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ABSTRACT

Modern software systems are built by composing compo-
nents drawn from large repositories, whose size and com-
plexity is increasing at a very fast pace. A fundamental
challenge for the maintainability and the scalability of such
software systems is the ability to quickly identify the com-
ponents that can or cannot be installed together: this is the
co-installability problem, which is related to boolean sat-
isfiability and is known to be algorithmically hard. This
paper develops a novel theoretical framework, based on for-
mally certified. semantic preserving graph-theoretic trans-
formations, that allows to associate to each concrete com-
ponent repository a much smaller one with a simpler struc-
ture, but with equivalent co-installability properties. This
smaller repository can be represented graphically, giving a
concise view of the co-installability issues in the original
repository, or used as a basis for various algorithms related
to co-installability, like the efficient computation of strong
conflicts between components. The proofs contained in this
work have been machine checked in Coq.

1. INTRODUCTION
The mainstream adoption of free and open source soft-

ware (FOSS) has widely popularised component-based soft-
ware architectures, maintained in a distributed fashion and
evolving at a very quick pace. Components are typically
made available via a repository, and each of these compo-
nents is equipped with metadata, such as dependencies and
conflicts, used to specify concisely the contexts in which a
component can or cannot be installed.

A typical example of the metadata attached to a com-
ponent, taken from the Debian GNU/Linux distribution, is
shown in Example 1: the logical language used for express-
ing dependencies and conflicts is quite powerful, as it allows
conjunctions (symbol ‘,’), disjunctions (symbol ‘|’) and ver-
sion constraints.
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Example 1. The inter-package relationships of postfix,
an Internet mail transport agent in the Debian GNU/Linux
distribution (http: // www. debian. org ) currently reads:

1 Package: postfix
2 Version: 2.5.5 -1.1
3 Depends: libc6 (>= 2.7), libdb4.6, ssl -cert ,
4 libsasl2 -2, libssl0 .9.8 (>= 0.9.8f-5),
5 debconf (>= 0.5) | debconf -2.0,
6 netbase , adduser (>= 3.48) , dpkg (>= 1.8),
7 lsb -base (>= 3.0 -6)
8 Conflicts: libnss -db (<< 2.2-3), smail ,
9 mail -transport -agent , postfix -tls

10 Provides: mail -transport -agent , postfix -tls

In most frameworks, determining whether a single com-
ponent can be installed at all is already an NP-Complete
problem, albeit the concrete instances arising in real-world
systems, like GNU/Linux distributions, Eclipse plugins or
OSGI component repositories, turn out to be tractable [1, 2,
3]. For the maintenance of component repositories, though,
more sophisticated analyses are required. This includes iden-
tifying for each component the other components in the
repository that it absolutely needs [4], and those that it can
never be installed with [5].

More generally, a fundamental challenge for component
based software maintainability is the study of the problem
of co-installability of components, that involves identifying
and visualising the relevant sets of components that can or
cannot be installed together.

Indeed, from a maintenance point of view, one needs to
identify which components cannot be installed together, in
order to check whether these incompatibilities are justified
or due to erroneous dependencies. The dependency graph
is also too rich for end users, which are interested in hav-
ing a given set of functionalities provided by some compo-
nents (for instance, they want a word processor and a Web
browser) but do not care about the additional components
also installed. This is illustrated by the fact that some pack-
age managers keep track of these additional components and
automatically remove them when they are no more needed.

The sheer size of current mainstream repositories, with
tens of thousands of components and hundreds of thousands
of relations, makes it completely unfeasible to study such
properties of a repository directly: visualising such large
graphs is both technically challenging, and of little interest,
as one would need to follow recursively a large number of
dependency and conflict relations to understand how com-
ponents relate to one other.

http://www.debian.org


a

b c

e

f

∨
#

d

# g

Figure 1: Graphical depiction of a repository

In this paper, we develop a novel theoretical framework,
based on formally certified. semantic preserving graph-theo-
retic transformations, that allows to associate to each con-
crete component repository a much smaller repository with a
simpler structure, but with equivalent co-installability prop-
erties. This smaller repository can be represented graphi-
cally, giving a concise view of the co-installability issues in
the original repository, or used as a basis for various algo-
rithms related to co-installability, like the efficient compu-
tation of the strong conflicts defined in [5].

We identified several bugs in the Debian distribution using
the present work. For instance, the harden-servers pack-
age, meant to prevent the installation of unsafe packages,
was in conflict with packages proftpd et sendmail but did
not prevent the installation of the corresponding binaries
which were in fact in packages proftpd-base et sendmail-
bin (the first two packages were actually transitional pack-
ages used to ease the upgrade from a previous release).

The paper is organised as follows: Section 2 recalls the ba-
sic notions about packages and dependencies, and overviews
the repository transformation developed in the paper, which
achieves impressive results on real-world GNU/Linux dis-
tributions (Section 3). The technical development follows:
repositories are equipped with a partial order in Section 4,
put into a flattened form in Sections 5, 6 and 7, simplified by
removing irrelevant dependencies and conflicts in Section 8
and quotiented in Section 9. Finally, we show how to draw
a simplified graph of the kernel of a repository in Section 11.
We discuss related works, and conclude in Section 13.

2. OVERALL APPROACH
While the concrete details may vary from one technology

to the other, the core metadata associated to component
based systems always allows to express a few fundamental
properties: a component, called package in the following,
may depend on a combination of components, expressed as a
conjunction of disjunctions of components, and a component
may conflict with a combination of components, expressed
as a conjunction of components.

Extra properties like provides (e.g. postfix-tls in Ex-
ample 1), or versioned constraints (e.g. libc6 (>= 2.7)

in Example 1) can be easily preprocessed out [1], so that
one can focus on a core dependency system that contains a
binary symmetric conflict relation, and a dependency func-
tion D(π) = {{π1

1 , ..., π
1
n1
}, ..., {πk

1 , ..., π
k
nk
}} that is satisfied

when for each i at least one of the πi
j is installed.

An example repository in this core dependency system is
depicted in Figure 1, that also introduces the graphical nota-
tion used in the paper: package a has two dependencies, and
can be installed only if, first, either package b or package c is
installed, and second, package f is installed; package c con-
flicts with b and f : neither packages b and c, nor packages c
and f , can be installed simultaneously; package d depends

on package e, which in turn depends on both f and g.

2.1 Repositories
We follow the notations of earlier works [1, 6, 7, 8], that we

recall here. A repository is a tuple R = (P ,D ,C ) where P is
a finite set of packages, D : P → P(P(P)) is the dependency
function (we write P(X) for the set of subsets of X), and
C , a symmetric irreflexive relation over P , is the conflict
relation. An installation I of a repository (P ,D ,C ) is a
subset of P . An installation I is healthy when the following
holds:

• abundance: every package has what it needs. Formally,
for every package π ∈ I , and for every dependency
d ∈ D(π), we have d ∩ I 6= ∅.

• peace: no two packages conflict, that is, C∩(I×I ) = ∅.

We call dependency a set of packages d included in D(π) for
some package π ∈ P .
One can give a logical interpretation of the dependency

function and the conflict relation. The logical variables are
the packages π ∈ P . A set of packages d ∈ P(P) is inter-
preted as a disjunction:

JdK =
∨

π∈d

π.

A set of set of packages D(π) ∈ P(P(P)) is interpreted as a
conjunction:

JD(π)K =
∧

d∈D(π)

JdK.

A dependency function D is then interpreted as the set of
formulas of the shape:

π =⇒ JD(π)K

where π ranges over P , which can also be written:

π =⇒
∧

1≤i≤n

∨

1≤j≤mi

πi,j

with D(π) = {di | 1 ≤ i ≤ n} and di = {πi,j | 1 ≤ j ≤ mi}.
A conflict relation C is interpreted as the set of formulas
¬π∨¬π′ for (π, π′) ∈ C . A healthy installation is an assign-
ment which simultaneously satisfies all these formulas.

2.2 Co-Installability
A package π is installable in a repository if it is included in

a healthy installation I of this repository. A set of packages
Π are co-installable in a repository if they are all included
in some healthy installation I of the repository.
Checking co-installability has been shown equivalent to

SAT by taking advantage of the logical interpretation of
repositories [1]. However, our experience is that this problem
is easy in practice: SAT-solver based tools are currently used
routinely to identify non-installable components on reposi-
tories that contains dozens of thousands of packages, and
hundreds of thousands of dependencies and conflicts.

2.3 Extracting a Co-Installability Kernel
Identifying all the sets of components that cannot be in-

stalled together is way more complex: even if we limit our-
selves to the simplest case of sets of non co-installable com-
ponents of size 2 (also known as strong conflicts), testing all
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Figure 2: Transformations of a repository (added dependencies are in bold, dotted ones are removed in the next phase)

possible pairs of packages is not a viable option, as the pack-
age number is in the tens of thousands. Even using all the
optimisations described in [5], the computation takes almost
a week on a modern workstation.

In the present work, we lay down the essential theoret-
ical basis and algorithmic insight for tackling this non co-
installability problem: the fundamental idea is to extract
from the component repository a kernel repository which is
equivalent to the original one, as far as co-installability is
concerned, but which turns out in practice to be orders of
magnitude smaller, and easily manageable.

The key steps of our approach are now summarised. The
effect of each step on the example repository of Figure 1 is
shown in Figure 2.

Flattening.
The recursive nature of dependencies is convenient for

package developers, as it allows them to describe the de-
pendencies among the different packages very concisely, in
a modular way. To study the properties of a repository,
though, it is way more convenient to use only a special flat-

tened form D̂ of dependency functions that directly describes
all dependencies of each package: if

D̂(π) = {{π1
1 , ..., π

k1

1 }, ...{π
1
n, ..., π

kn
n }},

then the packages πj
i are all the packages relevant for in-

stalling package π, and only them.
Any dependency function can be converted in this form

by a sort of transitive closure that expands the dependencies
of each intermediate package, and then converts the result
again in a conjunction of disjunctions using distributivity:
on our running example, this amounts to adding a depen-
dency from d to f , and one from d to g (Figure 2b).

This transformation has some similarity with the conver-
sion of logical formulae to conjunctive normal form, and is
likewise subject to exponential blow-up (see for instance [9]):
the dependency function of the repository in Figure 3 has
size 3n, and when expanded, gives rise to a repository whose
dependency function has size 2n.

