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Chemotaxis: from kineti equations to aggregate dynamisF. Jamesa and N. Vauheletb
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b UPMC Univ Paris 06, UMR 7598, Laboratoire Jaques-Louis Lions,CNRS, UMR 7598, Laboratoire Jaques-Louis Lions andINRIA Paris-Roquenourt, Equipe BANGF-75005, Paris, FraneE-mail addresses: franois.james�univ-orleans.fr, vauhelet�ann.jussieu.frAbstratThe hydrodynami limit for a kineti model of hemotaxis is investigated. The limitequation is a non loal onservation law, for whih �nite time blow-up ours, giving riseto measure-valued solutions and disontinuous veloities. An adaptation of the notion ofduality solutions, introdued for linear equations with disontinuous oe�ients, leads toan existene result. Uniqueness is obtained through a preise de�nition of the nonlinear�ux as well as the omplete dynamis of aggregates, i.e. ombinations of Dira masses.Finally a partile method is used to build an adapted numerial sheme.Keywords: duality solutions, non loal onservation equations, hydrodynami limit,measure-valued solutions, hemotaxis.2010 AMS subjet lassi�ations: 35B40, 35D30, 35L60, 35Q92.1 IntrodutionKineti frameworks have been investigated to desribe the hemotati movement of ells in thepresene of a hemial substane sine in the 80's experimental observations showed that themotion of bateria (e.g. Esherihia Coli) is due to the alternation of `runs and tumbles'. Theso-alled Othmer-Dunbar-Alt model [1, 12, 19, 21℄ desribes the evolution of the distributionfuntion of ells at time t, position x and veloity v, assumed to have a onstant modulus c > 0,as well as the onentration S(t, x) of the involved hemial. A general formulation for thismodel an be written as




∂tfε + v · ∇xfε =
1

ε

∫

|v′|=c

(
T [Sε](v

′ → v)fε(v
′)− T [Sε](v → v′)fε(v)

)
dv′,

−∆Sε + Sε = ρε(t, x) :=

∫

|v|=c

fε(t, x, v) dv.
(1.1)1



The transport operator on the left-hand side of the �rst equation stands for the unbiased move-ment of ells, while the right-hand side governs the hemotati orientation, or taxis, throughthe turning kernel T [S](v′ → v), that is the rate of ells hanging their veloity from v′ to v.The parameter ε orresponds to the time interval of information sampling for the bateria,usually ε ≪ 1, and when it goes to zero, one expets to reover the olletive behaviour of thepopulation, that is a marosopi equation for the density ρ(t, x) of ells. Suh derivations havebeen proposed by several authors. When the taxis is small ompared to the unbiased movementof ells, the saling must be of di�usive type, so that the limit equations are of di�usion ordrift-di�usion type, see for instane [9℄ for a rigorous proof. In [14, 20℄, the authors show thatthe lassial Patlak-Keller-Segel model an be obtained in a di�usive limit for a given smoothhemoattratant onentration.We fous here on the opposite ase, that is when taxis dominates the unbiased movements.This is aounted for in the model by the hoie of the saling in equation (1.1). Moreover, weonsider positive hemotaxis, whih means that the involved hemial is attrating ells, andtherefore is alled hemoattratant. The model has been proposed in [10℄, several works havebeen devoted to the mathematial study of this kineti system. Existene of solutions have beenobtained for various assumptions on the turning kernel in [9, 7, 11, 15℄. Numerial simulationsof this system are proposed in [26℄. The limit problem is usually of hyperboli type, see forinstane [13, 22, 23℄ for a hyperboli limit model whih onsists in a onservation equation forthe ell density and a momentum balane equation.It is not di�ult to obtain the following formal hydrodynami limit to equation (1.1), morepreisely on the total density of partiles ρ = limε ρε:
∂tρ+ divx

(
a[S]ρ

)
= 0, −∆xxS + S = ρ. (1.2)Here the marosopi veloity a[S] depends on the hemoattratant onentration S throughthe turning kernel. This system of equations has been obtained in [10℄, with a rigorous proof inthe two-dimensional setting for a �xed smooth S, and therefore a bounded density ρ. The aimof this paper is to obtain rigorously this limit for the whole oupled system. Severe di�ultiesarise then mainly due to the lak of estimates for the solutions to the kineti model when ε goesto zero and onsequently to the very weak regularity of the solutions to the limit problem.It turns out that the limit equation is in some sense a weakly nonlinear onservation equationon the density ρ. Indeed the expeted veloity �eld depends on ρ, but through S, and thereforein a non loal way. Atually it an be written as a variant of the so-alled aggregation equation,for whih blow-up in �nite time is evidened (see e.g. [3℄), leading to measure-valued solutions.In this respet, this equation behaves also like linear equations with disontinuous oe�ients.In partiular Dira masses an arise, this is the mathematial formulation of the aggregation ofbateria. Therefore S is no longer smooth, and a major di�ulty in this study will be to de�neproperly the veloity �eld a = a[S] and the produt aρ.The viewpoint of the aggregation equation has been extensively studied by Carrillo et al.[8℄ through optimal transport tehniques. Existene and uniqueness are obtain in a very weaksense, and the dynamis of aggregates is also given. We propose here another approah, basedon the notion of duality solutions, as introdued in the linear ase by Bouhut and James [4℄.The main drawbak is that presently we have to restrit ourselves to the one-dimensional ase,sine the theory in higher dimensions is not omplete yet (see [6℄). The approah proposed byPoupaud and Rasle [25℄, whih oinides with duality in the 1-d ase, ould also be explored.2



Notie however, that the properties of the expeted veloity �eld a in the two-dimensional aseare not obvious either.More peisely, we propose to proeed in a similar way as in [5℄, where the nonlinear systemof zero pressure gas dynamis is interpreted as a system of two linear onservation equationsoupled through the de�nition of the produt. This last point turns out to be ruial in orderto obtain a proper uniqueness result for the system (1.2). In this work, the produt aρ will bede�ned thanks to the limiting �ux of the kineti system (1.1) (see also [16℄ for another appliationof the same idea). As we shall see, this is losely related to the dynamis of aggregates, that isombinations of Dira masses, whih re�et some kind of olletive behaviour of the population.Finally, an important appliation of this aggregate dynamis is the development of a numerialsheme, based on a partile method. The motion and ollapsing of Dira masses is learlyevidened.The paper is organized as follows. In Setion 2 we preisely state the model. Setion 3 isdevoted to the notion of duality solutions, and ontains the main results of this artile. Sometehnial properties whih will be useful for the rest of the paper are given in Setion 4. Thenwe investigate in Setion 5 the proof of the existene and uniqueness result of duality solutionfor system (2.8)�(2.10) stated in Theorem 3.9. In Setion 6 we prove the rigorous derivation ofthe hydrodynamial system from the kineti system. Finally, the dynamis of aggregates andthe numerial sheme for the limit equation are desribed in the last setion, where numerialillustrations are also provided.2 ModellingFrom now on we fous on the one dimensional version of the problem, so that x ∈ R. We �rstreall the main assumptions leading to the kineti equation, next we proeed to the formal limit.2.1 Kineti modelIn this work, ells are supposed to be large enough to sense the gradient of the hemoattratantinstantly. Therefore the turning kernel takes the form (independent on v)
T [S](v′ → v) = Φ(v′∂xS). (2.1)The funtion Φ is the turning rate, obviously it has to be positive. More preisely, for attrativehemotaxis, the turning rate is smaller if ells swim in a favourable diretion, that is v ·∇xS ≥ 0.Thus Φ should be a non inreasing funtion. A simpli�ed model for this phenomenon is thefollowing hoie for Φ: we �x a positive parameter α, a mean turning rate φ0 > 0 and take
Φ(x) = φ0

