
HAL Id: hal-00605406
https://hal.science/hal-00605406v2

Submitted on 21 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identifying codes in line graphs
Florent Foucaud, Sylvain Gravier, Reza Naserasr, Aline Parreau, Petru

Valicov

To cite this version:
Florent Foucaud, Sylvain Gravier, Reza Naserasr, Aline Parreau, Petru Valicov. Identifying codes in
line graphs. Journal of Graph Theory, 2013, 73 (4), pp.425-448. �10.1002/jgt.21686�. �hal-00605406v2�

https://hal.science/hal-00605406v2
https://hal.archives-ouvertes.fr

Identifying codes in line graphsI

Florent Foucauda, Sylvain Gravierb, Reza Naserasra,b, Aline Parreaub, Petru Valicova

aLaBRI - Université de Bordeaux - CNRS, 351 cours de la Libération, 33405 Talence cedex, France.
bInstitut Fourier 100, rue des Maths, BP 74, 38402 St Martin d’Hères cedex, France.

Abstract

An identifying code of a graph is a subset of its vertices such that every vertex of the graph is uniquely
identified by the set of its neighbours within the code. We study the edge-identifying code problem, i.e.
the identifying code problem in line graphs. If γID(G) denotes the size of a minimum identifying code of an
identifiable graph G, we show that the usual bound γID(G) ≥ ⌈log2(n+1)⌉, where n denotes the order of G,
can be improved to Θ(

√
n) in the class of line graphs. Moreover, this bound is tight. We also prove that the

upper bound γID(L(G)) ≤ 2|V (G)|−5, where L(G) is the line graph of G, holds (with two exceptions). This
implies that a conjecture of R. Klasing, A. Kosowski, A. Raspaud and the first author holds for a subclass
of line graphs. Finally, we show that the edge-identifying code problem is NP-complete, even for the class
of planar bipartite graphs of maximum degree 3 and arbitrarily large girth.

Keywords: Identifying codes, Dominating sets, Line graphs, NP-completeness.

1. Introduction

An identifying code of a graph G is a subset C of vertices of G such that for each vertex x, the set of
vertices in C at distance at most 1 from x, is nonempty and uniquely identifies x. More formally:

Definition 1. Given a graph G, a subset C of V (G) is an identifying code of G if C is both:

• a dominating set of G, i.e. for each vertex v ∈ V (G), N [v] ∩ C 6= ∅, and

• a separating set of G, i.e. for each pair u, v ∈ V (G) (u 6= v), N [u] ∩ C 6= N [v] ∩ C.

Here N [v] is the closed neighbourhood of v in G. This concept was introduced in 1998 in [13] and is a
well-studied one (see e.g. [1, 4, 5, 8, 9, 12, 16]).

A vertex x is a twin of another vertex y if N [x] = N [y]. A graph G is called twin-free if no vertex has
a twin. The first observation regarding the concept of identifying codes is that a graph is identifiable if and
only if it is twin-free. As usual for many other graph theory concepts, a natural problem in the study of
identifying codes is to find one of a minimum size. Given a graph G, the smallest size of an identifying code
of G is called identifying code number of G and denoted by γID(G). The main lines of research here are to
find the exact value of γID(G) for interesting graph classes, to approximate it and to give lower or upper
bounds in terms of simpler graph parameters. Examples of classic results are as follows:

Theorem 2. [12] If G is a twin-free graph with at least two edges, then γID(G) ≤ |V (G)| − 1.

The collection of all twin-free graphs reaching this bound is classified in [8].
A better upper bound in terms of both number of vertices and maximum degree ∆(G) of a graph G is

also conjectured:

IThis research is supported by the ANR Project IDEA • ANR-08-EMER-007, 2009-2011.

Preprint submitted to J. of Graph Theory September 21, 2012

Conjecture 3. [9] There exists a constant c such that for every twin-free graph G,

γID(G) ≤ |V (G)| − |V (G)|
∆(G)

+ c.

Some support for this conjecture is provided in [8, 9, 10].
The parameter γID(G) is also bounded below by a function of |V (G)| where equality holds for infinitely

many graphs.

Theorem 4. [13] For any twin-free graph G, γID(G) ≥ ⌈log2(|V (G)|+ 1)⌉.

The collection of all graphs attaining this lower bound is classified in [16].
From a computational point of view, it is shown that given a graph G, finding the exact value of γID(G)

is in the class of NP-hard problems. It in fact remains NP-hard for many subclasses of graphs [1, 4].
Furthermore, approximating γID(G) is not easy either as shown in [14, 11, 17]: it is NP-hard to approximate
γID(G) within a o(log(|V (G)|))-factor.

The problem of finding identifying codes in graphs can be viewed as a special case of the more general
combinatorial problem of finding transversals in hypergraphs (a transversal is a set of vertices intersecting
each hyperedge). More precisely, to each graph G one can associate the hypergraph H(G) whose vertices are
vertices of G and whose hyperedges are all the sets of the form N [v] and N [u]⊖N [v] (symmetric difference
of N [u] and N [v]). Finding an identifying code for G is then equivalent to finding a transversal for H(G).
Though the identifying code problem is captured by this more general problem, the structural properties
of the graph from which the hypergraph is built allow one to obtain stronger results which are not true
for general hypergraphs. In this work, we show that even stronger results can be obtained if we consider
hypergraphs coming from line graphs. These stronger results follow from the new perspective of identifying
edges by edges.

Given a graph G and an edge e of G, we define N [e] to be the set of edges adjacent to e together with
e itself. An edge-identifying code of a graph G is a subset CE of edges such that for each edge e the set
N [e] ∩ CE is nonempty and uniquely determines e. More formally:

Definition 5. Given a graph G, a subset CE of E(G) is an edge-identifying code of G if CE is both:

• an edge-dominating set of G, i.e. for each edge e ∈ E(G), N [e] ∩ CE 6= ∅, and

• an edge-separating set of G, i.e. for each pair e, f ∈ E(G) (e 6= f), N [e] ∩ CE 6= N [f] ∩ CE.

