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tThe hydrodynami
 limit for a kineti
 model of 
hemotaxis is investigated. The limitequation is a non lo
al 
onservation law, for whi
h �nite time blow-up o

urs, giving riseto measure-valued solutions and dis
ontinuous velo
ities. An adaptation of the notion ofduality solutions, introdu
ed for linear equations with dis
ontinuous 
oe�
ients, leads toan existen
e result. Uniqueness is obtained through a pre
ise de�nition of the nonlinear�ux as well as the 
omplete dynami
s of aggregates, i.e. 
ombinations of Dira
 masses.Finally a parti
le method is used to build an adapted numeri
al s
heme.Keywords: duality solutions, non lo
al 
onservation equations, hydrodynami
 limit,measure-valued solutions, 
hemotaxis.2010 AMS subje
t 
lassi�
ations: 35B40, 35D30, 35L60, 35Q92.1 Introdu
tionKineti
 frameworks have been investigated to des
ribe the 
hemota
ti
 movement of 
ells in thepresen
e of a 
hemi
al substan
e sin
e in the 80's experimental observations showed that themotion of ba
teria (e.g. Es
heri
hia Coli) is due to the alternation of `runs and tumbles'. Theso-
alled Othmer-Dunbar-Alt model [1, 12, 19, 21℄ des
ribes the evolution of the distributionfun
tion of 
ells at time t, position x and velo
ity v, assumed to have a 
onstant modulus c > 0,as well as the 
on
entration S(t, x) of the involved 
hemi
al. A general formulation for thismodel 
an be written as




∂tfε + v · ∇xfε =
1

ε

∫

|v′|=c

(
T [Sε](v

′ → v)fε(v
′)− T [Sε](v → v′)fε(v)

)
dv′,

−∆Sε + Sε = ρε(t, x) :=

∫

|v|=c

fε(t, x, v) dv.
(1.1)1



The transport operator on the left-hand side of the �rst equation stands for the unbiased move-ment of 
ells, while the right-hand side governs the 
hemota
ti
 orientation, or taxis, throughthe turning kernel T [S](v′ → v), that is the rate of 
ells 
hanging their velo
ity from v′ to v.The parameter ε 
orresponds to the time interval of information sampling for the ba
teria,usually ε ≪ 1, and when it goes to zero, one expe
ts to re
over the 
olle
tive behaviour of thepopulation, that is a ma
ros
opi
 equation for the density ρ(t, x) of 
ells. Su
h derivations havebeen proposed by several authors. When the taxis is small 
ompared to the unbiased movementof 
ells, the s
aling must be of di�usive type, so that the limit equations are of di�usion ordrift-di�usion type, see for instan
e [9℄ for a rigorous proof. In [14, 20℄, the authors show thatthe 
lassi
al Patlak-Keller-Segel model 
an be obtained in a di�usive limit for a given smooth
hemoattra
tant 
on
entration.We fo
us here on the opposite 
ase, that is when taxis dominates the unbiased movements.This is a

ounted for in the model by the 
hoi
e of the s
aling in equation (1.1). Moreover, we
onsider positive 
hemotaxis, whi
h means that the involved 
hemi
al is attra
ting 
ells, andtherefore is 
alled 
hemoattra
tant. The model has been proposed in [10℄, several works havebeen devoted to the mathemati
al study of this kineti
 system. Existen
e of solutions have beenobtained for various assumptions on the turning kernel in [9, 7, 11, 15℄. Numeri
al simulationsof this system are proposed in [26℄. The limit problem is usually of hyperboli
 type, see forinstan
e [13, 22, 23℄ for a hyperboli
 limit model whi
h 
onsists in a 
onservation equation forthe 
ell density and a momentum balan
e equation.It is not di�
ult to obtain the following formal hydrodynami
 limit to equation (1.1), morepre
isely on the total density of parti
les ρ = limε ρε:
∂tρ+ divx

(
a[S]ρ

)
= 0, −∆xxS + S = ρ. (1.2)Here the ma
ros
opi
 velo
ity a[S] depends on the 
hemoattra
tant 
on
entration S throughthe turning kernel. This system of equations has been obtained in [10℄, with a rigorous proof inthe two-dimensional setting for a �xed smooth S, and therefore a bounded density ρ. The aimof this paper is to obtain rigorously this limit for the whole 
oupled system. Severe di�
ultiesarise then mainly due to the la
k of estimates for the solutions to the kineti
 model when ε goesto zero and 
onsequently to the very weak regularity of the solutions to the limit problem.It turns out that the limit equation is in some sense a weakly nonlinear 
onservation equationon the density ρ. Indeed the expe
ted velo
ity �eld depends on ρ, but through S, and thereforein a non lo
al way. A
tually it 
an be written as a variant of the so-
alled aggregation equation,for whi
h blow-up in �nite time is eviden
ed (see e.g. [3℄), leading to measure-valued solutions.In this respe
t, this equation behaves also like linear equations with dis
ontinuous 
oe�
ients.In parti
ular Dira
 masses 
an arise, this is the mathemati
al formulation of the aggregation ofba
teria. Therefore S is no longer smooth, and a major di�
ulty in this study will be to de�neproperly the velo
ity �eld a = a[S] and the produ
t aρ.The viewpoint of the aggregation equation has been extensively studied by Carrillo et al.[8℄ through optimal transport te
hniques. Existen
e and uniqueness are obtain in a very weaksense, and the dynami
s of aggregates is also given. We propose here another approa
h, basedon the notion of duality solutions, as introdu
ed in the linear 
ase by Bou
hut and James [4℄.The main drawba
k is that presently we have to restri
t ourselves to the one-dimensional 
ase,sin
e the theory in higher dimensions is not 
omplete yet (see [6℄). The approa
h proposed byPoupaud and Ras
le [25℄, whi
h 
oin
ides with duality in the 1-d 
ase, 
ould also be explored.2



Noti
e however, that the properties of the expe
ted velo
ity �eld a in the two-dimensional 
aseare not obvious either.More pe
isely, we propose to pro
eed in a similar way as in [5℄, where the nonlinear systemof zero pressure gas dynami
s is interpreted as a system of two linear 
onservation equations
oupled through the de�nition of the produ
t. This last point turns out to be 
ru
ial in orderto obtain a proper uniqueness result for the system (1.2). In this work, the produ
t aρ will bede�ned thanks to the limiting �ux of the kineti
 system (1.1) (see also [16℄ for another appli
ationof the same idea). As we shall see, this is 
losely related to the dynami
s of aggregates, that is
ombinations of Dira
 masses, whi
h re�e
t some kind of 
olle
tive behaviour of the population.Finally, an important appli
ation of this aggregate dynami
s is the development of a numeri
als
heme, based on a parti
le method. The motion and 
ollapsing of Dira
 masses is 
learlyeviden
ed.The paper is organized as follows. In Se
tion 2 we pre
isely state the model. Se
tion 3 isdevoted to the notion of duality solutions, and 
ontains the main results of this arti
le. Somete
hni
al properties whi
h will be useful for the rest of the paper are given in Se
tion 4. Thenwe investigate in Se
tion 5 the proof of the existen
e and uniqueness result of duality solutionfor system (2.8)�(2.10) stated in Theorem 3.9. In Se
tion 6 we prove the rigorous derivation ofthe hydrodynami
al system from the kineti
 system. Finally, the dynami
s of aggregates andthe numeri
al s
heme for the limit equation are des
ribed in the last se
tion, where numeri
alillustrations are also provided.2 ModellingFrom now on we fo
us on the one dimensional version of the problem, so that x ∈ R. We �rstre
all the main assumptions leading to the kineti
 equation, next we pro
eed to the formal limit.2.1 Kineti
 modelIn this work, 
ells are supposed to be large enough to sense the gradient of the 
hemoattra
tantinstantly. Therefore the turning kernel takes the form (independent on v)
T [S](v′ → v) = Φ(v′∂xS). (2.1)The fun
tion Φ is the turning rate, obviously it has to be positive. More pre
isely, for attra
tive
hemotaxis, the turning rate is smaller if 
ells swim in a favourable dire
tion, that is v ·∇xS ≥ 0.Thus Φ should be a non in
reasing fun
tion. A simpli�ed model for this phenomenon is thefollowing 
hoi
e for Φ: we �x a positive parameter α, a mean turning rate φ0 > 0 and take
Φ(x) = φ0