(
1 + φ(x)

)
, (2.2)where φ is an odd funtion suh that

φ ∈ C∞(R), φ′ ≤ 0, φ(x) =

{
+λ if x < −α,

−λ if x > α,
(2.3)where 0 < λ < 1 is a given onstant. 3



Now sine the transport ours in R the set of veloities is V = {−c, c}, and the expressionof the turning kernel simpli�es in suh a way that (1.1) rewrites
∂tfε + v∂xfε =

1

ε
(Φ(−v∂xS)fε(−v)− Φ(v∂xS)fε(v)), v ∈ V. (2.4)

− ∂xxSε + Sε = ρε = fε(v) + fε(−v). (2.5)The existene of weak solutions in a Lp setting for a slightly di�erent system in a moregeneral framework has been obtained for instane in [7, 15℄. Conerning preisely this model,we refer to [26℄ for the existene theory in any spae dimension. Notie that no uniform L∞bounds an be expeted. The reader is referred to [26℄ for some numerial evidenes of thisphenomenon, whih is the mathematial translation of the onentration of bateria. This issome kind of �blow-up in in�nite time�, whih for ε = 0 leads to atual blow-up in �nite time,and reation of Dira masses. Moreover the balaned distribution vanishing the right hand sideof (2.4) depends on Sε; thus the tehniques developed e.g. in [9℄ annot be applied.2.2 Formal hydrodynami limitWe formally let ε go to 0 assuming that Sε and fε admit a Hilbert expansion
fε = f0 + εf1 + · · · , Sε = S0 + εS1 + · · ·Multiplying (2.4) by ε and taking ε = 0, we �nd

Φ(−c∂xS0)f0(−c) = Φ(c∂xS0)f0(c). (2.6)Summing equations (2.4) for c and −c, we obtain
∂t(fε(c) + fε(−c)) + c∂x(fε(c)− fε(−c)) = 0. (2.7)Moreover, from equation (2.6) we dedue that

f0(c)− f0(−c) =
Φ(−c∂xS0)− Φ(c∂xS0)

Φ(−c∂xS0) + Φ(c∂xS0)
(f0(c) + f0(−c)).The density at equilibrium is de�ned by ρ := f0(c) + f0(−c). Taking ε = 0 in (2.7) we �nallyobtain

∂tρ+ ∂x(a(∂xS0)ρ) = 0,where a is de�ned by
a(∂xS0) = c

Φ(−c∂xS0)− Φ(c∂xS0)

Φ(−c∂xS0) + Φ(c∂xS0)
= −c φ(c∂xS0),and we have used (2.2) for the last identity. Notie that a is atually a marosopi quantity,sine we an rewrite

a(∂xS0) = −

∫
V
vΦ(v∂xS0) dv∫

V
Φ(v∂xS0) dv

,so that this expression is independent the sign of c.4



We ouple this equation with the limit of the ellipti problem (2.5) for the hemoattratantonentration, so that, in summary, and dropping the index 0, the formal hydrodynami limitis the following system
∂tρ+ ∂x(a(∂xS)ρ) = 0, (2.8)
a(∂xS) = −c φ(c∂xS), (2.9)
−∂xxS + S = ρ, (2.10)omplemented with the boundary onditions

ρ(t = 0, x) = ρini(x), lim
x→±∞

ρ(t, x) = 0, lim
x→±∞

S(t, x) = 0. (2.11)We now give the preise formulation of the limit system in terms of aggregate equation.Notiing that a solution to (2.10) has the expliit expression
S(t, x) = K ∗ ρ(t, .)(x), where K(x) =

1

2
e−|x|, (2.12)the marosopi onservation equation for ρ (2.8) an be rewritten

∂tρ+ ∂x(a(∂xK ∗ ρ)ρ) = 0.When a is the identity funtion, this is exatly the so-alled aggregation equation, and sine thepotential is non-smooth, blow-up in �nite time is expeted. We refer the reader to e.g. [3, 8℄,and [17℄ in the ontext of hemotaxis.Similar problems were enountered for instane in [18℄, where the authors investigate thehigh �eld limit of the Vlasov-Poisson-Fokker-Plank model in one spae dimension. The limitsystem is a salar onservation law oupled to the Poisson equation, and a proper de�nition ofthe produt is needed to pass to the limit. This de�nition has been extended in two dimensionsby Poupaud [24℄ using defet measures but losing uniqueness.3 Duality solutions3.1 NotationsLet C0(Y, Z) be the set of ontinuous funtions from Y to Z whose limit vanishes at in�nityand Cc(Y, Z) the set of ontinuous funtions with ompat support from Y to Z. All along thepaper, we denote Mloc(R) the spae of loal Borel measures on R. For ρ ∈ Mloc we denoteby |ρ|(R) its total variation. We will denote Mb(R) the spae of measures in Mloc(R) whosetotal variation is �nite. From now on, the spae of measure-valued funtion Mb(R) is alwaysendowed with the weak topology σ(Mb, C0). We denote SM := C([0, T ];Mb(R)− σ(Mb, C0)).We reall that if a sequene of measure (µn)n∈N in Mb(R) satis�es supn∈N |µn|(R) < +∞,then we an extrat a subsequene that onverges for the weak topology σ(Mb, C0).The oupled system (2.8)�(2.9)�(2.10) is interpreted in this ontext as a linear onservationequation (2.8), the veloity a of whih depends on the solution S to the ellipti equation (2.10).5



This atually means that equation (2.8) is somehow nonlinear. One onvenient tool to handlesuh onservation equations
∂tρ+ ∂x(aρ) = 0, a being a given funtion, (3.1)whose solutions eventually are measures in spae, is the notion of duality solutions, introduedin [4℄.3.2 Linear onservation equationsDuality solutions are de�ned as weak solutions, the test funtions being Lipshitz solutions tothe bakward linear transport equation
∂tp+ a(t, x)∂xp = 0, p(T, .) = pT ∈ Lip(R). (3.2)A key point to ensure existene of smooth solutions to (3.2) is that the veloity �eld has to beompressive, in the following sense.De�nition 3.1 We say that the funtion a satis�es the so-alled one-sided Lipshitz ondition(OSL ondition) if

