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Abstract

In this paper, we introduce a new class of estimators of the Hurst exponent of the

fractional Brownian motion (fBm) process. These estimators are based on sample expectiles

of discrete variations of a sample path of the fBm process. In order to derive the statistical

properties of the proposed estimators, we establish asymptotic results for sample expectiles

of subordinated stationary Gaussian processes with unit variance and correlation function

satisfying ρ(i) ∼ κ|i|−α (κ ∈ R) with α > 0. Via a simulation study, we demonstrate the

relevance of the expectile-based estimation method and show that the suggested estimators

are more robust to data rounding than their sample quantile-based counterparts.

Keywords: expectiles; robustness; local shift sensitivity; subordinated Gaussian process;

fractional Brownian motion.

1 Introduction

In the statistic literature, there has been a tremendous interest in analysis, estimation and

simulation issues pertaining to the fractional Brownian motion (fBm) (Mandelbrot and Ness,

1968). This is due to the fact that the fBm process offers an adequate modeling framework for

nonstationary self-similar stochastic processes with stationary increments and can be used to

model stochastic phenomena relating to various fields of research. A fractional Brownian motion

(fBm), denoted {BH(t), t ∈ R} with Hurst exponent 0 < H < 1, is a zero-mean continuous-time

Gaussian stochastic process whose correlation function satisfies E[BH(t)BH(s)] = σ2

2 (|t|2H +

|s|2H − |t − s|2H) for all pairs (t, s) ∈ R × R and σ2 = E(BH(1)2). The fBm is H-self-similar

i.e., for all α > 0, BH(αt)
d
= αHBH(t), where

d
= means the equality of all its finite-dimensional

probability distributions. The process corresponding to the first-order increments of the fBm is

known as the fractional Gaussian noise (fGn) whose correlation function ρH(i) is asymptotically

of the order of |i|2H−2 for large lag lengths i. In particular, for 1/2 < H < 1, the correlations are

not summable, i.e.
∑+∞

i=−∞ ρH(i) = ∞. This property is referred to as long-range dependence

or long-memory whereas the case 0 < H < 1/2 corresponds to short memory.

Several methods aimed at estimating the Hurst characteristic exponent or long-memory ex-

ponent have been developed. Among these statistical methods figure the Fourier-based methods

such as the Whittle maximum likelihood estimator (see e.g. Beran (1994); Robinson (1995)) or

the spectral regression based estimator (Beran, 1994). The wavelet estimators have been also

extensively investigated either with an ordinary least squares (Flandrin, 1992), a weighted least
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squares (see e.g. Abry et al. (2000, 2003); Bardet et al. (2000); Soltani et al. (2004)) or a maxi-

mum likelihood (see e.g. (Wornell and Oppenheim, 1992; Percival and Walden, 2000)) estimation

schemes. Faÿ et al. (2009) present a deep analysis of Fourier and wavelet methods. Recently, the

so-called discrete variations techniques (see e.g.Kent and Wood (1997); Istas and Lang (1997);

Coeurjolly (2001)) have been introduced. Within this class of estimators, Coeurjolly (2008) pro-

posed a new method based on sample quantiles to estimate the Hurst exponent in the more

general setting of locally self-similar gaussian processes. This estimator has been proven robust

when dealing with outliers (Achard and Coeurjolly, 2010). The latter, often encountered in real

world applications, can induce a significant estimation bias. Actually, the advantage of quantiles

is that they have a bounded gross-error-sensitivity (Hampel et al., 1986; Huber, 1981) allowing

them to cope efficiently with the problem of outliers. Nevertheless, this is not the only problem

faced when dealing with estimation issues. Indeed, data rounding is also a serious impediment.

Data rounding is common in finance (Bijwaard and Franses, 2009; Rosenbaum, 2009), economics

(Williams, 2006), computer science (Matthieu, 2006; Bois and Vignes, 1982) and computational

physics (Vilmart, 2008) and can lead to several misinterpretations. Quantiles are unfortunately

not robust against data rounding since their local shift sensitivity is unbounded, see Hampel et al.

(1986); Huber (1981). Newey and Powell (1987) have introduced the so-called expectile which,

although similar to quantile, has a bounded local shift-sensitivity and thus can handle the round-

ing issue.

In this paper, we derive a Bahadur-type representation for sample expectiles of a subordinated

Gaussian process with unit variance and correlation function with hyperbolic decay. This allows

us to investigate the statistical properties of a new discrete variations estimator of the Hurst

exponent of the fBm process. In constructing this estimator, we rely mainly on the scale and

location equivariance properties of expectiles (Newey and Powell, 1987). We will show via a

simulation study the robustness of the proposed estimator against data rounding.

