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Abstract

The hydrodynamic limit for a kinetic model of chemotaxis is investigated. The limit

equation is a non local conservation law, for which finite time blow-up occurs, giving rise

to measure-valued solutions and discontinuous velocities. An adaptation of the notion of

duality solutions, introduced for linear equations with discontinuous coefficients, leads to

an existence result. Uniqueness is obtained through a precise definition of the nonlinear

flux as well as the complete dynamics of aggregates, i.e. combinations of Dirac masses.

Finally a particle method is used to build an adapted numerical scheme.
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1 Introduction

Kinetic frameworks have been investigated to describe the chemotactic movement of cells in the
presence of a chemical substance since in the 80’s experimental observations showed that the
motion of bacteria (e.g. Escherichia Coli) is due to the alternation of ‘runs and tumbles’. The
so-called Othmer-Dunbar-Alt model [1, 12, 20, 22] describes the evolution of the distribution
function of cells at time t, position x and velocity v, assumed to have a constant modulus c > 0,
as well as the concentration S(t, x) of the involved chemical. A general formulation for this
model can be written as





∂tfε + v · ∇xfε =
1

ε

∫

|v′|=c

(
T [Sε](v

′ → v)fε(v
′)− T [Sε](v → v′)fε(v)

)
dv′,

−∆Sε + Sε = ρε(t, x) :=

∫

|v|=c

fε(t, x, v) dv.
(1.1)
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The second equation describes the dynamics of the chemical agent which diffuses in the domain.
It is produced by the cells themselves with a rate proportional to the density of cells ρ and
disappears with a rate proportional to S. The transport operator on the left-hand side of the first
equation stands for the unbiased movement of cells (‘runs’), while the right-hand side governs
‘tumbles’, that is chemotactic orientation, or taxis, through the turning kernel T [S](v′ → v),
which is the rate of cells changing their velocity from v′ to v.

The parameter ε corresponds to the time interval of information sampling for the bacteria,
usually ε ≪ 1, and when it goes to zero, one expects to recover the collective behaviour of the
population, that is a macroscopic equation for the density ρ(t, x) of cells. Such derivations have
been proposed by several authors. When the taxis is small compared to the unbiased movement
of cells, the scaling must be of diffusive type, so that the limit equations are of diffusion or
drift-diffusion type, see for instance [9] for a rigorous proof. In [14, 21], the authors show that
the classical Patlak-Keller-Segel model can be obtained in a diffusive limit for a given smooth
chemoattractant concentration.

We focus here on the opposite case, that is when taxis dominates the unbiased movements.
This is accounted for in the model by the choice of the scaling in equation (1.1). Moreover, we
consider positive chemotaxis, which means that the involved chemical is attracting cells, and
therefore is called chemoattractant. The model has been proposed in [10], several works have
been devoted to the mathematical study of this kinetic system. Existence of solutions has been
obtained for various assumptions on the turning kernel in [9, 7, 11, 15]. Numerical simulations
of this system are proposed in [27]. The limit problem is usually of hyperbolic type, see for
instance [13, 23, 24] for a hyperbolic limit model which consists in a conservation equation for
the cell density and a momentum balance equation.

It is not difficult to obtain the following formal hydrodynamic limit to equation (1.1), more
precisely on the total density of particles ρ = limε ρε:

∂tρ+ divx
(
a[S]ρ

)
= 0, −∆xxS + S = ρ. (1.2)

Here the macroscopic velocity a[S] depends on the chemoattractant concentration S through
the turning kernel. This system of equations has been obtained in [10], with a rigorous proof in
the two-dimensional setting for a fixed smooth S, and therefore a bounded density ρ. The aim
of this paper is to obtain rigorously this limit for the whole coupled system. Severe difficulties
arise then mainly due to the lack of estimates for the solutions to the kinetic model when ε goes
to zero and consequently to the very weak regularity of the solutions to the limit problem.

It turns out that the limit equation is in some sense a weakly nonlinear conservation equation
on the density ρ. Indeed the expected velocity field depends on ρ, but through S, and therefore
in a non local way. Actually it can be written as a variant of the so-called aggregation equation,
for which blow-up in finite time is evidenced (see e.g. [3]), leading to measure-valued solutions.
In this respect, this equation behaves also like linear equations with discontinuous coefficients.
In particular Dirac masses can arise, this is the mathematical formulation of the aggregation of
bacteria. Therefore S is no longer smooth, and a major difficulty in this study will be to define
properly the velocity field a = a[S] and the product aρ.

The viewpoint of the aggregation equation has been extensively studied by Carrillo et al. [8]
through optimal transport techniques. Existence and uniqueness are obtained in a very weak
sense, and the dynamics of aggregates is also given. We propose here another approach, based
on the notion of duality solutions, as introduced in the linear case by Bouchut and James [4].
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The main drawback is that presently we have to restrict ourselves to the one-dimensional case,
since the theory in higher dimensions is not complete yet (see [6]). The approach proposed by
Poupaud and Rascle [26], which coincides with duality in the 1-d case, could also be explored.
Notice however, that the properties of the expected velocity field a in the two-dimensional case
are not obvious either.

More precisely, we propose to proceed in a similar way as in [5], where the nonlinear system
of zero pressure gas dynamics is interpreted as a system of two linear conservation equations
coupled through the definition of the product. This last point turns out to be crucial in order
to obtain a proper uniqueness result for the system (1.2). In this work, the product aρ will be
defined thanks to the limiting flux of the kinetic system (1.1) (see also [16] for another application
of the same idea). As we shall see, this is closely related to the dynamics of aggregates, that is
combinations of Dirac masses, which reflect some kind of collective behaviour of the population.
Finally, an important application of this aggregate dynamics is the development of a numerical
scheme, based on a particle method. The motion and collapsing of Dirac masses is clearly
evidenced.

The paper is organized as follows. In Section 2 we precisely state the model. Section 3 is
devoted to the notion of duality solutions, and contains the main results of this article. Some
technical properties which will be useful for the rest of the paper are given in Section 4. Then
we investigate in Section 5 the proof of the existence and uniqueness result of duality solution
for system (2.8)–(2.10) stated in Theorem 3.9. In Section 6 we prove the rigorous derivation of
the hydrodynamical system from the kinetic system. Finally, the dynamics of aggregates and
the numerical scheme for the limit equation are described in the last section, where numerical
illustrations are also provided.

2 Modelling

From now on we focus on the one dimensional version of the problem, so that x ∈ R. We first
recall the main assumptions leading to the kinetic equation, next we proceed to the formal limit.

2.1 Kinetic model

In this work, cells are supposed to be large enough to sense the gradient of the chemoattractant
instantly. Therefore the turning kernel takes the form (independent on v)

T [S](v′ → v) = Φ(v′∂xS). (2.1)

The function Φ is the turning rate, obviously it has to be positive. More precisely, for attractive
chemotaxis, the turning rate is smaller if cells swim in a favourable direction, that is v ·∇xS ≥ 0.
Thus Φ should be a non increasing function. A simplified model for this phenomenon is the
following choice for Φ: we fix a positive parameter α, a mean turning rate φ0 > 0 and take

Φ(x) = φ0

(
1 + φ(x)

)
, (2.2)

where φ is an odd function such that

φ ∈ C∞(R), φ′ ≤ 0, φ(x) =

{
+λ if x < −α,

−λ if x > α,
(2.3)
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where 0 < λ < 1 is a given constant.
Now since the transport occurs in R the set of velocities is V = {−c, c}, and the expression

of the turning kernel simplifies in such a way that (1.1) rewrites

∂tfε + v∂xfε =
1

ε
(Φ(−v∂xS)fε(−v)− Φ(v∂xS)fε(v)), v ∈ V. (2.4)

− ∂xxSε + Sε = ρε = fε(c) + fε(−c). (2.5)

The existence of weak solutions in a Lp setting for a slightly different system in a more
general framework has been obtained for instance in [7, 15]. Concerning precisely this model,
we refer to [27] for the existence theory in any space dimension. Notice that no uniform L∞

bounds can be expected. The reader is referred to [27] for some numerical evidences of this
phenomenon, which is the mathematical translation of the concentration of bacteria. This is
some kind of “blow-up in infinite time”, which for ε = 0 leads to actual blow-up in finite time,
and creation of Dirac masses. Moreover the balanced distribution vanishing the right hand side
of (2.4) depends on Sε; thus the techniques developed e.g. in [9] cannot be applied.