This is a strong limiting result, but we are only inter-
ested in studying co-installability of packages, so we need
not fully maintain the logical equivalence of repositories. In
particular, we can prune the expanded dependency function
by removing any dependency containing a package with no
conflicts without changing the co-installability property. In
practice, this suffices to avoid the exponential blow-up. On
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Figure 3: Repository that blows-up when flattened

our running example, this pruning phase removes the de-
pendencies from d to e, from d to g and from e to g, leading
to the repository of Figure 2c.
We take a further action to render the repository more ho-

mogeneous: we add a self dependency to each package with
conflicts. This sort of reflexive closure will be very useful
when quotienting the repository, in a later phase. (There
is no point in adding self dependencies to other packages as
they would be removed by pruning.) We then find it con-
venient to draw the repository using a two-level structure:
on the top, we have all packages; on the bottom, we have
packages with conflicts; dependencies connects the top layer
to the bottom layer; conflicts are between packages on the
bottom layer. On our running example, this leads to the
repository of Figure 2d.
The three phases of expansion, pruning and addition of

self dependencies can be performed in a single pass, and we
thereafter use the term flattening to denote all of them.

Elimination of irrelevant dependencies and conflicts.
As a second phase, we identify several classes of dependen-

cies and conflicts that are irrelevant as far as co-installability
is concerned, and remove them. In Figure 4, we can see some
interesting examples (more are given in Section 8), in all of
which the disjunctive dependency connecting package a to
packages b and c can be dropped:

(a) if some branches of a disjunction are forced by a stronger
dependency, all other branches can be dropped;

(b) a package with no conflict can be added to any instal-
lation, so dependencies on such a package are always
satisfiable and all disjunctive dependencies containing it
can be simplified out (this is the pruning defined above);

(c) if a package has a disjunctive dependency containing a
package (here, b) that conflicts only with other packages
in this dependency (here, c), this dependency is always
satisfiable and can be dropped: either a package con-
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Figure 5: A redundant conflict

flicting with package b is installed, or package b can be
installed; in both cases, the dependency can be satisfied.

In Figure 5, the conflict between packages a and b is implied
by the conflict between packages c and d and can be dropped.

Proving the soundness of such simplifications is far from
trivial: in general, one has to rely on a peculiar structure of
the repository to justify that a dependency can be removed,
but removing a dependency may modify this very structure.
Therefore, a suitable invariant has to be found, that allows
to remove most, if not all, irrelevant dependencies.

On our example repository, the disjunctive dependency
from package a to packages b and c, corresponding to Fig-
ure 4c, can be removed, yielding the repository of Figure 2e.

Quotienting equivalent packages.
It is now quite evident looking at Figure 2e, that packages

a, d, e and f are, as far as co-installability is concerned, re-
ally equivalent: they share the very same set of dependencies
(notice that this fact is easily detectable on the graph thanks
to the self dependency of package f introduced during the
flattening phase).

As many packages in a repository share the same be-
haviour with respect to co-installability, it is useful to quo-
tient the final repository, identifying these packages; this
step contributes greatly in reducing the size of the reposi-
tory, as can be seen on our running example in Figure 2f.

After removing self dependencies, one gets the final repos-
itory of Figure 2g, where it is now quite easy to see which
package can be installed with which other package, and
which package cannot.

3. EXPERIMENTAL RESULTS
The transformations described in this paper have been

proven correct, and all the proofs have been certified in
Coq [10]. An OCaml program implementing these transfor-
mations has been run on several mainstream GNU/Linux
distributions: Debian testing (full suite, amd64, snapshot
taken August 22, 2010), Ubuntu 10.10 (main suite, x386)
and Mandriva 2010.1 (main suite, x386). Running time were
measured on a machine using a Intel Core 2 Duo Processor
E6600 at 2.4GHz. The relevant statistics of the results are
given on Table 1.

We can notice that the number of packages is greatly
reduced: many packages share the same behaviour as far
as co-installability is concerned, and the quotienting phase

Table 1: Repository sizes

Debian Ubuntu Mandriva

before after before after before after

Packages 28919 1038 7277 100 7601 84
Dependencies 124246 619 31069 29 38599 8
Conflicts 1146 985 82 60 78 62
Median cone size 38 1 38 1 59 1
Avg. cone size 66 1.7 84 1.3 153 1.1
Max. cone size 1134 15 842 4 1016 5

Running time (s) 10.6 1.19 11.6
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Figure 6: Distribution of cone size (Debian testing)

identifies them. In particular, many packages can always be
installed, which is good news for the GNU/Linux distribu-
tions; they are thus mapped to a single equivalence class.
The number of dependencies is reduced even more: many
dependencies are not relevant to co-installability, and are re-
moved by our transformations. The simplification shown in
Figure 4c turns out to be essential; for example, in Debian,
thousands of packages depend on debconf which depends
on either debconf-i18n or debconf-english, these two last
packages being mutually exclusive: removing the disjunctive
dependency hugely reduces the size of the final repository.
As for conflicts, we notice that distributions contain only

few of them, which explains that flattening is practical; most
of them cannot be removed.
Finally, to each package p in a repository one can associate

its cone, the set of packages that are reachable from p by fol-
lowing the dependency relations; the cone size of a package
is typically quite large (Figure 6): two third of the packages
have a cone of more than a hundred packages. On the other
hand, after simplification, two third of the package equiva-
lence classes have a cone of size one, meaning that they do
not depend on any other package than themselves.
After simplification, the Ubuntu distribution fits on a let-

ter size paper (see Figure 14 in Section 12) and can be eas-
ily inspected visually for errors. The corresponding graph
for the Debian distribution is much larger, but it is our
experience that it can still be displayed in a usable way
with a suitable graph viewer: the visualisation of the De-
bian co-installability kernel can be tested online at http:

//ocsigen.org/js_of_ocaml/graph/.
As a consequence of the small size of the kernel extracted

from a repository, many analyses can be performed very
quickly. For example, it is easy to compute on the co-
installability kernel of a repository the pairs of packages that
can never be installed together, known as strong conflicts [5],
which is the simplest case of co-installability. On the same
data as [5], the computation takes a few seconds, instead of
the several days reported there. This time is in fact included
in the running times of Table 1 as we use this information
when drawing the simplified repository to emphasise pack-

http://ocsigen.org/js_of_ocaml/graph/
http://ocsigen.org/js_of_ocaml/graph/
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ages that prevent the installation of many other packages.

4. ORDERING REPOSITORIES
A large part of our work consists of finding constraints

that can be removed while leaving co-installability invariant.
We make the idea of removing constraints precise by defining
a preorder on repositories.

We first define a preorder on dependency functions: D ⊑
D ′ iff for every package π, for every dependency d ∈ D(π),
there exists a dependency d′ ∈ D ′(π) such that d′ ⊆ d. As
an example, the dependency function D of the repository
shown in Figure 7a is subsumed by the dependency function
D ′ of the repository shown in Figure 7b.

This preorder corresponds exactly to the converse of logi-
cal implication: D ⊑ D ′ if and only if the formulas JD ′(π)K
=⇒ JD(π)K can be derived for all packages π ∈ P .

The preorder induces an equivalence relation over depen-
dency functions, and a canonical representative of an equiv-
alence class can be defined by taking the element which is
point-wise the smallest. Given a dependency function D , its
canonical representative can be explicitly defined as:

D ′(π) = {d ∈ D(π) | ∀d′ ∈ D(π), d′ ⊆ d =⇒ d′ = d}.

This provides a first way to simplify the dependency function
(illustrated by Figure 4a), and our implementation aggres-
sively put all dependencies in canonical form.

We can now define a preorder on repositories: (P ,D ,C ) ⊑
(P ′,D ′,C ′) if and only if:

P = P ′, D ⊑ D ′, C ⊆ C ′.

Given two repositories related under this preorder, going
from the right hand side one to the left hand side one consists
in removing conflicts or relaxing dependencies, thus making
it easier to install packages.

Theorem 2. When (P ,D ,C ) ⊑ (P ′,D ′,C ′), any healthy
installation I of repository (P ′,D ′,C ′) is also a healthy in-
stallation of repository (P ,D ,C ).

(Proof p. )

5. FLATTENING DEPENDENCIES
The flattened form of a dependency function, whose intu-

ition has been given in the introduction, is formally defined
as follows; given a repository (P ,D ,C ), the flattened depen-

dency function D̂ is the smallest function (with respect to
point-wise inclusion) such that:

Refl

(π, π′) ∈ C

{π} ∈ D̂(π)

Trans

{π1, . . . , πn} ∈ D(π)

d1 ∈ D̂(π1) . . . dn ∈ D̂(πn)⋃

1≤i≤n

di ∈ D̂(π)

As the above rules are monotonous, such a function D̂ exists.
The rule Trans expands the intermediate dependencies of

a package π and converts the result back into a conjunction
of disjunctions; this rule silently drops circular dependencies:

adding a dependency {π} ∈ D(π) has no effect on D̂(π).
The rule Refl is designed to capture precisely the two

properties we have outlined informally in the introduction:

on one hand, we want to keep in D̂(π) only dependencies on
packages with at least a conflict (we prove in the next section
that they are enough for keeping co-installability invariant);

on the other hand, we want D̂(π) to contain explicitly all the
packages that are needed to install package π (so, if π has a
conflict, it will also be an explicit dependency of itself).
The application of the transformation on the repository of

Figure 1 gives the following result (illustrated by Figure 2e):

D D̂

a {{b, c}, {f}} {{b, c}, {f}}
b ∅ {{b}}
c ∅ {{c}}
d {{e}} {{f}}
e {{f}, {g}} {{f}}
f ∅ {{f}}
g ∅ ∅

Packages d, e and f now have the same dependencies,
which reflects the intuition that they behave the same way
as far as co-installability is concerned.