(
1 + φ(x)

)
, (2.2)where φ is an odd fun
tion su
h that

φ ∈ C∞(R), φ′ ≤ 0, φ(x) =

{
+λ if x < −α,

−λ if x > α,
(2.3)where 0 < λ < 1 is a given 
onstant. 3



Now sin
e the transport o

urs in R the set of velo
ities is V = {−c, c}, and the expressionof the turning kernel simpli�es in su
h a way that (1.1) rewrites
∂tfε + v∂xfε =

1

ε
(Φ(−v∂xS)fε(−v)− Φ(v∂xS)fε(v)), v ∈ V. (2.4)

− ∂xxSε + Sε = ρε = fε(v) + fε(−v). (2.5)The existen
e of weak solutions in a Lp setting for a slightly di�erent system in a moregeneral framework has been obtained for instan
e in [7, 15℄. Con
erning pre
isely this model,we refer to [26℄ for the existen
e theory in any spa
e dimension. Noti
e that no uniform L∞bounds 
an be expe
ted. The reader is referred to [26℄ for some numeri
al eviden
es of thisphenomenon, whi
h is the mathemati
al translation of the 
on
entration of ba
teria. This issome kind of �blow-up in in�nite time�, whi
h for ε = 0 leads to a
tual blow-up in �nite time,and 
reation of Dira
 masses. Moreover the balan
ed distribution vanishing the right hand sideof (2.4) depends on Sε; thus the te
hniques developed e.g. in [9℄ 
annot be applied.2.2 Formal hydrodynami
 limitWe formally let ε go to 0 assuming that Sε and fε admit a Hilbert expansion
fε = f0 + εf1 + · · · , Sε = S0 + εS1 + · · ·Multiplying (2.4) by ε and taking ε = 0, we �nd

Φ(−c∂xS0)f0(−c) = Φ(c∂xS0)f0(c). (2.6)Summing equations (2.4) for c and −c, we obtain
∂t(fε(c) + fε(−c)) + c∂x(fε(c)− fε(−c)) = 0. (2.7)Moreover, from equation (2.6) we dedu
e that

f0(c)− f0(−c) =
Φ(−c∂xS0)− Φ(c∂xS0)

Φ(−c∂xS0) + Φ(c∂xS0)
(f0(c) + f0(−c)).The density at equilibrium is de�ned by ρ := f0(c) + f0(−c). Taking ε = 0 in (2.7) we �nallyobtain

∂tρ+ ∂x(a(∂xS0)ρ) = 0,where a is de�ned by
a(∂xS0) = c

Φ(−c∂xS0)− Φ(c∂xS0)

Φ(−c∂xS0) + Φ(c∂xS0)
= −c φ(c∂xS0),and we have used (2.2) for the last identity. Noti
e that a is a
tually a ma
ros
opi
 quantity,sin
e we 
an rewrite

a(∂xS0) = −

∫
V
vΦ(v∂xS0) dv∫

V
Φ(v∂xS0) dv

,so that this expression is independent the sign of c.4



We 
ouple this equation with the limit of the ellipti
 problem (2.5) for the 
hemoattra
tant
on
entration, so that, in summary, and dropping the index 0, the formal hydrodynami
 limitis the following system
∂tρ+ ∂x(a(∂xS)ρ) = 0, (2.8)
a(∂xS) = −c φ(c∂xS), (2.9)
−∂xxS + S = ρ, (2.10)
omplemented with the boundary 
onditions

ρ(t = 0, x) = ρini(x), lim
x→±∞

ρ(t, x) = 0, lim
x→±∞

S(t, x) = 0. (2.11)We now give the pre
ise formulation of the limit system in terms of aggregate equation.Noti
ing that a solution to (2.10) has the expli
it expression
S(t, x) = K ∗ ρ(t, .)(x), where K(x) =

1

2
e−|x|, (2.12)the ma
ros
opi
 
onservation equation for ρ (2.8) 
an be rewritten

∂tρ+ ∂x(a(∂xK ∗ ρ)ρ) = 0.When a is the identity fun
tion, this is exa
tly the so-
alled aggregation equation, and sin
e thepotential is non-smooth, blow-up in �nite time is expe
ted. We refer the reader to e.g. [3, 8℄,and [17℄ in the 
ontext of 
hemotaxis.Similar problems were en
ountered for instan
e in [18℄, where the authors investigate thehigh �eld limit of the Vlasov-Poisson-Fokker-Plan
k model in one spa
e dimension. The limitsystem is a s
alar 
onservation law 
oupled to the Poisson equation, and a proper de�nition ofthe produ
t is needed to pass to the limit. This de�nition has been extended in two dimensionsby Poupaud [24℄ using defe
t measures but losing uniqueness.3 Duality solutions3.1 NotationsLet C0(Y, Z) be the set of 
ontinuous fun
tions from Y to Z whose limit vanishes at in�nityand Cc(Y, Z) the set of 
ontinuous fun
tions with 
ompa
t support from Y to Z. All along thepaper, we denote Mloc(R) the spa
e of lo
al Borel measures on R. For ρ ∈ Mloc we denoteby |ρ|(R) its total variation. We will denote Mb(R) the spa
e of measures in Mloc(R) whosetotal variation is �nite. From now on, the spa
e of measure-valued fun
tion Mb(R) is alwaysendowed with the weak topology σ(Mb, C0). We denote SM := C([0, T ];Mb(R)− σ(Mb, C0)).We re
all that if a sequen
e of measure (µn)n∈N in Mb(R) satis�es supn∈N |µn|(R) < +∞,then we 
an extra
t a subsequen
e that 
onverges for the weak topology σ(Mb, C0).The 
oupled system (2.8)�(2.9)�(2.10) is interpreted in this 
ontext as a linear 
onservationequation (2.8), the velo
ity a of whi
h depends on the solution S to the ellipti
 equation (2.10).5



This a
tually means that equation (2.8) is somehow nonlinear. One 
onvenient tool to handlesu
h 
onservation equations
∂tρ+ ∂x(aρ) = 0, a being a given fun
tion, (3.1)whose solutions eventually are measures in spa
e, is the notion of duality solutions, introdu
edin [4℄.3.2 Linear 
onservation equationsDuality solutions are de�ned as weak solutions, the test fun
tions being Lips
hitz solutions tothe ba
kward linear transport equation
∂tp+ a(t, x)∂xp = 0, p(T, .) = pT ∈ Lip(R). (3.2)A key point to ensure existen
e of smooth solutions to (3.2) is that the velo
ity �eld has to be
ompressive, in the following sense.De�nition 3.1 We say that the fun
tion a satis�es the so-
alled one-sided Lips
hitz 
ondition(OSL 
ondition) if