∂xa(t, .) ≤ β(t) for β ∈ L1(0, T ) in the distributional sense. (3.3)A formal omputation shows that ∂t(pρ) + ∂x[a(t, x)pρ] = 0, and thus
d

dt

(∫

R

p(t, x)ρ(t, dx)

)
= 0, (3.4)whih de�nes the duality solutions for suitable p's. It is now quite lassial that (3.3) ensuresexistene for (3.2), but not uniqueness, whih is of great importane here to obtain stabilityresults and make a onvenient use of (3.4).Therefore, the orner stone in the onstrution of duality solutions is the introdution of thenotion of reversible solutions to (3.2). A omplete statement of the de�nitions and propertiesof reversible solutions would be too long in the present ontext, so that merely a few hints aregiven. Let L denote the set of Lipshitz ontinuous solutions to (3.2), and de�ne the set ofexeptional solutions:

E =
{
p ∈ L suh that pT ≡ 0

}
.The possible loss of uniqueness orresponds to the ase where E is not redued to zero.De�nition 3.2 We say that p ∈ L is a reversible solution to (3.2) if p is loally onstant onthe set

Ve =
{
(t, x) ∈ [0, T ]× R; ∃ pe ∈ E , pe(t, x) 6= 0

}
.This de�nition leads quite diretly to the uniqueness results of [4℄. It turns out that thelass of reversible solutions is also stable by perturbations of the oe�ient a.We now restrit ourselves to those p's in (3.4). More preisely, we state the following de�ni-tion. 6



De�nition 3.3 We say that ρ ∈ SM := C([0, T ];Mb(R) − σ(Mb, C0)) is a duality solutionto (3.1) if for any 0 < τ ≤ T , and any reversible solution p to (3.2) with ompat support in
x, the funtion t 7→ ∫

R

p(t, x)ρ(t, dx) is onstant on [0, τ ].Remark 3.4 A similar notion of duality solution for the transport equation is available ∂tu +
a∂xu = 0, and ρ is a duality solution of (3.1) i� u =

∫ x
ρ is a duality solution to transportequation (see [4℄).We shall need the following fats onerning duality solutions.Theorem 3.5 (Bouhut, James [4℄)1. Given ρ◦ ∈ Mb(R), under the assumptions (3.3), there exists a unique ρ ∈ SM, dualitysolution to (3.1), suh that ρ(0, .) = ρ◦.Moreover, if ρ◦ is nonnegative, then ρ(t, ·) is nonnegative for a.e. t ≥ 0. And we have themass onservation

|ρ(t, ·)|(R) = |ρ◦|(R), for a.e. t ∈]0, T [.2. Bakward �ow and push-forward: the duality solution satis�es
∀ t ∈ [0, T ], ∀φ ∈ C0(R),

∫

R

φ(x)ρ(t, dx) =

∫

R

φ(X(t, 0, x))ρ0(dx), (3.5)where the bakward �ow X is de�ned as the unique reversible solution to
∂tX + b(t, x)∂xX = 0 in ]0, s[×R, X(s, s, x) = x.3. For any duality solution ρ, we de�ne the generalized �ux orresponding to ρ by a∆ρ =

−∂tu, where u =
∫ x

ρ dx.There exists a bounded Borel funtion â, alled universal representative of a, suh that
â = a almost everywhere, and for any duality solution ρ,

∂tρ+ ∂x(âρ) = 0 in the distributional sense.4. Let (an) be a bounded sequene in L∞(]0, T [×R), suh that an ⇀ a in L∞(]0, T [×R)−w⋆.Assume ∂xan ≤ αn(t), where (αn) is bounded in L1(]0, T [), ∂xa ≤ α ∈ L1(]0, T [). Considera sequene (ρn) ∈ SM of duality solutions to
∂tρn + ∂x(anρn) = 0 in ]0, T [×R,suh that ρn(0, .) is bounded in Mb(R), and ρn(0, .)⇀ ρ◦ ∈ Mb(R).Then ρn ⇀ ρ in SM, where ρ ∈ SM is the duality solution to

∂tρ+ ∂x(aρ) = 0 in ]0, T [×R, ρ(0, .) = ρ◦.Moreover, ânρn ⇀ âρ weakly in Mb(]0, T [×R).7



The set of duality solutions is learly a vetor spae, but it has to be noted that a dualitysolution is not a priori de�ned as a solution in the sense of distributions. However, assumingthat the oe�ient a is pieewise ontinuous, we have the following equivalene result :Theorem 3.6 Let us assume that in addition to the OSL ondition (3.3), a is pieewise on-tinuous on ]0, T [×R where the set of disontinuity is loally �nite. Then there exists a funtion
â whih oinides with a on the set of ontinuity of a.With this â, ρ ∈ SM is a duality solution to (3.1) if and only if ∂tρ+ ∂x(âρ) = 0 in D′(R).Then the generalized �ux a∆ρ = âρ. In partiular, â is a universal representative of a.This result omes from the uniqueness of solutions to the Cauhy problem for both kinds ofsolutions (see Theorem 4.3.7 of [4℄).3.3 Main resultsWe are now in position to give the de�nition of duality solutions for the limit system (2.8)�(2.10).De�nition 3.7 We say that (ρ, S) ∈ C([0, T ];Mb(R)) × C([0, T ];W 1,∞) is a duality solutionto (2.8)�(2.10) if there exists a ∈ L∞((0, T )× R) and α ∈ L1

loc(0, T ) satisfying ∂xa ≤ α in D′,suh that1. for all 0 < t1 < t2 < T

∂tρ+ ∂x(aρ) = 0 in the sense of duality on ]t1, t2[,2. (2.9) is satis�ed in the weak sense :
∀ψ ∈ C1(R), ∀ t ∈ [0, T ],

∫

R

(∂xS∂xψ + Sψ)(t, x) dx =

∫
ψ(x) ρ(t, dx),3. a = a(∂xS) a.e.Remark 3.8 For S in C([0, T ];W 1,∞) and φ as in (2.3), we have a(∂xS) ∈ C([0, T ];L∞(R)).Therefore equation (2.8) is meaningful in the duality sense. The key property is then the one-sided Lipshitz ondition.Unfortunately, De�nition 3.7 does not ensure uniqueness, as we shall evidene in Setion 5.This is due to the fat that the produt a(∂xS)ρ is not properly de�ned. Indeed the de�nitionof this produt relies on the de�nition of the �ux of the system, and we introdue now a �ux

J , whih is de�ned in a more physial way, and will turn out to be of great importane in thefollowing. Let A be an antiderivative of a suh that A(0) = 0, we set
J = −∂x(A(∂xS)) + a(∂xS)S. (3.6)We an now establish the following uniqueness Theorem:

8



Theorem 3.9 Let us assume that ρini is given in Mb(R). Then, for all T > 0 there exists aunique duality solution (ρ, S) of (2.8)�(2.10) whih satis�es in the distributional sense :
∂tρ+ ∂xJ = 0, (3.7)where J is de�ned in (3.6). It means that the universal representative in Theorem 3.5 satis�es