We will say that an edge e separates edges f and g if either e belongs to N [f] but not to N [g], or vice-
versa. When considering edge-identifying codes we will assume the edge set of the graph is nonempty. The
line graph L(G) of a graph G is the graph with vertex set E(G), where two vertices of L(G) are adjacent if
the corresponding edges are adjacent in G. It is easily observed that the notion of edge-identifying code of
G is equivalent to the notion of (vertex-)identifying code of the line graph of G. Thus a graph G admits an
edge-identifying code if and only if L(G) is twin-free. A pair of twins in L(G) can correspond in G to a pair
of: 1. parallel edges; 2. adjacent edges whose non-common ends are of degree 1; 3. adjacent edges whose non
common ends are of degree 2 but they are connected to each other. Hence we will consider simple graphs
only. A pair of edges of type 2 or type 3 is called pendant (see Figure 1) and thus a graph is edge-identifiable
if and only if it is pendant-free. The smallest size of an edge-identifying code of an edge-identifiable graph
G is denoted by γEID(G) and is called edge-identifying code number of G.

As we will use it often throughout the paper, given a graph G and a set SE of its edges, we define the
graph induced by SE to be the graph with the set of all endpoints of the edges of SE as its vertex set and
SE as its edge set.

To warm up, we notice that five edges of a perfect matching of the Petersen graph P , form an edge-
identifying code of this graph (see Figure 2). The lower bound of Theorem 4 proves that γEID(P) ≥ 4.
Later, by improving this bound for line graphs, we will see that in fact γEID(P) = 5 (see Theorem 12 and
Theorem 16).

2

G G

Figure 1: Two possibilities for a pair of pendant edges (thick edges) in G

Figure 2: An edge-identifying code of the Petersen graph

The outline of the paper is as follows: in Section 2, we introduce some useful lemmas and give the
edge-identifying code number of some basic families of graphs. In Section 3, we improve the general lower
bound for the class of line graphs, then in Section 4 we improve the upper bound. Finally, in Section 5
we show that determining γEID(G) is also in the class of NP-hard problems even when restricted to planar
subcubic bipartite graphs of arbitrarily large girth, but the problem is 4-approximable in polynomial time.

2. Preliminaries

In this section we first give some easy tools which help for finding minimum-size edge-identifying codes
of graphs. We then apply these tools to determine the exact values of γEID for some basic families of graphs.
We recall that Cn is the cycle on n vertices, Pn is the path on n vertices, Kn is the complete graph on n
vertices and Kn,m is the complete bipartite graph with parts of size n and m. We recall that the girth of a
graph is the length of one of its shortest cycles. An edge cover of a graph G is a subset SE of its edges such
that the union of the endpoints of SE equals V (G). A matching is a set of pairwise non-adjacent edges, and
a perfect matching is a matching which is also an edge cover.

Lemma 6. Let G be a simple graph with girth at least 5. Let CE be an edge cover of G such that the graph
(V (G), CE) is pendant-free. Then CE is an edge-identifying code of G. In particular, if G has a perfect
matching M , M is an edge-identifying code of G.

Proof. The code CE is an edge-dominating set of G because it covers all the vertices of G. To complete the
proof, we need to prove that CE is also an edge-separating set. Let e1, e2 be two edges of G. If e1, e2 ∈ CE ,
then CE ∩N [e1] 6= CE ∩N [e2] because (V (G), CE) is pendant-free. Otherwise, we can assume that e2 /∈ CE .
If e1 ∈ CE and CE ∩N [e1] = CE ∩N [e2], then e2 must be adjacent to e1. Let u be their common vertex and
e2 = uv. Since CE is an edge cover, there is an edge e3 ∈ CE which is incident to v. However, e3 cannot be
adjacent to e1 because G is triangle-free. Therefore e3 separates e1 and e2. Finally, we assume neither of e1
and e2 is in CE . Then there are two edges of CE , say e3 and e4, adjacent to the two ends of e1. But since G
has neither C3 nor C4 as a subgraph, e3 and e4 cannot both be adjacent to e2 and, therefore, e1 and e2 are
separated.

3

We note that in the previous proof the absence of C4 is only used when the endpoints of e1, e2, e3, e4
could induce a C4 which would not be adjacent to any other edge of CE . Thus, we have the following stronger
statement:

Lemma 7. Let G be a triangle-free graph. Let CE be a subset of edges of G that covers vertices of G, such
that CE is pendant-free. If for no pair xy, uv of isolated edges in CE, the set {x, y, u, v} induces a C4 in G,
then CE is an edge-identifying code of G.

We will also need the following lemma about pendant-free trees.

Lemma 8. If T is a pendant-free tree on more than two vertices, then T has two vertices of degree 1, each
adjacent to a vertex of degree 2.

Proof. Take a longest path in T , then it is easy to verify that both ends of this path satisfy the condition
of the lemma.

We are now ready to determine the value of γEID of some families of graphs.

Proposition 9. We have γEID(Kn) =

{

5, if n = 4 or 5

n− 1, if n ≥ 6
. Furthermore, let CE be an edge-identifying

code of Kn of size n− 1 (n ≥ 6) and let G1, G2, . . . , Gk be the connected components of (V (Kn), CE). Then
exactly one component, say Gi, is isomorphic to K1 and every other component Gj (j 6= i) is isomorphic to
a cycle of length at least 5.