2.2 Formal hydrodynamic limit

We formally let ε go to 0 assuming that Sε and fε admit a Hilbert expansion

fε = f0 + εf1 + · · · , Sε = S0 + εS1 + · · ·

Multiplying (2.4) by ε and taking ε = 0, we find

Φ(−c∂xS0)f0(−c) = Φ(c∂xS0)f0(c). (2.6)

Summing equations (2.4) for c and −c, we obtain

∂t(fε(c) + fε(−c)) + c∂x(fε(c)− fε(−c)) = 0. (2.7)

Moreover, from equation (2.6) we deduce that

f0(c)− f0(−c) =
Φ(−c∂xS0)− Φ(c∂xS0)

Φ(−c∂xS0) + Φ(c∂xS0)
(f0(c) + f0(−c)).

The density at equilibrium is defined by ρ := f0(c) + f0(−c). Taking ε = 0 in (2.7) we finally
obtain

∂tρ+ ∂x(a(∂xS0)ρ) = 0,

where a is defined by

a(∂xS0) = c
Φ(−c∂xS0)− Φ(c∂xS0)

Φ(−c∂xS0) + Φ(c∂xS0)
= −c φ(c∂xS0),

and we have used (2.2) for the last identity. Notice that a is actually a macroscopic quantity,
since it is the simplified formulation of

a(∂xS0) = −

∫
V
vΦ(v∂xS0) dv∫

V
Φ(v∂xS0) dv
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in the one-dimensional context.
We couple this equation with the limit of the elliptic problem (2.5) for the chemoattractant

concentration, so that, in summary, and dropping the index 0, the formal hydrodynamic limit
is the following system

∂tρ+ ∂x(a(∂xS)ρ) = 0, (2.8)

a(∂xS) = −c φ(c∂xS), (2.9)

−∂xxS + S = ρ, (2.10)

complemented with the boundary conditions

ρ(t = 0, x) = ρini(x), lim
x→±∞

ρ(t, x) = 0, lim
x→±∞

S(t, x) = 0. (2.11)

We now give the precise formulation of the limit system in terms of aggregate equation.
Noticing that a solution to (2.10) has the explicit expression

S(t, x) = K ∗ ρ(t, .)(x), where K(x) =
1

2
e−|x|, (2.12)

the macroscopic conservation equation for ρ (2.8) can be rewritten

∂tρ+ ∂x(a(∂xK ∗ ρ)ρ) = 0.

When a is the identity function, this is exactly the so-called aggregation equation, and since the
potential is non-smooth, blow-up in finite time is expected. We refer the reader to e.g. [3, 8],
and [17] in the context of chemotaxis.

Similar problems were encountered for instance in [18], where the authors investigate the
high field limit of the Vlasov-Poisson-Fokker-Planck model in one space dimension. The limit
system is a scalar conservation law coupled to the Poisson equation, and a proper definition of
the product is needed to pass to the limit. This definition has been extended in two dimensions
by Poupaud [25] using defect measures but losing uniqueness.

3 Duality solutions

3.1 Notations

Let C0(Y, Z) be the set of continuous functions from Y to Z that vanish at infinity and Cc(Y, Z)
the set of continuous functions with compact support from Y to Z. All along the paper, we
denote Mloc(R) the space of local Borel measures on R. For ρ ∈ Mloc we denote by |ρ|(R) its
total variation. We will denote Mb(R) the space of measures in Mloc(R) whose total variation
is finite. From now on, the space of measure-valued function Mb(R) is always endowed with
the weak topology σ(Mb, C0). We denote SM := C([0, T ];Mb(R)− σ(Mb, C0)).

We recall that if a sequence of measure (µn)n∈N in Mb(R) satisfies supn∈N |µn|(R) < +∞,
then we can extract a subsequence that converges for the weak topology σ(Mb, C0).

The coupled system (2.8)–(2.9)–(2.10) is interpreted in this context as a linear conservation
equation (2.8), the velocity b of which depends on the solution S to the elliptic equation (2.10),

5



b = a(∂xS). This actually means that equation (2.8) is somehow nonlinear. One convenient
tool to handle such conservation equations

∂tρ+ ∂x(bρ) = 0, b being a given function, (3.1)

whose solutions eventually are measures in space, is the notion of duality solutions, introduced
in [4].

3.2 Linear conservation equations

Duality solutions are defined as weak solutions, the test functions being Lipschitz solutions to
the backward linear transport equation

∂tp+ b(t, x)∂xp = 0, p(T, .) = pT ∈ Lip(R). (3.2)

A key point to ensure existence of smooth solutions to (3.2) is that the velocity field has to be
compressive, in the following sense.

Definition 3.1 We say that the function b satisfies the so-called one-sided Lipschitz condition
(OSL condition) if

∂xb(t, .) ≤ β(t) for β ∈ L1(0, T ) in the distributional sense. (3.3)

A formal computation shows that ∂t(pρ) + ∂x[b(t, x)pρ] = 0, and thus

d

dt

(∫

R

p(t, x)ρ(t, dx)

)
= 0, (3.4)

which defines the duality solutions for suitable p’s. It is now quite classical that (3.3) ensures
existence for (3.2), but not uniqueness, which is of great importance here to obtain stability
results and make a convenient use of (3.4).

Therefore, the corner stone in the construction of duality solutions is the introduction of the
notion of reversible solutions to (3.2). A complete statement of the definitions and properties
of reversible solutions would be too long in the present context, so that merely a few hints are
given. Let L denote the set of Lipschitz continuous solutions to (3.2), and define the set of
exceptional solutions:

E =
{
p ∈ L such that pT ≡ 0

}
.

The possible loss of uniqueness corresponds to the case where E is not reduced to zero.

Definition 3.2 We say that p ∈ L is a reversible solution to (3.2) if p is locally constant on
the set

Ve =
{
(t, x) ∈ [0, T ]× R; ∃ pe ∈ E , pe(t, x) 6= 0

}
.

This definition leads quite directly to the uniqueness results of [4]. It turns out that the
class of reversible solutions is also stable by perturbations of the coefficient b.

We now restrict ourselves to those p’s in (3.4). More precisely, we state the following defini-
tion.
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Definition 3.3 We say that ρ ∈ SM := C([0, T ];Mb(R) − σ(Mb, C0)) is a duality solution

to (3.1) if for any 0 < τ ≤ T , and any reversible solution p to (3.2) with compact support in

x, the function t 7→

∫

R

p(t, x)ρ(t, dx) is constant on [0, τ ].

Remark 3.4 A similar notion of duality solution for the transport equation is available ∂tu +
b∂xu = 0, and ρ is a duality solution of (3.1) iff u =

∫ x
ρ is a duality solution to transport

equation (see [4]).

