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Abstract

Direct numerical simulation data shows that the variance of the coupling term in passive scalar

advection by a random velocity field is smaller than it would be if the velocity and scalar fields

were statistically independent. This effect is analogous to the ‘depression of nonlinearity’ in hy-

drodynamic turbulence. We show that the trends observed in the numerical data are qualitatively

consistent with the predictions of closure theories related to Kraichnan’s Direct Interaction Ap-

proximation. The phenomenon is demonstrated over a range of Prandtl numbers. In the inertial-

convective range the depletion is approximately constant with respect to wavenumber. The effect

is weaker in the Batchelor range.

PACS numbers: 47.27.Ak, 47.27.eb, 47.51.+a
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I. INTRODUCTION

The modal amplitudes in the Fourier decomposition of any homogeneous random field are

uncorrelated. In a Gaussian random field, they are also statistically independent; but in ho-

mogeneous turbulence, nonlinearity produces statistical dependence among the amplitudes.

The simplest consequence is that the third-order correlations representing energy transfer,

which would vanish in a Gaussian random field, do not vanish in homogeneous turbulence.

Some further consequences of statistical dependence of Fourier amplitudes in homo-

geneous turbulence were considered in an important paper by Chen, Herring, Kerr and

Kraichnan,[1] which compared various fourth-order moments with the corresponding mo-

ments in a Gaussian random field with the same second-order properties as the turbulent

velocity field (the construction of such Gaussian surrogates is sometimes called ‘kinematic

simulation’ [2, 3]). Among the quantities investigated by Chen et al. was the variance of

the fluctuating nonlinear term in the Navier-Stokes equations,

〈|u(x, t) · ∇u(x, t) +∇p(x, t)|2〉. (1)

It had been observed [4] that this quantity is significantly smaller in a turbulent velocity

field than in its Gaussian counterpart; that is, there is a significant (negative) cumulant

contribution to the fourth order moment defined by Eq. (1). One of the mechanisms which

can lead to this depression of nonlinearity is the preferential alignment of velocity and

vorticity, also called Beltramization.[5] However, this preferential alignment is not the only

non-trivial mechanism which is consistent with the depression of nonlinearity; we will return

to this issue in Section V.

From the viewpoint of a Fourier analysis of the spectrum of the correlation in Eq. (1),

the depression of nonlinearity is a consequence of statistical dependence of the uncorrelated

Fourier amplitudes that enter the expression for this spectrum. One finding of Chen et al.

was that this phenomenon appears to be well predicted by Kraichnan’s [6] Direct Interaction

Approximation (DIA). The successful prediction of a nonzero fourth-order cumulant by a

closure theory might seem unexpected or even surprising, since from the very beginning,

closure theories have been associated with cumulant discard hypotheses;[7] the debate be-

tween Kraichnan and Proudman at the famous 1961 Marseille conference [8] centered on

this issue.[24] The computation of a nonzero cumulant and the favorable comparison with
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data perhaps vindicate, somewhat after the fact, Kraichnan’s assertion at that time,[9] that

DIA does not assume (or imply) the vanishing of fourth order cumulants.

In the present work we will show that an effect of statistical dependence of Fourier

amplitudes analogous to depression of nonlinearity also appears in the advection of a passive

scalar θ. Thus, we consider the scalar analog of the moment in Eq. (1): the variance of

fluctuations of the bilinear scalar-velocity coupling

〈(u(x, t) · ∇θ(x, t))2〉. (2)

Herring and Métais [10] have shown that this quantity is smaller in passive scalar advection

than it would be if the Fourier amplitudes of velocity and scalar were statistically indepen-

dent, even at the more refined level of Fourier spectra. We confirm their conclusions using

higher resolution DNS data, and following Chen et al., show that closures related to the

DIA predict trends consistent with the data.

A different perspective on non-Gaussian properties of turbulence is provided by recent

detailed studies of the properties of realizations of turbulent velocity fields. Such studies,

made possible by high resolution direct numerical simulations,[11] reveal the existence of

flow structures such as vortex tubes and sheets, and spotty regions of very high dissipation;

in comparison, since a Gaussian random field is simply space- and time-filtered white noise,

it is expected to be essentially ‘featureless.’ This viewpoint makes the existence of such

structures the most significant effect of non-Gaussianity in turbulence. In the present paper

we focus on a statistical characterization of non-Gaussian features in turbulence and do

not investigate features of the instantaneous flow realizations. We suggest, however, that

investigating the connections between this physical space perspective and the viewpoint of

dependence among Fourier modes can be a useful direction for future research.

