

Especially, one would like to discriminate positive from negative returns and/or large 

positive or negative price changes from the rest of price movements. Doing so allows us 

to test whether or not lagged returns from a main stock market index provide incremental 

information concerning the classification of financial movements. Moreover, it permits us 

to compare and determine which set of explanatory variables provides more information 

to discriminate index movements.  

  

The purpose of this paper is to investigate the casual relationships between the three 

major stock markets in the world using daily data covering the period February 1986-

June 2004. Our study differs from the previously published papers in several ways. First, 
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while traditional studies focus on markets that are located in neighbouring geographic 

areas, we examine linkages across global markets. Second, instead of employing short-

run market relationships through correlation tests or long-run co-movements, we 

investigate the relevance of lagged returns for discriminating price changes by using a 

boosting-based classification technique. Finally, while a growing body of research is 

devoted to the impact of financial crises on stock market linkages, we examine their 

relationships both during periods of high, positive and negative returns. 

 

By evaluating and comparing the ‘overall’ discriminatory accuracy of the boosting-

based algorithms (The Gradient Boosting Machine) trained under three different sets of 

explanatory variables, we find that the S&P 500 does provide incremental information to 

enhance the predictability of the large price changes in the three main stock market 

indices in the world. Moreover, this predictive structure behaviour is neither present in 

the FTSE 100 nor in the Nikkei 225. 

 

The paper is organised as follows. In Section 2, we provide a brief review of the 

Gradient Boosting Machine classification technique. Section 3 discusses the receiver 

operating characteristic (ROC) curve and the area under it, both used to evaluate 

discriminatory accuracy. In Section 4, we report the empirical results. Finally, Section 5 

provides some concluding remarks. 

 

 

                                                 
2 We also consider other criteria for identifying large positive price change (such those representing 10 and 
30 per cent of the probabilistic distribution of the returns), obtaining similar qualitative results. 
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2.  The Gradient Boosting Machine classification technique 

In the function approximation problem, one has a system consisting of a random 

response variable y and a set of random explanatory variables x={x1, x2,..., xn}. Given a 

training sample {yi,xi}N
1 of known (y,x)-values, the goal is to find a function F*(x) that 

maps x to y, such that over the joint distribution of all (y,x)-values, the expected value of 

some loss function is minimised. 

 

Regression and classification problems can be viewed as a task in function 

approximation. In a classification problem, the goal is to discriminate between two (or 

more) populations, given a set of explanatory variables. In our particular case, the 

relevant question is if lagged price changes are capable of providing information for 

discriminating large positive financial movements.  

 

To answer such question empirically, we must test the out-of-sample 

discriminatory accuracy of the classifier chosen, in order to understand specific 

movements. Moreover, this out-of-sample performance should be evaluated with a 

technique that is invariant to a-priori class probabilities and that is independent of the 

decision threshold (or the cut-off value).  

 

In this paper, we have employed the Gradient Boosting Machine classification 

technique, which we now proceed to review. Regarding the evaluation of the 

discriminatory accuracy, in the next section we discuss the receiver operating 

characteristic (ROC) curve and the area under it. 
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The underlying idea of boosting is to combine simple “rules” (or tree-based 

models) to form an ensemble (or weighted committee) such that the performance of the 

single ensemble member is improved (e.g., “boosted”).  Boosting was proposed in the 

machine learning literature by Freund and Schapire (1997) with the creation of 

AdaBoost, and has since received much attention.  

 

 From the statistician’s point of view, the breakthrough took place with the paper 

by Friedman, Hastie and Tibshirani (2000). They show that AdaBoost is an optimisation 

method for finding a classifier that minimises a particular exponential loss function, and 

that this loss function is very similar to the (negative) binomial log-likelihood. For an 

excellent paper that traces the developments of boosting methodology and its applications 

to the exponential family and proportional hazards regression models see Ridgeway 

(1999). 

 

 Using the connection between boosting and optimisation, Friedman (2001) 

proposes the Gradient Boosting Machine (hereafter GBM). Using this technique, function 

approximation is viewed from the perspective of numerical optimisation in the function 

space, rather than in the parameter space. The estimation algorithm of the GBM is shown 

in Chart 1.  

[Chart 1, here] 

 

 With the purpose of increasing execution speed, approximation accuracy and 

robustness against over-fitting, we incorporated randomness in the procedure as 
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described in Friedman (2002). At each iteration, a sub-sample consisting of 50 percent of 

the total observations ( )50%N N = is drawn at random (without replacement) from the 

training sample. This sub-sample is then used to fit the tree and compute the model 

output for the current iteration. The loss function employed in all our experiments with 

the GBM was the Bernoulli function, and the loss function used to generate the “rules” 

(or tree-based models) was the Gini index. 