We shall need the following facts concerning duality solutions.

Theorem 3.5 (Bouchut, James [4])

1. Given ρ◦ ∈ Mb(R), under the assumptions (3.3), there exists a unique ρ ∈ SM, duality
solution to (3.1), such that ρ(0, .) = ρ◦.
Moreover, if ρ◦ is nonnegative, then ρ(t, ·) is nonnegative for a.e. t ≥ 0. And we have the
mass conservation

|ρ(t, ·)|(R) = |ρ◦|(R), for a.e. t ∈]0, T [.

2. Backward flow and push-forward: the duality solution satisfies

∀ t ∈ [0, T ], ∀φ ∈ C0(R),

∫

R

φ(x)ρ(t, dx) =

∫

R

φ(X(t, 0, x))ρ0(dx), (3.5)

where the backward flow X is defined as the unique reversible solution to

∂tX + b(t, x)∂xX = 0 in ]0, s[×R, X(s, s, x) = x.

3. For any duality solution ρ, we define the generalized flux corresponding to ρ by b∆ρ =
−∂tu, where u =

∫ x
ρ dx.

There exists a bounded Borel function b̂, called universal representative of b, such that
b̂ = a almost everywhere, and for any duality solution ρ,

∂tρ+ ∂x(̂bρ) = 0 in the distributional sense.

4. Let (bn) be a bounded sequence in L∞(]0, T [×R), such that bn ⇀ b in L∞(]0, T [×R)−w⋆.
Assume ∂xbn ≤ αn(t), where (αn) is bounded in L1(]0, T [), ∂xb ≤ α ∈ L1(]0, T [). Consider
a sequence (ρn) ∈ SM of duality solutions to

∂tρn + ∂x(bnρn) = 0 in ]0, T [×R,

such that ρn(0, .) is bounded in Mb(R), and ρn(0, .)⇀ ρ◦ ∈ Mb(R).

Then ρn ⇀ ρ in SM, where ρ ∈ SM is the duality solution to

∂tρ+ ∂x(bρ) = 0 in ]0, T [×R, ρ(0, .) = ρ◦.

Moreover, b̂nρn ⇀ b̂ρ weakly in Mb(]0, T [×R).

7



The set of duality solutions is clearly a vector space, but it has to be noted that a duality
solution is not a priori defined as a solution in the sense of distributions. However, assuming
that the coefficient b is piecewise continuous, we have the following equivalence result:

Theorem 3.6 Let us assume that in addition to the OSL condition (3.3), b is piecewise con-
tinuous on ]0, T [×R where the set of discontinuity is locally finite. Then there exists a function

b̂ which coincides with b on the set of continuity of b.
With this b̂, ρ ∈ SM is a duality solution to (3.1) if and only if ∂tρ+ ∂x(̂bρ) = 0 in D′(R).

Then the generalized flux b∆ρ = b̂ρ. In particular, b̂ is a universal representative of b.

This result comes from the uniqueness of solutions to the Cauchy problem for both kinds of
solutions (see Theorem 4.3.7 of [4]).

3.3 Main results

We are now in position to give the definition of duality solutions for the limit system (2.8)–(2.10).

Definition 3.7 We say that (ρ, S) ∈ C([0, T ];Mb(R)) × C([0, T ];W 1,∞) is a duality solution
to (2.8)–(2.10) if there exists b ∈ L∞((0, T )× R) and α ∈ L1

loc(0, T ) satisfying ∂xb ≤ α in D′,
such that

1. for all 0 < t1 < t2 < T

∂tρ+ ∂x(bρ) = 0 in the sense of duality on ]t1, t2[,

2. (2.9) is satisfied in the weak sense:

∀ψ ∈ C1(R), ∀ t ∈ [0, T ],

∫

R

(∂xS∂xψ + Sψ)(t, x) dx =

∫
ψ(x) ρ(t, dx),

3. b = a(∂xS) a.e.

Remark 3.8 For S in C([0, T ];W 1,∞) and φ as in (2.3), we have a(∂xS) ∈ C([0, T ];L∞(R)).
Therefore equation (2.8) is meaningful in the duality sense. The key property is then the one-
sided Lipschitz condition.

Unfortunately, Definition 3.7 does not ensure uniqueness, as we shall evidence in Section
5. This is due to the fact that the product a(∂xS)ρ is not properly defined yet. Indeed the
relevant definition of this product relies on a proper definition of the flux of the system, which
we introduce now. Let A be an antiderivative of a such that A(0) = 0, we set

J = −∂x(A(∂xS)) + a(∂xS)S. (3.6)

This choice is justified first since this definition holds true when S is regular. Indeed we have
∂x(A(∂xS)) = a(∂xS)∂xxS, so that we can write J = a(∂xS)(−∂xxS + S) = a(∂xS)ρ. On the
other hand, a more physical reason relies on the fact that the above J is the correct flux for the
kinetic model, and passes to the limit when ε goes to zero, see Section 6.

We can now establish the following uniqueness theorem:
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Theorem 3.9 Let us assume that ρini ≥ 0 is given in Mb(R). Then, for all T > 0 there exists
a unique duality solution (ρ, S) with ρ ≥ 0 of (2.8)–(2.10) which satisfies in the distributional
sense:

∂tρ+ ∂xJ = 0, (3.7)

where J is defined in (3.6). It means that the universal representative in Theorem 3.5 satisfies

b̂ρ = J, in the sense of measures.

Moreover, we have ρ = X#ρ
ini where X is the backward flow corresponding to a(∂xS).

The second result concerns the rigorous proof of hydrodynamical limit for the kinetic model.
Let (fε, Sε) be a solution of the system (2.4)–(2.5), complemented with null boundary condition
at infinity and with the following initial data:

fε(0, ·, ·) = f ini
ε , (3.8)

such that ρiniε = ηε ∗ ρ
ini where ηε is a mollifier and ρini is given in Mb(R). We recall that

for fixed ε > 0, there exists (fε, Sε) such that fε belongs to C([0, T ] × R × V ) and therefore
Sε ∈ C([0, T ];C2(R)), see [7], or [27] in the present context.

Theorem 3.10 Let us assume that ρini ≥ 0 is given in Mb(R). Let (fε, Sε) be a solution to the
kinetic–elliptic equation (2.4)–(2.5) with initial data (3.8). Then, as ε → 0, (fε, Sε) converges
in the following sense:

ρε := fε(c) + fε(−c)⇀ ρ in SM := C([0, T ];Mb(R)− σ(Mb, C0)),

Sε ⇀ S in C([0, T ];W 1,∞(R))− weak,

where (ρ, S) is the unique duality solution of the system (2.8)–(2.10) satisfying

b̂ρ = J, in the sense of measures.

4 Properties of S

We gather in this section a set of properties for the solution S to (2.10) that will be used
throughout the paper.

4.1 One-sided estimates

The estimates presented in this part rely only on equation (2.10).

Lemma 4.1 Let ρ ∈ C([0, T ],Mb(R)). Then the solution S of equation (2.10) satisfies

1. ρ ≥ 0 =⇒ S ≥ 0

2. one-sided estimate: ∂xxS ≤ S if and only if ρ ≥ 0

3. for all p ∈ [1,+∞], S ∈ C([0, T ], Lp(R)) and ∂xS ∈ C([0, T ], Lp(R))

9



Proof. The first two items are easy consequences of the expression (2.12) for the first one, of
the equation (2.10) for the second. For the third item, from convolution properties, we have for
any p ∈ [1,+∞]

‖S(t, .)‖Lp(R) =
1

2
‖e−|·| ∗ ρ(t, .)‖Lp(R) ≤ |ρ(t, .)|(R)

1

2
‖e−|·|‖Lp(R) =

1

2
sup

t∈[0,T ]

|ρ(t, ·)|(R),

where |ρ|(R) stands for the total mass of the nonnegative measure ρ. We proceed in the same
way for ∂xS.