The paper is organized as follows: in Section II the theoretical considerations leading

to closure expressions for the mean-square advection term are given. Section III presents

details of the numerical evaluation of cumulant corrections. Section IV presents comparisons

between closure computations and direct numerical simulation data. Section V contains a

discussion of the results. Conclusions are drawn in Section VI.

3



II. ANALYSIS

We consider the advection of a passive scalar in homogeneous turbulence. The governing

equation is

[

∂t + αk2
]

θ(k, t) = −iki

∫

dpdq δ(k − p− q)θ(p, t)ui(q, t) + fθ(k, t), (3)

where α denotes the scalar diffusivity, and fθ(k, t) is a source of scalar fluctuations that

we will assume confined to the large scales. By analogy to Chen et al., we consider the

contribution of each Fourier mode to the variance of the velocity-scalar coupling term. It is

defined by

Wθ(k, t) = kikj

∫

dp dq

∫

dp′ dq′ δ(k − p− q)δ(k + p′ + q′)〈θ(p, t)ui(q, t)θ(p
′, t)uj(q

′, t)〉

(4)

The integral of Wθ(k, t) over all wavevectors is equal to the moment in Eq. (2),

∫

dk Wθ(k, t) = 〈[u(x, t) · ∇θ(x, t)]2〉. (5)

Without introducing any assumptions, we can write

Wθ(k, t) = WG
θ (k, t) +WC

θ (k, t), (6)

where WG
θ (k, t) is evaluated assuming the independence of the Fourier amplitudes in Eq.

(4) and WC
θ (k, t) is a cumulant correction. In the following we will consider the isotropic

case. In that case the velocity and scalar are uncorrelated. Then

WG
θ (k, t) = kikj

∫

dp dq δ(k − p− q) Uθ(p, t)Uij(q, t), (7)

where

Uij(k, t) = 〈ui(k, t)uj(−k, t)〉 (8)

is the single-time velocity autocorrelation and

Uθ(k, t) = 〈θ(k, t)θ(−k, t)〉 (9)

is the single-time scalar autocorrelation.

We now analyze Wθ using Kraichnan’s DIA theory. There are many equivalent formu-

lations of this theory, but for this analysis, the Langevin model formulation [12] is the
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most convenient. The DIA Langevin model for passive scalar advection replaces the exact

governing equation Eq. (3) by

[

∂t + αk2
]

θ(k, t)+

∫ t

0

ds ηθ(k; t, s)θ(k, s) = −iki

∫

dpdq δ(k − p− q)ξθ(p, t)ξi(q, t)+fθ(k, t),

(10)

where ξθ and ξi are independent Gaussian random variables with the same two-time corre-

lation functions as θ and ui:

〈ξθ(k, t)ξθ(−k, t′)〉 = 〈θ(k, t)θ(−k, t′)〉 = Uθ(k; t, t
′) (11)

〈ξi(k, t)ξj(−k, t′)〉 = 〈ui(k, t)uj(−k, t′)〉 = Uij(k; t, t
′) (12)

and the damping function ηθ is defined as

ηθ(k; t, t
′) = kikj

∫

dp dq δ(k − p− q) Gθ(p; t, t
′)Uij(q; t, t

′). (13)

Here, Gθ is the response function, defined as the inverse of the (formally) linear operator on

the left side of Eq. (10). This linearity allows us to write, ignoring the contribution of the

scalar source term,

θ(k, t) = −iki

∫ t

0

ds Gθ(k; t, s)

∫

dpdq δ(k − p− q)ξθ(p, s)ξi(q, s). (14)

This brings up an important feature of DIA, namely that it is not closed in terms of the

correlation function alone. The introduction of the response function is one major contri-

bution of DIA to turbulence theory.[25] DIA provides equations of motion for both Gθ and

the correlation function Uθ related to the model Eq. (10). We refer to [13] for details.