 

 The GBM has three tweaking parameters: the total number of iterations M, the 

learning rate (shrinkage parameter v) and the level of interaction among explanatory 

variables J.  It is widely known that fitting the data too well can lead to over-fitting, 

which degrades the accuracy power on independent data bases. However, M and v do not 

operate independently: smaller values of v lead to larger values of the “optimal” M. 

 

 Empirically, via simulation, Friedman (2001) finds that low values of v (v < 1%) 

favour better accuracy on test samples. In this paper, we fixed the shrinkage parameter (v) 

to one percent and allowed 500 boosting iterations (M). Clearly, better results can be 

obtained if we monitor these parameters in a validation set. Nevertheless, this was not 

done in order to maximise the number of observations in the test sample. Regarding the 

level of interaction (J), experience indicates, hitherto, that 4 8J≤ ≤  works well in the 

context of boosting, with results being fairly insensitive to particular choices in this range 

(Hastie, Tibshirani, and Friedman (2001). Consequently, we fixed J equal to five in all 

our experiments. The implementation was carried out in R: Environment for Statistical 
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Computing and Graphics with the following add-on package: gbm (developed by G. 

Ridgeway).   

 

3. Assessing the discriminatory accuracy 

The receiver operating characteristic (ROC) curve is a well-established method 

for summarising performances of diagnostic tests [see, Hanley (1999); Zhou, McClish 

and Obuchowski (2002), among others]. Now, it is widely used for evaluating machine 

learning algorithms [see, e. g., Weiss and Provost (2003); Provost, Fawcett and Kohavi 

(1998); Bradley (1998)]. 

 

A ROC curve is obtained by plotting Sensitivity versus 1 - Specificity for various 

cut-off values. The points on a ROC curve are either joined by line segments or smooth 

curves with the use of non-parametric and parametric procedures, respectively.  

 

The area under a ROC curve (AUC) is equal to the probability that a randomly 

selected observation from population one scores higher than a randomly selected 

observation from population two (Hanley and McNeil (1982). Formally, the AUC can be 

expressed as: 

 1AUC = ( ) ( )
2

P y x P y x> + =                                                 (1) 

where y and x denote the classifier output (class probability) for a randomly 

selected observation from population one and two, respectively.  
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In this paper, we make use of the Mann-Whitney-U Statistic, a non-parametric 

approach to obtain the AUC. The Mann-Whitney-U Statistic is given by: 

1 1

1AUC =  =
m n

ij
i j

Z
mn = =

⊕ ∑∑                                                  (2) 

where 1( ) ( )
2ij i j i jZ I y x I y x= > + = and ( )I • is an indicator function. The variables m and 

n are the total number of observations for population one and two, respectively.  

 

The variance of the AUC can be obtained from the following: 

2 2

1 2(1 ) ( 1)( ) ( 1)( )( ) m Q n QVar
mn

⊕ −⊕ + − −⊕ + − −⊕
⊕ =                           (3) 

and 
2

1 22 ;  2 1 .Q Q= ⊕ −⊕ = ⊕ +⊕  Equation 3 is the exponential approximation formula 

of Hanley and McNeil (1982).  

 Another important application of the ROC curve is to compare the overall 

discriminatory accuracy of classifiers. The term ‘overall’ is emphasised, since the interest 

is in the global picture of a test and not in the accuracy performance at a particular cut-off 

value.  See Metz et al. (1998) to understand how different ROC-curve estimates can be 

compared.  
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4. Data and empirical results 

The data set compromises daily time series on closing values for the three major 

stock market indices: the FTSE 100 index (United Kingdom), the Nikkei 225 index  

(Japan), and the Standard & Poors 500 index  (United States). The sample period 

examined spans from June 2, 1986 to June 25, 2004. The data set was obtained from 

Econwin.  

 

We employed the Gradient Boosting Machine classification technique to extract 

patterns from the explanatory variables in order to classify large positive and negative 

price changes, and we used the area under the ROC curve to evaluate and compare the 

‘overall’ discriminatory accuracy of the classifiers. In order to identify large positive 

price changes, for each index we chose the returns that satisfy the following condition: 

(return (large,  positive return)) 80%prob < = . In other words, the large positive returns 

represent 20 per cent of the probabilistic distribution of the returns (or right-tail of the 

distribution of the returns)2.  Concerning the large negative price changes, we chose those 

observations that represented the left-tail of the distributions of the returns 

(e.g., (return (large,  negative return)) 20%prob < = ). Observations that satisfied the 

condition were codified with 1’s, and those that did not were codified as 0’s. 