Proof. We note that L(K4) is isomorphic to K6 \M , where M is a perfect matching of K6. One can check
that this graph has identifying code number 5. By a case analysis, we can show that K5 does not admit
an edge-identifying code of size 4. Indeed, since an edge-identifying code must be pendant-free, there are
only two graphs possible for an edge-identifying code of this size: a path P5 or a cycle C4. In both cases,
there are edges which are not separated. Edges of a C5 form an edge-identifying code of size 5 of K5, hence
γEID(K5) = 5. Furthermore, it is not difficult to check that the set of edges of a cycle of length n− 1 (n ≥ 6)
identifies all edges of Kn. Thus we have γEID(Kn) ≤ n − 1. The fact that γEID(Kn) ≥ n − 1 follows from
the second part of the theorem which is proved as follows.

Let CE be an edge-identifying code of Kn of size n − 1 or less (n ≥ 6). Let G′ = (V (Kn), CE). Let
G1, G2, . . . , Gk be the connected components of G′. Since G′ has n vertices but at most n− 1 edges, at least
one component of G′ is a tree. On the other hand we claim that at most one of these components can be a
tree and that such tree would be isomorphic to K1. Let Gi be a tree. First we show that |V (Gi)| ≤ 2. If
not, by Lemma 8 there is a vertex x of degree 1 in Gi with a neighbour u of degree 2. Let v be the other
neighbour of u. Then the edges xv and uv are not identified. If V (Gi) = {x, y} then for any other vertex u,
the edges ux and uy are not separated. Finally, if there are Gi and Gj with V (Gi) = {x} and V (Gj) = {y},
then the edge xy is not dominated by CE . Thus exactly one component of G′, say G1, is a tree and G1

∼= K1.
This implies that γEID(Kn) ≥ n − 1. Therefore, γEID(Kn) = n − 1 and, furthermore, each Gi, (i ≥ 2), is a
graph with a unique cycle.

It remains to prove that each Gi, i ≥ 2 is isomorphic to a cycle of length at least 5. By contradiction
suppose one of these graphs, say G2, is not isomorphic to a cycle. Since G2 has a unique cycle, it must
contain a vertex v of degree 1. Let t be the neighbour of v in G2 and let u be the vertex of G1. Then the
edges tv and tu are not separated by CE. Finally we note that such cycle cannot be of length 3 or 4, because
C3 is not pendant-free and in C4, the two chords (which are edges of Kn) would not be separated.

Proposition 10. γEID(Kn,n) =
⌈

3n−1
2

⌉

for n ≥ 3.

Proof. Let X and Y be the two parts of Kn,n. If n is even, then let {Ai}
n
2

i=1 be a partition of vertices such
that each Ai has exactly two vertices in X and two in Y . Let Gi be a subgraph of Kn,n isomorphic to P4

and with Ai as its vertices. If n is odd, let A1 be of size 2 and having exactly one element from X and one
element from Y and let also G1 be the subgraph (isomorphic to K2) induced by A1. Then we define Ai’s

4

and Gi’s (i ≥ 2) as in the previous case (for Kn−1,n−1). By Lemma 7, the set of edges in the Gi’s induces
an edge-identifying code of Kn,n of size

⌈

3n−1
2

⌉

. To complete the proof we show that there cannot be any
smaller edge-identifying code.

Let CE be an edge-identifying code of G. Let G1, G2, . . . , Gk be the connected components of (X∪Y, CE).
The proof will be completed if we show that except possibly one, every Gi must have at least four vertices.
To prove this claim we first note that there is no connected pendant-free graph on three vertices. We now
suppose G1 and G2 are both of order 2. Then the two edges connecting G1 and G2 are not separated. If
G1 is of order 1 and G2 is of order 2, then the edge connecting G1 to G2 is not identified from the edge of
G2. If G1 and G2 are both of order 1, then both of their vertices must be in the same part of the graph as
otherwise the edge connecting them is not dominated by CE. But now for any vertex x which is not in the
same part as G1 and G2, the edges connecting x to G1 and G2 are not separated.

The following examples show that if true, the upper bound of Conjecture 3 is tight even in the class of
line graphs. These examples were first introduced in [9] but without using the notion of edge-identifying
codes.

Proposition 11. Let G be a k-regular multigraph (k ≥ 3). Let G1 be obtained from G by subdividing each

edge exactly once. Then γEID(G1) = (k − 1)|V (G)| = |E(G1)| − |E(G1)|
2k−2 = |V (L(G1))| − |V (L(G1))|

∆(L(G1))
.

Proof. Let x be a vertex of G1 of degree at least 3 (an original vertex from G). For each edge exi incident to
x, let e′i

x
be the edge adjacent to exi but not incident to x and let Ax = {e′xi }ki=1. Then {Ax | x ∈ V (G)} is a

partition of E(G1). For any edge-identifying code CE of G1, if two elements of Ax, say e′x1 and e′x2 , are both
not in CE, then ex1 and ex2 are not separated. Thus |CE ∩Ax| ≥ k− 1. This proves that |CE | ≥ (k− 1)|V (G)|.

We now build an edge-identifying code of this size by choosing one edge of each set Ax, in such a way
that for each vertex x originally from G, exactly one edge incident to x is chosen. Then the set of non-chosen
edges will be an edge-identifying code. To select this set of edges, one can consider the incident bipartite
multigraph H of G: the vertex set of H is V ∪V ′ where V and V ′ are copies of V (G) and there is an edge xx′

in H if x ∈ V , x′ ∈ V ′ and xx′ ∈ E(G). The multigraph H is k-regular and bipartite, thus it has a perfect
matching M . For each vertex x ∈ V , let ρ(x) be the vertex in V ′ such that xρ(x) ∈M . Let now e′xM be the
edge of G1 that belongs to the set Ax and is incident to ρ(x) (in G1). Finally, let CE = E(G1)\{e′xM}x∈V (G).
Exactly one element of each Ax is not in CE , and for each vertex x, exactly one edge incident to x is not in
CE. This implies that CE is an edge-identifying code.