∂xa(t, .) ≤ β(t) for β ∈ L1(0, T ) in the distributional sense. (3.3)A formal 
omputation shows that ∂t(pρ) + ∂x[a(t, x)pρ] = 0, and thus
d

dt

(∫

R

p(t, x)ρ(t, dx)

)
= 0, (3.4)whi
h de�nes the duality solutions for suitable p's. It is now quite 
lassi
al that (3.3) ensuresexisten
e for (3.2), but not uniqueness, whi
h is of great importan
e here to obtain stabilityresults and make a 
onvenient use of (3.4).Therefore, the 
orner stone in the 
onstru
tion of duality solutions is the introdu
tion of thenotion of reversible solutions to (3.2). A 
omplete statement of the de�nitions and propertiesof reversible solutions would be too long in the present 
ontext, so that merely a few hints aregiven. Let L denote the set of Lips
hitz 
ontinuous solutions to (3.2), and de�ne the set ofex
eptional solutions:

E =
{
p ∈ L su
h that pT ≡ 0

}
.The possible loss of uniqueness 
orresponds to the 
ase where E is not redu
ed to zero.De�nition 3.2 We say that p ∈ L is a reversible solution to (3.2) if p is lo
ally 
onstant onthe set

Ve =
{
(t, x) ∈ [0, T ]× R; ∃ pe ∈ E , pe(t, x) 6= 0

}
.This de�nition leads quite dire
tly to the uniqueness results of [4℄. It turns out that the
lass of reversible solutions is also stable by perturbations of the 
oe�
ient a.We now restri
t ourselves to those p's in (3.4). More pre
isely, we state the following de�ni-tion. 6



De�nition 3.3 We say that ρ ∈ SM := C([0, T ];Mb(R) − σ(Mb, C0)) is a duality solutionto (3.1) if for any 0 < τ ≤ T , and any reversible solution p to (3.2) with 
ompa
t support in
x, the fun
tion t 7→ ∫

R

p(t, x)ρ(t, dx) is 
onstant on [0, τ ].Remark 3.4 A similar notion of duality solution for the transport equation is available ∂tu +
a∂xu = 0, and ρ is a duality solution of (3.1) i� u =

∫ x
ρ is a duality solution to transportequation (see [4℄).We shall need the following fa
ts 
on
erning duality solutions.Theorem 3.5 (Bou
hut, James [4℄)1. Given ρ◦ ∈ Mb(R), under the assumptions (3.3), there exists a unique ρ ∈ SM, dualitysolution to (3.1), su
h that ρ(0, .) = ρ◦.Moreover, if ρ◦ is nonnegative, then ρ(t, ·) is nonnegative for a.e. t ≥ 0. And we have themass 
onservation

|ρ(t, ·)|(R) = |ρ◦|(R), for a.e. t ∈]0, T [.2. Ba
kward �ow and push-forward: the duality solution satis�es
∀ t ∈ [0, T ], ∀φ ∈ C0(R),

∫

R

φ(x)ρ(t, dx) =

∫

R

φ(X(t, 0, x))ρ0(dx), (3.5)where the ba
kward �ow X is de�ned as the unique reversible solution to
∂tX + b(t, x)∂xX = 0 in ]0, s[×R, X(s, s, x) = x.3. For any duality solution ρ, we de�ne the generalized �ux 
orresponding to ρ by a∆ρ =

−∂tu, where u =
∫ x

ρ dx.There exists a bounded Borel fun
tion â, 
alled universal representative of a, su
h that
â = a almost everywhere, and for any duality solution ρ,

∂tρ+ ∂x(âρ) = 0 in the distributional sense.4. Let (an) be a bounded sequen
e in L∞(]0, T [×R), su
h that an ⇀ a in L∞(]0, T [×R)−w⋆.Assume ∂xan ≤ αn(t), where (αn) is bounded in L1(]0, T [), ∂xa ≤ α ∈ L1(]0, T [). Considera sequen
e (ρn) ∈ SM of duality solutions to
∂tρn + ∂x(anρn) = 0 in ]0, T [×R,su
h that ρn(0, .) is bounded in Mb(R), and ρn(0, .)⇀ ρ◦ ∈ Mb(R).Then ρn ⇀ ρ in SM, where ρ ∈ SM is the duality solution to

∂tρ+ ∂x(aρ) = 0 in ]0, T [×R, ρ(0, .) = ρ◦.Moreover, ânρn ⇀ âρ weakly in Mb(]0, T [×R).7



The set of duality solutions is 
learly a ve
tor spa
e, but it has to be noted that a dualitysolution is not a priori de�ned as a solution in the sense of distributions. However, assumingthat the 
oe�
ient a is pie
ewise 
ontinuous, we have the following equivalen
e result :Theorem 3.6 Let us assume that in addition to the OSL 
ondition (3.3), a is pie
ewise 
on-tinuous on ]0, T [×R where the set of dis
ontinuity is lo
ally �nite. Then there exists a fun
tion
â whi
h 
oin
ides with a on the set of 
ontinuity of a.With this â, ρ ∈ SM is a duality solution to (3.1) if and only if ∂tρ+ ∂x(âρ) = 0 in D′(R).Then the generalized �ux a∆ρ = âρ. In parti
ular, â is a universal representative of a.This result 
omes from the uniqueness of solutions to the Cau
hy problem for both kinds ofsolutions (see Theorem 4.3.7 of [4℄).3.3 Main resultsWe are now in position to give the de�nition of duality solutions for the limit system (2.8)�(2.10).De�nition 3.7 We say that (ρ, S) ∈ C([0, T ];Mb(R)) × C([0, T ];W 1,∞) is a duality solutionto (2.8)�(2.10) if there exists a ∈ L∞((0, T )× R) and α ∈ L1

loc(0, T ) satisfying ∂xa ≤ α in D′,su
h that1. for all 0 < t1 < t2 < T

∂tρ+ ∂x(aρ) = 0 in the sense of duality on ]t1, t2[,2. (2.9) is satis�ed in the weak sense :
∀ψ ∈ C1(R), ∀ t ∈ [0, T ],

∫

R

(∂xS∂xψ + Sψ)(t, x) dx =

∫
ψ(x) ρ(t, dx),3. a = a(∂xS) a.e.Remark 3.8 For S in C([0, T ];W 1,∞) and φ as in (2.3), we have a(∂xS) ∈ C([0, T ];L∞(R)).Therefore equation (2.8) is meaningful in the duality sense. The key property is then the one-sided Lips
hitz 
ondition.Unfortunately, De�nition 3.7 does not ensure uniqueness, as we shall eviden
e in Se
tion 5.This is due to the fa
t that the produ
t a(∂xS)ρ is not properly de�ned. Indeed the de�nitionof this produ
t relies on the de�nition of the �ux of the system, and we introdu
e now a �ux

J , whi
h is de�ned in a more physi
al way, and will turn out to be of great importan
e in thefollowing. Let A be an antiderivative of a su
h that A(0) = 0, we set
J = −∂x(A(∂xS)) + a(∂xS)S. (3.6)We 
an now establish the following uniqueness Theorem:

8



Theorem 3.9 Let us assume that ρini is given in Mb(R). Then, for all T > 0 there exists aunique duality solution (ρ, S) of (2.8)�(2.10) whi
h satis�es in the distributional sense :
∂tρ+ ∂xJ = 0, (3.7)where J is de�ned in (3.6). It means that the universal representative in Theorem 3.5 satis�es