 

Once the dependent (or response) variable was codified, we analysed three sets of 

exploratory factors per index: lags in Standard & Poors 500 index, lags in the FTSE 100 

index , and lags in the Nikkei 225 index. These explanatory variables were incorporated 

in the GBM algorithm depending on the trading hours. Note that the Japanese stock 
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market is the first to open among the three considered, followed by the UK stock market, 

and the US stock market is the last one to open3. Therefore, when examining each 

particular stock market, we will successively incorporate the publicly available 

information on stock prices taking into account these trading hours. For example, to 

analyse the Japanese stock market, we first take into account only lags in the Nikkei 225 

index, then we introduce lags in the FTSE 100 index, and finally we consider also the 

lags in the Standard & Poors 500 index.  

 

As is well known, keeping a test set additionally to the training set is a general 

method to estimate the accuracy of a classifier. Therefore, we have split our sample into 

two sub-samples: the training sample runs from June 2, 1986 to December 31, 2000, 

while the testing sample covers the period January 3, 2001- June 25, 2004. Usually a 

fraction of 20-30 per cent of the available data is chosen as the testing set if the size of 

the test set is larger than 1000. Therefore, our testing sample satisfies the train-and-test 

procedure (see, e.g., Henery, 1994). Note also that the testing period is long enough to 

reduce the effects of data snooping. 

 
 

In the top section of Table 1 (Panel I), we evaluate the discriminatory accuracy of 

the GBM for the US stock market under different sets of explanatory variables. Test A 

shows the GBM classifying power when only lags of the Standard & Poors 500 index are 

used. For the large positive price changes, the discriminatory power is 0.6129, meaning 

that the probability that a randomly selected observation from the large positive price 

                                                 
3 The relevant time with respect to Greenwich Mean Time is +9 for the Nikkei 225, 0 for the FTSE 100, 
and –6 for the Standard and Poors 500. 
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change cases (returns greater than 0.68%) scores higher than a randomly chosen 

observation from price changes from returns lower than 0.68% is 61.29 per cent. Notice 

that when there is no difference between the two populations, the area under the ROC 

curve will be 0.5 (or coin-toss classifications). The 95 per cent confidence interval for the 

area can be used to test the hypothesis that the theoretical area is 0.5. Since the 

confidence interval in this case (0.5758, 0.6482) does not include the 0.5 value, there is 

evidence that the GBM technique is able to distinguish between the two groups (or 

populations). Test B reports the results when we use lags of both Standard & Poors 500 

and Nikkei 225 indices as explanatory factors, while Test C presents the results when 

lags of the all three are used. As can be seen, including those lags leads to a small 

reduction in the discriminatory power of the GBM technique (61.09 and 60.75 per cent, 

respectively), although the new confidence intervals do not include the 0.5 value either.  

Concerning the large negative price changes, predictable components were non-existent, 

since the GBM, trained under the three different sets of explanatory variables, was not 

able to beat a coin-toss (or random) classification.    

 

In the lower section of Table 1 (Panel II), we report the z statistic, testing the 

difference between areas under the ROC curves, as well as the p-value. As can be seen 

for the large positive price changes, the z statistics obtained when comparing Test A vs. 

Test B and Test A vs. Test C are positive, suggesting that Test A has a greater area under 

the ROC curves than those of Tests B and C. Moreover, the p-values suggest that the 

pair-wise comparisons of all three ROC curves are not significantly different. Therefore, 

based on this evidence we can conclude that including more explanatory variables does 
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not generate any incremental information to improve the discriminatory power of the 

GBM technique when identifying the large positive price changes in the Standard & 

Poors 500 index.  

 

However, when analyzing large negative price changes, none of the explanatory 

variable sets contained any useful information to discriminate large negative price 

changes from the rest of price movements.  Furthermore, in one of our experiments the 

ROCKIT software did not converge since the data set was degenerated. In general, 

degeneracy should be found only in very small datasets and/or in those with many tied 

values, and in our case it was due to the existence of many tied values.  

 

 [Table 1, here] 

  

Regarding the FTSE 100 index, we observe in Panel I of Table 2 that there is a 

significant improvement in the discriminatory accuracy for the large positive price 

changes (returns greater than 0.74%) when the lags of the Standard & Poors 500 and the 

Nikkei 225 indices are introduced in the information set. As can be seen, Test C presents 

the greatest area under the ROC curve. Moreover, when comparing the areas under the 

ROC curves for the three sets of explanatory variables, we obtain a negative value for the 

z-statistic, suggesting that Tests B and C have a greater area under the ROC curve than 

Test A, being also statistically significant at the usual levels. These results, jointly taken 

with the results when comparing Test B vs. Test C, indicate that the Standard & Poors 
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500 index provides incremental information to enhance the discriminatory power of large 

positive returns in the FTSE 100 index.  