6. STRONGLY FLAT REPOSITORIES
A flattened repository satisfies two properties (Theorem 3

below): a reflexivity property (if a package has a conflict,
then it depends on itself), and a transitivity property (de-
pendencies are stable under composition). Co-installability
in such repositories, that we call strongly flat, can be shown
equivalent to a more convenient property, that we call weak
co-installability (Theorem 4); this is instrumental to prove
the key result of this section: a set of packages are co-
installable in a repository if and only if they are co-installable
in the corresponding flattened repository (Theorem 6).
We define precisely these two properties and study repos-

itories that satisfies them.
We define the composition D ;D ′ of two dependency func-

tions over a set of packages P as the smallest function (with
respect to point-wise inclusion) such that for every package
π ∈ P , for every set {π1, . . . , πn} ∈ D(π), for every sets
di ∈ D ′(πi), we have

⋃
1≤i≤n

di ∈ (D ;D ′)(π).
To any conflict relation C , we associate a dependency

function ∆C defined as follows:

∆C (π) =

{
{{π}} if (π, π′) ∈ C for some π′ ∈ P
∅ otherwise

A repository (P ,D ,C ) is strongly flat when the following
conditions hold:

• reflexivity : ∆C ⊑ D (every package with conflict de-
pends on itself);

• transitivity : D ;D ⊑ D (dependencies are closed under
composition).

The flattening transformation produces strongly flat repos-
itories.



Theorem 3. Let (P ,D ,C ) be a repository. Let D̂ be the
corresponding flattened dependency function. The repository

(P , D̂ ,C ) is strongly flat.
(Proof p. )

Intuitively, strongly flat repositories have a two level struc-
ture. Looking for instance at Figure 2e, we find all packages
on the top layer, and typically only packages with conflicts
(that we refer to as features in the following) at the bottom
layer: thanks to transitivity, everything a package π may
need to be installed is fully described by D(π), without re-
cursive traversal of dependencies; and thanks to reflexivity,
conflicts need only be considered on the image of D .

We can take advantage of this to define a more convenient
way of capturing co-installability:

A configuration is a pair (I ,F ) of a set I of packages and a
set F of features; we say that it is healthy when the following
conditions hold:

• abundance: every package has what it needs. Formally,
for every package π ∈ I , and for every dependency
d ∈ D(π), we have d ∩ F 6= ∅.

• peace: no two features conflict, that is, C∩(F×F ) = ∅.

This is subtly different from the homonymous definitions
regarding installations. Conflicts are only checked in F , and
abundance only checked for packages in I w.r.t. F ; the sets
F and I might as well be disjoint, here.

A set of packages Π are weakly co-installable if there exists
a set of features F ⊆ P such that the configuration (Π,F )
is healthy. In general, this is a weaker notion. In strongly
flat repositories, though, the two notions are equivalent.

Theorem 4. Any set of packages Π weakly co-installable
in a strongly flat repository are also co-installable.

(Proof p. )

It is interesting to remark that the result of the flattening
operation can be mathematically characterised as follows.

Lemma 5. The flattened dependency function D̂ associ-
ated to a repository (P ,D ,C ) is the least dependency func-
tion D ′ (for preorder ⊑, and up to equivalence) such that:

• ∆C ⊑ D ′

• D ;D ′ ⊑ D ′.
(Proof p. )

The essential result of this section is that co-installability
is left invariant by flattening.

Theorem 6. Let (P ,D ,C ) be a repository. Let D̂ be the
corresponding flattened dependency function. Let Π be a set
of packages. The following propositions are equivalent:

1. Π is co-installable in (P ,D ,C );

2. Π is weakly co-installable in (P , D̂ ,C );

3. Π is co-installable in (P , D̂ ,C ).
(Proof p. )

7. FLAT REPOSITORIES
In this section, we focus on a particular class ∇C ⊆ P(P)

of dependencies that can be safely removed (Theorem 11).
Removing these dependencies may destroy the strongly flat
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Figure 8: Illustration of monotony requirement

structure of a repository, but we introduce the weaker no-
tion of flat repository which is preserved (Theorem 11), and
for which co-installability and weak co-installability still co-
incide (Theorem 10), thus enabling further simplifications
introduced in Section 8.
We want to capture in the class ∇C a set of dependencies

that have the following two key properties:

always satisfiable any healthy configuration in the
repository can be extended to satisfy these dependen-
cies, so they are irrelevant for co-installability and we
can remove them; formally, this means that if d ∈ ∇C ,
then for all F ∈ P(P) maximal with respect to set in-
clusion such that C ∩ (F ×F ) = ∅, we have d∩F 6= ∅;

monotony a dependency which is in ∇C must still be
always satisfiable even if we remove some conflicts from
the repository; formally, if C ′ ⊆ C , then ∇C ⊆ ∇C ′ .

The monotony property is necessary, because in the next
section we introduce further simplifications that remove re-
dundant conflicts. We want to be sure that removing a
conflict later on does not invalidate the decision taken here
of removing a dependency, as illustrated in Figure 8: the
disjunctive dependency on packages b and c can always be
satisfied because the conflict between d and e prevents the
simultaneous installation of d and e; but this dependency
is not in ∇C since it is no longer satisfiable if the conflict
between d and e is removed. This leads to the following:

Definition 7. Given a repository (P ,D ,C ), the set ∇C

is the largest set such that d ∈ ∇C if and only if, for all C ′ ⊆
C, for all F ∈ P(P) maximal with respect to set inclusion
such that C ′ ∩ (F × F ) = ∅, we have d ∩ F 6= ∅.

We can give a more explicit characterisation of the ele-
ments of ∇C : these are exactly the dependencies that con-
tain at least a package having only internal conflicts, like in
Figure 4c.

Theorem 8. Let (P ,D ,C ) be a repository. The set ∇C

is the set of dependencies d such that there exists a package
π ∈ d such that, for all pairs (π, π′) ∈ C, we have π′ ∈ d.

(Proof p. )

Notice that, if a dependency d contains a package π with
no conflict, then it is in ∇C ; so ∇C also contains the redun-
dant dependencies shown in Figure 4b.

As we shall see, weak co-installability is left invariant by
the transformation that removes the elements of set∇C from
a dependency function D of a strongly flat repository. But,
in general, the strongly flat property is lost, so we need a
weaker notion that is preserved by this simplification. We
start by defining a coarser preorder on dependency functions
that ignores dependencies in ∇C :

D ≺C D ′ if and only if for every package π, for
every dependency d ∈ D(π), either d ∈ ∇C or
there exists a dependency d′ ∈ D ′(π) such that
d′ ⊆ d.



A repository (P ,D ,C ) is flat when it satisfies the follow-
ing properties:

• reflexivity : ∆C ≺C D ;

• transitivity : D ;D ≺C D .

Flat repositories have a series of good properties: they in-
clude strongly flat repositories, co-installability and weak
co-installability still coincide, removing ∇C preserves flat-
ness and keeps co-installability invariant.

Lemma 9. Any strongly flat repository is flat.
(Proof p. )

Theorem 10. Any set of packages Π weakly co-installable
in a flat repository are co-installable in this repository.

(Proof p. )

Theorem 11. Let (P ,D ,C ) be a flat repository and D ′

be the dependency function such that D ′(π) = D(π) \ ∇C

for all π ∈ P. The repository (P ,D ′,C ) is flat, and co-
installability is left invariant by this transformation.

(Proof p. )

One can still reason on flat repositories, as far as co-
installability is concerned, as if their dependency function
was transitive: just choose installations (I ,F ) where F is
maximal, and then any dependency obtained by composi-
tion is satisfied, even when it is not explicitly in the depen-
dency function. (For strongly flat repositories, this holds for
arbitrary sets F .)

8. IRRELEVANT CONSTRAINTS
We review now several classes of dependencies and con-

flicts that are redundant and can be simplified out.

8.1 Clearly Irrelevant Dependencies
The results of the previous section let us remove the de-

pendencies in ∇C from a flat repository while leaving weak
co-installability invariant and keeping the repository flat.

8.2 Conflict Covered Dependencies
An example of another very interesting class of irrelevant

dependencies is shown in Figure 9, where the dependency
for package a can always be satisfied despite the conflict
between packages e and f (we assume the other packages
in this dependency also have conflicts, not explicited, so the
dependency cannot be obviously removed): indeed, for this
conflict to be relevant for the dependency, f needs to be
installed; but if f is installed, at least one of packages c and
d is installed as well, and thus the dependency is satisfied
without needing to install e. This generalizes to the case
where package e is in conflict with several packages with the
same property as package f .

More formally, we say that a dependency d is conflict
covered at π if it contains a package π such that for all
(π, π′) ∈ C , there exists a dependency d′ ∈ D(π′) such
that d′ ⊆ d \ {π}. Removing one such dependency leave
co-installability invariant.

Lemma 12. Let (P ,D ,C ) be a flat repository, d be a con-
flict covered dependency, and D ′ be the dependency func-
tion obtained by removing d from D. Any set of packages
weakly co-installable in (P ,D ′,C ) is weakly co-installable in
(P ,D ,C ).

e f

a
∨

c d

#

∨b#

# #

Figure 9: Dependency
covered by the conflict
requirements.

b c

d e#

#

a
# #

Figure 10: Redundant
conflict belonging to a
clique

(Proof p. )

Unfortunately, removing such dependencies may destroy
the flatness of the repository, so we remove them one af-
ter another, in a greedy way, and only after checking that
flatness is preserved by using the following result.

Lemma 13. Let (P ,D ,C ) be a flat repository. Let π ∈ P
and d ∈ D. Let D ′be the dependency function D where the
dependency d of package π has been removed. If the following
two conditions hold, then (P ,D ′,C ) is flat.

• d 6⊆ {π};
• for all d′ ∈ (D ′ ;D ′)(π), we have d 6⊆ d′.

(Proof p. )

In practice, it can be simpler to get all possible dependen-
cies d′ above by taking all dependencies d′′ ∈ D(π)\{d, {π}}
and composing them with dependencies in D .
The graph reduction rule defined by this simplification has

unsolvable critical pairs, so the result of this simplification
could depend on the order of removal. In practice, though,
we remove all instances present in the initial repository.

8.3 Redundant Conflicts
We consider some of the conflicts that can be removed

from a repository while leaving co-installability invariant. A
conflicting pair (π1, π

′
1) ∈ C is redundant if there exists a

dependency d ∈ D(π1) such that for all π2 ∈ d, there exists
a package π′

2 such that:

• (π2, π
′
2) ∈ C ;

• {π1, π
′
1} 6= {π2, π

′
2};

• there exists d′ ∈ D(π2) such that d′ ⊆ {π′
2}.

Redundant conflicts can be removed, but only one at a
time: for example, if two conflicts are considered redundant
thanks to the existence of one another, then removing both
of them simultaneously is incorrect.