As mentioned above, the key point to use the duality solutions is that the velocity field
satisfies the OSL condition (3.3).

Lemma 4.2 Let ρ ∈ SM. Then the coefficient a(∂xS) defined by (2.9)-(2.10) satisfies the OSL
condition (3.3) if and only if ρ ≥ 0

Proof. Straightforward computations lead to

∂x(a(∂xS)) = −c2φ′(c∂xS)∂xxS.

With (2.10) and since φ is a nonincreasing function, we deduce from the one-sided estimate of
Lemma 4.1

∂x(a(∂xS)) ≤ max{c2‖φ′‖L∞S, 0}.

We conclude thanks to the bound on S in L∞.

Finally, we turn to a convergence result for a sequence of such functions S.

Lemma 4.3 Let (ρn)n∈N be a sequence of measures that converges weakly towards ρ in SM as
n goes to +∞. Let Sn(t, x) = (K ∗ ρn(t, ·))(x) and S(t, x) = (K ∗ ρ(t, ·))(x), where K is defined
in (2.12). Then when n→ +∞ we have

∂xSn(t, x) −→ ∂xS(t, x) for a.e. t ∈ [0, T ], x ∈ R,
∂xSn(t, x) ⇀ ∂xS(t, x) in L∞

t,x weak − ∗.

Proof. The proof of this result is obtained by regularization of the convolution kernel (see
Lemma 3.1 of [17]).

4.2 Entropy estimates

In this subsection, we consider now that (ρ, S) satisfy (3.7)–(3.6) in the sense of distributions.
We prove first that S satisfies a nonlinear nonlocal equation. Next, following the strategy of
[19], we prove that the above one-sided estimate implies some kind of entropy inequality for
∂xS.

Lemma 4.4 Assume (ρ, S) ∈ C([0, T ];Mb(R))×C([0, T ];W
1,∞) satisfy (3.7)–(3.6), then ∂xS ∈

C([0, T ], L1(R)) ∩ L∞([0, T ], BV (R)) and S is a weak solution of

∂tS − ∂xK ∗ ∂x(A(∂xS)) + ∂xK ∗ (a(∂xS)S) = 0. (4.1)
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Proof. We have ρ ∈ SM and ∂xxS = S− ρ. Then ∂xS ∈ C([0, T ], L1(R))∩L∞([0, T ], BV (R)).
We recall that we have S = K ∗ ρ where K(x) = 1

2
e−|x|. Thus taking the convolution by K of

(3.7)–(3.6), we get that S is a weak solution of (4.1).

Lemma 4.5 Let S be a weak solution in C([0, T ];W 1,1(R)) of (4.1) with initial data Sini.
We assume moreover that ∂xS belongs to L∞([0, T ];BV (R)) and that the one-sided estimate
∂xxS ≤ S holds in the distributional sense. Then for any twice continuously differentiable
convex function η we have

∂tη(∂xS) + ∂x(q(∂xS))− η′(∂xS)a(∂xS)S + η′(∂xS)[K ∗ (−∂xA(∂xS) + a(∂xS)S)] ≤ 0, (4.2)

where the entropy flux q is defined by

q(x) =

∫ x

0

η′(y)a(y) dy.

Proof. From Lemma 4.4, S satisfies (4.1). By differentiation, and using the property ∂xxK =
K − δ0, we get

∂t∂xS + ∂xA(∂xS)− a(∂xS)S +K ∗ (−∂xA(∂xS) + a(∂xS)S) = 0. (4.3)

Consider a sequence of mollifiers ζn(x) = nζ(nx), with n ∈ N, ζ ∈ C∞
0 (R), ζ ≥ 0 and∫

R
ζ(x) dx = 1. We set Sn = ζn ∗ S. Then we have

∂t∂xSn + ∂x(A(∂xS) ∗ ζn)− ζn ∗ (a(∂xS)S) +K ∗ ζn ∗ (−∂xA(∂xS) + a(∂xS)S) = 0.

We define the commutators Rn and Qn as follows:

A(∂xS) ∗ ζn = A(∂xSn) +Rn(t, x),

Qn(t, x) = −ζn ∗ (a(∂xS)S) +K ∗ ζn ∗ (−∂xA(∂xS) + a(∂xS)S)

+ a(∂xSn)Sn −K ∗ (−∂xA(∂xSn) + a(∂xSn)Sn),

so that the regularized solution satisfies

∂t∂xSn + ∂x(A(∂xSn) +Rn)− a(∂xSn)Sn +K ∗ (−∂xA(∂xSn) + a(∂xSn)Sn) +Qn = 0. (4.4)

Let us consider η a twice continuously differentiable convex function and let q be the corre-
sponding entropy flux. Multiplying equation (4.4) by η′(∂xSn), we get

∂tη(∂xSn) + ∂x(q(∂xSn) + η′(∂xSn)Rn) +Hn = −η′(∂xSn)Qn +Rn∂x(η
′(∂xSn)), (4.5)

where
Hn := −η′(∂xSn)a(∂xSn)Sn + η′(∂xSn)[K ∗ (−∂xA(∂xSn) + a(∂xSn)Sn)].

Due to properties of the convolution product, we have

Rn → 0, Qn → 0 in Lp
loc((0,∞)× R), 1 ≤ p < +∞,

11



so that in the sense of distribution, we have straightforwardly

∂x(η
′(∂xSn)Rn) → 0, η′(∂xSn)Qn → 0

and
Hn → H := −η′(∂xS)a(∂xS)S + η′(∂xS)[K ∗ (−∂xA(∂xS) + a(∂xS)S)],

which is precisely the desired term in the limit equation. Now we deal with the termRn∂x(η
′(∂xSn))

on the right-hand side, and we notice that Rn ≥ 0 thanks to the Jensen inequality and the con-
vexity of A. Therefore, since η is convex, we have

Rn∂x(η
′(∂xSn)) = Rnη

′′(∂xSn)∂xxSn ≤ Rnη
′′(∂xSn)Sn,

where we have used the one-sided estimate ∂xxSn ≤ Sn to obtain the last inequality. Since Sn

is bounded in L∞ independently of n, we can pass to the limit in this last identity thanks to
the Lebesgue dominated convergence theorem to get

Rnη
′′(∂xSn)Sn → 0 in L1

loc((0,∞)× R).

Finally, letting n going to +∞ in (4.5), we deduce that (4.2) holds in the distributional sense.

Remark 4.6 This equation relies strongly on the definition of the flux J in (3.6). This fact
has already been noticed by the authors in [16], which can be viewed as a particular case of
the one studied in this paper by replacing the elliptic equation (2.10) for S by the Poisson
equation −∂xxS = ρ. In this case, the product of a(∂xS) by ρ is naturally defined by a(∂xS)ρ =
−∂xA(∂xS), so that equation on S corresponding to (4.3) is given by

∂t∂xS + ∂xA(∂xS) = 0.

This equation is a nonlinear hyperbolic conservation law which is local, contrary to (4.3). There-
fore uniqueness is ensured by entropy conditions. Since ∂xS is monotonous (−∂xxS = ρ ≥ 0),
this can be formulated as a chord condition on A (see [5]). If in addition A is convex or concave
(i.e. if a is non-decreasing or non-increasing), this selects only increasing or decreasing shocks.