 

Furthermore, the same pattern emerges in the predictability of large negative price 

changes, where the Standard & Poors 500 index provide useful information for 

discriminating the FTSE 100 large negative price changes from the rest of price 

movements.       

[Table 2, here] 

 

Finally, Table 3 reports the results for the Nikkei 225 index. As can be seen in the 

table, the information provided by the lags in the Nikkei 225 index is not relevant for 

discriminating large positive price changes (returns greater than 0.82%). In contrast, both 

the Standard & Poors 500 index and the FTSE 100 index contain relevant information in 

this context. Nevertheless, the results obtained when comparing Test B vs. Test C suggest 

that the Standard & Poors 500 index contains incremental information that is not present 

in the FTSE 100 index and that could be used to increase the discriminatory accuracy of 

the large positive returns in the Nikkei 225 index.    Moreover, the predictability of the 

large negative price changes is greatly enhanced due to the information extracted from 

the Standard & Poors 500 index lags.   

 

[Table 3, here] 
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The traditional method for testing causality in economic time series makes use of 

the well-known Granger definition of causality (Granger, 1969). Given two variables, x 

and y, x is said to Granger-cause y if the latter can be predicted better by past values of x 

and y, rather than by past values of y alone. From this definition, the results in Tables 1 to 

3 could be taken as empirical evidence of causality running from the Standard & Poors 

500 index to both the FTSE 100 and the Nikkei 225 indices. 

 
5. Concluding remarks 

 

In this paper, we extend the previous literature by examining stock market 

linkages during large positive and negative price changes. The main novelty of the paper 

lies in its use of the Gradient Boosting Machine classification technique to examine the 

relevance of lagged returns for discriminating price changes. 

 

The empirical evidence presented in this paper seems to indicate that the Standard 

& Poors 500 index contains incremental information that is not present either in the FTSE 

100 index or in the Nikkei 225 index and that could be used to enhance the forecastability 

of the large positive and negative returns in the three main stock market indices in the 

world. This in turn would suggest a causality relationship running from the Standard & 

Poors 500 index to both the FTSE 100 and the Nikkei 225 indices.  

 

Therefore, our results indicate that the US index plays a prominent role in price 

leadership across global markets. This is consistent with the fact that the US market has 

long been the centre of financial transactions as well as the most influential producer of 
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information. Indeed, there is a large literature on the fact that investors tend to react more 

to news from the US market than from other markets [ see, e. g., Eum and Shim (1989), 

Becker, Finnerty and Friedman (1995), and Masih and Masih (2001)]. 

 

Our evidence is also consistent with that presented in Karoly and Stulz (1996), 

who conclude that large return shocks propagate more internationally than small return 

shocks.  

 

Our findings support the conclusion coming from agent-based models for financial 

market which account for behavioural phenomena such as herding, overreaction and the 

common use of trading rules, that are likely to spread non fundamental price variations 

across markets (Day and Huang, 1990; Brock, Lakonish and LeBaron, 1992; Connoly 

and Wang, 2002, Daniel, Hirshleifer and Teoh, 2002, and Hirshleifer and Teoh, 2003). In 

this sense, King and Wadhwani (1990) argue that trading of stocks in one market per se 

affects stock prices in other markets, even if the source of the trading is purely noise. This 

is called the “market-contagion hypothesis”. Karoly and Stulz (1996) also find evidence 

consistent with this interpretation, pointing out that “[c]ontagion effects results when 

enthusiasm from stocks in one market brings about enthusiasm for stocks in other 

markets, regardless of the evolution of market fundamentals”.   
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Chart 1. Friedman’s (Stochastic) Gradient Boosting Machine Algorithm 
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Table 1. Results for the S&P 500 
            

      
Summary of movement codification:    
S&P 500 Large positive movements:  returns > 0.68%   
S&P 500 Large negative movements: returns < -0.52%   
      
I.- Assessing the discriminatory power.    
 A. Using S&Pt-1 to S&Pt-24 as explanatory variables   
    Large Positive Movements Large Negative Movements
  Discriminatory accuracy:  0.6120 ± 0.0181 0.5273 ± 0.0180 
  Test sample: 01/03/2000-06/25/2004  
      