Paraphrasing Kraichnan’s own description of DIA, we see that it first replaces the nonlin-

ear coupling by a random forcing by surrogate statistically independent random fields with

the same second-order properties as the actual fields; this step suppresses any statistical de-

pendence among Fourier modes that develops under the exact evolution. These correlations

are then modeled by the damping provided by ηθ; then the transfer of scalar fluctuations

between modes is treated in DIA as the result of this damping acting against the forcing.

Perhaps the most important qualitative feature to note is that the theory requires two-

time statistics: this complication is inevitable given that DIA attempts to describe complex

bilinear interactions by means of second-order statistics alone.
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Thus, DIA can be described as the replacement

−iki

∫

dpdq δ(k − p− q)θ(p, t)ui(q, t) → −

[
∫ t

0

ds ηθ(k; t, s)θ(k, s)

+iki

∫

dpdq δ(k − p− q)ξθ(p, t)ξi(q, t)

]

, (15)

where the arrow simply indicates modeling; at this point, there is no assertion about an

‘approximation.’ Then the DIA model for the variance of the advection term is the variance

of the right side of Eq. (15):

〈

∣

∣

∣

∣

∫ t

0

ds ηθ(k; t, s)θ(k, s) + iki

∫

dpdq δ(k − p− q)ξθ(p, t)ξi(q, t)

∣

∣

∣

∣

2
〉

=

∫ t

0

ds

∫ t

0

ds′ ηθ(k; t, s)ηθ(k; t, s
′)〈θ(k, s)θ(−k, s′)〉 (16)

−2iki

∫

dpdq δ(k − p− q)

∫ t

0

ds ηθ(k; t, s) 〈ξθ(−p, t)ξi(−q, t)θ(k, s)〉 (17)

+kikj

∫

dpdq

∫

dp′dq′ δ(k − p− q)δ(k − p′ − q′)〈ξθ(p, t)ξi(q, t)ξθ(−p′, t)ξj(−q′, t)〉.(18)

The rules for correlations of Gaussian variables, and the relations Eqs. (11) and (12) give

for the term in Eq. (18),

kikj

∫

dpdq

∫

dp′dq′ δ(k − p− q)δ(−k − p′ − q′)〈ξθ(p, t)ξi(q, t)ξθ(p
′, t)ξi(q

′, t)〉

= kikj

∫

dpdq δ(k − p− q)Uθ(p, t)Uij(q, t) = WG
θ (k, t), (19)

so that, as was evident from its definition, this term simply reproduces the Gaussian contri-

bution Eq. (7). The remaining terms are cumulant corrections. Obviously, the term in Eq.

(16) is simply

∫ t

0

ds

∫ t

0

ds′ ηθ(k; t, s)ηθ(k; t, s
′)〈θ(k, s)θ(−k, s′)〉

= kikjkmkn

∫ t

0

ds

∫ t

0

ds′
∫

dp dq δ(k − p− q)

∫

dp′ dq′ δ(k − p′ − q′) ×

Gθ(p; t, s)Uij(q; t, s)Gθ(p
′; t, s′)Umn(q

′; t, s′)Uθ(k; s, s
′), (20)

where we have used the definition Eq. (13) of ηθ.

The term in Eq. (17) is evaluated by expressing θ in terms of the ξθ and ξi using Eq.
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(14), so that

−2iki

∫

dpdq δ(k − p− q)

∫ t

0

ds ηθ(k; t, s) 〈ξθ(−p, t)ξi(−q, t)θ(k, s)〉

= −2iki(−ikj)

∫

dpdq

∫

dp′′dq′′ δ(k − p− q)δ(k − p′′ − q′′)

∫ t

0

ds

∫ s

0

ds′ ηθ(k; t, s)Gθ(k; s, s
′)×

〈ξθ(−p, t)ξi(−q, t)ξθ(p
′′, s′)ξj(q

′′, s′)〉

= −2kikjkmkn

∫

dpdq

∫

dp′dq′ δ(k − p− q)δ(k − p′ − q′)

∫ t

0

ds

∫ s

0

ds′ ×

Gθ(p
′; t, s)Umn(q

′; t, s)Gθ(k; s, s
′)Uθ(p; t, s

′)Uij(q; t, s
′). (21)