Lemma 14. Let (P ,D ,C ) be a repository. Let (π1, π2) be
a redundant conflict in this repository. Any healthy instal-
lation of repository (P ,D ,C \ {(π1, π2), (π2, π1)}) is healthy
in repository (P ,D ,C ).

(Proof p. )

Removing redundant conflicts involves a trade off. On one
side, it may allow to remove some additional dependencies;
on the other, it can also break some interesting structures.
In Figure 10, the conflict between b and c is redundant, but
removing it breaks the clique a, b, c, which is useful when
drawing a simplified graph.

8.4 Dependence on Conflicting Packages
A special configuration may surface in the repository dur-

ing simplification when the initial repository contains broken
packages, as depicted in Figure 11: clearly, package a cannot
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Figure 11: Dependence on conflicting package

be installed, and leaving such a configuration in the repos-
itory would pollute the graphical representation. In this
case, we mark explicitly package a as broken by replacing
its dependencies by the empty dependency ∅. All conflicts
involving a can then be also removed, as they are redundant
(Section 8.3). The transformation preserves healthiness.

Lemma 15. Let π be a package not installable in some
repository (P ,D ,C ). Let D ′ be the dependency function that
coincide with D for all packages but π and such that D ′(π) =
{∅}. Any healthy installation of repository (P ,D ,C ) is also
healthy in repository (P ,D ′,C ).

(Proof p. )

The flatness of the repository may be destroyed, as some of
the removed dependencies may be involved in transitivity.
Thus, after applying such simplification, flattening should
be performed again.

9. QUOTIENTING THE SET OF PACKAGES
In real-world repositories, many packages share the same

behaviour as far as co-installability is concerned: for ex-
ample, a lot of packages can always be installed, and some
groups of packages only conflicts with a single other package.

In this section, we define an equivalence relation between
packages, and show that the quotient w.r.t. this relation
preserves all the good properties of a repository. We define
two packages as equivalent in a repository (P ,D ,C ) if they
have the same dependencies:

π ≡ π′ if and only if D(π) = D(π′).

We write [π] for the equivalence class of package π, and
extend this definition to set of packages: [Π] = {[π] |π ∈
Π}. The quotient repository (P ′,D ′,C ′) of a repository
(P ,D ,C ) is naturally defined as follows:

• P ′ is the set of all equivalence classes: P ′ = P/≡ =
{[π] |π ∈ P};

• the dependency function D ′ is such that D ′([π]) =
{[d] | d ∈ D(π)} for all π ∈ P ;

• the conflict relation C ′ is defined by

C ′ = {([π], [π′]) | (π, π′) ∈ C}.

If the original repository does not contain dependencies
of the form of Figure 11 nor redundant conflicts, then the
quotient repository is indeed a repository (the key point to
check is irreflexivity of the conflict relation).

Lemma 16. Let (P ,D ,C ) be a flat repository such that,
for all π ∈ P and for all d ∈ D(π), if d ⊆ {π′} for some
π′ ∈ P, then (π, π′) 6∈ C. Its quotient is indeed a repository.

(Proof p. )

Quotienting preserves flatness and keeps co-installability
invariant.

Theorem 17. A set of packages Π is weakly co-installable
in the flat repository (P ,D ,C ) if and only if the set [Π] is
weakly co-installable in the associated quotient repository.

repeat
(P,D,C)← flatten(P,D,C)
(P,D,C)← canonise(P,D,C)
(P,D,C)← (P,D,C) \ ∇C

(P,D,C)← remove-clearly-broken(P,D,C)
(P,D,C)← remove-redundant-conflicts(P,D,C)

until the last two steps above have no effect
(P,D,C)← remove-conflict-covered-deps(P,D,C)
return quotient(P,D,C)

Figure 12: Simplifying the repository.

(Proof p. )

Theorem 18. If a repository is flat, then the correspond-
ing quotiented repository is flat as well.

(Proof p. )

10. REFLEXIVE TRANSITIVE REDUCTION
It would not be suitable to graph directly a repository af-

ter flattening as it would be polluted by dependencies which
are not informative: due to reflexivity, we have packages
π where {π} ∈ D(π), and some dependencies can be de-
duced from others by transitivity. Thus, we perform a kind
of reflexive transitive reduction of the dependency function:
given a repository (P ,D ,C ), we find a minimal dependency

function D ′ with the same flattening (that is, D̂ = D̂ ′).
Because of disjunctive dependencies, the complexity of

finding an optimal solution is high [11, 12], in constract with
the case of reflexive transitive reduction for graphs. As this
is mostly a cosmetic issue for us, we use a simple non-optimal
algorithm. As a first step, we iteratively remove dependen-
cies which are implied from other dependencies by transi-
tivity, in a greedy way. The second step is to remove all
self dependencies, that is, dependencies d ∈ D(π) such that
π ∈ d. Co-installability is left invariant by these operations.

Lemma 19. Let (P ,D ,C ) be a repository. Let π ∈ P be a
package and d ∈ D(π) be a dependency of this package. Let
D ′ = D \ {π 7→ d} be the dependency function D where the
dependency has been removed. If d ∈ (D ′ ; D ′)(π) then any
healthy installation I of repository (P ,D ′,C ) is a healthy
installation of repository (P ,D ,C ).

(Proof p. )

Lemma 20. Let (P ,D ,C ) be a repository. Let D ′ be the
dependency function defined by D ′(π) = {d ∈ D |π 6∈ d}.
Any healthy installation I of repository (P ,D ′,C ) is also a
healthy installation of repository (P ,D ,C ).

(Proof p. )

11. PUTTING ALL TOGETHER
We now have all the ingredients at hand to perform on any

repository (P,D,C) the transformations that allow to pro-
duce the final repository, which is suitable both for drawing
a simplified graph, or performing efficiently various analysis
related to co-installability.

11.1 Extracting a Co-Installability Kernel
The complete algorithm is shown in Figure 12. We first

flatten the initial repository (Section 5), canonise the depen-
dency function (Section 4), and remove the clearly irrelevant
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Figure 13: Conflict clique

dependencies in ∇C (Section 7). In our implementation, all
these operations are performed simultaneously: this is sig-
nificantly more efficient, as we have less dependencies to
consider while flattening. Then, we set the dependencies of
broken packages of the form of Figure 11 to the empty de-
pendency ∅ (Section 8.4), and we remove redundant conflicts
(Section 8.3). As changing the dependencies of broken pack-
ages may break flatness and removing may grow ∇C , these
fives steps are iterated until no change occurs. The process
terminates as at each iteration either D(π) is set to {∅} for
a package π or a conflict is removed. In practice, only two
iterations are performed: more iterations are only needed in
unlikely configurations where dealing with a broken pack-
age exposes another package as broken. Finally, we remove
the conflict covered dependencies that can be safely dropped
(Section 8.2) and the repository is quotiented (Section 9).

By combining the results of the previous sections, we ob-
tain the fundamental result on the simplification performed
by the algorithm.

Theorem 21. The transformation performed by the sim-
plification algorithm leaves co-installability invariant. This
algorithm produces a flat repository.

(Proof p. )

As noticed above, on a repository with no broken package,
it is not necessary to iterate the flattening phase, so the al-
gorithm could run slighly faster; but finding all broken pack-
ages is slower than performing the whole simplification, as it
requires to call a SAT solver repeatedly on large problems.
On the other hand, repositories with good quality control
should contain no broken packages, and a simpler version of
the simplification algorithm could be used on them.

11.2 Drawing a Simplified Graph
Before drawing the final repository, we perform the tran-

sitive reflexive reduction of Section 10. The structure of the
graph is then passed as input to the dot program of the
Graphviz toolkit [13] that performs the layout.

It is important to name nodes using meaningful represen-
tatives of each equivalence class: we give preference to pack-
ages π that are directly involved in conflicts, as they have
more chances to be relevant for the repository maintainers;
these are easy to find by checking if {π} ∈ D(π).

There can be many packages all mutually in conflict. For
instance, this is the case of all mailer agents in Debian. We
identify maximal such cliques and draw them in a more con-
cise way, as shown in Figure 13.

We compute strong conflicts [5] (non-coinstallable pairs
of packages) and use this information to emphasise packages
that prevent the installation of many other packages.

12. VISUALIZING UBUNTU
In Figure 14 we can see the result of applying the sim-

plifications described in this paper to the main section of

release 10.10 of the Ubuntu GNU/Linux distribution; solid
arrows indicate dependencies, dotted lines indicate conflicts,
and conflict cliques are represented with a node containing
a # connected with dotted lines to all packages in the clique.
Of the thousands of packages, and dozens of thousands of
relationships, only a handful are left, and it is possible to
read interesting information directly on the graph.
We give here just a couple of examples. The isolated

node in the middle left stands for 7049 packages that are
always installable. The five conflict cliques are justified, as
they all correspond to incompatible implementations of li-
braries which are compiled with different backends. One
can see that package libjpeg8-dev is in conflict with 28
other packages, which is likely to make it unconvenient to
use. The core package ubuntu-desktop is in conflict with
a number of packages. These packages should either be re-
moved from the main section, or the dependencies should be
revised. For instance, packages foomatic-db and libgd2-

noxpm should probably be removed. On the other hand,
package libsdl1.2debian-all provides a superset of the
functionalities of libsdl1.2debian-pulseaudio. Thus, it
should not be in conflict with ubuntu-desktop. Overall,
there are few issues with this repository. Our tool is most
useful for detecting issues proactively when the distribution
is in flux (during alpha and beta stages).