 B. Using Nikkeit-1 to Nikkeit-24 and S&Pt-1 to S&Pt-24 as explanatory variables  
    Large Positive Movements Large Negative Movements
  Discriminatory accuracy:  0.6109 ± 0.0181 0.5180 ± 0.0180 
  Test sample: 01/03/2000-06/25/2004  
      
 C. Using FTSEt-1 to FTSEt-24, Nikeit-1 to Nikkeit-24 and S&Pt-1 to S&Pt-24 as explanatory variables  
    Large Positive Movements Large Negative Movements
  Discriminatory accuracy:  0.6075 ± 0.0182 0.5187 ± 0.0180 
  Test sample: 01/03/2000-06/25/2004  
      
II.- Comparing the 'overall' discriminatory power (z-statistic, one-tailed p-value).  
    Large Positive Movements Large Negative Movements
  Panel A vs. Panel B:   (0.0416, 0.4834) (0.7637, 0.2225) 
  Panel A vs. Panel C:   (0.5185, 0.3021) Procedure does not converge 
  Panel B vs. Panel C:  (0.5302, 0.2980) (-0.3624, 0.3585) 
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Table 2. Results for the FTSE 100 

            
      
Summary of movement codification:    
FTSE 100 Large positive movements:  returns > 0.74%   
FTSE 100 Large negative movements: returns < -0.64%   
      
I.- Assessing the discriminatory power.    
 A. Using FTSEt-1 to FTSEt-24 as explanatory variables   
    Large Positive Movements Large Negative Movements 
  Discriminatory accuracy:   0.6169 ± 0.0186  0.5537 ± 0.0185 
  Test sample: 01/03/2000-06/25/2004  
      
 B. Using FTSEt-1 to FTSEt-24 and S&Pit-1 to S&Pt-24 as explanatory variables  
    Large Positive Movements Large Negative Movements 
  Discriminatory accuracy:  0.6643 ± 0.0175  0.6206 ± 0.0176 
  Test sample: 01/03/2000-06/25/2004  
      
 C. Using FTSEt-1 to FTSEt-24, Nikeit-1 to Nikkeit-24 and S&Pt-1 to S&Pt-24 as explanatory variables  
    Large Positive Movements Large Negative Movements 
  Discriminatory accuracy:  0.6702 ± 0.0174  0.6115 ± 0.0177 
  Test sample: 01/03/2000-06/25/2004  
      
II.- Comparing the 'overall' discriminatory power (z-statistic, one-tailed p-value).  
    Large Positive Movements Large Negative Movements 
  Panel A vs. Panel B:   (-3.1261, 0.0009) (-4.7505, 0.0000) 
  Panel A vs. Panel C:   (-3.6474, 0.0001) (-4.1322, 0.0000) 
  Panel B vs. Panel C:   (-1.3775, 0.0842) (1.2333, 0.1088) 
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Table 3. Results for the Nikkei 225 

            
      
Summary of movement codification:    
Nikkei 225 Large positive movements:  returns > 0.82%   
Nikkei 225 Large negative movements: returns < -0.82%   
      
I.- Assessing the discriminatory power.    
 A. Using Nikkeit-1 to Nikkeit-24 as explanatory variables   
    Large Positive Movements Large Negative Movements
  Discriminatory accuracy:   0.5350 ± 0.0190  0.5345 ± 0.0188 
  Test sample: 01/03/2000-06/25/2004  
      
 B. Using Nikkeit-1 to Nikkeit-24 and FTSEt-1 to FTSEt-24 as explanatory variables  
    Large Positive Movements Large Negative Movements
  Discriminatory accuracy: 0.5872 ± 0.0184 0.6033 ± 0.0179 
  Test sample: 01/03/2000-06/25/2004  
      
 C. Using FTSEt-1 to FTSEt-24, Nikeit-1 to Nikkeit-24 and S&Pt-1 to S&Pt-24 as explanatory variables  
    Large Positive Movements Large Negative Movements
  Discriminatory accuracy: 0.6379 ± 0.0175 0.6635 ± 0.0168 
  Test sample: 01/03/2000-06/25/2004  
      
II.- Comparing the 'overall' discriminatory power (z-statistic, one-tailed p-value).  
    Large Positive Movements Large Negative Movements
  Panel A vs. Panel B:  (-4.1795, 0.0000) (-4.3122, 0.0000) 
  Panel A vs. Panel C:   (-6.0609, 0.0000) (-6.3780, 0.0000) 
  Panel B vs. Panel C:  (-4.0159, 0.0000) (-4.1185, 0.0000) 
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