The cumulant contribution WC
θ is the sum of the results of Eqs. (20) and (21). But to

express the result in the most transparent form, it will be useful to reformulate Eq. (20)

somewhat: abbreviating the integrand for simplicity,

∫ t

0

ds

∫ t

0

ds′ I(p, q,p′, q′; t, s, s′) =

(
∫ t

0

ds

∫ s

0

ds′ +

∫ t

0

ds

∫ t

s

ds′
)

I(p, q,p′, q′; t, s, s′)

=

(

∫ t

0

ds

∫ s

0

ds′ +

∫ t

0

ds′
∫ s′

0

ds

)

I(p, q,p′, q′; t, s, s′), (22)

where the order of integration has been interchanged in the second term. Since the integrand

is invariant under the simultaneous interchanges of s, s′ and p, p′, we obviously have

∫ t

0

ds

∫ t

0

ds′ I(p, q,p′, q′; t, s, s′) = 2

∫ t

0

ds

∫ s

0

ds′ I(p, q,p′, q′; t, s, s′), (23)

so we can write

∫ t

0

ds

∫ t

0

ds′ ηθ(k; t, s)ηθ(k; t, s
′)〈θ(k, s)θ(−k, s′)〉

= 2kikjkmkn

∫ t

0

ds

∫ s

0

ds′
∫

dp dq δ(k − p− q)

∫

dp′ dq′ δ(k − p′ − q′) ×

Gθ(p; t, s)Uij(q; t, s)Gθ(p
′; t, s′)Umn(q

′; t, s′)Uθ(k; s, s
′). (24)

Interchanging indices (ij) and (mn) and the wavevector arguments (p, q) and (p′, q′) and

adding the result of Eq. (21), we obtain

WC
θ (k, t) = −2kikjkmkn

∫

dp dq

∫

dp′ dq′ δ(k − p− q)δ(k − p′ − q′)×

∫ t

0

ds

∫ s

0

ds′ Uij(q; t, s)Umn(q
′; t, s′)×

[Gθ(p; t, s)Gθ(p
′; t, s′)Uθ(k; s, s

′)−Gθ(p
′; t, s)Gθ(k; s, s

′)Uθ(p; t, s
′)] . (25)
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This expression makes clear an important property of the DIA cumulant correction, namely

that it vanishes identically, independently of the velocity field, in the scalar non-diffusive

truncated ensemble when diffusivity α = 0 and a maximum wavenumber is imposed on the

scalar fluctuations. This equilibrium ensemble is Gaussian, therefore all cumulants vanish.

The proof follows from the properties of this system, that the scalar field is in steady-state

equipartition, so that Uθ(k, t) is a constant, and the fluctuation-dissipation relation

Uθ(k; t, t
′) = Uθ(k)[Gθ(k; t, t

′) +Gθ(k; t
′, t)] (26)

holds. (Note that the response function is causal: Gθ(k; t, t
′) = 0 for t′ > t.) Substituting

these relations in Eq. (25) shows at once that WC
θ ≡ 0 independently of the velocity field,

as required. We remark that this conclusion is a nontrivial check of the DIA calculation,

since DIA only treats moments, and the multipoint probability density functions play no

explicit role.

It is easily verified that the same result holds for the cumulant corrections to the mean-

square nonlinearity in the analysis of the velocity field.[1]

III. NUMERICAL EVALUATION OF THE DIA CUMULANT CORRECTIONS

At this point, we introduce the assumption that the velocity field is time stationary and

that the scalar field is maintained in a steady state by a scalar source term. Then numerical

evaluation is greatly simplified by expressing the results in terms of spectra rather than

correlations. If Wθ(k) depends only on k = |k|, then the corresponding spectrum is

wθ(k) =

∮

dS(k) Wθ(k) = 4πk2Wθ(k) (27)

and, corresponding to Eq. (6), we have

wθ(k) = wG
θ (k) + wC

θ (k). (28)

We introduce the usual energy and scalar fluctuation spectra by

Uij(k) =
1

4πk2
E(k)(δij − k−2kikj) Uθ(k) =

1

2πk2
Eθ(k). (29)