âρ = J, in the sense of measures.Moreover, we have ρ = X#ρ
ini where X is the ba
kward �ow 
orresponding to a(∂xS).The se
ond result 
on
erns the rigorous proof of hydrodynami
al limit for the kineti
 model.Let (fε, Sε) be a solution of the system (2.4)�(2.5), 
omplemented with boundary 
ondition nullat in�nity and with the following initial data:

fε(0, ·, ·) = f ini
ε , (3.8)su
h that ρiniε = ηε ∗ ρ

ini where ηε is a molli�er and ρini is given in Mb(R). We re
all thatfor �xed ε > 0, there exists (fε, Sε) su
h that fε belongs to C([0, T ] × R × V ) and therefore
Sε ∈ C([0, T ];C2(R)), see [7℄, or [26℄ in the present 
ontext.Theorem 3.10 Let us assume that ρini is given in Mb(R). Let (fε, Sε) be a solution to thekineti
�ellipti
 equation (2.4)�(2.5) with initial data (3.8). Then, as ε → 0, (fε, Sε) 
onvergesin the following sense:

ρε := fε(v) + fε(−v)⇀ ρ in SM := C([0, T ];Mb(R)− σ(Mb, C0)),

Sε ⇀ S in C([0, T ];W 1,∞(R))− weak,where (ρ, S) is the unique duality solution of the system (2.8)�(2.10) satisfying
âρ = J, in the sense of measures.4 Properties of SWe gather in this se
tion a set of properties for the solution S to (2.10) that will be usedthroughout the paper.Lemma 4.1 Let ρ ∈ C([0, T ],Mb(R)). Then the solution S of equation (2.10) satis�es1. ρ ≥ 0 =⇒ S ≥ 02. one sided estimate: −∂xxS ≤ S if and only if ρ ≥ 03. for all p ∈ [1,+∞], S ∈ C([0, T ], Lp(R)) and ∂xS ∈ C([0, T ], Lp(R))

9



Proof. The �rst two items are easy 
onsequen
es of the expression (2.12) for the �rst one, ofthe equation (2.10) for the se
ond. For the third item, from 
onvolution properties, we have forany p ∈ [1,+∞]

‖S(t, .)‖Lp(R) =
1

2
‖e−|·| ∗ ρ(t, .)‖Lp(R) ≤ |ρ(t, .)|(R)

1

2
‖e−|·|‖Lp(R) =

1

2
sup

t∈[0,T ]

|ρ(t, ·)|(R),where |ρ|(R) stands for the total mass of the nonnegative measure ρ. We pro
eed in the sameway for ∂xS.As pre
ised above, the key point to use the duality solutions is that the velo
ity �eld satis�esthe OSL 
ondition (3.3).Lemma 4.2 Let ρ ∈ SM. Then the 
oe�
ient a(∂xS) de�ned by (2.9)-(2.10) satis�es the OSL
ondition (3.3) if and only if ρ ≥ 0Proof. Straightforward 
omputations lead to
∂x(a(∂xS)) = −c2φ′(c∂xS)∂xxS.With (2.10) and sin
e φ is a nonin
reasing fun
tion, we dedu
e from the one sided estimate ofLemma 4.1
∂x(a(∂xS)) ≤ max{c2‖φ′‖L∞S, 0}.We 
on
lude thanks to the bound on S in L∞.Finally, we turn to a 
onvergen
e result for a sequen
e of su
h fun
tions S.Lemma 4.3 Let (ρn)n∈N be a sequen
e of measures that 
onverges weakly towards ρ in SM as

n goes to +∞. Let Sn(t, x) = (K ∗ ρn(t, ·))(x) and S(t, x) = (K ∗ ρ(t, ·))(x), where K is de�nedin (2.12). Then when n→ +∞ we have
∂xSn(t, x) −→ ∂xS(t, x) for a.e. t ∈ [0, T ], x ∈ R,
∂xSn(t, x) ⇀ ∂xS(t, x) in L∞

t,x weak − ∗.Proof. The proof of this result is obtained by regularization of the 
onvolution kernel (seeLemma 3.1 of [17℄).5 Existen
e and uniqueness for the hydrodynami
al prob-lemIn this Se
tion, we fo
us on the proof of Theorem 3.9, whi
h 
an be split in 3 steps. The�rst one 
onsists in obtaining the dynami
s of aggregates, or in other words of 
ombinations ofDira
 masses. Next we obtain the existen
e of duality solutions in the sense of De�nition 3.7 byapproximation. Finally, uniqueness follows from a 
areful de�nition of the �ux of the equation.10



In this respe
t, we �rst underline the fa
t De�nition 3.7 as it stands does not give uniquenessof solutions.Indeed, let us 
onsider (2.8)�(2.10) with boundary 
ondition (2.11) where the initial datumis assumed to be a Dira
 mass in 0 : ρini = δ0. We have that (δ0, K ∗ δ0) is a solution to(2.8)�(2.10) with initial data δ0. More generally, the pair
ρ1(t, x) = δx1(t)(x); S1(t, x) = K ∗ ρ1(t, x) =

1

2
e−|x−x1(t)|. (5.1)turn out to de�ne a solution in the sense of duality in De�nition 3.7 for several 
hoi
es of 
urves

x1 with x1(0) = 0. Indeed set b(t, x) = a(∂xS1)(t, x), a

ording to Remark 3.4, ρ1 is a dualitysolution if u1 := ∫ x
ρ1 dx = H(x− x1(t)) is a duality solution of the transport equation. FromLemma 4.2, b satis�es the OSL 
ondition, therefore u1 is a duality solution of the transportequation if a(1/2) > x′1(t) > a(−1/2), whi
h furnishes an in�nity of solution.However, we have on the one hand that the generalized �ux (Theorem 3.5 3) is b∆ρ1 =

−∂tu1 = −x′1(t)δx1(t). On the other hand, we 
ompute the �ux J given by (3.6). For the 
larityof 
omputations, we set here α = 0 in the de�nition (2.3) of Φ. With this 
onvention, we get
a(∂xS1)(t, x) =

{
−λc, x < x1(t),

λc, x > x1(t),
A(∂xS1)(t, x) =

1

2

{
−λcex−x1(t), x < x1(t),

−λce−x+x1(t), x > x1(t).Obviously we have J = 0, so that the 
ondition âρ = J sele
ts x′1(t) = 0, so that �nally x1 ≡ 0sin
e x1(0) = 0.5.1 Dynami
s of aggregatesLet us �rst 
onsider the motion of aggregates. We assume then that ρinin is given by a �nite sumof Dira
 masses : ρinin =
∑n

i=1miδx0
i
where x01 < x02 < · · · < x0n. We look for a 
ouple (ρn, Sn)solving in the distributional sense ∂tρn + ∂xJn = 0 where the �ux Jn is given by (3.6) and Snsolves (2.10). We re
all that it means that Sn = K ∗ ρn where K is de�ned in (2.12). Let us set