For a simple example of the previous construction, let G be the multigraph on two vertices with k parallel
edges. Then G1

∼= K2,n and therefore γEID(K2,n) = 2n− 2.
Hypercubes, being the natural ground of code-like structures, have been a center of focus for determining

the smallest size of their identifying codes. The hypercube of dimension d, denoted Hd, is a graph whose
vertices are elements of Zd

2 with two vertices being adjacent if their difference is in the standard basis:
{(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}. The hypercube of dimension d can also be viewed as the
cartesian product of the hypercube of dimension d − 1 and K2. In this way of building Hd we add a new
coordinate to the left of the vectors representing the vertices of Hd−1.

The problem of determining the identifying code number of hypercubes has proved to be a challenging
one from both theoretical and computational points of view. Today the precise identifying code number
is known for only seven hypercubes [3]. In contrast, we show here that finding the edge-identifying code
number of a hypercube is not so difficult. We first introduce the following general theorem.

Theorem 12. Let G be a connected pendant-free graph. We have:

γEID(G) ≥ |V (G)|
2

.

Proof. Let CE be an edge-identifying code of G. Let G′ be the subgraph induced by CE and let G1, . . . , Gs

be the connected components of G′. Let ni be the order of Gi and ki be its size (thus
∑s

i=1 ki = |CE |). Let
X = V (G) \ V (G′) and n′

i be the number of vertices in X that are joined to a vertex of Gi in G. We show

5

that n′
i + ni ≤ 2ki. If ki = 1, then clearly n′

i = 0 and n′
i + ni = 2 = 2ki. If Gi is a tree, then ni = ki + 1

and, by Lemma 8, Gi must have two vertices of degree 2 each having a vertex of degree 1 as a neighbour.
Then no vertex of X can be adjacent to one of these two vertices in G. Moreover, each other vertex of Gi

can be adjacent to at most one vertex in X . So n′
i ≤ ki − 1, and finally ni + n′

i ≤ 2ki. If Gi is not at tree,
we have ni ≤ ki and n′

i ≤ ni and, therefore, n′
i + ni ≤ 2ki. Finally, since G is connected, each vertex in X

is connected to at least one Gi. Hence by counting the number vertices of G we have:

|V (G)| ≤
s

∑

i=1

(ni + n′
i) ≤ 2

s
∑

i=1

ki ≤ 2|CE|.

Theorem 12 together with Lemma 7 leads to the following result:

Corollary 13. Let G be a triangle-free pendant-free graph. Suppose G has a perfect matching M with the
property that for any pair xy, uv of edges in M , the set {x, y, u, v} does not induce a C4. Then M is an

optimal edge-identifying code and γEID(G) = |V (G)|
2 .

We note that in particular, if the girth of a graph G is at least 5 and G admits a perfect matching M ,
then M is a minimum-size identifying code of G. For example, the edge-identifying code of the Petersen
graph given in Figure 2 is optimal.

As another application of Corollary 13, we give the edge-identifying code of all hypercubes of dimension
d ≥ 4.

Proposition 14. For d ≥ 4, we have γEID(Hd) = 2d−1.

Proof. By Theorem 12, we have γEID(Hd) ≥ 2d−1. We will construct by induction a perfect matching Md

of Hd such that no pair of edges induces a C4, for d ≥ 4. By Lemma 7, Md will be an edge-identifying code
of Hd, proving the result. Two such matchings of H4, which are also disjoint, are presented in Figure 3.
The matching M5 can now be built using each of these two matchings of H4 — one matching per copy of
H4 in H5. It is easily verified that M5 has the required property. Furthermore, M5 has the extra property
that for each edge uv of M5, u and v do not differ on the first coordinate (recall that we build H5 from
H4 by adding a new coordinate on the left, hence the first coordinate is a the new one). We now build the
matching Md of Hd (d ≥ 6) from Md−1 in such a way that no two edges of Md belong to a 4-cycle in Hd

and that for each edge uv of Md, u and v do not differ on the first coordinate. To do this, let H′
1 be the

copy of Hd−1 in Hd induced by the set of vertices whose first coordinate is 0. Similarly, let H′
2 be the copy

of Hd−1 in Hd induced by the other vertices. Let M′
1 be a copy of Md−1 in H′

1 and let M′
2 be a matching

in H′
2 obtained from M′

1 by the following transformation: for e = uv ∈ M′
1, define ψ(e) = σ(u)σ(v) where

σ(x) = x+(1, 0, 0, . . . , 0). It is now easy to check that the new matching Md = M′
1∪M′

2 has both properties
we need.

We note that the formula of Proposition 14 does not hold for d = 2 and d = 3. For d = 2 the hypercube
H2 is isomorphic to C4 and thus γEID(H2) = 3. For d = 3, we note that an identifying code of size 4, if
it exists, must be a matching with no pair of edges belonging to a 4-cycle. But this is not possible. An
identifying code of size 5 is shown in Figure 4, therefore γEID(H3) = 5.