13. RELATED AND FUTURE WORK
Many relevant research issues stem from the concrete and

widespread applications of software component repositories:
identifying components that can never be installable has
been shown NP-complete, but tractable in practice [1], and
there is currently very active research on computing instal-
lations that optimise some given objective functions, or-
ganised around the Mancoosi International Solver Compe-
tition (http://www.mancoosi.org/misc-2010/); determin-
ing what other components a package will always need [4]
and what pairs of packages are incompatible [5] have been
shown to be relevant for quality assurance in package reposi-
tories; finally, since feature diagrams, used in software prod-
uct lines, can be encoded as component repositories [14], all
the problems related to configuration management can be
equivalently stated in terms of repositories.
Connections between component repositories and boolean

satisfiability and constraint solving have been made only a
few years ago in the framework of GNU/Linux distributions
[1, 2] and the Eclipse platform [3], but these connections,
and other recent developments such as [4, 5] do not exploit
the special structure of the dependencies and conflicts found
in a repository.
The underlying structure of software component reposi-

tories exposed here can also be seen as a generalisation of
some known mathematical structures : prime event struc-
ture [15] correspond to repositories without loops and dis-
junctions; directed hypergraphs [11] correspond to reposito-
ries without conflict arcs, and Dual Horn theories correspond
to repositories with conflicts [16]. In this paper, we have de-
veloped a theory and algorithms to extract from a repository
a co-installability kernel, which can be seen as a minimal
representation of the dependency and conflict relations: de-
spite the apparent simplicity of the definition of the problem,
and the intuitive appealing of the hypergraph transforma-
tions we have developed, the proofs of the crucial proper-
ties turned out to be surprisingly complex, so we decided

http://www.mancoosi.org/misc-2010/


to machine check them using Coq [10], and a long version
of this paper containing all the proofs is available online as
http://www.dicosmo.org/Papers/coinstallability.pdf.

The results presented here pave the way to attacking sig-
nificantly more complex problems concerning software com-
ponent repositories. More generally, we believe this work
clearly shows the interest of the mathematical objects under-
lying software repositories, which turn out to be amenable
to an elegant formal treatment and of high practical interest.

Artifact evaluation: the tool coinst implemeting the
analysis described in this article has been evaluated by the
ESEC/FSE Artifact Evaluation Committee, and it has be
found to exceed expectations.
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APPENDIX

This appendix contains all the proofs of the lemmas and
theorems stated in the body of the article, as well as some
auxiliary lemmas which are needed in the proofs. Auxiliary
material appearing only in the appendix has numbers that
are higher than in the paper, and appear hence out of or-
der: this is necessary to avoid disrupting the numbering of
lemmas and theorems in the body of the article.

A. PROOF OF THE MAIN RESULTS

Remark 22. Let (P ,D ,C ) and (P ′,D ′,C ′) be two repos-
itories. If any healthy installation I of repository (P ,D ,C )
is a healthy installation of repository (P ′,D ′,C ′), then any
co-installable set of packages Π in repository (P ,D ,C ) is a
co-installable set of packages in repository (P ′,D ′,C ′).

Proof: Immediate ✷

The preorder ⊑ is coarser than point-wise inclusion:

Remark 23. If, for all π ∈ P, D(π) ⊆ D ′(π), then D ⊑
D ′.

We write ∼ for the equivalence relation associated to the
relation ⊑.

Proof of Theorem 2

We suppose that I is a healthy installation of (P ′,D ′,C ′)
and prove that I is a healthy installation of (P ,D ,C ).

We first prove abundance. Let π ∈ I and d ∈ D(π). As
D ⊑ D ′, there exists d′ ∈ D ′(π) such that d′ ⊆ d. As I is a
healthy installation of (P ′,D ′,C ′), by abundance, d′∩I 6= ∅.
Hence, d ∩ I 6= ∅ as wanted.
We now prove peace. As I is a healthy installation of

(P ′,D ′,C ′), we have C ′ ∩ (I × I ) = ∅. On the other hand,
C ⊆ C ′. Hence, C ∩ (I × I ) = ∅ as wanted.

Proof of Theorem 3

Reflexivity, that is ∆C ⊑ D̂ , is a direct consequence of
rule Refl.

We now show transitivity, that is D̂ ; D̂ ⊑ D̂ . Let π ∈ P

and d ∈ (D̂ ; D̂)(π). By definition of composition, there

exists d′ = {π1, . . . , πn} ∈ D̂(π) and sets di ∈ D̂(πi) such
that d =

⋃
1≤i≤n

di. We need to show that there exists

d′′ ∈ D̂(π) such that d′′ ⊆ d =
⋃

1≤i≤n
di. The proof is by

induction on a derivation of d′ ∈ D̂(π). We have two cases.

• Case Refl. There exists π′ ∈ P such that (π, π′) ∈ C ,

and d′ = {π}. We have, d = d1 ∈ D̂(π1) = D̂(π), hence
we can take d′′ = d.

• Case Trans. There exists a set {π′
1, . . . π

′
m} ∈ D̂(π) and

sets d′j ∈ D̂(π′
j) such that d′ =

⋃
1≤j≤m

d′j . Besides, by
induction hypothesis, for all j, if one can find packages
πk
j and dependencies dkj such that d′j = {π1

j , . . . , π
pj
j },

and dkj ∈ D̂(πk
j ), then there exists d′′j ∈ D̂(π′

j) such

that d′′j ⊆
⋃

1≤k≤pj
dkj . We have d′j ⊆ d′. Hence we

can choose for each indices j and k an index i such
that πk

j = πi. Then, we take dkj = di. We there-

fore have dependencies d′′j ∈ D̂(π′
j) such that d′′j ⊆⋃

1≤k≤pj
dkj . We take d′′ =

⋃
1≤j≤m

d′′j . By rule Trans,

d′′ ∈ D̂(π). Besides, d′′ ⊆
⋃

1≤j≤m

⋃
1≤k≤pj

dkj . But,

as d′ =
⋃

1≤j≤m
di, the packages πk

j ranges over all the

distinct packages πi. Hence, the dependencies dkj ranges
over all dependencies di, and we have d′′ ⊆

⋃
1≤i≤n

di
as wanted. ✷

Remark 24. The two following properties hold:

• an installation I is healthy iff the configuration (I , I )
is healthy;

• if (Π,F ) is healthy and Π′ ⊆ Π, then (Π′,F ) is healthy.

Proof: Immediate. ✷

Lemma 25. If a set of packages Π are co-installable, then
they are also weakly co-installable.

Proof: Suppose the set of packages Π are co-installable.
By definition, there exists a healthy installation F such that
Π ⊆ F . We terminate the proof by using in turn both prop-
erties in Remark 24. The configuration (F ,F ) is healthy.
Hence, by anti-monotony of the definition of healthiness,
(Π,F ) is healthy. ✷

We present here two technical lemmas needed in the proof
of Theorem 6.

Lemma 26. Let (P ,D ,C ) be a repository such that ∆C ⊑
D. Let (I ,F ) be a healthy configuration. For every package
π ∈ I , if (π, π′) ∈ C for some π′ ∈ P, then π ∈ F.

Proof: We consider a package π ∈ I such that (π, π′) ∈ C
for some package π′ ∈ P . As ∆C ⊑ D , there exists d ∈ D(π)
such that d ⊆ ∆C (π) = {π}. By abundance, d ∩ F 6= ∅.
Hence, π ∈ F . ✷

Lemma 27. Let (P ,D ,C ) be a repository. Let D ′ be a
dependency function such that ∆C ⊑ D ′ and D ;D ′ ⊑ D ′. If
a set of packages Π are weakly co-installable in (P ,D ′,C ),
then they are co-installable in (P ,D ,C ).

Proof: We consider a set of packages Π which are weakly
co-installable in (P ,D ′,C ). This means that there exists
a set of packages F such that the configuration (Π,F ) is



healthy in (P ,D ′,C ). We then consider a maximal set of
packages I such that Π ⊆ I and the configuration (I ,F ) is
healthy in (P ,D ′,C ). We can conclude if we prove that I is
healthy in (P ,D ,C ).

We first prove abundance. We take π ∈ I and d =
{π1, . . . , πn} ∈ D(π) and need to prove that d ∩ I 6= ∅. We
want to show that we can find π′′ ∈ d such that (I∪{π′′},F ),
is healthy. Indeed, then, by maximality of I , we have π′′ ∈ I .
Hence, d∩ I 6= ∅ as wanted. The package π′′ should be such
that, for all d′′ ∈ D(π′′), we have d′′∩F 6= ∅. The proof is by
contradiction. Suppose that for all i, there exists di ∈ D ′(πi)
such that di∩F = ∅. As D ;D ′ ⊑ D ′, there exists d′ ∈ D ′(π)
such that d′ ⊆

⋃
1≤i≤n

di. We have d′ ∩F ⊆
⋃

1≤i≤n
di = ∅.

This contradicts the fact that π ∈ I and (I ,F ) is healthy.
Hence the existence of a suitable package π′′ which allow us
to finish the proof of abundance.

We now prove peace by contradiction. Suppose that C ∩
(I × I ) 6= ∅, that is, there exists π ∈ I and π′ ∈ I such that
(π, π′) ∈ C . As (I ,F ) is healthy, we have π ∈ F and π′ ∈ F
by Lemma 26, and then (π, π′) 6∈ C by peace. We reach a
contradiction, hence C ∩ (I × I ) = ∅. ✷

Proof of Theorem 4

This is an immediate consequence of Lemma 27, taking D =
D ′.

Proof of Lemma 5

Clearly, the flattened dependency function satisfies these
equations. Let D ′ be another dependency function satis-
fying the equations. We want to prove that, for all π ∈ P ,

D̂(π) ⊑ D ′(π). By unfolding the definition of the preorder,

this can be rephrased as: for all π ∈ P , for all d ∈ D̂(π),
there exists d′ ∈ D ′(π) such that d′ ⊆ d. The proof is by

induction on a derivation of d ∈ D̂(π). We have two cases.

• Case Refl. There exists π′ ∈ P such that (π, π′) ∈ C ,
and d = {π}. From the first assumption, there exists
d′ ∈ D ′(π), such that d′ ⊆ {π}. Hence, d′ ⊆ d as
wanted.

• Case Trans. There exists a set {π1, ..., πn} ∈ D(π) and

sets di ∈ D̂(πi) such that d =
⋃

1≤i≤n
di. Besides, by

induction hypothesis, for all i, there exists d′i ∈ D ′(πi)
such that d′i ⊆ di. From the second assumption, there
exists d′ ∈ D ′(π), such that d′ ⊆

⋃
1≤i≤n

d′i. We have,

d′ ⊆
⋃

1≤i≤n
d′i ⊆

⋃
1≤i≤n

di = d as wanted. ✷

Proof of Theorem 6

(3) implies (2) by Lemma 25. (2) implies (3) by Lemmas 4
and 3. (2) implies (1) by Lemmas 27 and 5. We now assume
(1) and prove (3).

By definition, there exists a healthy installation I of repos-
itory (P ,D ,C ) such that Π ⊆ I . We can just show that I

is also a healthy installation of repository (P , D̂ ,C ). Peace
is immediate. We prove abundance. We consider π ∈ P and

d ∈ D̂(π). We need to show that if π ∈ I , then d ∩ I 6= ∅.