ρn(t, x) =
∑n

i=1miδxi(t). Su
h a fun
tion is a solution in the sense of distributions of (3.7) if unis a solution in the sense of distributions of
∂tun − ∂xA(∂xSn) + a(∂xSn)Sn = 0, (5.2)where un is de�ned by

un(t, x) :=

∫ x

ρn dx =
n∑

i=1

miH(x− xi(t)), (5.3)where H denotes the Heaviside fun
tion. We have
Sn(t, x) =

n∑

i=1

mi

2
e−|x−xi(t)|,

∂xSn(t, x) = −
n∑

i=1

mi

2
sign (x− xi(t))e

−|x−xi(t)|. (5.4)11



Then after 
al
ulations, we have in the distributional sense
∂xA(∂xSn) = a(∂xSn)Sn +

n∑

i=1

[A(∂xSn)]xi
δxi
, (5.5)where [f ]xi

= f(x+i ) − f(x−i ) is the jump of the fun
tion f in xi. Inje
ting (5.3) and (5.5) in(5.2), we �nd
−

n∑

i=1

mix
′
i(t)δxi(t) =

n∑

i=1

[A(∂xSn)]xi
δxi
.Thus the dynami
s of aggregates is �nally given by

mix
′
i(t) = −[A(∂xSn)]xi(t), for i = 1, . . . , n.We 
omplement this system of ODE by the initial data xi(0) = x0i . More pre
isely, re
allingthat K(x) = 1

2
e−|x|, using (5.4) this latter system 
an be rewritten :

mix
′
i(t) = A

(
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)
− A

(
−
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)
. (5.6)From the de�nition of the 
oe�
ient a in (2.9) with (2.3), we dedu
e that a is nonde
reasingand odd. Therefore A is a 
onvex fun
tion and we dedu
e that for i = 1, . . . , n− 1, x′i ≥ x′i+1.Therefore, aggregates 
an 
ollapse in �nite time and an aggregate 
an not split. This is a dire
t
onsequen
e of the fa
t that we are 
onsidering positive 
hemotaxis, i.e. a is nonde
reasing. Ifthere exists a time t1 for whi
h we have for instan
e xi(t1) = xi+1(t1), then the dynami
s for

t > t1 is de�ned as above ex
ept that we repla
e mi by mi+mi+1 and xi(t) = xi+1(t) for t > t1.Moreover A is even, then when n = 1, we have x′1 = 0 and x1(t) = x01. Thus if aggregates
ollapse su
h that they form a single aggregate of mass ∑imi, then this aggregate does notmove for larger times.5.2 Existen
e of duality solutionsWe have 
onstru
ted (ρn, Sn) whi
h is a solution of (3.7)-(3.6)-(2.10) in the distributional sensefor the given initial data ρinin . We re
all the following result due to Vol'pert [27℄ (see also [2℄) :if u belongs to BV (R) and f ∈ C1(R) with f(0) = 0, then v = f ◦ u belongs to BV (R) and
∃ fu with fu = f ′(u) a.e. su
h that (f ◦ u)′ = fuu

′.We re
all that A is an antiderivative of a su
h that A(0) = 0. Then, using this result, thereexists a fun
tion ân su
h that
Jn := −∂x(A(∂xSn)) + a(∂xSn)Sn = ânρn, and ân = a(∂xSn) a.e.Thus ρn is a solution in the distributional sense of

∂tρn + ∂x(ânρn) = 0.12



Moreover, we dedu
e from (5.4) that a(∂xSn) is pie
ewise 
ontinuous with the dis
ontinuitylines de�ned by x = xi, i = 1, . . . , n. We 
an apply Theorem 3.6 whi
h gives that ρn is aduality solution and that ân is a universal representative of a(∂xSn). Then the �ux is given by
a(∂xSn)∆ρn = Jn.Let us yet 
onsider the 
ase of any initial data ρini ∈ Mb(R). We approximate ρini by
ρinin =

∑n
i=1miδx0

i
with ρinin ⇀ ρini in Mb(R). By the same token as above, we 
an 
onstru
t asolution (ρn, Sn = K ∗ ρn) whi
h solves

∂tρn + ∂x(a(∂xSn)ρn) = 0in the sense of duality,
∂tρn + ∂xJn = 0, Jn = −∂xA(∂xSn) + a(∂xSn)Snin the sense of distributions and̂

anρn = Jn, ân = a(∂xSn) a.e.and whi
h is su
h that ρn(t = 0) = ρinin =
∑n

i=1miδx0
i
. Moreover, sin
e ∂xSn is bounded in

L∞ uniformly with respe
t to n by 
onstru
tion, we 
an extra
t a subsequen
e of (a(∂xSn))nthat 
onverges in L∞ − weak∗ towards b. Sin
e from Lemma 4.2, a(∂xSn) satis�es the OSL
ondition, we dedu
e from Theorem 3.5 4) that, up to an extra
tion, ρn ⇀ ρ in SM and
ânρn ⇀ âρ weakly in Mb(]0, T [×R), ρ being a duality solution of the s
alar 
onservation lawwith 
oe�
ient b. With Lemma 4.3, we dedu
e that ∂xSn → ∂xS a.e., it implies in parti
ularthat Jn → J := −∂xA(∂xS)+a(∂xS)S in D′(R) and that a(∂xSn) → a(∂xS) a.e. By uniquenessof the weak limit, we have b = a(∂xS). Moreover J = âρ a.e. and ρ satis�es then (3.7). Then
(ρ, S) is a solution as in Theorem 3.9, this 
on
ludes the proof of the existen
e.5.3 Uniqueness of solutionsLet us 
onsider yet the study of the uniqueness. As shown above, De�nition 3.7 is not enoughto get the uniqueness. Therefore, we will use the fa
t that we have a duality solution ρ thatsatis�es (3.7) in D′([0, T ]×R) with the initial data ρini and with the �ux J given by (3.6). Thisequation will lead to a non-lo
al evolution equation on S as stated in the following Lemma :Lemma 5.1 Let (ρ, S) be a duality solution of (2.8)�(2.10) su
h as in Theorem 3.9 then ∂xS ∈
C([0, T ], BV (R)) and S is a weak solution of

∂tS − ∂xK ∗ ∂x(A(∂xS)) + ∂xK ∗ (a(∂xS)S) = 0. (5.7)Proof. We have ρ ∈ SM and ∂xxS = S − ρ. Then ∂xS ∈ C([0, T ], BV (R)). We re
all that wehave S = K ∗ ρ where K(x) = 1
2
e−|x|. Thus taking the 
onvolution by K of (3.7)�(3.6), we getthat S is weak solutions of (5.7). Di�erentiating (5.7), we get moreover

∂t∂xS + ∂x(A(∂xS))− ∂xK ∗ A(∂xS) +K ∗ (a(∂xS)S)− a(∂xS)S = 0. (5.8)
13



Proposition 5.2 Let S1 and S2 be two weak solutions in C([0, T ];W 1,1(R)) of (5.7) with initialdata Sini
1 and Sini

2 respe
tively and su
h that ∂xS1 and ∂xS2 belongs to L∞([0, T ];BV (R)). Thenthere exists a nonnegative 
onstant C su
h that
‖S1 − S2‖L∞([0,T ];W 1,1(R)) ≤ C‖Sini

1 − Sini
2 ‖W 1,1(R).Proof. Let us denote a1 = a(∂xS1) and a2 = a(∂xS2). We dedu
e from (5.8) that

∂t∂x(S1−S2)+∂x(A(∂xS1)−A(∂xS2)) = ∂xK∗(A(∂xS1)−A(∂xS2))+a1S1−a2S2−K∗(a1S1−a2S2).Multiplying this equation by sign(∂x(S1 − S2)), integrating with respe
t to x and using theproperties of the 
onvolution produ
t, we dedu
e
d

dt

∫

R

|∂x(S1 − S2)| dx ≤ ‖∂xK‖∞

∫

R

|A(∂xS1)− A(∂xS2)| dx+ (1 + ‖K‖∞)