With these simplifications, Eq. (7) can be reformulated, following procedures that are

standard in the closure literature, as

wG
θ (k) = k3

∫

∆

(1− z2)E(p)Eθ(q)
dp

p

dq

q
. (30)
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where, as usual, the integration region ∆ indicates that the wavenumbers k, p, q are the sides

of a triangle and z is the cosine of the angle between the sides of lengths k and p. The time

integrations in Eq. (25) are evaluated by replacing the two-time quantities by functions of

time difference only, then passing to the steady state limit t → ∞. Since we wanted to

be able to compute the cumulants under a variety of conditions, we found it expedient to

make the double time integrations of Eq. (25) analytically computable by assuming simple

exponential time-dependence

Gθ(k; t− t′) = e−ηθ(k)(t−t′)H(t− t′), Uθ(k; t− t′) = Uθ(k)e
−ηθ(k)|t−t′|,

Uij(k; t− t′) = Uij(k)e
−ηθ(k)|t−t′|. (31)

As usual, H(s) is the ‘Heaviside function’ equal to one for s > 0 and zero otherwise; we

have also introduced a ‘fluctuation-dissipation’ relation in which the damping function ηθ

is the same in the scalar response function Gθ and two-time correlation function Uθ. The

very commonly introduced exponential ansatz for the two-time dependence is also made

by Herring and Métais; we emphasize that we use it entirely in the interest of analytical

simplicity, and no assertion is made that it approximates the two-time response that would

actually be predicted by DIA. But since two-time statistics enter our results only after

integration over all time-differences, any resulting errors are unlikely to be qualitatively

important.

After making all of these simplifications, the cumulant spectrum is evaluated as

wC
θ (k) =

1

2

∫

∆

dp

p

dq

q

∫

∆′

dp′

p′
dq′

q′
(1− z2)kq2E(p)(1− z′2)kq′2E(p′)×

[

(Ξkpqp′q′ + Ξkp′q′pq)Eθ(k)− 2Ξkpqp′q′(k/q)
2Eθ(q)

]

, (32)

where ∆′ indicates that the wavenumbers k, p′, q′ are the sides of a triangle, z′ is the cosine

of the angle between the sides of lengths k and p′, and the time integrals yield

Ξkpqp′q′ =
1

ηθ(k) + η(p′) + ηθ(q′)

1

η(p) + ηθ(q) + η(p′) + ηθ(q′)
. (33)

The spectra E(k) and Eθ(k) are evaluated using EDQNM (Eddy-Damped Quasi-Normal

Markovian) closures [14, 15]
[

∂

∂t
+ 2νk2

]

E(k) =

∫

∆

Θ(k, p, q) [xy + z3]pE(q)
[

k2E(p)− p2E(k)
] dpdq

pq
+ F (k) (34)

[

∂

∂t
+ 2αk2

]

Eθ(k) =

∫

∆

Θθ(k, p, q) [1− y2]kE(q)
[

k2Eθ(p)− p2Eθ(k)
] dpdq

pq
+ Fθ(k), (35)
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in which F (k) and Fθ(k) are external forcing terms confined to the smallest wavenumbers

(Both F (k) and Fθ(k) are unity for k ≤ 2 and zero elsewhere), x is the cosine of the angle

between the sides of lengths p and q, and y is the cosine of the angle between the sides of

lengths k and q. The triad relaxation times Θ(k, p, q) and Θθ(k, p, q) are

Θ =
1

η(k) + η(p) + η(q)
, Θθ =

1

ηθ(k) + η(p) + ηθ(q)
. (36)

We use the (inverse) time-scales

η(k) = λ

√

∫ k

0

E(r)dr + νk2, ηθ(k) = λθ

√

∫ k

0

E(r)dr + αk2 (37)

and we set the constants λ = λθ = 0.5. Note that η and ηθ are the same quantities

that appear in Eq. (31). An interesting perspective for future work would be the use of

a Lagrangian two-time theory [16, 17] or a self-consistent Markovian closure [18, 19] to

evaluate the cumulants, which would avoid the introduction of adjustable constants and ad-

hoc formulation of damping time-scales. Computations are carried out on a logarithmically

spaced grid with 36 gridpoints per octave and results are evaluated when a steady state is

reached.