The remainder of this paper is structured as follows: Section 2 deals with asymptotic prop-

erties of sample expectiles for a class of subordinated stationary Gaussian processes with unit

variance and correlation function satisfying ρ(i) ∼ κ|i|−α (κ ∈ R) with α > 0. A short sim-

ulation study is conducted to corroborate our theoretical findings. In Section 3, we discuss a

sample expectile-based estimator of the Hurst exponent and derive its statistical properties. We

then perform a simulation study in order to confirm the effectiveness of the suggested estimation

method.
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2 Expectiles for subordinated Gaussian processes

2.1 A few notation

Given some random variable Z with mean µ, FZ is referred to the cumulative distribution

function of Z and ξZ(p) for p ∈ (0, 1) to its pth quantile. It is well-known that the pth quantile of

a random variable Z can be obtained by minimizing asymmetrically the weighted mean absolute

deviation

ξZ(p) := argminθ E
[
|p− 1Z≤θ|.|Z − θ|

]
.

In order to limit the local shift sensitivity of the pth quantile, Newey and Powell (1987) defined

the notion of expectile denoted by EZ(p) for some p ∈ (0, 1). Rather than an absolute deviation

(function), a quadratic loss function is considered:

EZ(p) := argminθ E
[
|p− 1Z≤θ|.(Z − θ)2

]
. (1)

We may note that the 50%-expectile if nothing else than the expectation of Z. Newey and Powell

(1987) argued that providing E[Z] < +∞, then for every p ∈ (0, 1) the solution of (1) is unique

on the set IFZ
:= {x ∈ R : FZ(x) ∈ (0, 1)}. The expectile can also be defined as the solution of

the equation E
[
|p− 1Z≤θ|.(Z − θ)

]
= 0.

A key property of the expectile is that it is scale and location equivariant (Newey and Powell,

1987). The scale equivariance property means that for Y = aZ where a > 0, the pth expectile of

Y satisfies:

EY (p) = aEZ(p) (2)

The pth expectile is location equivariant in the sense that for Y = Z + b where b ∈ R, the

pth expectile of Y is such that:

EY (p) = EZ(p) + b (3)

Now, let Z = (Z1, . . . , Zn) be a sample of identically distributed random variables with

common distribution FZ , the sample expectile of order p is defined as:

Ê (p;Z) := argminθ
1

n

n∑

i=1

|p− 1Zi≤θ| . (Zi − θ)
2
.

2.2 Main result

In order to derive asymptotic results for Hurst exponent estimates based on expectiles, we have

to provide asymptotic results for sample expectiles of nonlinear functions of (centered) subor-

dinated stationary Gaussian processes with variance 1 and with correlation function decreasing
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hyperbolically. This will be the setting of the rest of this section. Let {Yi}+∞
i=1 be such a Gaus-

sian process with correlation function ρ(·) satisfying ρ(i) ∼ κ|i|−α for κ ∈ R and α > 0. Let

Y = (Y1, . . . , Yn) a sample of n observations and h(Y) = (h(Y1), . . . , h(Yn)) its subordinated

version for some measurable function h. We wish to provide asymptotic results for the sample

pth expectile defined by

Ê (p;h(Y)) := argminθ
1

n

n∑

i=1

∣∣p− 1h(Yi)≤θ

∣∣ . (h(Yi)− θ)
2
. (4)

Since the criterion is differentiable in θ, the sample pth expectile also satisfies the following

estimating equation ψn

(
Ê (p;h(Y)) ;h(Y)

)
= 0 with

ψn (θ;h(Y)) :=
1

n

n∑

i=1

∣∣p− 1h(Yi)≤θ

∣∣ . (h(Yi)− θ) . (5)

In the following, we need the two following additional notation for Y ∼ N (0, 1)

ψh(Y )(θ; p) := E
[∣∣p− 1h(Y )≤θ

∣∣ .(h(Y )− θ)
]

ψ′
h(Y )(θ; p) := −E

[∣∣p− 1h(Y )≤θ

∣∣] = −p(1− Fh(Y )(θ)) − (1− p)Fh(Y )(θ),

the latter quantity corresponding to the derivative of ψh(Y )(·, p) if it is well-defined. Let us note
that the pth expectile of h(Y ) satisfies ψh(Y )(Eh(Y ); p) = 0. We now present the assumption on

the function h considered in our asymptotic result.

[A(h,p)] h(·) is a measurable function such that Eh(Y )2 < +∞ and such that the function

ψh(Y )(·, p) is continuously differentiable in a neighborhood of Eh(Y )(p) with negative derivative

at this point.