5 Existence and uniqueness for the hydrodynamical prob-

lem

In this Section, we focus on the proof of Theorem 3.9, which can be split in 3 steps. The
first one consists in obtaining the dynamics of aggregates, or in other words of combinations of
Dirac masses. Next we obtain the existence of duality solutions in the sense of Definition 3.7
by proving first that aggregates define such a solution, then proceeding to the general case by
approximation. This is exactly the same strategy as for the pressureless gases in [5]. Finally,
uniqueness follows from a careful definition of the flux of the equation. In this respect, we first
underline with an example that Definition 3.7 as it stands does not give uniqueness, and how
the proper definition of the flux singles out a unique solution.

12



Indeed, let us consider (2.8)–(2.10) with boundary condition (2.11) where the initial datum
is assumed to be a Dirac mass in 0: ρini = δ0. We have that (δ0, K ∗ δ0) is a solution to
(2.8)–(2.10) with initial data δ0. Actually, the pair

ρ1(t, x) = δx1(t)(x); S1(t, x) = K ∗ ρ1(t, x) =
1

2
e−|x−x1(t)|. (5.1)

turns out to define a solution in the sense of duality in Definition 3.7 for several choices of
curves x1 with x1(0) = 0. Set b1(t, x) = a(∂xS1)(t, x), and notice first that, according to
Remark 3.4, ρ1 is a duality solution if u1 :=

∫ x
ρ1 dx = H(x − x1(t)) is a duality solution of

the transport equation. Now, from Lemma 4.2, b1 satisfies the OSL condition, therefore u1 is a
duality solution of the transport equation as soon as it is solution in the sense of distributions.
As detailed in [4], Section 3, this holds true only if u satisfies some admissibility conditions,
namely, the characteristics of the velocity field have to enter the discontinuity on both side.
Since limx→x+

1
b1(x) = a(−1/2) and limx→x−

1
b1(x) = a(1/2), the velocity of the shock should

satisfy a(1/2) > x′1(t) > a(−1/2), which furnishes an infinity of solution.
For any of the previous solutions, the generalized flux given by Theorem 3.5–3 is b1∆ρ1 =

−∂tu1 = −x′1(t)δx1(t). On the other hand, let us compute the flux J defined by (3.6). For
simplicity, we set here α = 0 in the definition (2.3) of Φ. With this convention, we get

a(∂xS1)(t, x) =

{
−λc, x < x1(t),

λc, x > x1(t),
A(∂xS1)(t, x) =

1

2

{
−λcex−x1(t), x < x1(t),

−λce−x+x1(t), x > x1(t).

Obviously we have J = 0, so that the condition âρ = J selects x′1(t) = 0, which finally implies
x1 ≡ 0 since x1(0) = 0.

5.1 Dynamics of aggregates

Let us first consider the motion of aggregates. We assume that ρinin is given by a finite sum of
Dirac masses: ρinin =

∑n
i=1miδx0

i
where x01 < x02 < · · · < x0n and the mi-s are nonnegative. We

look for a couple (ρn, Sn) solving in the distributional sense ∂tρn + ∂xJn = 0 where the flux Jn
is given by (3.6) and Sn solves (2.10). We recall that it means that Sn = K ∗ ρn where K is
defined in (2.12). Let us set ρn(t, x) =

∑n
i=1miδxi(t). Such a function is a solution in the sense

of distributions of (3.7) if the function un defined by

un(t, x) :=

∫ x

ρn dx =

n∑

i=1

miH(x− xi(t)), (5.2)

where H denotes the Heaviside function, is a distributional solution to

∂tun − ∂xA(∂xSn) + a(∂xSn)Sn = 0. (5.3)

We have

Sn(t, x) =
n∑

i=1

mi

2
e−|x−xi(t)|,

∂xSn(t, x) = −
n∑

i=1

mi

2
sign (x− xi(t))e

−|x−xi(t)|. (5.4)
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Straightforward computations prove that we have in the distributional sense

∂xA(∂xSn) = a(∂xSn)Sn +

n∑

i=1

[A(∂xSn)]xi
δxi
, (5.5)

where [f ]xi
= f(x+i ) − f(x−i ) is the jump of the function f at xi. Injecting (5.2) and (5.5) in

(5.3), we find

−
n∑

i=1

mix
′
i(t)δxi(t) =

n∑

i=1

[A(∂xSn)]xi
δxi
.

Thus the dynamics of aggregates is finally given by

mix
′
i(t) = −[A(∂xSn)]xi(t), for i = 1, . . . , n.

We complement this system of ODEs by the initial data xi(0) = x0i . More precisely, recalling
that K(x) = 1

2
e−|x|, using (5.4) this latter system can be rewritten :

mix
′
i(t) = A

(
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)
− A

(
−
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)
. (5.6)

Recall that, from the definition of the coefficient a in (2.9) with (2.3), a is nondecreasing and
odd, so that A is a convex function. This implies that for i = 1, . . . , n− 1, x′i ≥ x′i+1, therefore,
aggregates can collapse in finite time but an aggregate cannot split. This is a direct consequence
of the fact that we are considering positive chemotaxis, i.e. a is nondecreasing. If there exists a
time t1 for which we have for instance xi(t1) = xi+1(t1), then the dynamics for t > t1 is defined
as above except that we replace mi by mi +mi+1 and xi(t) = xi+1(t) for t > t1. Moreover A is
even, then when n = 1, we have x′1 = 0 and x1(t) = x01. Thus if aggregates collapse such that
they form a single aggregate of mass

∑
imi, then this aggregate does not move for larger times.

5.2 Existence of duality solutions

We have constructed (ρn, Sn) which is a solution of (3.7)-(3.6)-(2.10) in the distributional sense
for the given initial data ρinin . We recall the following result due to Vol’pert [28] (see also [2]):
if u belongs to BV (R) and f ∈ C1(R) with f(0) = 0, then v = f ◦ u belongs to BV (R) and

∃ fu with fu = f ′(u) a.e. such that (f ◦ u)′ = fuu
′.

Together with the fact that A is an antiderivative of a such that A(0) = 0, this result implies
that there exists a function ân such that

Jn := −∂x(A(∂xSn)) + a(∂xSn)Sn = ânρn, and ân = a(∂xSn) a.e.

Thus ρn is a solution in the distributional sense of

∂tρn + ∂x(ânρn) = 0.

Moreover, we deduce from (5.4) that a(∂xSn) is piecewise continuous with the discontinuity
lines defined by x = xi, i = 1, . . . , n. We can apply Theorem 3.6 which gives that ρn is a

14



duality solution and that ân is a universal representative of a(∂xSn). Then the flux is given by
a(∂xSn)∆ρn = Jn.

Let us yet consider the case of any initial data ρini ∈ Mb(R). We approximate ρini by
ρinin =

∑n
i=1miδx0

i
with ρinin ⇀ ρini in Mb(R). By the same token as above, we can construct

a solution (ρn, Sn = K ∗ ρn) with ρn(t = 0) = ρinin =
∑n

i=1miδx0
i
, which solves in the sense of

duality
∂tρn + ∂x(a(∂xSn)ρn) = 0,

in the sense of distributions

∂tρn + ∂xJn = 0, Jn = −∂xA(∂xSn) + a(∂xSn)Sn,

and which satisfies
ânρn = Jn, ân = a(∂xSn) a.e.