The proof is by induction on a derivation of d ∈ D̂(π). We
have two cases.

• Case Refl. We have d = {π}. Hence, if π ∈ I then
d ∩ I = {π} 6= ∅.

• Case Trans. We have {π1, . . . , πn} ∈ D(π) and d =⋃
1≤i≤n

di where di ∈ D̂(πi) and, if πi ∈ I , then di∩I 6=

∅ (induction hypothesis). Let us assume π ∈ I . By
abundance, as {π1, . . . , πn} ∈ D(π), there must exists
some i such that πi ∈ I . Then, di ∩ I 6= ∅, and thus
d ∩ I 6= ∅. ✷

Proof of Theorem 8

We first assume that there exists no package π ∈ d such
that, for all pairs (π, π′) ∈ C , we have π′ ∈ d. We show that
then d 6∈ ∇C . Let C ′ be the set of conflicts in C that cross
d:

C ′ = {(π, π′) ∈ C |#({π, π′} ∩ d) = 1}.

Clearly, this is a conflict relation (it is symmetric and ir-
reflexive). We consider the set of features F = P \ d. We
have C ′∩(F ×F ) = ∅. If we can now prove that the set F is
a maximal set satisfying this property, we can conclude. In-
deed, then, as d∩F = ∅, the set d is not in ∇C . We consider
a strictly larger set of features F ′ and show that it does not
satisfies the property. The set F ′ must contain at least a
package π in dependency d. But then, by assumption, there
exists π′ ∈ P \ d = F such that (π, π′) ∈ C . By definition
of C ′, we have (π, π′) ∈ C ′. Hence, C ′ ∩ (F ′ × F ′) 6= ∅, as
wanted.
We now assume that there exists a package π ∈ d such

that, for all pairs (π, π′) ∈ C , we have π′ ∈ d. We show
that then d ∈ ∇C . Let C ′ be a conflict relation such that
C ′ ⊆ C . Let F be a maximal set of features such that
C ′ ∩ (F × F ) = ∅. We need to show that d ∩ F 6= ∅. If we
assume that there exists no π′ ∈ F such that (π, π′) ∈ C ′,
then, by maximality of F , we must have π ∈ F . Hence,
d ∩ F 6= ∅ as wanted. Otherwise, there exists π′ ∈ F such
that (π, π′) ∈ C ′. But then, π′ ∈ d. Hence, d ∩ F 6= ∅ as
well.

Remark 28. Let (P ,D ,C ) be a repository. The set ∇C

is upward-closed: if d ⊆ d′ and d ∈ ∇C , then d′ ∈ ∇C .

Proof: This is immediate thanks to Theorem 8. ✷

This preorder can be extended to repositories by setting
(P ,D ,C ) ≺ (P ′,D ′,C ′) iff P = P ′, D ≺C D ′, and C ⊆ C ′.
We write ≈ for the associated equivalence relation.

Remark 29. The following implications hold:

• if C ′ ⊆ C and D ≺C D ′, then D ≺C ′ D ′;

• if D ⊑ D ′, then D ≺C D ′;

• if (P ,D ,C ) ⊑ (P ′,D ′,C ′), then (P ,D ,C ) ≺ (P ′,D ′,C ′).

Proof: Immediate. ✷

Proof of Lemma 9

This is a direct consequence of Remark 29.



Remark 30. Let (P ,D ,C ) be a flat repository. Let π ∈
P such that (π, π′) ∈ C for some π′ ∈ P. Then, there exists
d ∈ D(π) such that d ⊆ {π}.

Proof: Let π ∈ P such that (π, π′) ∈ C for some π′ ∈ P .
By reflexivity (∆C ′ ≺C D), we have either {π} ∈ ∇C or
there exists d ∈ D(π) such that d ⊆ {π}. By Theorem 8,
{π} 6∈ ∇C . Hence the result. ✷

Lemma 31. If (P ,D ,C ) ≺ (P ′,D ′,C ′), (P ′,D ′,C ′) ⊑
(P ,D ,C ), and the repository (P ,D ,C ) is flat, then the repos-
itory (P ′,D ′,C ′) is flat.

Proof: We assume that (P ,D ,C ) ≺ (P ′,D ′,C ′), (P ′,D ′,C ′) ⊑
(P ,D ,C ), and (P ,D ,C ) is flat. We show that (P ′,D ′,C ′)
is flat.
We first show reflexivity, that is, ∆C ′ ≺C ′ D ′. We have

∆C ≺C D ≺C D ′ by hypothesis. Hence, ∆C ≺C ′ D ≺C ′ D ′

by Remark 29. On the other hand, we have C ′ ⊆ C . Hence,
for all π ∈ P , we have ∆C ′(π) ⊆ ∆C (π). Thus, ∆C ′ ⊑ ∆C

by Remark 23, and finally ∆C ′ ≺C ′ ∆C by Remark 29. We
conclude by transitivity of ≺C ′ .
We now show transitivity, that is, D ′ ; D ′ ≺C ′ D ′. Let

π0 ∈ P and d0 ∈ (D ′ ; D ′)(π0). We show that either
d0 ∈ ∇C ′ or there exists a dependency d ∈ D ′(π0) such
that d ⊆ d0. By definition of composition, there exists
a dependency d′ = {π1, . . . , πn} ∈ D ′(π0) and dependen-
cies d′i ∈ D ′(πi) such that d0 =

⋃
1≤i≤n

d′i. As D ′ ⊑ D ,

there exists d ∈ D(π0) such that d ⊆ d′. Similarly, for
all i, there exists di ∈ D(πi) such that di ⊆ d′i. By tran-
sitivity in (P ,D ,C ), either

⋃
1≤i≤n

di ∈ ∇C or there ex-

ists d1 ∈ D(π0) such that d1 ⊆
⋃

1≤i≤n
di. In the first

case, we have
⋃

1≤i≤n
di ⊆

⋃
1≤i≤n

d′i = d0. Then, as

∇C is upward-closed (Remark 28) and C ′ ⊆ C , we have
d0 ∈ ∇C ⊆ ∇C ′ as wanted. In the second case, we have
d1 ⊆

⋃
1≤i≤n

di ⊆
⋃

1≤i≤n
d′i = d0. As D ≺C D ′, either

d1 ∈ ∇C ′ or there exists d2 ∈ D ′(π0) such that d2 ⊆ d1.
If d1 ∈ ∇C ′ , then d0 ∈ ∇C ′ as well, as ∇C ′ is upward-
closed. This is what we wanted to prove. Otherwise, we
have d2 ∈ D ′(π0) such that d2 ⊆ d1 ⊆ d0, which is again
what is needed to conclude. ✷

Proof of Theorem 10

The proof follow the proof of Lemma 10, with minor modi-
fications.

Let (P ,D ,C ) be a flat repository. Let Π be a set of pack-
ages weakly co-installable in (P ,D ,C ). There exists a set of
packages F such that the configuration (Π,F ) is healthy in
(P ,D ,C ). We assume that F is a maximal set of packages
satisfying this property. We then consider a maximal set of
packages I such that Π ⊆ I and the configuration (I ,F ) is
healthy in (P ,D ,C ). We can conclude if we prove that I is
healthy in (P ,D ,C ).

We first prove abundance. We take π ∈ I and d =
{π1, . . . , πn} ∈ D(π) and need to prove that d ∩ I 6= ∅. We
want to show that we can find π′′ ∈ d such that (I∪{π′′},F ),
is healthy. Indeed, then, by maximality of I , we have π′′ ∈ I .
Hence, d ∩ I 6= ∅ as wanted. The package π′′ should be
such that, for all d′′ ∈ D(π′′), we have d′′ ∩ F 6= ∅. The
proof is by contradiction. Suppose that for all i, there ex-
ists di ∈ D(πi) such that di ∩ F = ∅. As D ; D ≺C D ,
either

⋃
1≤i≤n

di ∈ ∇C or there exists d′ ∈ D(π) such that

d′ ⊆
⋃

1≤i≤n
di. In the first case, by maximality of F and

definition of ∇C , (
⋃

1≤i≤n
di)∩F 6= ∅. This contradicts the

assumption that di ∩ F = ∅ for all i. In the second case, we
have d′ ∩F ⊆

⋃
1≤i≤n

di = ∅. This contradicts the fact that

π ∈ I and (I ,F ) is healthy. Hence the existence of a suitable
package π′′ which allow us to finish the proof of abundance.
We now prove peace by contradiction. Suppose that C ∩

(I × I ) 6= ∅, that is, there exists π ∈ I and π′ ∈ I such that
(π, π′) ∈ C . As (I ,F ) is healthy, we have π ∈ F and π′ ∈ F
by Lemma 26, and then (π, π′) 6∈ C by peace. We reach a
contradiction, hence C ∩ (I × I ) = ∅.

Lemma 32. If (P ,D ,C ) ≺ (P ′,D ′,C ′), then any set of
packages Π weakly co-installable in repository (P ′,D ′,C ′) is
weakly co-installable in repository (P ,D ,C ).

Proof: We assume that (P ,D ,C ) ≺ (P ′,D ′,C ′) and that
the set of packages Π is weakly co-installable in (P ′,D ′,C ′).
There exists a set of packages F such that (Π,F ) is a healthy
configuration in (P ′,D ′,C ′). In particular, we have C ′ ∩
(F × F ) = ∅. As C ⊆ C ′, we also have C ∩ (F × F ) = ∅.
There exists thus a set of packages F ′ maximal such that
C ∩ (F ′×F ′) = ∅ and F ⊆ F ′. We can conclude by showing
that (Π,F ′) is a healthy configuration in (P ,D ,C ). We
have peace by definition of F ′. We show abundance. Let
π ∈ Π and d ∈ D(π). We need to show that d ∩ F ′ 6= ∅. As
D ≺C D ′, either d ∈ ∇C or there exists d′ ∈ D ′(π) such that
d′ ⊆ d. In the first case, by definition of ∇C and maximality
of F ′, we have d ∩ F ′ 6= ∅ as wanted. In the second case, as
(Π,F ) is a healthy configuration, we have d′ ∩ F 6= ∅, and
therefore d ∩ F ′ 6= ∅ as wanted. ✷

Lemma 33. Let (P ,D ,C ) be a repository. We define a
simplified dependency function D ′ by: D ′(π) = D(π) \ ∇C

for all π ∈ P. Then:

• (P ,D ′,C ) ⊑ (P ,D ,C );

• (P ,D ′,C ) ≈ (P ,D ,C ).