Such an assumption is in particular satisfied under the following one:

[A′(h)] h(·) is a measurable function such that Eh(Y )2 < +∞, h is not “flat”, i.e. for all θ ∈ R

the set {y ∈ R : h(y) = θ} has null Lebesgue measure.

Indeed, if h satisfies [A′(h)] then ψ(·, p) is differentiable in θ. And since, Eh(Y )(p) belongs

to the set Ih(Y ) = {x ∈ R : Fh(Y )(x) ∈ (0, 1)}, ψ′(Eh(Y )(p); p) is necessarily negative. For

the purpose of this paper, our main result will be applied with h(·) = | · |β (with β > 0) or

h(·) = log | · | which obviously satisfy [A′(h)].
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The nature of the asymptotic result will depend on the correlation structure of the Gaussian

process and on the Hermite rank, τ(p, θ) of the function

ψ̃(t; p, θ) :=
∣∣p− 1h(t)≤θ

∣∣ .(h(t)− θ)− ψh(Y )(θ; p).

We recall that the Hermite rank (see e.g. Taqqu (1977)) corresponds to the smallest integer

such that the coefficient in the Hermite expansion of the considered function is not zero. For the

sake of simplicity, assume that the Hermite rank of this function depends neither on θ nor p and

denote it simply by τ . Again, this could be weakened since we believe that the next result could

be proved with the following Hermit rank: infθ∈V(Eh(Y );p) τ(p, θ). As an example, the Hermite

rank of ψ̃(·, p, θ) is 1 for h(·) = · and (p, θ) ∈ (0, 1)×R and 2 for h(·) = | · |β (β > 0) or log | · | for
(p, θ) ∈ (0, 1)×R

+ \ {0}. We now present our main result stating a Bahadur type representation

for the sample pth expectile of a subordinated Gaussian process.

Theorem 1 Let {Yi}+∞
i=1 a (centered) stationary Gaussian process with variance 1 and correla-

tion function satisfying ρ(i) ∼ κ|i|−α (κ ∈ R), as |i| → +∞ with α > 0 and with a function h

satisfying [A(h,p)]. Let h(Y) = (h(Y1), . . . , h(Yn)) a sample of n observations of the subordi-

nated process, then, for all p ∈ (0, 1)

Ê (p;h(Y))− Eh(Y )(p) = −ψn

(
Eh(Y )(p);h(Y)

)

ψ′
(
Eh(Y )(p); p

) + oP (rn), (6)

where the sequence rn = rn(α, τ) is defined by

rn =





n−1/2 if ατ > 1

n−1/2 log(n) if ατ = 1

n−ατ/2 if ατ > 1.

Proof. Let us simplify the notation for sake of conciseness: let Ê = Ê(p;h(Y)), E =

Eh(Y )(p), ψn(E) = ψn(Eh(Y )(p);h(Y)) and ψ′(E) = ψ′
h(Y )(Eh(Y )(p); p). The first thing to note

is that the sequence rn corresponds to the short-range or long-range dependence characteristic of

the sequence ψ̃(h(Y1); p, θ), . . . , ψ̃(h(Yn); p, θ). More precisely r2n corresponds to the asymptotic

behavior of Eψn(E)2. Indeed, if (cj)j≥0 denotes the sequence of the Hermite coefficients of the

expansion of ψ̃(·; p,E) in Hermite polynomials (denoted by (Hj(t))j≥0 and normalized in such

a way that E[Hj(Y )Hk(Y )] = j!δjk), we may have using standard developments on Hermite
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polynomials (see e.g. Taqqu (1977))

Eψn(E)2 =
1

n2

n∑

i,j=1

E
[
ψ̃(Yi; p,E)ψ̃(Yj ; p,E)

]

=
1

n2

n∑

i,j=1

∑

k1,k2≥0

ck1ck2

k1!k2!
E [Hk1(Yi)Hk2(Yj)]

=
1

n2

n∑

i,j=1

∑

k≥τ

c2k
k!
ρ(j − i)k

= O
( 1

n

∑

|i|≤n

|ρ(i)|τ

︸ ︷︷ ︸
=:ρn

)
= O(r2n). (7)

Let us define Vn := r−1
n (Ê − E) and Wn(E) := −r−1

n ψn(E)/ψ′(E). We just have to prove

that Vn−Wn(E) converges in probability to 0 as n→ +∞. The proof is based on the application

of Lemma 1 of Ghosh (1971) which consists in satisfying the two following conditions:

(a) for all δ > 0, there exists ε = ε(δ) such that P (|Wn(E)| > ε) < δ.