∫

R

|a1S1 − a2S2| dx.The fun
tion a being regular, we have
d

dt

∫

R

|∂x(S1 − S2)| dx ≤ C0

∫

R

|∂x(S1 − S2)| dx+ C1

∫

R

|S1 − S2| dx. (5.9)By the same token with equation (5.7), it leads to
d

dt

∫

R

|S1 − S2| dx ≤ C2

∫

R

|∂x(S1 − S2)| dx+ C3

∫

R

|S1 − S2| dx. (5.10)Summing (5.10) and (5.9), we dedu
e that there exists a nonnegative 
onstant C su
h that
d

dt
‖S1 − S2‖W 1,1(R) ≤ C‖S1 − S2‖W 1,1(R).Applying the Gronwall Lemma allows to 
on
lude the proof.Proof of the uniqueness of Theorem 3.9. Let us assume that we have two dual-ity solutions (ρ1, S1) and (ρ2, S2) su
h as in Theorem 3.9. Therefore, from Lemma 5.1, S1and S2 are weak solutions of (5.7). Using Proposition 5.2, we 
on
lude that S1 = S2. Thus

ρ1 = K ∗ S1 = K ∗ S2 = ρ2.Remark 5.3 We dedu
e from the proof above that equations (5.7) and (5.8) are a key pointfor the uniqueness of solutions. These equations relies strongly on the de�nition of the �ux Jin (3.6). This fa
t has already been noti
ed by the authors in [16℄, whi
h 
an be viewed as aparti
ular 
ase of the one studied in this paper by repla
ing the ellipti
 equation for S (2.10) bythe Poisson equation −∂xxS = ρ. In this 
ase, the produ
t of a(∂xS) by ρ is naturally de�nedby a(∂xS)ρ = −∂xA(∂xS) and the equation on S 
orresponding to (5.8) is given by
∂t∂xS + ∂xA(∂xS) = 0.Contrary to (5.8), this equation is lo
al and sin
e ∂xS is monotonous (−∂xxS = ρ ≥ 0), weare looking for an entropy solutions of this equation and for A 
onvex or 
on
ave (i.e. for anon-de
reasing or non-in
reasing), there exists a unique entropy solution. Uniqueness in [16℄ isobtained in this way. 14



6 Convergen
e for the kineti
 modelIn this se
tion we investigate the rigorous derivation of (2.8)�(2.10) from the mi
ros
opi
 model(2.4). We �rst state some estimates on the moments of the solution of the kineti
 problem.Lemma 6.1 Let (fε, Sε) be a solution of the kineti
 problem (2.4)�(2.5). Then for all t ∈ [0, T ]and all ε > 0 we have
∫

R

∫

V

|v|kfε dxdv = |v|k|ρini|(R) , k ∈ N.Proof. Sin
e v ∈ V = {−c, c}, |v| is 
onstant therefore
∫

R

∫

V

|v|kfε dxdv = |v|k
∫

R

ρε dx.The result follows then dire
tly from the mass 
onservation in (2.4).Proof of Theorem 3.10. Let (fε, Sε) be a solution of (2.4)�(2.5). For �xed ε > 0, we have
fε ∈ C([0, T ] × R × V ). De�ne ρε :=

∫
V
fε dv, Jε := ∫V vfε dv and a(∂xSε) = −cφ(c∂xSε). We
an rewrite the kineti
 equation (2.4) as

∂tfε + v∂xfε =
1

ε
(Φ(−v∂xSε)ρε − 2fε).Taking the zeroth and �rst order moments, we get

∂tρε + ∂xJε = 0, (6.1)
∂tJε + v2∂xρε =

2

ε
(a(∂xSε)ρε − Jε). (6.2)From (6.1), we dedu
e that

∀ t ∈ [0, T ], |ρε(t, ·)|(R) = |ρini|(R).Therefore, for all t ∈ [0, T ] the sequen
e (ρε(t, ·))ε is relatively 
ompa
t inMb(R)−σ(Mb(R), C0(R)).Moreover, there exists uε ∈ L∞([0, T ], BV (R)) su
h that ρε = ∂xuε. From (6.1), we get that
∂tuε = −Jε and with Lemma 6.1 we dedu
e that uε is bounded in Lip([0, T ], L1(R)). It impliesthe equi
ontinuity in t of (ρε)ε. Thus the sequen
e (ρε)ε is relatively 
ompa
t in SM and we 
anextra
t a subsequen
e still denoted (ρε)ε that 
onverges towards ρ in SM.We re
all that Sε(t, x) = (K ∗ ρε(t, ·))(x) where K(x) = 1

2
e−|x|. Denoting S(t, x) := (K ∗

ρ(t, ·))(x), sin
e ρ ∈ SM, we have ∂xS ∈ L∞([0, T ];BV (R)). From Lemma 4.3, the sequen
e
(∂xSε)ε 
onverges in L∞w − ∗ and a.e. to ∂xS as ε goes to 0. Lemma 4.2 ensures that both
a(∂xSε) and a(∂xS) satisfy the OSL 
ondition.From (6.1)�(6.2), we have in the distributional sense

∂tρε + ∂x(a(∂xSε)ρε) = ∂x(a(∂xSε)ρε − Jε) =
ε

2
∂x(∂tJε + v2∂xρε) = Rε. (6.3)15



Now, for all ψ ∈ C2
c ((0, T )× R), we dedu
e from Lemma 6.1

∣∣∣∣
∫

(∂tJε + v2∂xρε)∂xψ dxdt

∣∣∣∣ ≤ |v||ρini|(R)‖∂t∂xψ‖L∞ + |v|2|ρini|(R)‖∂xxψ‖L∞ .This implies that the limit in the distributional sense of the right-hand side Rε of (6.3) vanishes.On the one hand, multiplying equation (2.5) by a(∂xSε) and introdu
ing the real-valuedfun
tion A su
h that A′ = a, we get
a(∂xSε)ρε = −∂x(A(∂xSε)) + a(∂xSε)Sε, (6.4)so that we 
an rewrite the 
onservation equation (6.3) as follows, in D′(R):

∂tρε + ∂x (−∂xA(∂xSε) + a(∂xSε)Sε) =
ε

2
∂x(∂tJε + v2∂xρε). (6.5)Taking the limit ε→ 0 at the distributional sense of equation (6.5), we get that in D′(R)

∂tρ+ ∂x (−∂xA(∂xS) + a(∂xS)S) = 0, (6.6)where S(t, x) = (K ∗ ρ(t, ·))(x). We re
all that we have 
hosen the initial data su
h that
ρiniε = ηε ∗ ρ

ini where ηε is a molli�er. Therefore ρiniε ⇀ ρini in Mb(R)− σ(Mb(R), C0(R)).On the other hand, �rst taking the 
onvolution with K of (6.6) we �nd that S and ∂xSsatisfy in the distributional sense
∂tS − ∂xK ∗ ∂x(A(∂xS)) + ∂xK ∗ (a(∂xS)S) = 0. (6.7)Next, di�erentiating this (or taking the 
onvolution of (6.6) with ∂xK), and noti
ing that Ksatis�es −∂xxK +K = δ0, we get