Proof: For all π ∈ P , we have D ′(π) ⊆ D(π). Hence, by
Remark 23, D ′ ⊑ D , and therefore, (P ,D ′,C ) ⊑ (P ,D ,C ).
Then, by Remark 29, (P ,D ′,C ) ≺ (P ,D ,C ).

We now prove (P ,D ,C ) ≺ (P ,D ′,C ). It is sufficient to
show that D ≺C D ′. Let π ∈ P and d ∈ D(π). We need
to prove that either d ∈ ∇C or there exists d′ ∈ D ′(π) =
D(π) \∇C such that d′ ⊆ d. This is clearly satisfied, taking
d′ = d in the second case. ✷

Proof of Theorem 11

Flatness is a consequence of Lemmas 31 and 33. Invariance
is a consequence of Theorem 10, and Lemmas 32 and 33.



The following technical lemma is a crucial tool for reasoning
on flat repositories. It states that a stronger form of transi-
tivity where dependencies are not fully composed holds for
flat repositories.

Lemma 34. Let (P ,D ,C ) be a flat repository, π ∈ P,
d ∈ D(π). Let Π = {π1, . . . , πn} be a subset of d. We
assume that, for all i, there exists di ∈ D(πi). Then, there
exists d′ ∈ D(π) ∪∇C such that d′ ⊆ (d \Π) ∪

⋃
1≤i≤n

di.

Proof: Suppose that there exists π′ ∈ d \ Π such that
{π′} ∈ ∇C (that is, by Theorem 8, package π′ conflicts with
no package). Then we can take d′ = {π′} and conclude.
Thus, we can assume that, for all π′ ∈ d \ Π, there exists
π′′ ∈ P such that (π′, π′′) ∈ C .

We show that for all π′ ∈ d we can find d′ ∈ D(π′) such
that d′ ⊆ (d \ Π) ∪

⋃
1≤i≤n

di. We can then use transitivity

(D ; D ≺C D) to conclude. Indeed, by transitivity, there
exists d′′ ∈ D ;D such that d′′ ⊆ (d\Π)∪

⋃
1≤i≤n

di and either

d′′ ∈ ∇C or there exists d′′′ ∈ D(π) such that d′′′ ⊆ d′′. We
can then conclude by taking either d′′ or d′′′.

Let π′ ∈ d. If π′ = πi for some i, we can take d′ = di.
Otherwise, π′ ∈ d \ Π. We have assumed that there ex-
ists π′′ such that (π′, π′′) ∈ C . By Remark 30, there exists
d′ ∈ D(π′) such that d′ ⊆ {π′}. This dependency is suitable
as π′ ∈ d \Π. ✷

Lemma 35. Let (P ,D ,C ) be a flat repository. Let C ′

be a conflict relation such that C ′ ⊆ C. The repository
(P ,D ,C ′) is flat.

Proof: We first prove reflexivity: ∆C ′ ≺C D . By as-
sumption, ∆C ≺C D . Hence, by transitivity, it is sufficient
to prove that ∆C ′ ≺C ∆C . Clearly, as C ′ ⊆ C , we have
∆C ′(π) ⊆ ∆C (π) for all π. We conclude by Remark 23
and 29.

We now prove transitivity. By assumption, we have D ;
D ≺C D . Hence, by Remark 29, as C ′ ⊆ C , we have
D ;D ≺C ′ D as wanted. ✷

In the following, we will write D \ {π 7→ d} for the depen-
dency function D where the dependency d of package π has
been removed. Formally,

(D \ {π0 7→ d0})(π0) = D(π0) \ {d0}
(D \ {π0 7→ d0})(π) = D(π) when π 6= π0.

Proof of Lemma 12

Let d0 ∈ D(π0) be one of these dependencies. There ex-
ists π1 ∈ d0 such that for all (π1, π) ∈ C , there exists
a dependency d ∈ D(π) such that d ⊆ d0 \ {π1}. Let
D ′ = D \ {π0 7→ d0} be the dependency function with

this dependency removed. Let Π be a weakly co-installable
set of packages in the repository (P ,D ′,C ). There exists
a set of features F such that (Π,F ) is a healthy configu-
ration of (P ,D ′,C ). We consider a maximal such a set F
(with respect to inclusion). Clearly, the set F is then max-
imal such that C ∩ (F × F ) = ∅. If d0 ∩ F 6= ∅, then
(Π,F ) is a healthy configuration of (P ,D ,C ) as well, as
wanted. We now consider the case where d0 ∩ F = ∅. Let
F ′ = (F \ {π | (π1, π) ∈ C}) ∪ {π1}. We show that (Π,F ′)
is a healthy configuration of (P ,D ,C ). Peace is clear. We
need to show abundance.
Let π ∈ I and d ∈ D(π). We want to show that d∩F ′ 6= ∅.

If π1 ∈ d, this is the case. We can thus assume that π1 6∈ d.
In particular, this means that d 6= d0, and therefore, by
abundance, d ∩ F 6= ∅. The remainder of the proof is by
contradiction. We assume that d ∩ F ′ = ∅. We consider
the packages πi such that d ∩ F = {π1, . . . πn}. We have
πi ∈ F \ F ′. Thus, for all i, we have (π1, π

i) ∈ C , and
therefore, by assumption, there exists di ∈ D(πi) such that
di ⊆ d0 \ {π1}. By Lemma 34, there exists a dependency d′

such that d′ ∈ D(π)∪∇C and d′ ⊆ (d\ (d∩F ))∪
⋃

1≤i≤n
di.

From this last inclusion, we get d′ ⊆ (d \ F ) ∪ (d0 \ {π1}).
From this, on the one hand, as π1 6∈ d, we can see that
π1 6∈ d′, and therefore d′ 6= d. Hence, d′ ∈ D ′(π) ∪ ∇C . By
abundance and maximality of F , we get d′ ∩F 6= ∅. On the
other hand, d′ ∩ F ⊆ ((d \ F ) ∪ (d0 \ {π1})) ∩ F = (d0 \
{π1}) ∩ F = ((d0 ∩ F ) \ {π1}) = ∅. We reach a contraction,
which completes the proof.

Proof of Lemma 13

We first prove reflexivity, that is, ∆C ≺C D ′. Let π′ ∈ P
and d′ ∈ ∆C (π′). We show that either d′ ∈ ∇C , or there
exists d′′ ∈ D ′(π′) such that d′′ ⊆ d′. By definition, we must
have d′ = {π′}. By reflexivity in repository (P ,D ,C ), we
have either d′ ∈ ∇C , or there exists d′′′ ∈ D(π′) such that
d′′′ ⊆ d′. In the first case, we can conclude immediately. If
d′′′ ∈ D ′(π′), we can conclude as well by taking d′′ = d′′′.
Otherwise, we must have π′ = π and d′′′ = d. But, then,
d = d′′′ ⊆ d′ = {π′} = {π}. This is not possible due to the
first assumption.
We now prove transitivity, that is, D ′ ; D ′ ≺C D ′. Let

π′ ∈ P and d′ ∈ (D ′ ; D ′)(π′). We show that either d′ ∈
∇C , or there exists d′′ ∈ D ′(π′) such that d′′ ⊆ d′. By
definition, there exists a dependency {π1, . . . , πn} ∈ D ′(π′)
and dependencies di ∈ D ′(πi) such that d′ =

⋃
1≤i≤n

di. By

transitivity in repository (P ,D ,C ), either d′ ∈ ∇C or there
exists d′′′ ∈ D(π′) such that d′′′ ⊆ d′. In the first case, we
can conclude immediately. If d′′′ ∈ D ′(π′), we can conclude
as well by taking d′′ = d′′′. Otherwise, we must have π′ = π
and d′′′ = d. But, then, d = d′′′ ⊆ d′ ∈ D ′ ; D ′. This is not
possible due to the second assumption.

Proof of Lemma 14

Let Π be a healthy set of packages of repository (P ,D ,C \
{(π1, π2), (π2, π1)}). We show that it is healthy in repository
(P ,D ,C ). Abundance is clear. We prove peace, that is, C ∩
(Π×Π) = ∅. We have by hypothesis (C\{(π1, π2), (π2, π1)}))∩
(Π×Π) = ∅. Thus, we can conclude if packages π1 and π2 are
not both in Π. The proof is by contradiction: we assume the
packages are in Π and reach a contradiction. By abundance
in the initial repository, for all a dependency d ∈ D(π1),
there exists a package π′

1 ∈ d ∩ Π. Then, by definition of
redundant conflicts, there exists a dependency d1 ∈ D(π1),



a package π′
1 in d1 ∩ Π, a dependency d2 ∈ D(π2) and a

package π′
2 ∈ Π such that (π′

1, π
′
2) ∈ C \ {(π1, π2), (π2, π1)})

and d2 ⊆ {π
′
2}. By abundance, d2 ∩ Π 6= ∅, hence π′

2 ∈ Π.
This contradicts peace in the initial repository. Hence the
result.

Proof of Lemma 15

Let I be an healthy installation of repository (P ,D ,C ). We
show that it is an healthy installation of repository (P ,D ′,C ).
Clearly, peace is satisfied and abundance is satisfied for all
packages distinct from π. We now show abundance for pack-
age π. As D ′(π) = ∅, this reduces to showing that π 6∈ I .
This is indeed the case as π is not installable in the initial
repository.

Proof of Lemma 16

Let (P ′,D ′,C ′) be the tentative quotiented repository asso-
ciated to repository (P ,D ,C ), as defined above. The result
is clear, except for irreflexivity of C ′, which we show be-
low. We assume that (π′, π′) ∈ C ′ for some package π′ ∈ P ′

and reach a contradiction. By definition of C ′, there ex-
ists π1 ∈ P and π2 ∈ P such that π′ = [π1] = [π2] and
(π1, π2) ∈ C . By Remark 30, there exists a dependency
d ∈ D(π2) such that d ⊆ {π2}. By definition of quotienting,
D(π1) = D(π2), and thus d ∈ D(π1). But then, by hypoth-
esis, we should have (π1, π2) 6∈ C . Hence a contradiction, as
wanted.