âρ = J, in the sense of measures.Moreover, we have ρ = X#ρ
ini where X is the bakward �ow orresponding to a(∂xS).The seond result onerns the rigorous proof of hydrodynamial limit for the kineti model.Let (fε, Sε) be a solution of the system (2.4)�(2.5), omplemented with boundary ondition nullat in�nity and with the following initial data:

fε(0, ·, ·) = f ini
ε , (3.8)suh that ρiniε = ηε ∗ ρ

ini where ηε is a molli�er and ρini is given in Mb(R). We reall thatfor �xed ε > 0, there exists (fε, Sε) suh that fε belongs to C([0, T ] × R × V ) and therefore
Sε ∈ C([0, T ];C2(R)), see [7℄, or [26℄ in the present ontext.Theorem 3.10 Let us assume that ρini is given in Mb(R). Let (fε, Sε) be a solution to thekineti�ellipti equation (2.4)�(2.5) with initial data (3.8). Then, as ε → 0, (fε, Sε) onvergesin the following sense:

ρε := fε(v) + fε(−v)⇀ ρ in SM := C([0, T ];Mb(R)− σ(Mb, C0)),

Sε ⇀ S in C([0, T ];W 1,∞(R))− weak,where (ρ, S) is the unique duality solution of the system (2.8)�(2.10) satisfying
âρ = J, in the sense of measures.4 Properties of SWe gather in this setion a set of properties for the solution S to (2.10) that will be usedthroughout the paper.Lemma 4.1 Let ρ ∈ C([0, T ],Mb(R)). Then the solution S of equation (2.10) satis�es1. ρ ≥ 0 =⇒ S ≥ 02. one sided estimate: −∂xxS ≤ S if and only if ρ ≥ 03. for all p ∈ [1,+∞], S ∈ C([0, T ], Lp(R)) and ∂xS ∈ C([0, T ], Lp(R))

9



Proof. The �rst two items are easy onsequenes of the expression (2.12) for the �rst one, ofthe equation (2.10) for the seond. For the third item, from onvolution properties, we have forany p ∈ [1,+∞]

‖S(t, .)‖Lp(R) =
1

2
‖e−|·| ∗ ρ(t, .)‖Lp(R) ≤ |ρ(t, .)|(R)

1

2
‖e−|·|‖Lp(R) =

1

2
sup

t∈[0,T ]

|ρ(t, ·)|(R),where |ρ|(R) stands for the total mass of the nonnegative measure ρ. We proeed in the sameway for ∂xS.As preised above, the key point to use the duality solutions is that the veloity �eld satis�esthe OSL ondition (3.3).Lemma 4.2 Let ρ ∈ SM. Then the oe�ient a(∂xS) de�ned by (2.9)-(2.10) satis�es the OSLondition (3.3) if and only if ρ ≥ 0Proof. Straightforward omputations lead to
∂x(a(∂xS)) = −c2φ′(c∂xS)∂xxS.With (2.10) and sine φ is a noninreasing funtion, we dedue from the one sided estimate ofLemma 4.1
∂x(a(∂xS)) ≤ max{c2‖φ′‖L∞S, 0}.We onlude thanks to the bound on S in L∞.Finally, we turn to a onvergene result for a sequene of suh funtions S.Lemma 4.3 Let (ρn)n∈N be a sequene of measures that onverges weakly towards ρ in SM as

n goes to +∞. Let Sn(t, x) = (K ∗ ρn(t, ·))(x) and S(t, x) = (K ∗ ρ(t, ·))(x), where K is de�nedin (2.12). Then when n→ +∞ we have
∂xSn(t, x) −→ ∂xS(t, x) for a.e. t ∈ [0, T ], x ∈ R,
∂xSn(t, x) ⇀ ∂xS(t, x) in L∞

t,x weak − ∗.Proof. The proof of this result is obtained by regularization of the onvolution kernel (seeLemma 3.1 of [17℄).5 Existene and uniqueness for the hydrodynamial prob-lemIn this Setion, we fous on the proof of Theorem 3.9, whih an be split in 3 steps. The�rst one onsists in obtaining the dynamis of aggregates, or in other words of ombinations ofDira masses. Next we obtain the existene of duality solutions in the sense of De�nition 3.7 byapproximation. Finally, uniqueness follows from a areful de�nition of the �ux of the equation.10



In this respet, we �rst underline the fat De�nition 3.7 as it stands does not give uniquenessof solutions.Indeed, let us onsider (2.8)�(2.10) with boundary ondition (2.11) where the initial datumis assumed to be a Dira mass in 0 : ρini = δ0. We have that (δ0, K ∗ δ0) is a solution to(2.8)�(2.10) with initial data δ0. More generally, the pair
ρ1(t, x) = δx1(t)(x); S1(t, x) = K ∗ ρ1(t, x) =

1

2
e−|x−x1(t)|. (5.1)turn out to de�ne a solution in the sense of duality in De�nition 3.7 for several hoies of urves

x1 with x1(0) = 0. Indeed set b(t, x) = a(∂xS1)(t, x), aording to Remark 3.4, ρ1 is a dualitysolution if u1 := ∫ x
ρ1 dx = H(x− x1(t)) is a duality solution of the transport equation. FromLemma 4.2, b satis�es the OSL ondition, therefore u1 is a duality solution of the transportequation if a(1/2) > x′1(t) > a(−1/2), whih furnishes an in�nity of solution.However, we have on the one hand that the generalized �ux (Theorem 3.5 3) is b∆ρ1 =

−∂tu1 = −x′1(t)δx1(t). On the other hand, we ompute the �ux J given by (3.6). For the larityof omputations, we set here α = 0 in the de�nition (2.3) of Φ. With this onvention, we get
a(∂xS1)(t, x) =

{
−λc, x < x1(t),

λc, x > x1(t),
A(∂xS1)(t, x) =

1

2

{
−λcex−x1(t), x < x1(t),

−λce−x+x1(t), x > x1(t).Obviously we have J = 0, so that the ondition âρ = J selets x′1(t) = 0, so that �nally x1 ≡ 0sine x1(0) = 0.5.1 Dynamis of aggregatesLet us �rst onsider the motion of aggregates. We assume then that ρinin is given by a �nite sumof Dira masses : ρinin =
∑n

i=1miδx0
i
where x01 < x02 < · · · < x0n. We look for a ouple (ρn, Sn)solving in the distributional sense ∂tρn + ∂xJn = 0 where the �ux Jn is given by (3.6) and Snsolves (2.10). We reall that it means that Sn = K ∗ ρn where K is de�ned in (2.12). Let us set