3. Lower Bounds

Recall from Theorem 4 that γID(G) is bounded below by a function of the order of G. As mentioned
before, this bound is tight. Let C be a set of c isolated vertices. We can build a graph G of order 2c − 1
such that C is an identifying code of G. To this end, for every subset X of C with |X | ≥ 2, we associate
a new vertex which is joined to all vertices in X and only to those vertices. Then, it is easily seen that C
is an identifying code of this graph. However, the graph built in this way is far from being a line graph as
it contains K1,t, even for large values of t. In fact this lower bound turns out to be far from being tight

6

Figure 3: Two disjoint edge-identifying codes of H4

Figure 4: An optimal edge-identifying code of H3

for the family of line graphs. In this section we give a tight lower bound on the size of an edge-identifying
code of a graph in terms of the number of its edges. Equivalently we have a lower bound for the size of an
identifying code in a line graph in terms of its order. This lower bound is of the order Θ(

√
n) and thus is a

much improved lower bound with respect to the general bound of Theorem 4.
Let G be a pendant-free graph and let CE be an edge-identifying code of G. To avoid trivialities such

as having isolated vertices we may assume G is connected. We note that this does not mean that the
subgraph induced by CE is also connected, in fact we observe almost the contrary, i.e. in most cases, an
edge-identifying code of a minimum size will induce a disconnected subgraph of G. We first prove a lower
bound for the case when an edge-identifying code induces a connected subgraph.

Theorem 15. If an edge-identifying code CE of a nontrivial graph G induces a connected subgraph of G
which is not isomorphic to K2, then G has at most

(|CE |+2
2

)

− 4 edges. Furthermore, equality can only hold
if CE induces a path.

Proof. Let G′ be the subgraph induced by CE . Since we assumed G′ is connected, and since G′ is pendant-
free, it cannot have three vertices. Since we assumed G′ ≇ K2, we conclude that G′ has at least four
vertices. For each vertex x of G′, let Cx

E be the set of all edges incident to x in G′. Let e = uv be an
edge of G, then one or both of u and v must be in V (G′). Therefore, depending on which of these vertices
belong to CE , e is uniquely determined by either Cu

E (if u ∈ V (G′) and v /∈ V (G′)), or Cv
E (if u /∈ V (G′)

and v ∈ V (G′)), or Cu
E ∪ Cv

E (if both u, v ∈ V (G′)). The total number of sets of this form can be at most

|V (G′)| +
(|V (G′)|

2

)

=
(|V (G′)|+1

2

)

, thus if |V (G′)| ≤ |CE | we are done. Otherwise, since G′ is connected,
|V (G′)| = |CE |+ 1 and G′ is a pendant-free tree on at least 4 vertices. If v is a vertex of degree 1 adjacent
to u, then we have Cv

E = {uv} but uv ∈ Cu
E and, therefore, Cu

E = Cu
E ∪ Cv

E . On the other hand, by Lemma 8,
there are two vertices of degree 2 that have neighbours of degree 1. Let u be such a vertex, let v be its
neighbour of degree 1 and x be its other neighbour. Then Cv

E = {uv} and Cu
E = {uv, ux} and, therefore,

Cu
E ∪Cx

E = Cv
E ∪Cx

E . Thus the total number of distinct sets of the form Cy
E or Cy

E ∪Cz
E is at most

(|CE |+2
2

)

− 4.
But if equality holds there can only be two vertices of degree 1 in G′ and hence CE is a path.

7

We note that if this bound is tight, then G′ is a path. Furthermore, for each path Pk+1 one can build
many graphs which have Pk+1 as an edge-identifying code and have

(

k+2
2

)

− 4 edges. The set of all these
graphs will be denoted by Jk. An example of such a graph is obtained from Kk+2 by removing a certain
set of four edges as shown in Figure 5. Note that every other member of Jk is obtained from the previous
example by splitting the vertex that does not belong to Pk+1 (but without adding any new edge).

a (k + 1)-clique with

two edges removed· · ·

Figure 5: An extremal graph of Jk with its connected edge-identifying code

Next we consider the case when the subgraph induced by CE is not necessarily connected.

Theorem 16. Let G be a pendant-free graph and let CE be an edge-identifying code of G with |CE | = k.
Then we have:

|E(G)| ≤











(4

3
k

2

)

, if k ≡ 0 mod 3
(4

3
(k−1)+1

2

)

+ 1, if k ≡ 1 mod 3
(4

3
(k−2)+2

2

)

+ 2, if k ≡ 2 mod 3.

Proof. Let G be a graph with maximum number of edges among all graphs with γEID(G) = k. It can be
easily checked that for k = 1, 2 or 3, the maximum number of edges of G is 1, 3 or 6 respectively. For k ≥ 4,
we prove a slightly stronger statement: given an edge-identifying code CE of G of size k, all but at most two
of the connected components of the subgraph induced by CE must be isomorphic to P4. When there is only
one component not isomorphic to P4, it must be isomorphic to a P2, a P5 or a P6. If there are two such
components, then they can be two copies of P2, a P2 with a P5, or just two copies of P5. This depends on
the value of k mod 3.

To prove our claim let G be a graph as defined above, let CE be an edge-identifying code of size k of
G and let G′ be the subgraph induced by CE . For each vertex u ∈ V (G) \ V (G′), we can assume that u
has degree 1: if u has degree d > 1, with neighbours v1, . . . , vd necessarily in V (G′), then replace u by d
vertices of degree 1: u1, . . . , ud, connecting ui to vi. Then the number of edges does not change, and the
code CE remains an edge-identifying code of size k, thus it suffices to prove our claim for this new graph.
Let G′

1, G
′
2, . . . , G

′
r be the connected components of G′ with |V (G′

i)| = n′
i. For each i ∈ {1, . . . , r}, let Gi be

the graph induced by the vertices of G′
i and the vertices connected to G′

i only. To each vertex x of G′ we
assign the set Cx

E of edges in G′ incident to x.
We first note that no G′

i can be of order 3, because there is no connected pendant-free graph on three
vertices. If u and v are vertices from two disjoint components of G′ with each component being of order at
least 4, then the pair u, v is uniquely determined by Cu

E ∪ Cv
E , thus by maximality of G, uv is an edge of G.