Moreover, since ∂xSn is bounded in L∞ uniformly with respect to n by construction, we can
extract a subsequence of (a(∂xSn))n that converges in L∞ − weak∗ towards b. Since from
Lemma 4.2, a(∂xSn) satisfies the OSL condition, we deduce from Theorem 3.5 4) that, up
to an extraction, ρn ⇀ ρ in SM and ânρn ⇀ âρ weakly in Mb(]0, T [×R), ρ being a duality
solution of the scalar conservation law with coefficient b. With Lemma 4.3, we deduce that
∂xSn → ∂xS a.e., it implies in particular that Jn → J := −∂xA(∂xS) + a(∂xS)S in D′(R) and
that a(∂xSn) → a(∂xS) a.e. By uniqueness of the weak limit, we have b = a(∂xS). Moreover
J = âρ a.e. and ρ satisfies then (3.7). Then (ρ, S) is a solution as in Theorem 3.9, this concludes
the proof of the existence.

5.3 Uniqueness of solutions

Let us consider yet the study of the uniqueness. As shown above, Definition 3.7 is not sufficient
to ensure uniqueness. Therefore, we will use the fact that we have a duality solution ρ that
satisfies (3.7) in D′([0, T ]×R) with the initial data ρini and with the flux J given by (3.6). This
equation leads to the non-local evolution equation on S (4.1) as stated in Lemma 4.4.

Another key point is the one-sided estimate ∂xxS ≤ S. In fact, if we consider for instance
ρini = 0, then it is obvious that ρ = 0 is a solution of (2.8)–(2.10). However, if we allow ρ to
be nonpositive, i.e. if the corresponding chemoattractant concentration S does not satisfy the
one-sided estimate ∂xxS ≤ S, then we can build a simple example of non-uniqueness. Indeed
we have that

ρ(t, x) = δ−x1(t)(x)− 2δ0(x) + δx1(t)(x)

is a duality solution of (2.8)–(2.10) which satisfies (3.7), provided x1(0) = 0 and (5.6) is satisfied.
This readily gives

x′1(t) = A
(1
2
+ e−x1 +

1

2
e−2x1

)
− A

(
−

1

2
+ e−x1 +

1

2
e−2x1

)
.

Here by convexity of A, we have x′1 ≥ 0.
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Theorem 5.1 Let S1 and S2 be two weak solutions in C([0, T ];W 1,1(R)) of (4.1) with ini-
tial data Sini

1 and Sini
2 respectively. If we assume moreover that ∂xS1 and ∂xS2 belongs to

L∞([0, T ];BV (R)) and that the one-sided estimate

∂xxSi ≤ Si, i = 1, 2,

holds in the distributional sense. Then there exists a nonnegative constant C such that

‖S1 − S2‖L∞([0,T ];W 1,1(R)) ≤ C‖Sini
1 − Sini

2 ‖W 1,1(R).

Proof. We start from the entropy inequality (4.2) of Lemma 4.5. Using standard regularization
arguments, it is well-known that we can apply this inequality to the family of Kružkov entropies
ηκ(u) = |u − κ|. Then, the doubling of variables technique developed by Kružkov allows to
justify the following computation. Assume S1 and S2 are two weak solutions of (4.1), then in
the distributional sense, we have

∂t|∂x(S1 − S2)|+ ∂x( sign(∂xS1 − ∂xS2)(A(∂xS1)−A(∂xS2))) ≤

sign(∂xS1 − ∂xS2)
(
∂xK ∗ (A(∂xS1)−A(∂xS2)) + a1S1 − a2S2 −K ∗ (a1S1 − a2S2)

)
,

where we denote a1 = a(∂xS1) and a2 = a(∂xS2). Integrating with respect to x and using the
properties of the convolution product, we deduce

d

dt

∫

R

|∂x(S1 − S2)| dx ≤ ‖∂xK‖∞

∫

R

|A(∂xS1)− A(∂xS2)| dx+ (1 + ‖K‖∞)

∫

R

|a1S1 − a2S2| dx.

The function a being regular, we have

d

dt

∫

R

|∂x(S1 − S2)| dx ≤ C0

∫

R

|∂x(S1 − S2)| dx+ C1

∫

R

|S1 − S2| dx. (5.7)

In the same way as for equation (4.1), this leads to

d

dt

∫

R

|S1 − S2| dx ≤ C2

∫

R

|∂x(S1 − S2)| dx+ C3

∫

R

|S1 − S2| dx. (5.8)

Summing (5.8) and (5.7), we deduce that there exists a nonnegative constant C such that

d

dt
‖S1 − S2‖W 1,1(R) ≤ C‖S1 − S2‖W 1,1(R).

Applying the Gronwall Lemma allows to conclude the proof.

Proof of uniqueness in Theorem 3.9. Let us assume that we have two duality solutions
(ρ1, S1) and (ρ2, S2) such as in Theorem 3.9. Therefore, from Lemma 4.4, S1 and S2 are weak so-
lutions of (4.1). Using Theorem 5.1, we conclude that S1 = S2. Thus ρ1 = K ∗S1 = K ∗S2 = ρ2.
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6 Convergence for the kinetic model

In this section we investigate the rigorous derivation of (2.8)–(2.10) from the microscopic model
(2.4). First we state some estimates on the moments of the solution of the kinetic problem.

Lemma 6.1 Let (fε, Sε) be a solution of the kinetic problem (2.4)–(2.5). Then for all t ∈ [0, T ]
and all ε > 0 we have

∫

R

∫

V

|v|kfε dxdv = |v|k|ρini|(R) , k ∈ N.

Proof. Since v ∈ V = {−c, c}, |v| is constant therefore
∫

R

∫

V

|v|kfε dxdv = |v|k
∫

R

ρε dx.

The result follows then directly from the mass conservation in (2.4).

Proof of Theorem 3.10. Let (fε, Sε) be a solution of (2.4)–(2.5). For fixed ε > 0, we have
fε ∈ C([0, T ] × R × V ). Define ρε :=

∫
V
fε dv, Jε :=

∫
V
vfε dv and a(∂xSε) = −cφ(c∂xSε). We

can rewrite the kinetic equation (2.4) as

∂tfε + v∂xfε =
1

ε
(Φ(−v∂xSε)ρε − 2fε).

Taking the zeroth and first order moments, we get

∂tρε + ∂xJε = 0, (6.1)

∂tJε + v2∂xρε =
2

ε
(a(∂xSε)ρε − Jε). (6.2)

From (6.1), we deduce that ∀ t ∈ [0, T ], |ρε(t, ·)|(R) = |ρini|(R). Therefore, for all t ∈ [0, T ]
the sequence (ρε(t, ·))ε is relatively compact in Mb(R) − σ(Mb(R), C0(R)). Moreover, there
exists uε ∈ L∞([0, T ], BV (R)) such that ρε = ∂xuε. From (6.1), we get that ∂tuε = −Jε and
thanks to Lemma 6.1 we deduce that uε is bounded in Lip([0, T ], L1(R)). This implies the
equicontinuity in t of (ρε)ε. Thus the sequence (ρε)ε is relatively compact in SM and we can
extract a subsequence still denoted (ρε)ε that converges towards ρ in SM.

We recall that Sε(t, x) = (K ∗ ρε(t, ·))(x) where K(x) = 1
2
e−|x|. Denoting S(t, x) := (K ∗

ρ(t, ·))(x), since ρ ∈ SM, we have ∂xS ∈ L∞([0, T ];BV (R)). From Lemma 4.3, the sequence
(∂xSε)ε converges in L∞w − ∗ and a.e. to ∂xS as ε goes to 0. Lemma 4.2 ensures that both
a(∂xSε) and a(∂xS) satisfy the OSL condition.