ρn(t, x) =
∑n

i=1miδxi(t). Suh a funtion is a solution in the sense of distributions of (3.7) if unis a solution in the sense of distributions of
∂tun − ∂xA(∂xSn) + a(∂xSn)Sn = 0, (5.2)where un is de�ned by

un(t, x) :=

∫ x

ρn dx =
n∑

i=1

miH(x− xi(t)), (5.3)where H denotes the Heaviside funtion. We have
Sn(t, x) =

n∑

i=1

mi

2
e−|x−xi(t)|,

∂xSn(t, x) = −
n∑

i=1

mi

2
sign (x− xi(t))e

−|x−xi(t)|. (5.4)11



Then after alulations, we have in the distributional sense
∂xA(∂xSn) = a(∂xSn)Sn +

n∑

i=1

[A(∂xSn)]xi
δxi
, (5.5)where [f ]xi

= f(x+i ) − f(x−i ) is the jump of the funtion f in xi. Injeting (5.3) and (5.5) in(5.2), we �nd
−

n∑

i=1

mix
′
i(t)δxi(t) =

n∑

i=1

[A(∂xSn)]xi
δxi
.Thus the dynamis of aggregates is �nally given by

mix
′
i(t) = −[A(∂xSn)]xi(t), for i = 1, . . . , n.We omplement this system of ODE by the initial data xi(0) = x0i . More preisely, reallingthat K(x) = 1

2
e−|x|, using (5.4) this latter system an be rewritten :

mix
′
i(t) = A

(
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)
− A

(
−
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)
. (5.6)From the de�nition of the oe�ient a in (2.9) with (2.3), we dedue that a is nondereasingand odd. Therefore A is a onvex funtion and we dedue that for i = 1, . . . , n− 1, x′i ≥ x′i+1.Therefore, aggregates an ollapse in �nite time and an aggregate an not split. This is a diretonsequene of the fat that we are onsidering positive hemotaxis, i.e. a is nondereasing. Ifthere exists a time t1 for whih we have for instane xi(t1) = xi+1(t1), then the dynamis for

t > t1 is de�ned as above exept that we replae mi by mi+mi+1 and xi(t) = xi+1(t) for t > t1.Moreover A is even, then when n = 1, we have x′1 = 0 and x1(t) = x01. Thus if aggregatesollapse suh that they form a single aggregate of mass ∑imi, then this aggregate does notmove for larger times.5.2 Existene of duality solutionsWe have onstruted (ρn, Sn) whih is a solution of (3.7)-(3.6)-(2.10) in the distributional sensefor the given initial data ρinin . We reall the following result due to Vol'pert [27℄ (see also [2℄) :if u belongs to BV (R) and f ∈ C1(R) with f(0) = 0, then v = f ◦ u belongs to BV (R) and
∃ fu with fu = f ′(u) a.e. suh that (f ◦ u)′ = fuu

′.We reall that A is an antiderivative of a suh that A(0) = 0. Then, using this result, thereexists a funtion ân suh that
Jn := −∂x(A(∂xSn)) + a(∂xSn)Sn = ânρn, and ân = a(∂xSn) a.e.Thus ρn is a solution in the distributional sense of

∂tρn + ∂x(ânρn) = 0.12



Moreover, we dedue from (5.4) that a(∂xSn) is pieewise ontinuous with the disontinuitylines de�ned by x = xi, i = 1, . . . , n. We an apply Theorem 3.6 whih gives that ρn is aduality solution and that ân is a universal representative of a(∂xSn). Then the �ux is given by
a(∂xSn)∆ρn = Jn.Let us yet onsider the ase of any initial data ρini ∈ Mb(R). We approximate ρini by
ρinin =

∑n
i=1miδx0

i
with ρinin ⇀ ρini in Mb(R). By the same token as above, we an onstrut asolution (ρn, Sn = K ∗ ρn) whih solves

∂tρn + ∂x(a(∂xSn)ρn) = 0in the sense of duality,
∂tρn + ∂xJn = 0, Jn = −∂xA(∂xSn) + a(∂xSn)Snin the sense of distributions and̂

anρn = Jn, ân = a(∂xSn) a.e.and whih is suh that ρn(t = 0) = ρinin =
∑n

i=1miδx0
i
. Moreover, sine ∂xSn is bounded in

L∞ uniformly with respet to n by onstrution, we an extrat a subsequene of (a(∂xSn))nthat onverges in L∞ − weak∗ towards b. Sine from Lemma 4.2, a(∂xSn) satis�es the OSLondition, we dedue from Theorem 3.5 4) that, up to an extration, ρn ⇀ ρ in SM and
ânρn ⇀ âρ weakly in Mb(]0, T [×R), ρ being a duality solution of the salar onservation lawwith oe�ient b. With Lemma 4.3, we dedue that ∂xSn → ∂xS a.e., it implies in partiularthat Jn → J := −∂xA(∂xS)+a(∂xS)S in D′(R) and that a(∂xSn) → a(∂xS) a.e. By uniquenessof the weak limit, we have b = a(∂xS). Moreover J = âρ a.e. and ρ satis�es then (3.7). Then
(ρ, S) is a solution as in Theorem 3.9, this onludes the proof of the existene.5.3 Uniqueness of solutionsLet us onsider yet the study of the uniqueness. As shown above, De�nition 3.7 is not enoughto get the uniqueness. Therefore, we will use the fat that we have a duality solution ρ thatsatis�es (3.7) in D′([0, T ]×R) with the initial data ρini and with the �ux J given by (3.6). Thisequation will lead to a non-loal evolution equation on S as stated in the following Lemma :Lemma 5.1 Let (ρ, S) be a duality solution of (2.8)�(2.10) suh as in Theorem 3.9 then ∂xS ∈
C([0, T ], BV (R)) and S is a weak solution of

∂tS − ∂xK ∗ ∂x(A(∂xS)) + ∂xK ∗ (a(∂xS)S) = 0. (5.7)Proof. We have ρ ∈ SM and ∂xxS = S − ρ. Then ∂xS ∈ C([0, T ], BV (R)). We reall that wehave S = K ∗ ρ where K(x) = 1
2
e−|x|. Thus taking the onvolution by K of (3.7)�(3.6), we getthat S is weak solutions of (5.7). Di�erentiating (5.7), we get moreover

∂t∂xS + ∂x(A(∂xS))− ∂xK ∗ A(∂xS) +K ∗ (a(∂xS)S)− a(∂xS)S = 0. (5.8)
13



Proposition 5.2 Let S1 and S2 be two weak solutions in C([0, T ];W 1,1(R)) of (5.7) with initialdata Sini
1 and Sini

2 respetively and suh that ∂xS1 and ∂xS2 belongs to L∞([0, T ];BV (R)). Thenthere exists a nonnegative onstant C suh that
‖S1 − S2‖L∞([0,T ];W 1,1(R)) ≤ C‖Sini

1 − Sini
2 ‖W 1,1(R).Proof. Let us denote a1 = a(∂xS1) and a2 = a(∂xS2). We dedue from (5.8) that

∂t∂x(S1−S2)+∂x(A(∂xS1)−A(∂xS2)) = ∂xK∗(A(∂xS1)−A(∂xS2))+a1S1−a2S2−K∗(a1S1−a2S2).Multiplying this equation by sign(∂x(S1 − S2)), integrating with respet to x and using theproperties of the onvolution produt, we dedue
d

dt

∫

R

|∂x(S1 − S2)| dx ≤ ‖∂xK‖∞

∫

R

|A(∂xS1)− A(∂xS2)| dx+ (1 + ‖K‖∞)