If a component of G′ is isomorphic to K2, assuming u and u′ are vertices of this component, then for any
other vertex v of G′ exactly one of uv or u′v is an edge of G.

We now claim that each G′
i with n′

i ≥ 4 is a path. By contradiction, if a G′
i is not a path, we replace

Gi by a member Jn′

i
−1 of Jn′

i
−1 with Pn′

i
being its edge-identifying code. Then we join each vertex of Pn′

i

to each vertex of each G′
j (with j 6= i and n′

j ≥ 4) and to exactly one vertex of each Gj with n′
j = 2. We

note that the new graph still admits an edge-identifying code of size k. However, it has more edges than G.

8

Indeed, while the number of edges connecting G′
i and the G′

j ’s (j 6= i) is not decreased, the number of edges
in Gi is increased when we replace Gi by Jn′

i
−1. This can be seen by applying Theorem 15 on Gi.

We now show that none of the G′
i’s can have more than six vertices. By contradiction, suppose G′

1 is a
component with n′

1 ≥ 7 vertices (thus n′
1 − 1 edges). We build a new graph G∗

1 from G as follows. We take
disjoint copies of J3 ∈ J3 and Jn′

1
−4 ∈ Jn′

1
−4 with P4 and Pn′

1
−3 being, respectively, their edge-identifying

codes. We now let V (G∗
1) = V (J3) ∪ V (Jn′

1
−4) ∪ (V (G) \ V (G1)). The edges of J3, Jn′

1
−4 and G −G1 are

also edges of G∗
1. We then add edges between these three parts as follows. We join every vertex of P4 to

each vertex of Pn′

1
−3. For i = 2, 3, . . . , r if n′

i ≥ 4, join every vertex of G′
i to each vertex of P4 ∪ Pn′

1
−3. If

n′
i = 2, we choose exactly one vertex of G′

i and join it to each vertex of P4 ∪ Pn′

1
−3. The construction of

G∗
1 ensures that it still admits an edge-identifying code of size k, but it has more edges than G. In fact,

the number of edges is increased in two ways. First, because P4 ∪ Pn′

1
−3 has one more vertex than G′

1, the
number of edges connecting P4 ∪ Pn′

1
−3 to G − G1 has increased (unless r = 1). More importantly, the

number of edges induced by J3 ∪ Jn′

1
−4 is 6 +

(

n′

1
−2
2

)

− 4 + 4 × (n′
1 − 3) =

n′

1

2

2 +
3n′

1

2 − 7 which is strictly

more than |E(G′
1)| = n′

1

2

2 +
n′

1

2 − 4 for n′
1 ≥ 3. Since n′

1 ≥ 7, this contradicts the maximality of G.
With a similar method, the following transformations strictly increase the number of edges while the

new graph still admits an edge-identifying code of size k:

1. Two components of G′ each on six vertices transform into two graphs of J3 and a graph of J4.

2. One component of G′ on six vertices and another component on five vertices transform into three
graphs of J3.

3. One component of G′ on six vertices and one on two vertices transform into two graphs of J3.

4. Three components of G′ each on five vertices transform into four graphs of J3.

5. Two components of G′ on five vertices and one on two vertices transform into three graphs of J3.

6. A component of G′ on five vertices and two on two vertices transform into two graphs of J4.

7. Three components of G′ each isomorphic to P2 transform into a graph of J3.

For the proof of case 7, we observe that the number of edges identified by the three P2’s would be
the same as the number of edges identified by the P4. However, since k ≥ 4, there must be some other
component in G′. Moreover, the number of vertices of the three P2’s, which are joined to the vertices of
the other components of G′, is three, whereas the number of these vertices of the P4, is four. Hence the
maximality of G is contradicted.

We note that cases 1, 2 and 3 imply that if a component of G′ is isomorphic to P6, every other component
is isomorphic to P4. Then cases 4, 5 and 6 imply that if a component is isomorphic to P5, then at most one
other component is not isomorphic to P4 and such component is necessarily either a P2 or a P5. Finally,
case 7 shows that there can be at most two components both isomorphic to P2.

We conclude that each of the components of G′ is isomorphic to P4 except for possibly two of them.
These exceptions are dependent on the value of k mod 3 as we described. The formulas of the theorem can
be derived using these structural properties of G. For instance, in the case k ≡ 0 mod 3, each component
of G′ is isomorphic to P4. There are k

3 such components. For each component G′
i, there are six edges

in the graph Gi. That gives 2k edges. The other edges of G are edges between two components of G′.

By maximality of G, between two components of G′, there are exactly 16 edges. There are

(

k
3

2

)

pairs of

components of G′. Hence, the number of edges in G is:

2k + 16

(

k
3

2

)

=

(4
3k

2

)

.

The other cases can be proved with the same method.

9

We note that this bound is tight and the examples were in fact built inside the proof. More precisely,
for k ≡ 0 mod 3 we take k

3 disjoint copies of elements of J3 each having a P4 as an edge-identifying code.
We then add an edge between each pair of vertices coming from two distinct such P4’s. We note that the
union of these P4’s is a minimum edge-identifying code of the graph. If k 6≡ 0 mod 3, then we build a similar
construction. This time we use elements from J3 with at most two exceptions that are elements of J4 or
J5.

The above theorem can be restated in the language of line graphs as follows.

Corollary 17. Let G be a twin-free line graph on n ≥ 4 vertices. Then we have γID(G) ≥ 3
√
2

4

√
n.

Proof. Suppose G is the line graph of a pendant-free graph H (L(H) = G). Let k = γID(G) = γEID(H),
and let n be the number of vertices of G (n = |E(H)|). Then, after solving the quadratic inequalities of
Theorem 16 for k, we have:

k ≥3

8
+

3
√
8n+ 1

8
, for k ≡ 0 mod 3,

k ≥5

8
+

3
√
8n− 7

8
, for k ≡ 1 mod 3,

k ≥3

8
+

3
√
8n− 15

8
, for k ≡ 2 mod 3.