Remark 36. Let (P ,D ,C ) be a repository. Let (I ,F ) be
a healthy configuration of repository (P ,D ,C ). We assume
that the set F is a maximal set (with respect to inclusion)
satisfying this property. Then, for all packages π in P \ F,
there exists a package π′ such that (π, π′) ∈ C.

Proof: We have {π} 6∈ ∇C . Indeed, otherwise, we would
have, by definition, {π} ∩ F 6= ∅, and thus π ∈ F . Then, by
Theorem 8, there exists π′ such that (π, π′) ∈ C . ✷

Lemma 37. Let (P ,D ,C ) be a flat repository. Let (I ,F )
be a healthy configuration of repository (P ,D ,C ). We as-
sume that the set F is a maximal set (with respect to inclu-
sion) satisfying this property. Let π ∈ P \ F. Let π′ ∈ P
such that D(π′) = D(π) (in other words, π′ ∈ [π]). Then,
there exists d ∈ D(π′) such that d ⊆ {π}.

Proof: By Remark 36, there exists π′′ such that (π, π′′) ∈
C . By Remark 30, there exists d ∈ D(π) such that d ⊆ {π}.
We have D(π′) = D(π′), hence the result. ✷

Lemma 38. Let (P ,D ,C ) be a repository. Let (P ′,D ′,C ′)
be the corresponding quotient repository. Let (I ,F ) be a
healthy configuration of repository (P ,D ,C ). We assume
that the set F is a maximal set (with respect to inclusion)

satisfying this property. Then ([I ], [F ]) is a healthy configu-
ration of repository (P ′,D ′,C ′). (We write F for the com-
plement P \ F of set F .)

Proof: Let F ′ = [F ] = {[π] ∈ P |∀π′ ∈ [π], π′ ∈ F}.
We first prove abundance. Let π′

0 ∈ [I ] and d′0 ∈ D ′(π′
0).

There exists π0 ∈ I and d0 ∈ D(π0) such that π′
0 = [π0]

and d′0 = [d0]. By abundance in repository (P ,D ,C ), we

have d0 ∩ F 6= ∅. Suppose there exists π ∈ d0 ∩ F such
that [π] ∈ F ′. Then, as [π] ∈ d′0, we have d′0 ∩ F ′ 6= ∅ as
wanted. Otherwise, for all package π ∈ d0 ∩ F , there exists
a package π′ ∈ [π] \ F . By Lemma 37, there also exists a
dependency d ∈ D(π) such that d ⊆ {π′}, and therefore
d ∩ F = ∅. We can apply Lemma 34 to compose d0 with
all these dependencies. Hence, there exists d′ ∈ D(π0)∪∇C

such that d′ ∩ F = ∅. But by abundance and maximality of
F , we should have d′ ∩ F 6= ∅. We reach a contradiction.
Hence, this second case is actually not possible.
We now show peace. The proof is by contradiction. Sup-

pose that peace does not hold. Then, there exists π′
1 ∈ F ′

and π′
2 ∈ F ′ such that (π′

1, π
′
2) ∈ C ′. By definition of C ′,

there exists a pair (π1, π2) ∈ C such that π′
1 = [π1] and

π′
2 = [π2]. By definition of F ′, π1 ∈ F and π2 ∈ F . Then,

by peace in repository (π,D ,C ), (π1, π2) 6∈ C . We reach a
contradiction, hence the result. ✷

Lemma 39. Let (P ,D ,C ) be a repository. Let (P ′,D ′,C ′)
be the corresponding quotient repository. Let (I ,F ) be a
healthy configuration of repository (P ′,D ′,C ′). We pose
I ′ = {π | [π] ∈ I } and F ′ = {π | [π] ∈ F}. Then (I ′,F ′)
is a healthy configuration of repository (P ,D ,C ).

Proof: We first prove abundance. Let π ∈ I ′ and d ∈
D(π). We need to show that d ∩ F ′ 6= ∅. We have [π] ∈ I .
By definition of D ′, we have [d] ∈ D ′([π]). By abundance,
we thus have [d] ∩ F 6= ∅, that is, there exists a package
π ∈ d such that [π] ∈ F . We thus have π ∈ F ′, hence the
result.
We now prove peace, that is C ∩ (I ′ × I ′) 6= ∅, The proof

is by contradiction. Let π1 and π2 be two packages in F ′

such that (π1, π2) ∈ C . We have [π1] and [π2] in F and, by
definition of C ′, ([π1], [π2]) ∈ C ′. This contradicts peace in
the quotient repository. Hence the result. ✷

Proof of Theorem 17

This is a direct consequence of Lemmas 38 and 39.

Proof of Theorem 18

Let (P ,D ,C ) be a flat repository. We show that its quotient
repository (P ′,D ′,C ′) is also flat.
We first prove reflexivity, that is, ∆C ≺C D ′. It is suf-

ficient to prove that ∆C ⊑ D ′. Let π1, π2 ∈ P such that
([π1], [π2]) ∈ C ′. We need to prove that there exists a de-
pendency d′ ∈ D ′([π1]) such that d′ ⊆ {[π1]}. By definition
of C ′, there exists a pair of packages (π3, π4) ∈ C such
that [π3] = [π1] and [π4] = [π2]. By reflexivity in the ini-
tial repository, either {π3} ∈ ∇C or there exists d ∈ D(π3)
such that d ⊆ {π3}. By Theorem 8, {π3} 6∈ ∇C . Hence,
there exists a dependency [d] in D ′([π3]) = D ′([π1]) such
that [d] ⊆ {[π3]} = {[π1]}, as wanted.

We now prove transitivity, that is, D ′ ; D ′ ≺C D ′. Let π
be a package. Let d = {π1, ..., πn} a dependency such that
[d] ∈ D ′([π]) (that is, d ∈ D(π)).

Let di be dependencies such that [di] ∈ D ′([πi]) (that
is, di ∈ D(πi)) for each i. We need to prove that either⋃

i
[di] ∈ ∇

′
C (where ∇′

C is our class of always satisfiable
dependencies for the quotiented repository) or there exists
d′ ∈ D ′([π]) such that d′ ⊆

⋃
i
[di]. We assume that

⋃
i
[di] 6∈

∇′
C and show we are in the second case. By Theorem 8,



for all [π] ∈
⋃

i
[di], there exists a package [π′] ∈ P ′ \

⋃
i
[di]

such that ([π], [π′]) ∈ C ′. This means that we can define a
function f which associates to each [π] ∈

⋃
i
[di] a package

f([π]) ∈ [π] such that there exists a package π′′ such that
[π′′] ∈ P ′ \

⋃
i
[di] and (f([π]), π′′) ∈ C . Note that π′′ ∈ P \

f(
⋃

i
[di]). Hence, for any dependency d′′, if d′′ ⊆ f(

⋃
i
[di]),

then d′′ 6∈ ∇C . Now, by reflexivity and Theorem 8 both
applied to f(π′′), for each π′′ ∈ di, there exists a dependency
d′′ ∈ D(f([π′′]) = D(π′′) such that d′′ ⊆ {f([π′′])}. Thus,
for all i, by transitivity applied to di and the corresponding
d′′, there exists a dependency d′′i ∈ D(πi) such that d′′i ⊆
f(

⋃
j
[dj ]). By transitivity again, applied to dependency d

and dependencies d′′i , there exists a dependency d′′ ∈ D(π)
such that d′′ ⊆ f(

⋃
i
[di]). We have [d′′] ∈ D ′([π]) and [d′′] ⊆

[f(
⋃

i
[di])] =

⋃
i
[di] as wanted.

Proof of Lemma 19

Let I be a healthy installation of (P ,D ′,C ). We show that
it is a healthy installation of (P ,D ,C ). Peace is clear. We
prove abundance.

Let π′ ∈ I and d′ ∈ D(π′). We need to show that d′ ∩
I 6= ∅. If π′ 6= π or d′ 6= d, then d′ ∈ D ′(π′) and the
result holds by abundance in (P ,D ′,C ). We now show that
d ∩ I 6= ∅. As d ∈ (D ′ ; D ′)(π), there exists a dependency
d′′ = {π1, . . . , πn} ∈ D ′(π) and, for all i, a dependency
di ∈ D ′(πi) such that d =

⋃
1≤i≤n

di. By abundance, as

π ∈ I , we have d′′ ∩ I 6= ∅, that is, there exists i such that
πi ∈ I . Then, by abundance again, we have di ∩ I 6= ∅.
Hence, d ∩ I 6= ∅ as wanted.

Proof of Lemma 20

Let I be a healthy installation of (P ,D ′,C ). We show that
it is a healthy installation of (P ,D ,C ). Peace is clear. We
prove abundance.

Let π ∈ I and d ∈ D(π). We need to show that d∩ I 6= ∅.
If π ∈ d, this is the case. Otherwise, d ∈ D ′(π), and we can
conclude by healthiness of I in (P ,D ′,C ).

Proof of Theorem 21

First, the quotienting operation performed at the end indeed
produces a repository, as the hypothesis of Lemma 16 are
satisfied: if ∅ ∈ D(π), then package π has no conflicts thanks
to redundant conflict removal; if {π′} ∈ D(π), then (π, π′) 6∈
C thanks to the dependency strengthening of clearly broken
packages. These two properties are preserved by dependency
removal.

We now show that once the loop in Figure 12 is exited,
the repository remains flat. Indeed, flattening produces a
flat repository (Theorem 3 and Lemma 9), which remains
flat by canonisation and removal of dependencies in ∇C (Re-
mark 29, Lemmas 31 and 33). Then, the removal of conflict
cover dependencies is defined so as to preserve flatness, and
quotienting preserves flatness (Lemma 18).

To show that co-installability is left invariant, we rely
heavily on the equivalence between co-installability and weak
co-installability in flat repositories (Lemma 25 and The-
orem 10), which let us use weak co-installability preser-
vation results to prove co-installability preservation. We
also use the fact that healthiness preservation implies co-
installability preservation (Remark 22). Then, co-installability
is left invariant by flattening (Theorem 6), canonisation (The-
orem 2), removal of dependencies in ∇C (Theorem 11), de-

pendency strengthening of clearly broken packages (Lemma 15
and Theorem 2), removal of redundant conflicts (Lemma 14
and Theorem 2), removal of conflict covered dependencies
(Lemma 12) and Theorem 2), and quotienting (Theorem 17).