∫

R

|a1S1 − a2S2| dx.The funtion a being regular, we have
d

dt

∫

R

|∂x(S1 − S2)| dx ≤ C0

∫

R

|∂x(S1 − S2)| dx+ C1

∫

R

|S1 − S2| dx. (5.9)By the same token with equation (5.7), it leads to
d

dt

∫

R

|S1 − S2| dx ≤ C2

∫

R

|∂x(S1 − S2)| dx+ C3

∫

R

|S1 − S2| dx. (5.10)Summing (5.10) and (5.9), we dedue that there exists a nonnegative onstant C suh that
d

dt
‖S1 − S2‖W 1,1(R) ≤ C‖S1 − S2‖W 1,1(R).Applying the Gronwall Lemma allows to onlude the proof.Proof of the uniqueness of Theorem 3.9. Let us assume that we have two dual-ity solutions (ρ1, S1) and (ρ2, S2) suh as in Theorem 3.9. Therefore, from Lemma 5.1, S1and S2 are weak solutions of (5.7). Using Proposition 5.2, we onlude that S1 = S2. Thus

ρ1 = K ∗ S1 = K ∗ S2 = ρ2.Remark 5.3 We dedue from the proof above that equations (5.7) and (5.8) are a key pointfor the uniqueness of solutions. These equations relies strongly on the de�nition of the �ux Jin (3.6). This fat has already been notied by the authors in [16℄, whih an be viewed as apartiular ase of the one studied in this paper by replaing the ellipti equation for S (2.10) bythe Poisson equation −∂xxS = ρ. In this ase, the produt of a(∂xS) by ρ is naturally de�nedby a(∂xS)ρ = −∂xA(∂xS) and the equation on S orresponding to (5.8) is given by
∂t∂xS + ∂xA(∂xS) = 0.Contrary to (5.8), this equation is loal and sine ∂xS is monotonous (−∂xxS = ρ ≥ 0), weare looking for an entropy solutions of this equation and for A onvex or onave (i.e. for anon-dereasing or non-inreasing), there exists a unique entropy solution. Uniqueness in [16℄ isobtained in this way. 14



6 Convergene for the kineti modelIn this setion we investigate the rigorous derivation of (2.8)�(2.10) from the mirosopi model(2.4). We �rst state some estimates on the moments of the solution of the kineti problem.Lemma 6.1 Let (fε, Sε) be a solution of the kineti problem (2.4)�(2.5). Then for all t ∈ [0, T ]and all ε > 0 we have
∫

R

∫

V

|v|kfε dxdv = |v|k|ρini|(R) , k ∈ N.Proof. Sine v ∈ V = {−c, c}, |v| is onstant therefore
∫

R

∫

V

|v|kfε dxdv = |v|k
∫

R

ρε dx.The result follows then diretly from the mass onservation in (2.4).Proof of Theorem 3.10. Let (fε, Sε) be a solution of (2.4)�(2.5). For �xed ε > 0, we have
fε ∈ C([0, T ] × R × V ). De�ne ρε :=

∫
V
fε dv, Jε := ∫V vfε dv and a(∂xSε) = −cφ(c∂xSε). Wean rewrite the kineti equation (2.4) as

∂tfε + v∂xfε =
1

ε
(Φ(−v∂xSε)ρε − 2fε).Taking the zeroth and �rst order moments, we get

∂tρε + ∂xJε = 0, (6.1)
∂tJε + v2∂xρε =

2

ε
(a(∂xSε)ρε − Jε). (6.2)From (6.1), we dedue that

∀ t ∈ [0, T ], |ρε(t, ·)|(R) = |ρini|(R).Therefore, for all t ∈ [0, T ] the sequene (ρε(t, ·))ε is relatively ompat inMb(R)−σ(Mb(R), C0(R)).Moreover, there exists uε ∈ L∞([0, T ], BV (R)) suh that ρε = ∂xuε. From (6.1), we get that
∂tuε = −Jε and with Lemma 6.1 we dedue that uε is bounded in Lip([0, T ], L1(R)). It impliesthe equiontinuity in t of (ρε)ε. Thus the sequene (ρε)ε is relatively ompat in SM and we anextrat a subsequene still denoted (ρε)ε that onverges towards ρ in SM.We reall that Sε(t, x) = (K ∗ ρε(t, ·))(x) where K(x) = 1

2
e−|x|. Denoting S(t, x) := (K ∗

ρ(t, ·))(x), sine ρ ∈ SM, we have ∂xS ∈ L∞([0, T ];BV (R)). From Lemma 4.3, the sequene
(∂xSε)ε onverges in L∞w − ∗ and a.e. to ∂xS as ε goes to 0. Lemma 4.2 ensures that both
a(∂xSε) and a(∂xS) satisfy the OSL ondition.From (6.1)�(6.2), we have in the distributional sense

∂tρε + ∂x(a(∂xSε)ρε) = ∂x(a(∂xSε)ρε − Jε) =
ε

2
∂x(∂tJε + v2∂xρε) = Rε. (6.3)15



Now, for all ψ ∈ C2
c ((0, T )× R), we dedue from Lemma 6.1

∣∣∣∣
∫

(∂tJε + v2∂xρε)∂xψ dxdt

∣∣∣∣ ≤ |v||ρini|(R)‖∂t∂xψ‖L∞ + |v|2|ρini|(R)‖∂xxψ‖L∞ .This implies that the limit in the distributional sense of the right-hand side Rε of (6.3) vanishes.On the one hand, multiplying equation (2.5) by a(∂xSε) and introduing the real-valuedfuntion A suh that A′ = a, we get
a(∂xSε)ρε = −∂x(A(∂xSε)) + a(∂xSε)Sε, (6.4)so that we an rewrite the onservation equation (6.3) as follows, in D′(R):

∂tρε + ∂x (−∂xA(∂xSε) + a(∂xSε)Sε) =
ε

2
∂x(∂tJε + v2∂xρε). (6.5)Taking the limit ε→ 0 at the distributional sense of equation (6.5), we get that in D′(R)

∂tρ+ ∂x (−∂xA(∂xS) + a(∂xS)S) = 0, (6.6)where S(t, x) = (K ∗ ρ(t, ·))(x). We reall that we have hosen the initial data suh that
ρiniε = ηε ∗ ρ

ini where ηε is a molli�er. Therefore ρiniε ⇀ ρini in Mb(R)− σ(Mb(R), C0(R)).On the other hand, �rst taking the onvolution with K of (6.6) we �nd that S and ∂xSsatisfy in the distributional sense
∂tS − ∂xK ∗ ∂x(A(∂xS)) + ∂xK ∗ (a(∂xS)S) = 0. (6.7)Next, di�erentiating this (or taking the onvolution of (6.6) with ∂xK), and notiing that Ksatis�es −∂xxK +K = δ0, we get