It is then easy to check that the right-hand side of each of the three inequalities is at least as 3
√
2

4

√
n for

n ≥ 3.

Remark. Note that the lower bound of γID(G) ≥ Θ(
√

|V (G)|), which holds for the class of line graphs,
is also implied by Theorem 12. However, the bound of 17 is more precise. In [2], Beineke characterized
line graphs by a list of nine forbidden induced subgraphs. Considering Beineke’s characterization, the lower
bound of Corollary 17 can be restated as follows: γID(G) ≥ Θ(

√

|V (G)|) holds if G has no induced subgraph
from Beineke’s list. It is then natural to ask what is a minimal list of forbidden induced subgraphs for which
a similar claim would hold. Note that the claw graph, K1,3, belongs to Beineke’s list of forbidden subgraphs.

However, we remark that the bound γID(G) ≥ Θ(
√

|V (G)|) does not hold for the class of claw-free graphs.
Examples can be built as follows: let A be a set of size k and let B be the set of nonempty subsets of A.
Let G be the graph built on A ∪ B, where A and B each induce a complete graph and a vertex a of A is
joined to a vertex b of B if a ∈ b. This graph is claw-free and it is easy to find an identifying code of size at
most 2k = Θ(log |V (G)|) in G.

4. Upper bounds

The most natural question in the study of identifying codes in graphs is to find an identifying code as
small as possible. A general bound, only in terms of the number of vertices of a graph, is provided by
Theorem 2. Furthermore, the class of all graphs with γID(G) = |V (G)| − 1 is classified in [8]. It is easy to
check that none but six of these graphs are line graphs. Thus we have the following corollary (where G ⊲⊳ H
denotes the complete join of graphs G and H):

Corollary 18. If G is a twin-free line graph with G /∈ {P3, P4, C4, P4 ⊲⊳ K1, C4 ⊲⊳ K1,L(K4)}, then we
have γID(G) ≤ |V (G)| − 2.

Since γEID(K2,n) = 2n− 2, γID(L(K2,n)) = |V (L(K2,n))| − 2 and the bound of Corollary 18 is tight for
an infinite family of graphs. Conjecture 3 proposes a better bound in terms of both the number of vertices
and the maximum degree of a graph. As pointed out in Proposition 11, most of the known extremal graphs
for Conjecture 3 are line graphs. In this section, after proving some general bound for the edge-identifying

10

code number of a pendant-free graph we will show that Conjecture 3 holds for the class of line graphs of
high enough density.

We recall that a graph on n vertices is 2-degenerated if its vertices can be ordered v1, v2, . . . , vn such
that each vertex vi is joined to at most two vertices in {v1, v2, . . . , vi−1}. Our main idea for proving upper
bounds is to show that given a pendant-free graph G, any (inclusionwise) minimal edge-identifying code CE
induces a 2-degenerated subgraph of G and hence |CE | ≤ 2|V (G)| − 3. Our proofs are constructive and one
could build such small edge-identifying codes.

Theorem 19. Let G be a pendant-free graph and let CE be a minimal edge-identifying code of G. Then G′,
the subgraph induced by CE, is 2-degenerated.

Proof. Let uv be an edge of G′ with dG′(u), dG′(v) ≥ 3. By minimality of CE the subset C′ = CE − uv of
E(G) is not an edge-identifying code of G. By the choice of uv, C′ is still an edge-dominating set, thus there
must be two edges, e1 and e2, that are not separated by C′. Hence one of them, say e1, is incident either to
u or to v (possibly to both) and the other one (e2) is incident to neither one.

We consider two cases: either e1 = uv or e1 is incident to only one of u and v. In the first case, e2 is
adjacent to every edge of C′ which uv is adjacent to. Since for each vertex of uv there are at least two edges
in C′ incident to this vertex, the subgraph induced by u, v and the vertices of e2 must be isomorphic to K4

and there should be no other edge of C′ incident to any vertex of this K4 (see Figure 6(a)).
In the other case, suppose e1 is adjacent to uv at u. Let x and y be two neighbours of u in G′ other

than v. Then it follows that e2 = xy and, therefore, dG′(u) = 3. Let z be the other end of e1. We consider
two subcases: either z /∈ {x, y}, or, without loss of generality, z = x. Suppose z /∈ {x, y}. Recall that uv is
the only edge separating e1 and e2, but e1 must be separated from ux. Thus zy ∈ CE . Similarly, e1 must
be separated from uy, so zx ∈ CE . Furthermore, dG′(x) = dG′(y) = dG′(z) = 2 and {x, y, z, u} induces a C4

in G′ (see Figure 6(b)). Now suppose e1 = ux, since uv is the only edge separating e1 and e2, then uy and
possibly xy are the only edges in G′ incident to y, so dG′(y) ≤ 2 and dG′(u) = 3 (see Figures 6(c) and 6(d)).

u v

e2

e1

(a)

u

x

y z

v

··
·

e2

e1

(b)

u

y z = x

v

··
·

e2

e1

(c)

u

y z = x

v

··
·

e2

e1

(d)

Figure 6: Case distinctions in the proof of Theorem 19. Black vertices have fixed degree in G′. Thick edges belong to CE .

To summarize, we proved that given an edge uv, in a minimal edge-identifying code CE , we have one of
the following cases.

• One of u or v is of degree at most 2 in G′.

• Edge uv is an edge of a connected component of G′ isomorphic to K−
4 (that is K4 with an edge

removed), see Figure 6(a).