(b) for all y ∈ R and for all ε > 0

lim
n→+∞

P (Vn ≤ y,Wn(E) ≥ y + ε) = lim
n→+∞

P (Vn ≥ y + ε,Wn(E) ≤ y) = 0.

(a) is in particular fulfilled if we prove that EWn(E)2 = O(1) which follows from (7) since

EWn(E)2 = ψ′(E)−2r−2
n Eψn(E)2 = r−2

n ×O(ρn) = O(1).

(b) We consider only the first limit. The second one follows similar developments. We first

state that the map ψn(·) is decreasing. Indeed, let θ ≤ θ′ and denote by Zi(θ) the variable

|p−1h(yi)≤θ)|.(h(Yi)− θ). If h(Yi) ≤ θ or h(Yi) > θ, we obviously get Zi(θ) > Zi(θ
′) a.s. leading

to the decreasing of ψn(·). And in the in between case, Zi(θ)−Zi(θ
′) = p(θ′− θ)+ θ′−h(Yi) ≥ 0

which leads to the same conclusion. Let y ∈ R, then also using the fact that ψn(Ê) = ψ(E) = 0

and ψ′(E) < 0, we derive

{Vn ≤ y} = {Ê ≤ y × rn + E}

= {ψn(Ê) ≥ ψn(y × rn + E)}

= {ψ(y × rn + E)− ψn(y × rn + E) ≥ ψ(y × rn + E)− ψ(E)}

= {Wn(y × rn + E) ≤ yn},

where yn = r−1
n ψ′(E)−1(ψ(y × rn + E) − ψ(E)). Under the assumption [A(h,p)], yn → y as

n→ +∞. Now, let Un := ψ′(E) (Wn(E)−Wn(y × rn + E)), explicitly given by

Un =
1

nrn

n∑

i=1

(
ψ̃(Yi; p,E + y × rn)− ψ̃(Yi; p,E)

)
.
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Let cj,n the jth Hermite coefficient of the function r−1
n

(
ψ̃(t; p,E + y × rn)− ψ̃(t; p,E)

)
, then

under the assumption [A(h,p)] and from the dominated convergence theorem we can prove that

cj,n
n→+∞−→ y E

[
|p− 1h(Y )≤E |Hj(Y )

]
=: c̃j .

Therefore for n large enough,

E[U2
n] =

1

n2

n∑

i,j=1

∑

k≥τ

c2k,n
k!

ρ(j − i)k

≤ 2

n

∑

|i|≤n

∑

k≥τ

c̃2k
k!
ρ(i)τ

= O(ρn) = O(r2n)

which leads to the convergence of Un to 0 in probability. For all ε > 0, there exists n0(ε) such

that for all n ≥ n0(ε), yn ≤ y + ε/2. Therefore for n ≥ n0(ε)

P (Vn ≤ y , Wn ≥ y + ε) = P (Wn(y × rn + E) ≤ yn , Wn ≥ y + ε)

≤ P (Wn(y × rn + E) ≤ y + ε/2 , Wn(E) ≥ y + ε)

≤ P (|Wn(y × rn + E)−Wn(E)| ≥ ε/2)

n→+∞→ 0,

which ends the proof.

In the case of short-range dependence, i.e. ατ > 1 then, using the Bahadur type representation

of expectiles, we derive immediately the following asymptotic normality for the sample expectile

and some generalisations. This result is based on standard central limit theorem for means of

subordinated Gaussian stationary processes (Taqqu, 1977; Arcones, 1994).Therefore the proof is

omitted.

Corollary 2

(i) Under the assumptions of Theorem 1 with p ∈ (0, 1) and ατ > 1, then as n→ +∞

√
n
(
Ê (p;h(Y))− Eh(Y )(p)

)
d−→ N (0, σ2(p)),

where

σ2(p) =
1

ψ′
(
Eh(Y )(p); p

)2
∑

i∈Z

∑

k≥τ

ck(p)
2

k!
ρ(i)k

and where ck(p) is the kth Hermite coefficient of the expansion of the function ψ(h(·);Eh(Y )(p); p)

in Hermite polynomials.
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(ii) Let {Y 1
i }+∞

i=1 and {Y 2
i }+∞

i=1 two (centered) stationary Gaussian processes with variances 1

and correlation functions (resp. cross-correlation functions) ρ1, ρ2 (resp. ρ12, ρ21) decreasing

hyperbolically with exponents α1, α2 (resp. α12, α21). Let p ∈ (0, 1), h a function satisfying

[A(h,p)] and let h(Y1) and h(Y2) be the samples of n observations of the two subordinated

samples. If min(α1, α2, α12, α21)× τ > 1, then as n→ +∞

√
n
(
Ê
(
p;h(Y1)