∂t∂xS + ∂x(A(∂xS))− ∂xK ∗ A(∂xS) +K ∗ (a(∂xS)S)− a(∂xS)S = 0. (6.8)The de�nition of S, S(t, x) = (K ∗ ρ(t, ·))(x), implies that ∂xS belongs to L∞(0, T ;BV (R)).Therefore equations (6.7)�(6.8) have a sense in their weak formulation. It is proved in Setion5.3 that we have a bound on S in C([0, T ];W 1,1(R)) and that suh a S satisfying (6.7)�(6.8)is unique. Thus ρ is unique. In fat, if we assume that there exist ρ1 and ρ2 satisfying (6.6)in the distributional sense, then by the uniqueness of the solution of (6.7)�(6.8), we have that
K ∗ ρ1 = K ∗ ρ2 whih implies that ρ1 = ρ2. Finally, thanks to the uniqueness, all the sequene
ρε onverges to ρ in SM.Thus we have onstruted a solution that satis�es (6.6) in the distributional sense, in otherwords, we have de�ned a solution of the problem (2.8)�(2.10) thanks to its �ux. A naturalquestion is to know whether we an de�ne a veloity orresponding to this �ux. From the theoryof duality solutions (see Theorem 3.5), it boils down to show that the above onstruted solutionis a duality solution. From the Vol'pert alulus [27℄ there exists aS suh that aS = a(∂xS) a.e.and

∂x(A(∂xS)) = aS∂xxS.Therefore
− ∂x(A(∂xS)) + a(∂xS)S = aSρ a.e. , with aS = a(∂xS) a.e. (6.9)16



Using equation (6.6) we have in the distributional sense
∂tρ+ ∂x(aSρ) = 0. (6.10)However, we have proved in Setion 5.3 that suh a solution is unique. We dedue that thesolution (ρ, S) obtained by the hydrodynamial limit above is the duality solution of Theorem3.9. It onludes the proof of Theorem 3.10.Remark 6.2 In the proof above, the marosopi �ux J de�ned in (3.6) appears to be the limitof the mirosopi �ux Jε. Indeed from (6.2) and (6.4) we dedue that, in the distributionalsense,

Jǫ −→ J := −∂xA(∂xS) + a(∂xS)S.This natural de�nition of the �ux allows to get the uniqueness of the solutions of the oupledsystem (2.8)�(2.10) thanks to equations (6.7)�(6.8). Suh a tehnique to establish the hydrody-nami limit has been proposed in [18℄. But the authors do not state that their limit is a dualitysolution and do not de�ne a veloity and therefore a �ow orresponding to their �ux. In thelimit of the Vlasov-Poisson-Fokker-Plank system, this result has been investigated in [16℄.7 Numerial issue7.1 Finite time of ollapseBefore fousing on the numerial simulations, let us larify the dynamis of the model. In thease of n Dira masses loated at positions x1 < · · · < xn, we reall that the time evolution isgoverned by system (5.6):
mix

′
i(t) = A

(
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)
− A

(
−
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)
, (7.1)for i = 1, . . . , n, where we reall that A is an antiderivative of a suh that A(0) = 0. We deduethat for all t > 0, and for i = 1, . . . , n,

∃ γi ∈

(
−
mi

2
+
∑

j 6=i

mj∂xK(xj − xi),
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)suh that x′i(t) = a(γi(t)).

(7.2)Proposition 7.1 Let us assume that there exists n ∈ N
∗ suh that

ρini(x) =

n∑

i=1

m0
i δx0

i
(x).We assume moreover that a is a nondereasing and odd real funtion and A its antiderivativesuh that A(0) = 0. Then the duality solution ρ of Theorem 3.9 has the following properties :1. If n = 1, x1(t) = x01 for all t > 0. Then ρ(t) = ρini for all t > 0.17



2. For i = 1, . . . , n− 1, x′i(t) ≥ x′i+1(t) therefore xi+1 − xi ≤ x0i+1 − x0i .3. There exists c∗ ∈ [x01, x
0
n] and T ∗ > 0 suh that ρ(t, x) = δc∗(x) for all t > T ∗.Proof. The �rst point is a diret onsequene of the even harater of A whereas the seondpoint omes from the onvexity of A. Let us then prove the third point. By onvexity of thefuntion A and with (7.1), we have

m1x
′
1 ≥ A

(
m1

2
+

n∑

j=2

mj

2
ex

0
1−x0

j

)
− A

(
−
m1

2
+

n∑

j=2

mj

2
ex

0
1−x0

j

)
> 0,and

mnx
′
n ≤ A

(
−

n−1∑

j=1

mj

2
ex

0
j
−x0

n +
mn

2

)
−A

(
−

n−1∑

j=1

mj

2
ex

0
j
−x0

n −
mn

2

)
< 0.As for (7.2), we an rewrite these last inequalities as :

x′1(t) ≤ a(γ1(0)), x′n ≥ a(γn(0)).We dedue that there exists a time T ∗ > 0 suh that all masses ollapse for t = T ∗ in a singleDira mass. Moreover, we have
T ∗ < (x0n − x01)/(a(γ1(0))− a(γn(0))).

Corollary 7.2 Let us assume that ρini ∈ Cc(R) with ompat support [0, L]. Let us denote ρ theduality solution of Theorem 3.9 with initial data ρini. Then there exists c∗ ∈ [0, L] and T ∗ > 0suh that ρ(t, x) = δc∗(x) for all t > T ∗.Proof. Let us approximate ρini by
ρinin (x) =

n∑

i=1

m0
i δx0

i
(x),with x0i = (i − 1)L/n, for i = 1, . . . , n and m0

i =
∫ x0

i+1

x0
i

ρini(dx). From Proposition 7.1, wededue that there exists c∗n ∈ [0, L] and T ∗
n > 0 suh that the duality solution of Theorem3.9 with initial data ρinin is suh that ρn(t, x) = δc∗n for all t > T ∗

n . Moreover, we have T ∗
n <

L/(a(γn1 (0))− a(γnn(0))) where we reall that
−m0

1 +
n∑

j=1

m0
j

2
e−(j−1)L/n < γn1 (0) <

n∑

j=1

m0
j

2
e−(j−1)L/n, (7.3)and

−
n∑

j=1

m0
j

2
e(j−n)L/n < γnn(0) < m0

n −
n∑

j=1

m0
j

2
e(j−n)L/n. (7.4)18



By stability results on duality solutions in Theorem 3.5 (see also subsetion 5.1), we deduethat ρn ⇀ ρ in SM as n → +∞. Taking the limit in (7.3) and (7.4), we dedue by ontinuityof ρini that
lim

n→+∞
γn1 (0) =

∫ L

0

ρini(x)e−x dxand
lim

n→+∞
γnn(0) = −

∫ L

0

ρini(x)e−L+x dx.Moreover, sine ρini is ontinuous with ompat support in [0, L] we have ρini(0) = ρini(L) = 0.We dedue that the sequene (T ∗
n)n∈N∗ is bounded. Thus there exists a time T ∗ independent of

n suh that ρn(t) = δc∗n for all t > T ∗. Taking the limit when n→ +∞, we onlude that thereexists c ∈ [0, L] suh that ρ(t) = δc for all t > T ∗.Remark 7.3 Taking a = Id, therefore A(x) = x2/2, we dedue from (7.1) that
x′i =