From (6.1)–(6.2), we have in the distributional sense

∂tρε + ∂x(a(∂xSε)ρε) = ∂x(a(∂xSε)ρε − Jε) =
ε

2
∂x(∂tJε + v2∂xρε) = Rε. (6.3)

Now, for all ψ ∈ C2
c ((0, T )× R), we deduce from Lemma 6.1

∣∣∣∣
∫

(∂tJε + v2∂xρε)∂xψ dxdt

∣∣∣∣ ≤ |v||ρini|(R)‖∂t∂xψ‖L∞ + |v|2|ρini|(R)‖∂xxψ‖L∞ .
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This implies that the limit in the distributional sense of the right-hand side Rε of (6.3) vanishes.
Now we multiply equation (2.5) by a(∂xSε) and use again the antiderivative A of a to obtain

a(∂xSε)ρε = −∂x(A(∂xSε)) + a(∂xSε)Sε, (6.4)

so that we can rewrite the conservation equation (6.3) as follows, in D′(R):

∂tρε + ∂x (−∂xA(∂xSε) + a(∂xSε)Sε) =
ε

2
∂x(∂tJε + v2∂xρε). (6.5)

Taking the limit ε → 0 of equation (6.5) in the sense of distributions, we get

∂tρ+ ∂x (−∂xA(∂xS) + a(∂xS)S) = 0 in D′(R), (6.6)

where S(t, x) = (K ∗ ρ(t, ·))(x). Therefore the pair (ρ, S) satisfies (3.7)–(3.6). In addition, ρ
is nonnegative as a limit of nonnegative measures, so that Lemma 4.1 implies the one-sided
estimate ∂xxS ≤ S. Thus we are in position to apply Lemma 4.4 and Theorem 5.1, which give
uniqueness for S, and consequently for ρ. Therefore the whole sequence ρε converges to ρ in
SM. We recall that we have chosen the initial data such that ρiniε = ηε ∗ ρ

ini where ηε is a
mollifier. Therefore ρiniε ⇀ ρini in Mb(R)− σ(Mb(R), C0(R)).

Thus we have constructed a solution that satisfies (6.6) in the distributional sense, in other
words, we have defined a solution of the problem (2.8)–(2.10) thanks to its flux. A natural
question is to know whether we can define a velocity corresponding to this flux. From the
theory of duality solutions (see Theorem 3.5), it boils down to show that the above constructed
solution is a duality solution. From Vol’pert calculus [28] we infer the existence of aS such that
aS = a(∂xS) a.e. and

∂x(A(∂xS)) = aS∂xxS.

Therefore
− ∂x(A(∂xS)) + a(∂xS)S = aSρ a.e. , with aS = a(∂xS) a.e. (6.7)

Using equation (6.6) we have in the distributional sense

∂tρ+ ∂x(aSρ) = 0. (6.8)

However, we have proved in Section 5.3 that such a solution is unique. We deduce that the
solution (ρ, S) obtained by the hydrodynamical limit above is the duality solution of Theorem
3.9. It concludes the proof of Theorem 3.10.

Remark 6.2 In the proof above, the macroscopic flux J defined in (3.6) appears to be the limit
of the microscopic flux Jε. Indeed from (6.2) and (6.4) we deduce that, in the distributional
sense,

Jǫ −→ J := −∂xA(∂xS) + a(∂xS)S.

This natural definition of the flux allows to get the uniqueness of the solutions of the coupled
system (2.8)–(2.10) thanks to equations (4.1)–(4.3). Such a technique to establish the hydrody-
namic limit has been proposed in [18]. But the authors do not state that their limit is a duality
solution and do not define a velocity and therefore a flow corresponding to their flux. In the
limit of the Vlasov-Poisson-Fokker-Planck system, this result has been investigated in [16].
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7 Numerical issue

7.1 Finite time of collapse

Before focusing on the numerical simulations, let us clarify the dynamics of the model. In the
case of n Dirac masses, mi ≥ 0 for i = 1, . . . , n, located at positions x1 < · · · < xn, we recall
that the time evolution is governed by system (5.6):

mix
′
i(t) = A

(
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)
− A

(
−
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)
, (7.1)

for i = 1, . . . , n, where we recall that A is an antiderivative of a such that A(0) = 0. We deduce
that for all t > 0, and for i = 1, . . . , n,

∃ γi ∈

(
−
mi

2
+
∑

j 6=i

mj∂xK(xj − xi),
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)

such that x′i(t) = a(γi(t)).

(7.2)

Proposition 7.1 Let us assume that there exists n ∈ N
∗ such that

ρini(x) =

n∑

i=1

m0
i δx0

i
(x),

with m0
i ≥ 0, for i = 1, . . . , n. We assume in addition that a is a nondecreasing and odd real

function. Then the duality solution ρ of Theorem 3.9 has the following properties :

1. If n = 1, x1(t) = x01 for all t > 0. Then ρ(t) = ρini for all t > 0.

2. For i = 1, . . . , n− 1, x′i(t) ≥ x′i+1(t) therefore xi+1 − xi ≤ x0i+1 − x0i .

3. There exists c∗ ∈ [x01, x
0
n] and T ∗ > 0 such that ρ(t, x) = δc∗(x) for all t > T ∗.

Proof. The first point is a direct consequence of the even character of A whereas the second
point comes from the convexity of A. Let us then prove the third point. By convexity of the
function A and with (7.1), we have

m1x
′
1 ≥ A

(
m1

2
+

n∑

j=2

mj

2
ex

0
1−x0

j

)
− A

(
−
m1

2
+

n∑

j=2

mj

2
ex

0
1−x0

j

)
> 0,

and

mnx
′
n ≤ A

(
−

n−1∑

j=1

mj

2
ex

0
j
−x0

n +
mn

2

)
−A

(
−

n−1∑

j=1

mj

2
ex

0
j
−x0

n −
mn

2

)
< 0.

As for (7.2), we can rewrite these last inequalities as :

x′1(t) ≥ a(γ1(0)) > 0, x′n ≤ a(γn(0)) < 0.

We deduce that there exists a time T ∗ > 0 such that all masses collapse for t = T ∗ in a single
Dirac mass.
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Remark 7.2 Notice that we have in addition the following estimate for T ∗:

T ∗ < (x0n − x01)/(a(γ1(0))− a(γn(0))).

Corollary 7.3 Let us assume that 0 ≤ ρini ∈ Cc(R) with compact support [0, L]. Let us denote
ρ the duality solution of Theorem 3.9 with initial data ρini. Then there exists c∗ ∈ [0, L] and
T ∗ > 0 such that ρ(t, x) = δc∗(x) for all t > T ∗.

Proof. Let us approximate ρini by

ρinin (x) =

n∑

i=1

m0
i δx0

i
(x),

with x0i = (i − 1)L/n, for i = 1, . . . , n and m0
i =

∫ x0
i+1

x0
i

ρini(dx). From Proposition 7.1, we
deduce that there exists c∗n ∈ [0, L] and T ∗

n > 0 such that the duality solution of Theorem
3.9 with initial data ρinin is such that ρn(t, x) = δc∗n for all t > T ∗

n . Moreover, we have T ∗
n <

L/(a(γn1 (0))− a(γnn(0))) where we recall that

−m0
1 +

n∑

j=1

m0
j

2
e−(j−1)L/n < γn1 (0) <

n∑

j=1

m0
j

2
e−(j−1)L/n, (7.3)

and

−

n∑

j=1

m0
j

2
e(j−n)L/n < γnn(0) < m0

n −

n∑

j=1

m0
j

2
e(j−n)L/n. (7.4)

By stability results on duality solutions in Theorem 3.5 (see also subsection 5.1), we deduce
that ρn ⇀ ρ in SM as n → +∞. Taking the limit in (7.3) and (7.4), we deduce by continuity
of ρini that

lim
n→+∞

γn1 (0) =

∫ L

0

ρini(x)e−x dx

and

lim
n→+∞

γnn(0) = −

∫ L

0

ρini(x)e−L+x dx.