∂t∂xS + ∂x(A(∂xS))− ∂xK ∗ A(∂xS) +K ∗ (a(∂xS)S)− a(∂xS)S = 0. (6.8)The de�nition of S, S(t, x) = (K ∗ ρ(t, ·))(x), implies that ∂xS belongs to L∞(0, T ;BV (R)).Therefore equations (6.7)�(6.8) have a sense in their weak formulation. It is proved in Se
tion5.3 that we have a bound on S in C([0, T ];W 1,1(R)) and that su
h a S satisfying (6.7)�(6.8)is unique. Thus ρ is unique. In fa
t, if we assume that there exist ρ1 and ρ2 satisfying (6.6)in the distributional sense, then by the uniqueness of the solution of (6.7)�(6.8), we have that
K ∗ ρ1 = K ∗ ρ2 whi
h implies that ρ1 = ρ2. Finally, thanks to the uniqueness, all the sequen
e
ρε 
onverges to ρ in SM.Thus we have 
onstru
ted a solution that satis�es (6.6) in the distributional sense, in otherwords, we have de�ned a solution of the problem (2.8)�(2.10) thanks to its �ux. A naturalquestion is to know whether we 
an de�ne a velo
ity 
orresponding to this �ux. From the theoryof duality solutions (see Theorem 3.5), it boils down to show that the above 
onstru
ted solutionis a duality solution. From the Vol'pert 
al
ulus [27℄ there exists aS su
h that aS = a(∂xS) a.e.and

∂x(A(∂xS)) = aS∂xxS.Therefore
− ∂x(A(∂xS)) + a(∂xS)S = aSρ a.e. , with aS = a(∂xS) a.e. (6.9)16



Using equation (6.6) we have in the distributional sense
∂tρ+ ∂x(aSρ) = 0. (6.10)However, we have proved in Se
tion 5.3 that su
h a solution is unique. We dedu
e that thesolution (ρ, S) obtained by the hydrodynami
al limit above is the duality solution of Theorem3.9. It 
on
ludes the proof of Theorem 3.10.Remark 6.2 In the proof above, the ma
ros
opi
 �ux J de�ned in (3.6) appears to be the limitof the mi
ros
opi
 �ux Jε. Indeed from (6.2) and (6.4) we dedu
e that, in the distributionalsense,

Jǫ −→ J := −∂xA(∂xS) + a(∂xS)S.This natural de�nition of the �ux allows to get the uniqueness of the solutions of the 
oupledsystem (2.8)�(2.10) thanks to equations (6.7)�(6.8). Su
h a te
hnique to establish the hydrody-nami
 limit has been proposed in [18℄. But the authors do not state that their limit is a dualitysolution and do not de�ne a velo
ity and therefore a �ow 
orresponding to their �ux. In thelimit of the Vlasov-Poisson-Fokker-Plan
k system, this result has been investigated in [16℄.7 Numeri
al issue7.1 Finite time of 
ollapseBefore fo
using on the numeri
al simulations, let us 
larify the dynami
s of the model. In the
ase of n Dira
 masses lo
ated at positions x1 < · · · < xn, we re
all that the time evolution isgoverned by system (5.6):
mix

′
i(t) = A

(
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)
− A

(
−
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)
, (7.1)for i = 1, . . . , n, where we re
all that A is an antiderivative of a su
h that A(0) = 0. We dedu
ethat for all t > 0, and for i = 1, . . . , n,

∃ γi ∈

(
−
mi

2
+
∑

j 6=i

mj∂xK(xj − xi),
mi

2
+
∑

j 6=i

mj∂xK(xj − xi)

)su
h that x′i(t) = a(γi(t)).

(7.2)Proposition 7.1 Let us assume that there exists n ∈ N
∗ su
h that

ρini(x) =

n∑

i=1

m0
i δx0

i
(x).We assume moreover that a is a nonde
reasing and odd real fun
tion and A its antiderivativesu
h that A(0) = 0. Then the duality solution ρ of Theorem 3.9 has the following properties :1. If n = 1, x1(t) = x01 for all t > 0. Then ρ(t) = ρini for all t > 0.17



2. For i = 1, . . . , n− 1, x′i(t) ≥ x′i+1(t) therefore xi+1 − xi ≤ x0i+1 − x0i .3. There exists c∗ ∈ [x01, x
0
n] and T ∗ > 0 su
h that ρ(t, x) = δc∗(x) for all t > T ∗.Proof. The �rst point is a dire
t 
onsequen
e of the even 
hara
ter of A whereas the se
ondpoint 
omes from the 
onvexity of A. Let us then prove the third point. By 
onvexity of thefun
tion A and with (7.1), we have

m1x
′
1 ≥ A

(
m1

2
+

n∑

j=2

mj

2
ex

0
1−x0

j

)
− A

(
−
m1

2
+

n∑

j=2

mj

2
ex

0
1−x0

j

)
> 0,and

mnx
′
n ≤ A

(
−

n−1∑

j=1

mj

2
ex

0
j
−x0

n +
mn

2

)
−A

(
−

n−1∑

j=1

mj

2
ex

0
j
−x0

n −
mn

2

)
< 0.As for (7.2), we 
an rewrite these last inequalities as :

x′1(t) ≤ a(γ1(0)), x′n ≥ a(γn(0)).We dedu
e that there exists a time T ∗ > 0 su
h that all masses 
ollapse for t = T ∗ in a singleDira
 mass. Moreover, we have
T ∗ < (x0n − x01)/(a(γ1(0))− a(γn(0))).

Corollary 7.2 Let us assume that ρini ∈ Cc(R) with 
ompa
t support [0, L]. Let us denote ρ theduality solution of Theorem 3.9 with initial data ρini. Then there exists c∗ ∈ [0, L] and T ∗ > 0su
h that ρ(t, x) = δc∗(x) for all t > T ∗.Proof. Let us approximate ρini by
ρinin (x) =

n∑

i=1

m0
i δx0

i
(x),with x0i = (i − 1)L/n, for i = 1, . . . , n and m0

i =
∫ x0

i+1

x0
i

ρini(dx). From Proposition 7.1, wededu
e that there exists c∗n ∈ [0, L] and T ∗
n > 0 su
h that the duality solution of Theorem3.9 with initial data ρinin is su
h that ρn(t, x) = δc∗n for all t > T ∗

n . Moreover, we have T ∗
n <

L/(a(γn1 (0))− a(γnn(0))) where we re
all that
−m0

1 +
n∑

j=1

m0
j

2
e−(j−1)L/n < γn1 (0) <

n∑

j=1

m0
j

2
e−(j−1)L/n, (7.3)and

−
n∑

j=1

m0
j

2
e(j−n)L/n < γnn(0) < m0

n −
n∑

j=1

m0
j

2
e(j−n)L/n. (7.4)18



By stability results on duality solutions in Theorem 3.5 (see also subse
tion 5.1), we dedu
ethat ρn ⇀ ρ in SM as n → +∞. Taking the limit in (7.3) and (7.4), we dedu
e by 
ontinuityof ρini that
lim

n→+∞
γn1 (0) =

∫ L

0

ρini(x)e−x dxand
lim

n→+∞
γnn(0) = −

∫ L

0

ρini(x)e−L+x dx.Moreover, sin
e ρini is 
ontinuous with 
ompa
t support in [0, L] we have ρini(0) = ρini(L) = 0.We dedu
e that the sequen
e (T ∗
n)n∈N∗ is bounded. Thus there exists a time T ∗ independent of

n su
h that ρn(t) = δc∗n for all t > T ∗. Taking the limit when n→ +∞, we 
on
lude that thereexists c ∈ [0, L] su
h that ρ(t) = δc for all t > T ∗.Remark 7.3 Taking a = Id, therefore A(x) = x2/2, we dedu
e from (7.1) that
x′i =