)
− Eh(Y )(p), Ê

(
p;h(Y2)

)
− Eh(Y )(p)

)T d−→ N (0,Σ).

where Σ is the (2, 2) matrix with entries Σab for a, b = 1, 2 given by

Σab =
1

ψ′
(
Eh(Y )(p); p

)2
∑

i∈Z

∑

k≥τ

ck(p)
2

k!
ρab(i)k. (8)

As it was established for sample quantiles (Coeurjolly, 2008), a non standard limit towards a

Rosenblatt process is expected in the other cases (ατ ≤ 1). This case is not considered here.

2.3 Simulations

To illustrate a part of the previous results, we propose a short simulation study in this section.

The latent stationary Gaussian process we consider here is the fractional Gaussian noise with

variance 1, which is obtained by taking the discretized increments from a fractional Brownian

motion. The correlation function of the fractional Gaussian noise with Hurst parameter (or

self-similarity parameter) H ∈ (0, 1) satisfies the hyperbolic decreasing property required in

Theorem 1 with α = 2 − 2H . Discretized sample paths of fractional Brownian motion can be

generated exactly using the embedding circulant matrix method popularized by Wood and Chan

(1994) (see also Coeurjolly (2000)) which is implemented in the R package dvfBm.

Figures 1 and 2 illustrate the convergence of the sample expectiles. Three h functions are

considered: h(·) = (·), (·)2 and log | · |. The related Hermite rank of the function ψ̃ is respectively

1,2 and 2 for these three h functions. The sample size of the simulation is fixed to n = 500. We

can claim the convergence of the sample expectile Ê(p;h(Y )) towards Eh(Y )(p) for all the values

of α (or H), p and for the three functions h considered. If we focus on h(·) = (·), we can also

remark a higher variance of the sample estimates for α = 0.6 compared to α = 1.4. This is in

agreement with the theory since for α = 0.6, ατ = 0.6 < 1 and the rate of convergence is lower

than n−1/2 which means an increasing of the variance. For the two other functions considered,

then ατ is always greater than 1 (it equals either 2.8 or 1.2 in our simulations) and we do not

observe such an increasing of the variance.
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To put emphasis on this last point, Figure 3 shows in log-scale the average (over the 9 order

of expectiles considered in the simulation, i.e. p = 0.1, . . . , 0.9) of the empirical variances in

terms of n for the three h functions and for the two values of α = 0.6 and α = 1.4. We clearly

observe that as soon as ατ > 1, the slope of the curves is close to −1 which agrees with the

result presented in Corollary 2 for example. When h(·) = 1 and α = 0.6, we observe that the

slope is about −0.6 which seems to agree with the convergence in n−ατ which is expected from

Theorem 1.

Figure 1: Boxplots of sample expectiles for expectiles of order p = 0.1, . . . , 0.9 based on m = 500

replications of fractional Gaussian noise with length n = 500 and with Hurst parmeter H = 0.3

(left, α = 1.4) and H = 0.7 (right, α = 0.6). The h functions considered here is the identity

function (with Hermite rank 1). The curves correspond to the theoretical expectile functions for

Y ∼ N (0, 1).
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Figure 2: Boxplots of sample expectiles for expectiles of order p = 0.1, . . . , 0.9 based on m = 500

replications of fractional Gaussian noise with length n = 500 and with Hurst parmeter H = 0.3

(left, α = 1.4) and H = 0.7 (right, α = 0.6). Two h functions with Hermite rank 2 have been

considered here: h(·) = (·)2 (top) and h(·) = log | · | (bottom). The curves correspond to the

theoretical expectile functions for Y 2 (middle) and log |Y | (bottom) where Y ∼ N (0, 1).

11



Figure 3: Means of empirical variances of sample expectiles in terms of n in log-scale based on

m = 500 replications of fractional Gaussian noise with parameters H = 0.3 (left, α = 1.4) and

H = 0.7 (right, α = 0.6). More precisely, we consider the vector of probability (0.1, . . . , 0.9) for

the orders of the expectiles and we compute σ̂2
n = 1/9 × ∑9

i=1 σ̂
2
i,n where σ̂2

i,n is the empirical

variance for the expectile with order i/10 for the sample size n. Three choices of h functions

have been considered: h(·) = (·), (·)2 and log | · |.
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3 Estimation of the Hurst exponent using sample expec-

tiles and discrete variations

3.1 Estimation method and asymptotic results

Let X = (X(i))i=1,...,n be a discretized version of a fractional Brownian motion process and let

a be a filter of length ℓ+ 1 and of order ν ≥ 1 with real components i.e.:

ℓ∑

q=0

qjaq = 0, for j = 0, . . . , ν − 1 and
ℓ∑

q=0

qνaq 6= 0.