∑

j 6=i

mj∂xK(xj − xi).We reover the dynamis of the aggregation equation as notied by Carrillo et al. in [8℄. Theyprove in partiular the onentration in �nite time of the total mass in the enter of mass. Inthe framework of this work, fousing on appliations in hemotaxis, a is not assumed to be theidentity funtion, so that the enter of mass is not onserved. A numerial evidene of thisphenomenon will be proposed in the last subsetion of this paper.7.2 DisretizationThe numerial resolution of system (2.8)�(2.10) is far from obvious. A �rst naive idea onsistsin applying a standard splitting method where we treat separately the salar onservation law(2.8) and the ellipti equation (2.10). It turns out that suh a sheme is unable to reover theorret de�nition of the �ux and therefore of the produt a(∂xS) by ρ. In partiular, it leads tostationary Dira masses.A seond idea onsists in solving the distributional onservation law (3.7) by a �nite volumemethod. It involves a disretization of the �ux J on the interfae of eah ell of the mesh, andthus one ould expet a orret omputation of the �ux, and therefore a onvenient interpretationof the produt. However, this de�nition of the �ux involves the alulation of two derivativesof S. Using a entered sheme to disretize this quantity indues spurious osillations as itis usually notied for entered sheme on salar onservation laws. We an then upwind thesheme depending on the sign of a(∂xS) omputed at previous iteration. But in doing so, weatually speify a value for a(∂xS) in the de�nition of the produt a(∂xS) with ρ, and this anlead to apture wrong solutions.Next, one an think of solving the equation (6.7) on S, motivated by the fat that it plays akey part in the uniqueness, and that ρ an be reovered readily from S. However the equationis non loal and its numerial resolution appears to be quite ompliated and with a highomputational ost (even in the one dimensional setting).19



Thus we prefer to use a method based on the dynamis of aggregates, detailed in Setion 5.1.We use the priniple of a partile method in whih we approximate the density by a sum of Diramasses. Then the motion of these pseudo-partiles is approximated by disretizing system (5.6)with an expliit Euler sheme. More preisely, let us assume that we have an approximation of
ρ at time tn = n∆t, given by

ρn(x) =

In∑

i=1

mn
i δyni (x), (7.5)where mn

i > 0 is the mass alloated to the pseudo-partile at the position yni with yn1 < yn2 <
· · · < ynIn for In ∈ N

∗. Then an approximation of the potential at time tn is given by
Sn(x) =

In∑

i=1

mn
i e

−|x−yni |.Using an expliit Euler sheme, we ompute the new position
yn+1
i =yni +

∆t

mn
i

A

(
−

i−1∑

j=1

mn
j

2
ey

n
j −yni +

mn
i

2
+

In∑

j=i+1

mn
j

2
ey

n
i −ynj

)

−
∆t

mn
i

A

(
−

i−1∑

j=1

mn
j

2
ey

n
j
−yn

i −
mn

i

2
+

In∑

j=i+1

mn
j

2
ey

n
i
−yn

j

)
.Next, we test if some pseudo-partiles have ollided during the time step ∆t. If yn+1

j+1 ≤ yn+1
j for

j ≥ 1, then the pseudo-partiles j and j + 1 have ollapsed and form a unique pseudo-partilewhih has the mass mn
j +m

n
j+1. In this ase, we deide to set this pseudo-partile at the position

1
2
(yn+1

j+1 + yn+1
j ) and set mn+1

j = mn
j +mn

j+1, moreover we have therefore In+1 = In − 1. Finally,for given initial sequenes (y0i )i=1,...,I0 and (m0
i )i=1...,I0 of size I0, we an onstrut (yni ) and (mn

i )of size In as above.Using well-known result on the onvergene of Euler sheme, we dedue that, for given initialdata (y0i )i=1,...,I0, (m0
i )i=1...,I0 and I0, yni de�ned above onverges to the solution xi(t) of (5.6)when ∆t tends to 0 suh that tn → t. Using the result of Setion 5.1, we dedue that thefuntion ρn in (7.5) onverges in SM to the unique duality solution of Theorem 3.9. Then themethod introdued above is onvergent provided we disretize the initial data ρini in suh a waythat ρ0(x) :=∑I0

i=1m
0
i δy0i (x) onverges in Mb to ρini. Moreover, we verify easily that we have

I0∑

i=1

m0
i =

In∑

i=1

mn
i , and In ≤ I0, for all n ∈ N,and that the approximation ρn of ρ(tn) is nonnegative.7.3 Numerial resultsIn this Setion, we present numerial simulations of model (2.8)�(2.10) using the algorithmdesribed above. We �rst approximate the initial data ρini ≥ 0, whih is assumed to be om-patly supported for numerial purpose, in the following way: we introdue a disretization20



xj = x0+ j∆x of the bounded domain whih inludes the ompat support of ρini and we de�ne
m0

i =

∫ xi+
∆x
2

xi−
∆x
2

ρini(x) dx.Then the sequene (y0j )j is de�ned by the nodes (xi) for whih m0
i is not zero, and I0 orrespondto the number of i ∈ N suh that m0

i is not zero. We onstrut then the approximation of ρiniby
ρ0(x) :=

I0∑

i=1

m0
i δy0i (x).
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Figure 1: Dynamis of the density ρ and of the potential S for an initial density given by thesum of two Gaussian.We present in Figure 1 the dynamis of the density ρ and of the hemoattratant onen-tration S for an initial data ρini given by the sum of two Gaussian funtions, more preisely
ρini(x) = e−20(x−0.5)2 + e−20(x+0.5)2 .As expeted, we �rst observe the formation of two Dira masses at the position where ∂xSinitially vanishes. Then, the two aggregates ollapse in the enter. Looking at the time evolution,we notie that the �rst step of formation of aggregates is fast ompared to the time of ollapse.21
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Figure 2: Dynamis of the density ρ and of the potential S for an initial density given by thesum of three Gaussian.In Figure 2 we display the dynamis for an initial data given by the sum of three Gaussianfuntions:
ρini(x) = e−10(x−1)2 + e−20(x−0.2)2 + e−20(x+0.5)2 .22



We observe the formation of three Dira masses that moves aording to the dynamial system(7.1). They ollapse then in �nite time.
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Figure 3: Dynamis of the density ρ and of the potential S with the dynamis of the enter ofmass represented by a red square. The enter of mass moves.Finally, as we have already notied, we evidene that the enter of mass is not �xed. Forinstane, Figure 3 represents the dynamis of the density and of the potential for an initial datamade of one big bump with one small bump:
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