IV. NUMERICAL COMPARISONS

In this section, we confirm the reduction of mean-square advection in DNS data,[10] and

compare the results with closure predictions. We have computed the scalar spectrum and

energy spectrum by closure theory as described in the previous section and the parame-

ters have been chosen to match the DNS as closely as possible. The DNS database used

is from high resolution (10243 gridpoint) pseudospectral direct numerical simulations of a

passive scalar advected by isotropic turbulence;[20]. The force terms for the velocity and

scalar fluctuations are random-Gaussian and delta-correlated in time (and solenoidal for the

velocity forcing), acting in the wave-number range 1 ≤ k ≤ 2. In these simulations the

Reynolds number based on the Taylor microscale is equal to 427 and the Prandtl number

Pr = ν/α = 1. The resolution is higher than that used in the simulations of both Herring

and Métais[10] and Chen et al.[1].

Using DNS data, wθ(k) can be determined from Eqs. (4) and (27). The contribution

wG
θ (k) is obtained by randomizing the phases of the Fourier amplitudes of θ(x, t); this ran-

domization will yield scalar fields with statistically independent Fourier amplitudes without

10
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FIG. 1: DNS and theoretical results for the scalar spectra in isotropic turbulence at a Taylor-scale

Reynolds number of 427 and Pr = 1. In the inset the energy spectra are shown.
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FIG. 2: DNS and theoretical results in isotropic turbulence at a Taylor-scale Reynolds number

of 427 and Pr = 1. Left: spectrum of the mean square advection term of the scalar equation in

isotropic turbulence. Also shown are the Gaussian spectra (thin lines). Right: ratio of the spectra

to the Gaussian spectra.

changing the wavenumber spectra. This independence, not the probability density func-

tion itself, is the key property for us. The fields are therefore random-phase fields and the

amplitude statistics are not necessarily Gaussian.

Figure 1 compares the scalar variance spectra in DNS and the closure computations at

Rλ = 427 and Pr = 1. The inset shows the energy spectra. The wavenumber of these results
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is normalized by the Kolmogorov scale, which is equal to the Batchelor scale for unit Prandtl

number. Good agreement is observed between the DNS results and the EDQNM results. A

Corrsin-Obukhov inertial range for the scalar spectrum and a Kolmogorov inertial range for

the energy spectrum, both approximately proportional to k−5/3 are clearly observed.

In Figure 2, left, the spectrum of the advection term wθ(k) is shown, as well as its

Gaussian estimate. These spectra, for both closure and DNS, display an increasing trend in

the inertial range and peak around the Batchelor scale. The peak of wθ(k) is smaller then

the Gaussian value, which indicates a reduction of mean-square advection. This reduction

is more clearly observed in Figure 2, right, in which we display the measure of the departure

from Gaussianity, the ratio wθ(k)/w
G
θ (k) [10]; the analogous quantity for the velocity field

was introduced by Kraichnan and Panda.[4] The ratio departs noticeably from the Gaussian

values over the entire wavenumber range, and a significant depression of the wθ(k) compared

to the Gaussian value is observed at scales larger than the forcing scales. The region where

wθ(k)/w
G
θ (k) < 1 extends over the entire inertial-convective range. These general trends,

including the observation that wθ(k)/w
G
θ (k) > 1 at large scales, are consistent with previous

observations.[1, 10]. The results in Figures 1 and 2 show that the closure yields results in

good agreement with the DNS results.

The ratio of the measured variance to the value assuming independence of the Fourier

amplitudes,

ρθ =
〈(u · ∇θ)2〉

〈|u|2〉〈|∇θ|2〉
=

∫ ∞

0

wθ(k)dk
∫ ∞

0

wG
θ (k)dk

(38)

is also of interest. Figure 2 (left) shows that the spectrum wθ(k) is an increasing function

of the wavenumber, consequently its integral is dominated by the small scales, where the

variance is reduced. The DNS value for ρθ is 0.41 and the closure value is 0.54. These values

are consistent with the previous reported results: Herring and Métais[10] quotes a value for

ρθ of about 0.5 in the scalar case, and Kraichnan and Panda [4] reported the value 0.57

for the comparable ratio of the mean-square nonlinearity. We conclude that the effect we

investigate is observed in DNS and closure and is of comparable magnitude in both.

In problems involving passive scalars, the dependence on Prandtl number is always of

interest. We investigate the effect of the Prandtl number on the reduction of mean-square

advection by varying the Prandtl number from 0.01 to 100 at a fixed Reynolds number
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FIG. 3: Closure results for the spectrum of the scalar variance at a Taylor-scale Reynolds number

of 427 and Pr = 0.01, .., 100. Inset: energy spectrum.
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Rλ = 427. There is no DNS data available for these cases, in particular for the high Prandtl

number cases, so we limit the discussion to closure predictions. Figures 3 and 4 show the

closure results. In Figure 3 we show the scalar spectrum for five different Prandtl numbers.