Define also Xa to be the series obtained by filtering X with a, then:

Xa (i) =

ℓ∑

q=0

aqX (i− q) , for i ≥ ℓ+ 1

and X̃a as the normalized vector of Xa, i.e.:

X̃a =
Xa

E((Xa(1))2)1/2
.

It should be noticed here that the filtering operation allows to decorrelate the increments of the

discretized version of the fractional Brownian motion process. Indeed, it may be proved (see e.g.

Coeurjolly (2001)) that: ρaH(i) ∼ kH |i|2H−2ν as |i| → +∞.

Consider the sequence (am)m≥1 defined by:

ami =





aj if i = jm

0 otherwise
for i = 0, . . . ,mℓ ,

which is the filter a dilated m times. It has been shown in Coeurjolly (2001, 2008) that:

X̃a
m

=
Xa

m

σm

where σ2
m = m2Hσ2κaH and κaH = −1

2

∑ℓ
q,q′=0 aqaq′ |q − q′|2H .

The following proposition allows us to construct an ordinary least squares (OLS) estimator

of the Hurst exponent H of a fBm process based on sample expectiles.

Proposition 3 Let Ê
(
p;h(Xa

m

)
)
and Ê

(
p;h(X̃a

m

)
)
be the pth order sample expectiles for the

filtered series h(Xa
m

) and h(X̃a
m

) respectively. Here two positive functions h(·) are considered,

namely: h(·) = | · |β for β > 0 and h(·) = log | · |. We have:

Ê
(
p; |Xa

m |β
)
= σβ

mÊ
(
p; |X̃a

m |β)
)

(9)
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and

Ê
(
p; log |Xa

m |
)
=

1

2
log(σ2

m) + Ê
(
p; log |X̃a

m |
)
. (10)

Proof.

We have:

Ê
(
p; |Xa

m |β
)

= argminθ
1

n−mℓ

n−1∑

i=mℓ

|p− 1{|Xa
m(i)|β≤θ}|.(|Xa

m

(i)|β − θ)2

= argminθ
1

n−ml

n−1∑

i=ml

|p− 1{|X̃a
m (i)|β≤ θ

σ
β
m

}|.(|X̃a
m

(i)|β − θ

σβ
m

)2.

Setting θ′ = θ

σβ
m

, the proof of the first relation (9) follows easily. Using the same methodology,

we can demonstrate the result given by equation (10).

Remark 1 It should be stressed here that the scaling relationship relating the theoretical pth

expectiles for the series h(Xa
m

) and h(X̃a
m

) can be obtained directly using the scale equivariance

property (2) for h(·) = | · |β and the location equivariance property (3) for h(·) = log | · |.

Now applying the logarithmic transformation to both sides of (9), we get:

log Ê
(
p; |Xa

m |β
)
= βH log(m) + log

(
σβ(κaH)β/2E|Y |β (p)

)
+ log



Ê
(
p; |X̃a

m |β
)

E|Y |β (p)


 . (11)

On the other hand, (10) can be reformulated in the following way:

Ê
(
p; log |Xa

m |
)
= H log(m) +

1

2
log(σ2κaH) + Elog |Y |(p) +

(
Ê
(
p; log(|X̃a

m |)
)
− Elog |Y |(p))

)
.

(12)

It is noteworthy here that we expect that log Ê
(
p; |X̃a

m |β
)
/E|Y |β (p) and Ê

(
p; log(|X̃a

m |β)
)
−

Elog |Y |(p) to converge towards 0 as n→ ∞. Hence, based on equations (11) and (12), we opt for

an OLS regression scheme. This allows to derive the two following estimators of the hurst index

defined by:

Ĥβ =
AT

β||A||2
(
log Ê

(
p; |Xa

m |β
))

m=1,...,M
, (13)

and

Ĥ log =
AT

||A||2
(
Ê
(
p; log |Xa

m |
))

m=1,...,M
, (14)

whereA is the vector of lengthM with componentsAm = logm− 1
M

∑M
m=1 log(m),m = 1, . . . ,M

for some M ≥ 2 whereas ||z|| for some vector z of length d designates the norm defined by(∑d
i=1 z

2
i

)1/2

. Notice here that Ĥβ and Ĥ log do not depend on σ2.
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We would like to put the stress on the fact that (13) and (14) are really similar to the ones

developed in Coeurjolly (2001, 2008). Indeed, the standard procedure developed in Coeurjolly

(2001) simply consists in replacing the sample expectile by the sample variance (this method will

be denoted by ST in Section 3.2). To deal with outliers, the procedure developed in Coeurjolly

(2008) consists in replacing the sample expectile by either the sample median of (Xa
m

)2 or the

trimmed-means of (Xa
m

)2. These two last methods are denoted by MED and TM in Section 3.2.