∑

j 6=i

mj∂xK(xj − xi).We re
over the dynami
s of the aggregation equation as noti
ed by Carrillo et al. in [8℄. Theyprove in parti
ular the 
on
entration in �nite time of the total mass in the 
enter of mass. Inthe framework of this work, fo
using on appli
ations in 
hemotaxis, a is not assumed to be theidentity fun
tion, so that the 
enter of mass is not 
onserved. A numeri
al eviden
e of thisphenomenon will be proposed in the last subse
tion of this paper.7.2 Dis
retizationThe numeri
al resolution of system (2.8)�(2.10) is far from obvious. A �rst naive idea 
onsistsin applying a standard splitting method where we treat separately the s
alar 
onservation law(2.8) and the ellipti
 equation (2.10). It turns out that su
h a s
heme is unable to re
over the
orre
t de�nition of the �ux and therefore of the produ
t a(∂xS) by ρ. In parti
ular, it leads tostationary Dira
 masses.A se
ond idea 
onsists in solving the distributional 
onservation law (3.7) by a �nite volumemethod. It involves a dis
retization of the �ux J on the interfa
e of ea
h 
ell of the mesh, andthus one 
ould expe
t a 
orre
t 
omputation of the �ux, and therefore a 
onvenient interpretationof the produ
t. However, this de�nition of the �ux involves the 
al
ulation of two derivativesof S. Using a 
entered s
heme to dis
retize this quantity indu
es spurious os
illations as itis usually noti
ed for 
entered s
heme on s
alar 
onservation laws. We 
an then upwind thes
heme depending on the sign of a(∂xS) 
omputed at previous iteration. But in doing so, wea
tually spe
ify a value for a(∂xS) in the de�nition of the produ
t a(∂xS) with ρ, and this 
anlead to 
apture wrong solutions.Next, one 
an think of solving the equation (6.7) on S, motivated by the fa
t that it plays akey part in the uniqueness, and that ρ 
an be re
overed readily from S. However the equationis non lo
al and its numeri
al resolution appears to be quite 
ompli
ated and with a high
omputational 
ost (even in the one dimensional setting).19



Thus we prefer to use a method based on the dynami
s of aggregates, detailed in Se
tion 5.1.We use the prin
iple of a parti
le method in whi
h we approximate the density by a sum of Dira
masses. Then the motion of these pseudo-parti
les is approximated by dis
retizing system (5.6)with an expli
it Euler s
heme. More pre
isely, let us assume that we have an approximation of
ρ at time tn = n∆t, given by

ρn(x) =

In∑

i=1

mn
i δyni (x), (7.5)where mn

i > 0 is the mass allo
ated to the pseudo-parti
le at the position yni with yn1 < yn2 <
· · · < ynIn for In ∈ N

∗. Then an approximation of the potential at time tn is given by
Sn(x) =

In∑

i=1

mn
i e

−|x−yni |.Using an expli
it Euler s
heme, we 
ompute the new position
yn+1
i =yni +

∆t

mn
i

A

(
−

i−1∑

j=1

mn
j

2
ey

n
j −yni +

mn
i

2
+

In∑

j=i+1

mn
j

2
ey

n
i −ynj

)

−
∆t

mn
i

A

(
−

i−1∑

j=1

mn
j

2
ey

n
j
−yn

i −
mn

i

2
+

In∑

j=i+1

mn
j

2
ey

n
i
−yn

j

)
.Next, we test if some pseudo-parti
les have 
ollided during the time step ∆t. If yn+1

j+1 ≤ yn+1
j for

j ≥ 1, then the pseudo-parti
les j and j + 1 have 
ollapsed and form a unique pseudo-parti
lewhi
h has the mass mn
j +m

n
j+1. In this 
ase, we de
ide to set this pseudo-parti
le at the position

1
2
(yn+1

j+1 + yn+1
j ) and set mn+1

j = mn
j +mn

j+1, moreover we have therefore In+1 = In − 1. Finally,for given initial sequen
es (y0i )i=1,...,I0 and (m0
i )i=1...,I0 of size I0, we 
an 
onstru
t (yni ) and (mn

i )of size In as above.Using well-known result on the 
onvergen
e of Euler s
heme, we dedu
e that, for given initialdata (y0i )i=1,...,I0, (m0
i )i=1...,I0 and I0, yni de�ned above 
onverges to the solution xi(t) of (5.6)when ∆t tends to 0 su
h that tn → t. Using the result of Se
tion 5.1, we dedu
e that thefun
tion ρn in (7.5) 
onverges in SM to the unique duality solution of Theorem 3.9. Then themethod introdu
ed above is 
onvergent provided we dis
retize the initial data ρini in su
h a waythat ρ0(x) :=∑I0

i=1m
0
i δy0i (x) 
onverges in Mb to ρini. Moreover, we verify easily that we have

I0∑

i=1

m0
i =

In∑

i=1

mn
i , and In ≤ I0, for all n ∈ N,and that the approximation ρn of ρ(tn) is nonnegative.7.3 Numeri
al resultsIn this Se
tion, we present numeri
al simulations of model (2.8)�(2.10) using the algorithmdes
ribed above. We �rst approximate the initial data ρini ≥ 0, whi
h is assumed to be 
om-pa
tly supported for numeri
al purpose, in the following way: we introdu
e a dis
retization20



xj = x0+ j∆x of the bounded domain whi
h in
ludes the 
ompa
t support of ρini and we de�ne
m0

i =

∫ xi+
∆x
2

xi−
∆x
2

ρini(x) dx.Then the sequen
e (y0j )j is de�ned by the nodes (xi) for whi
h m0
i is not zero, and I0 
orrespondto the number of i ∈ N su
h that m0

i is not zero. We 
onstru
t then the approximation of ρiniby
ρ0(x) :=

I0∑

i=1

m0
i δy0i (x).
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Figure 1: Dynami
s of the density ρ and of the potential S for an initial density given by thesum of two Gaussian.We present in Figure 1 the dynami
s of the density ρ and of the 
hemoattra
tant 
on
en-tration S for an initial data ρini given by the sum of two Gaussian fun
tions, more pre
isely
ρini(x) = e−20(x−0.5)2 + e−20(x+0.5)2 .As expe
ted, we �rst observe the formation of two Dira
 masses at the position where ∂xSinitially vanishes. Then, the two aggregates 
ollapse in the 
enter. Looking at the time evolution,we noti
e that the �rst step of formation of aggregates is fast 
ompared to the time of 
ollapse.21
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Figure 2: Dynami
s of the density ρ and of the potential S for an initial density given by thesum of three Gaussian.In Figure 2 we display the dynami
s for an initial data given by the sum of three Gaussianfun
tions:
ρini(x) = e−10(x−1)2 + e−20(x−0.2)2 + e−20(x+0.5)2 .22



We observe the formation of three Dira
 masses that moves a

ording to the dynami
al system(7.1). They 
ollapse then in �nite time.
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Figure 3: Dynami
s of the density ρ and of the potential S with the dynami
s of the 
enter ofmass represented by a red square. The 
enter of mass moves.Finally, as we have already noti
ed, we eviden
e that the 
enter of mass is not �xed. Forinstan
e, Figure 3 represents the dynami
s of the density and of the potential for an initial datamade of one big bump with one small bump:
ρini(x) = 5e−20(x−1)2 + 0.5e−20(x+0.5)2 .The square shows the time dynami
s of the 
enter of mass. We observe that the 
enter of massat the �nal time is not lo
ated at the same position as at the initial time.Referen
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