At low Prandtl numbers the k−17/3 spectrum is observed and at large Pr we observe a k−1

spectrum [21, 22].

Figure 4 (left) shows the spectrum of the advection term. For all Pr, this spectrum is an

increasing function of the wavenumber. At the highest value of Pr, the spectrum seems to

approach its Gaussian estimate. Figure 4 (right) shows wθ(k)/w
G
θ (k). It is clearly observed

that the spectrum is under its Gaussian value for all scales, except the forced scales, but the

precise behavior seems to depend strongly on the Prandtl number. In the inertial-convective

range the depletion is approximately constant with respect to wavenumber. The effect is

weaker in the Batchelor range.

The numerical values of ρθ are displayed in Figure 5. The value ranges from a minimum of

ρθ = 0.38 at Pr = 0.1 to a maximum of ρθ = 0.8 at Pr = 100. This change is non-negligible,

but the trend is rather weak if we consider that Pr changes over four orders of magnitude

in our simulations. The reduction of advection seems thus an effect which is persistent, but

becomes weaker for high values of the Prandtl number. Its amount is mainly determined by

the precise behavior of the cumulant-spectrum around the scale where the spectrum wθ(k)

peaks.

V. DISCUSSION: MECHANISMS OF THE SUPPRESSION OF ADVECTION

The analysis of the variance of the nonlinear term in the Navier-Stokes equations by Chen

et al.[1] was motivated in part by the suggestion of Levich and Tsinober [23] of the possibility

of Beltramization, the preferential alignment of velocity and vorticity in turbulence. Since

the nonlinear term can be written as

∇−2∇×∇× (ω(x)× u(x)), (39)

with ω = ∇ × u the vorticity, this alignment will obviously reduce the magnitude of the

nonlinear term, and hence will also reduce the intensity of its fluctuations, which is consistent

with the observed depression of nonlinearity.

Another mechanism consistent with depression of nonlinearity was identified by Kraich-
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FIG. 6: Left, top: velocity Beltramization; bottom: depression of nonlinearity through alignment

of the Lamb-vector and the wavevector. Right: depletion of advection in physical and Fourier

space. The scalar flux vector is defined as γ = uθ.

nan and Panda,[4] who noted that the nonlinearity also vanishes if the Lamb vector

λ(x) ≡ ω(x) × u(x) is a potential field (λ(x) = ∇Φ(x)), so that it lies in the null-space

of the double curl operator in Eq. (39). These two possibilities are illustrated in Figure 6

(left). Both possibilities can contribute to the depression of nonlinearity in turbulent flows.

The situation is much simpler for scalar advection. For the passive scalar, the equivalent

of Beltramization would be the identical vanishing of the scalar flux vector γ = uθ; this

trivial case can be ignored. The only non-trivial way to reduce the advection term is for the

scalar flux vector to be divergence-free, so that

∇ · γ = u · ∇θ ≈ 0. (40)

This corresponds to the case in which the velocity is perpendicular to the scalar gradient,

as illustrated in Figure 6 (right). It is evident that if the variance of the advection term is

smaller in passive scalar advection than in a jointly Gaussian random field, then u and ∇θ

must be more likely to be orthogonal in passive scalar advection than in a jointly Gaussian

random field.

VI. CONCLUSIONS

We have shown that the closure computation of the fourth order cumulant that enters in

the depression of nonlinearity in hydrodynamic turbulence [1] can be applied to passive scalar

advection. Corresponding to depression of nonlinearity is a reduction of the variance of the
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advection term, which is connected to a tendency of the velocity vector to align perpendicular

to the scalar gradient. Study at the level of Fourier spectra shows that the reduction of

advection is approximately constant in the inertial-convective range and becomes weaker

in the viscous-convective (Batchelor) range. Closure related to the DIA gives satisfactory

predictions in comparison to DNS data. Closure predicts that the phenomenon persists at

both low and high Prandtl numbers although there is a weak but noticeable tendency for

the mean-square advection to return to the Gaussian value as the Prandtl number increases.
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