Now, we state the asymptotic results for these new estimates based on expectiles.

Proposition 4 Let a a filter with order ν ≥ 2, p ∈ (0, 1), β > 0 then as n→ +∞, Ĥβ and Ĥ log

converge in probability to H. Moreover, the following convergences in distribution hold

√
n
(
Ĥβ −H

)
d−→ N (0, σ2

β) and
√
n
(
Ĥ log −H

)
d−→ N (0, σ2

log),

where

σ2
β =

1

E|Y |β (p)2
× ATΣβA

β2‖A‖4 and σ2
log =

ATΣlogA

‖A‖4

and where the (M,M) matrices Σβ and Σlog are defined by (8).

Proof. We only provide a sketch of the proof. We claim that once Theorem 1 and Corollary 2

are established, the obtention of convergences stated in Proposition 4 are semi-routine. First of

all, let us notice that

Ĥβ −H =
AT

β‖A‖2


log



Ê
(
p; |X̃a

m |β
)

E|Y |β






m=1,...,M

(15)

and

Ĥ log −H =
AT

β‖A‖2
(
Ê
(
p; log |X̃a

m |
)
− Elog |Y |(p)

)
m=1,...,M

. (16)

Since the functions | · |β and log | · | have Hermite rank 2 and since the correlation function of

the stationary sequence X̃a
m

decreases hyperbolically with an exponent α = 2ν − 2H then for

any m ∈ {1, . . . ,M}, Theorem 1 holds with rn = n−1/2 (since ατ > 1 for all H ∈ (0, 1)). This

ensures the convergence in probability of the new estimates.

The cross-correlation between X̃a
m1

and X̃a
m2

is defined by

ρa
m1 ,am2

H (j) =
πa

m1 ,am2

H (j)

πam1 ,am1

H (0)1/2πam2 ,am2

H (0)1/2
with πa

m1 ,am2

H (j) =
ℓ∑

q,r=0

aqar|m1q−m2r+j|2H .
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Lemma 1 in Coeurjolly (2008) states that for all m1,m2 the correlation function ρa
m1 ,am2

H is also

decreasing hyperbolically with an exponent α = 2ν − 2H , then Corollary 2 may be applied to

prove that (
Ê
(
p; |X̃a

m |β
)
− E|Y |β

)
m=1,...,M

d−→ N (0,Σβ) (17)

and (
Ê
(
p; log |X̃a

m |
)
− Elog |Y |

)
m=1,...,M

d−→ N (0,Σlog), (18)

where according to (8), the (M,M) matrices Σβ and Σlog are respectively defined by

Σβ
m1m2

=
1

ψ′
(
E|Y |β (p); p

)2
∑

i∈Z

∑

k≥2

cβk(p)
2

k!
ρa

m1 ,am2

H (i)k (19)

Σlog
m1m2

=
1

ψ′
(
Elog |Y |(p); p

)2
∑

i∈Z

∑

k≥2

clogk (p)2

k!
ρa

m1 ,am2

H (i)k, (20)

where (cβk )k≥2 and (clogk )k≥2 are respectively the Hermite coefficients of the functions | · |β and

log | · |. The convergences (17) and (18) combined with (15) and (16) and the use of the delta-

method (for the convergence of Ĥβ) end the proof.

3.2 A short simulation study

In this section, we investigate the interest of the new estimators based on expectiles. We consider

three different models in our simulations.

(a) standard fBm: non-contaminated fractional Brownian motion.

(b) fBm with additive outliers: we contaminate 5% of the observations of the increments of the

fractional Brownian motion with an independent Gaussian noise such that the SNR of the

considered components equals −20Db.

(c) rounded fBm: we assume the data are given by the integer part of a discretized sample

path of an original fBm.

To fix ideas, Figure 4 provides some examples of discretized sample paths of standard and

contaminated fBm. The simulation results are presented in Tables 1 and 2. For these simulations,

as suggested in Coeurjolly (2001), we chose the filter a = d4 corresponding to the wavelet

Daubechies filter with order 4 (see Daubechies (1992)) and the maximum number of dilated

filtersM = 5. Also, in other simulations not presented here, we have observed that the estimates

Ĥβ perform better than Ĥ log and, among all possible choices of β, the value β = 2 seems to be
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a good compromise. Therefore, we present only the result for this latter estimator, that is Ĥβ

with β = 2.