Moreover, since ρini is continuous with compact support in [0, L] we have ρini(0) = ρini(L) = 0.
We deduce that the sequence (T ∗

n)n∈N∗ is bounded. Thus there exists a time T ∗ independent of
n such that ρn(t) = δc∗n for all t > T ∗. Taking the limit when n→ +∞, we conclude that there
exists c ∈ [0, L] such that ρ(t) = δc for all t > T ∗.

Remark 7.4 Taking a = Id, therefore A(x) = x2/2, we deduce from (7.1) that

x′i =
∑

j 6=i

mj∂xK(xj − xi).

We recover the dynamics of the aggregation equation as noticed by Carrillo et al. in [8]. These
authors prove in particular the concentration in finite time of the total mass in the center of
mass. In the framework of the present work, which is focused on applications to chemotaxis,
a is not assumed to be the identity function, so that the center of mass is not conserved. A
numerical evidence of this phenomenon will be proposed in the last subsection of this paper.
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7.2 Discretization

The numerical resolution of system (2.8)–(2.10) is far from obvious. A first naive idea consists
in applying a standard splitting method where we treat separately the scalar conservation law
(2.8) and the elliptic equation (2.10). It turns out that such a scheme is unable to recover the
correct definition of the flux and therefore of the product a(∂xS) by ρ. In particular, it leads to
stationary Dirac masses.

A second idea consists in solving the distributional conservation law (3.7) by a finite volume
method. It involves a discretization of the flux J on the interface of each cell of the mesh, and
thus one could expect a correct computation of the flux, and therefore a convenient interpretation
of the product. However, this definition of the flux involves the calculation of two derivatives
of S. Using a centered scheme to discretize this quantity induces spurious oscillations as it
is usually noticed for centered scheme on scalar conservation laws. We can then upwind the
scheme depending on the sign of a(∂xS) computed at previous iteration. But in doing so, we
actually specify a value for a(∂xS) in the definition of the product a(∂xS) with ρ, and this can
lead to capture wrong solutions.

Next, one can think of solving the equation (4.1) on S, motivated by the fact that it plays a
key part in the uniqueness, and that ρ can be recovered readily from S. However the equation
is non local and its numerical resolution appears to be quite complicated and with a high
computational cost (even in the one dimensional setting).

Thus we prefer to use a method based on the dynamics of aggregates, detailed in Section 5.1.
We use the principle of a particle method in which we approximate the density by a sum of Dirac
masses. Then the motion of these pseudo-particles is approximated by discretizing system (5.6)
with an explicit Euler scheme. More precisely, let us assume that we have an approximation of
ρ at time tn = n∆t, given by

ρn(x) =
In∑

i=1

mn
i δyni (x), (7.5)

where mn
i > 0 is the mass allocated to the pseudo-particle at the position yni with yn1 < yn2 <

· · · < ynIn for In ∈ N
∗. Then an approximation of the potential at time tn is given by

Sn(x) =

In∑

i=1

mn
i e

−|x−yni |.

Using an explicit Euler scheme, we compute the new position

yn+1
i =yni +

∆t

mn
i

A

(
−

i−1∑

j=1

mn
j

2
ey

n
j
−yn

i +
mn

i

2
+

In∑

j=i+1

mn
j

2
ey

n
i
−yn

j

)

−
∆t

mn
i

A

(
−

i−1∑

j=1

mn
j

2
ey

n
j −yni −

mn
i

2
+

In∑

j=i+1

mn
j

2
ey

n
i −ynj

)
.

Next, we test if some pseudo-particles have collided during the time step ∆t. If yn+1
j+1 ≤ yn+1

j for
j ≥ 1, then the pseudo-particles j and j + 1 have collapsed and form a unique pseudo-particle
which has the mass mn

j +m
n
j+1. In this case, we decide to set this pseudo-particle at the position

1
2
(yn+1

j+1 + yn+1
j ) and set mn+1

j = mn
j +mn

j+1, moreover we have therefore In+1 = In − 1. Finally,
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for given initial sequences (y0i )i=1,...,I0 and (m0
i )i=1...,I0 of size I0, we can construct (yni ) and (mn

i )
of size In as above.

Using well-known result on the convergence of Euler scheme, we deduce that, for given initial
data (y0i )i=1,...,I0, (m0

i )i=1...,I0 and I0, yni defined above converges to the solution xi(t) of (5.6)
when ∆t tends to 0 such that tn → t. Using the convergence result in Section 5.2, we deduce
that the function ρn in (7.5) converges in SM to the unique duality solution of Theorem 3.9.
Then the method introduced above is convergent provided we discretize the initial data ρini in
such a way that ρ0(x) :=

∑I0

i=1m
0
i δy0i (x) converges in Mb to ρini. Moreover, we verify easily

that we have
I0∑

i=1

m0
i =

In∑

i=1

mn
i , and In ≤ I0, for all n ∈ N,

and that the approximation ρn of ρ(tn) is nonnegative.

7.3 Numerical results

In this Section, we present numerical simulations of model (2.8)–(2.10) using the algorithm
described above. We first approximate the initial data ρini ≥ 0, which is assumed to be com-
pactly supported for numerical purpose, in the following way: we introduce a discretization
xj = x0+ j∆x of the bounded domain which includes the compact support of ρini and we define

m0
i =

∫ xi+
∆x
2

xi−
∆x
2

ρini(x) dx.

Then the sequence (y0j )j is defined by the nodes (xi) for which m0
i is not zero, and I0 correspond

to the number of i ∈ N such that m0
i is not zero. We construct then the approximation of ρini

by

ρ0(x) :=

I0∑

i=1

m0
i δy0i (x).

We present in Figure 1 the dynamics of the density ρ and of the chemoattractant concen-
tration S for an initial data ρini given by the sum of two Gaussian functions, more precisely

ρini(x) = e−20(x−0.5)2 + e−20(x+0.5)2 .

As expected, we first observe the formation of two Dirac masses at the position where ∂xS
initially vanishes. Then, the two aggregates collapse in the center. Looking at the time evolution,
we notice that the first step of formation of aggregates is fast compared to the time of collapse.

In Figure 2 we display the dynamics for an initial data given by the sum of three Gaussian
functions:

ρini(x) = e−10(x−1)2 + e−20(x−0.2)2 + e−20(x+0.5)2 .

We observe the formation of three Dirac masses that moves according to the dynamical system
(7.1). They collapse then in finite time.

Finally, as we have already noticed, we evidence that the center of mass is not fixed. For
instance, Figure 3 represents the dynamics of the density and of the potential for an initial data
made of one big bump with one small bump:

ρini(x) = 5e−20(x−1)2 + 0.5e−20(x+0.5)2 .
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Figure 1: Dynamics of the density ρ (top) and of the potential S (bottom) for an initial density
given by the sum of two Gaussian.

The square shows the time dynamics of the center of mass. We observe that the center of mass
at the final time is not located at the same position as at the initial time.
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Figure 3: Dynamics of the density ρ (top) and of the potential S (bottom) with the dynamics
of the center of mass represented by a red square. The center of mass moves.
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