In a first step, we had observed a quite large sensitivity to the value of the probability p

defining the expectile. In order to have an efficient data-driven procedure, we propose to choose

the probability parameter p via a Monte-Carlo approach as follows:

1. Estimate the parameters H and σ2 using the standard method (the estimation of σ2 is

not described here but it may be found for example in Coeurjolly (2001)). Denote these

estimates Ĥ0 and σ̂2
0 .

2. Generate B = 100 contaminated fBm with Hurst parameter Ĥ0 and scaling coefficient σ̂2
0 ,

define a grid of probabilities (p1, . . . , pP ). For each new replication, we estimate Ĥ0 with

expectiles for all the pi. The optimal p, denoted in the tables by popt, is then defined as

the one achieving the smallest mean squared error (based on the B = 100 replications).

The procedure based on expectiles, denoted E(p) in the results, is compared to the standard

method (ST) and to methods which efficiently deal with outliers, that is methods MED and TM

(the last one is calculated by discarding 5% of the lowest and the highest values of (Xa
m

)2 at

each scale m).

The standard fBm model is used as a control to show that all methods perform well. As

seen in the first two columns of Tables 1 and 2, this is indeed true. All the methods seem to be

asymptotically unbiased and have a variance converging to zero. We can also remark that in this

situation whatever the value of H , estimates based on expectiles exhibit a performance which is

very close to the one of the standard method (wich can also be viewed as the method based on

expectile with p = 0.5). Several types of expectiles are investigated. When the discretized sample

path of the fBm is contaminated by outliers, we recover the results already shown in Coeurjolly

(2008), Achard and Coeurjolly (2010) or Kouamo et al. (2010): methods based on medians or

trimmed-means are very efficient which is in agreement with the fact that quantiles have a finite

gross error sensitivity. The inefficiency of expectiles for such a contamination is also coherent

since expectiles have infinite gross error sensitivity. Finally, the interest of the expectile-based

method can be seen with the rounded fBm corresponding to the last two columns of each table.

In this situation, expectiles are shown to be more efficient in terms of bias and its variance seems

to be not too much affected by this type of strong contamination. We also put the stress on the

interest and efficiency to choose the p value based on a Monte-Carlo approach.
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Figure 4: Examples of discretized sample path of standard fBm (top), fBm with additive outliers

(middle) and rounded fBm (bottom) for n = 500 and with Hurst parameters H = 0.2 (left) and

H = 0.8 (right).
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Standard fBm fBm with additive outliers Rounded fBm

n = 500 n = 5000 n = 500 n = 5000 n = 500 n = 5000

E(p = 0.2) 0.198 (0.033) 0.200 (0.011) 0.280 (0.062) 0.298 (0.024) 0.334 (0.036) 0.337 (0.011)

E(p = 0.4) 0.198 (0.032) 0.200 (0.010) 0.288 (0.068) 0.309 (0.026) 0.298 (0.034) 0.300 (0.011)

E(p = 0.6) 0.199 (0.032) 0.200 (0.010) 0.298 (0.076) 0.323 (0.029) 0.284 (0.035) 0.287 (0.011)

E(p = 0.8) 0.199 (0.033) 0.200 (0.010) 0.311 (0.086) 0.349 (0.034) 0.275 (0.037) 0.277 (0.011)

E(p = popt) 0.199 (0.035) 0.200 (0.011) 0.314 (0.085) 0.368 (0.033) 0.249 (0.040) 0.240 (0.012)

MED 0.197 (0.048) 0.200 (0.016) 0.227 (0.050) 0.227 (0.016) 0.451 (0.158) 0.361 (0.119)

TM 0.206 (0.034) 0.201 (0.011) 0.222 (0.052) 0.225 (0.016) 0.294 (0.038) 0.289 (0.012)

ST 0.199 (0.032) 0.200 (0.010) 0.293 (0.072) 0.315 (0.027) 0.290 (0.034) 0.292 (0.011)

Table 1: Empirical means and standard deviations of H estimates based on m = 500 replications

of non-contaminated and contaminated fractional Brownian motions with scale parameter σ = .5,

Hurst parameter H = 0.2 and sample size n = 500, 5000 are given between brackets. Methods

based on expectiles, quantiles and trimmed-means as well as the standard method are considered.

The filter a correspond to the Daubechies wavelet filter with order 4 (two zero moments) and we

set M1 = 1,M2 = 5. According to a sample size and a model, the method achieving the lowest

mean squared error is printed in bold.
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