• dG′(u) = 3 (considering the symmetry between u and v) in which case either u is incident to a C4

whose other vertices are of degree 2 in G′ (Figure 6(b)), or to a vertex of degree 1 in G′ (Figure 6(c))
or to a triangle with one vertex y of degree 2 in G′ and y is not adjacent to v (Figure 6(d)).

In either case, there exists a vertex x of degree at most 2 in G′ such that when x is removed, at least
one of the vertices u, v has degree at most 2 in the remaining subgraph of G′. In this way we can define an
order of elimination of the vertices of G′ showing that G′ is 2-degenerated.

11

By further analysis of our proof we prove the following:

Corollary 20. If G is a pendant-free graph on n vertices not isomorphic toK4 or K−
4 , then γEID(G) ≤ 2n−5.

Proof. We first prove that if G is a pendant-free graph on n vertices not isomorphic to K4, then γEID(G) ≤
2n − 4. Let CE be a minimal edge-identifying code and let G′ be the subgraph induced by CE . Then, by
Theorem 19, G′ is 2-degenerated. Let vn, vn−1, . . . , v1 be a sequence of vertices of G′ obtained by a process
of eliminating vertices of degree at most 2. Since v1 and v2 can induce at most a K2, we notice that there
could only be at most 2n−3 edges in G′. Furthermore, if there are exactly 2n−3 edges in G′, then v1v2 ∈ CE
and each vertex vi, 3 ≤ i ≤ n, has exactly two neighbours in {v1, . . . , vi−1}. Hence, the subgraph induced by
{v1, v2, v3, v4} is isomorphic to K−

4 . Considering symmetries, there are three possibilities for the subgraph
induced by {v1, . . . , v5} (recall that v5 is of degree 2 in this subgraph): see Figure 7 . In each of these three
cases, the edge uv has both ends of degree at least 3. Thus, we can apply the argument used in the proof
of Theorem 19 on G′ and uv, showing that we have one of the four configurations of Figure 6. But none of
them matches with the configurations of Figure 7, a contradiction.

u v

u v
u

v

Figure 7: The three maximal 2-degenerated graphs on five vertices

Now we show that if γEID(G) = 2n− 4, then G ∼= K−
4 . This can be easily checked if G has at most four

vertices, so we may assume n ≥ 5. Let G′′ be the subgraph of G′ induced by {v1, v2, v3, v4, v5}. If G′′ has
seven edges, then it is isomorphic to one of the graphs of Figure 7, and we are done just like in the last
case. Therefore, we can assume that G′′ has exactly six edges and, since it is 2-degenerated, by an easy case
analysis, it must be isomorphic to one of the graphs of Figure 8.

u v

(i)

u

v

(ii)

u

v

(iii)

v′

v u

(iv)

t

u

v

(v)

Figure 8: The five possibilities of 2-degenerated graphs on five vertices with six edges

If G′′ is a graph in part (i), (ii) or (iii) of Figure 8, then again one could repeat the arguments of the
proof of Theorem 19 with G′ and the edge uv of the corresponding figure, to obtain a contradiction.

Suppose G′′ is isomorphic to the graph of Figure 8(iv). Since G′′ is not pendant-free, there must be at
least one more vertex in G′. Let v6 be as in the sequence obtained by the 2-degeneracy of G′. Since G′ has
exactly 2n− 4 edges, v6 must have exactly two neighbours in G′′. By the symmetry of the four vertices of
degree 2 in G′′, we may assume uv6 ∈ CE . Then u and v are both of degree at least 3 in G′. Therefore,
we could again repeat the argument of Theorem 19 with G′ and uv, where only one of the configurations of
this theorem, namely 6(d), matches G′′. Furthermore, if this happens then v′v6 should also be an edge of
G′. Now u and v′ are both of degree at least 3 and we apply the argument of Theorem 19 with G′ and uv′

to obtain a contradiction.

12

Finally, let G′′ be isomorphic to the graph of Figure 8(v). We claim that every other vertex vi (i ≥ 6) is
adjacent, in G′, only to u and v. By contradiction suppose v6 is adjacent to t. Then using the technique of
Theorem 19 applied on G′ and tu (respectively tv), we conclude that v6 is adjacent to u (respectively v).

Since |E(G′)| = |CE | = 2n − 4, G′ is a spanning subgraph of G. But then it is easy to verify that
CE \ {xu, xv} is an edge-identifying code of G — a contradiction.

We note that γEID(K2,n) = 2n− 2 = 2|V (K2,n)| − 6 thus this bound cannot be improved much.
Corollary 20 implies that Conjecture 3 holds for a large subclass of line graphs:

Corollary 21. If G is a pendant-free graph on n vertices and with average degree d̄(G) ≥ 5, then we have
γID(L(G)) ≤ n− n

∆(L(G)) .

Proof. Let u be a vertex of degree d(u) ≥ d̄(G) ≥ 5. Since G is pendant-free there is at least one neighbour
v of u that is of degree at least 2. Thus there is an edge uv in G with d(u)+ d(v) ≥ d̄(G)+ 2 and, therefore,

∆(L(G)) ≥ d̄(G). Hence, considering Corollary 20, it is enough to show that 2|V (G)| − 5 ≤ |E(G)| − |E(G)|
d̄(G)

.

To this end, since d̄(G) ≥ 5, we have 4|V (G)| ≤ (d̄(G) − 1)|V (G)|, therefore,

4|V (G)| − 10 ≤ (d̄(G) − 1)|V (G)|.

Mutiplying both sides by d̄(G)
2 we have:

(2|V (G)| − 5)d̄(G) ≤ (d̄(G) − 1)
d̄(G)

2
|V (G)| = (d̄(G) − 1)|E(G)|.

5. Complexity

This section is devoted to the study of the decision problem associated to the concept of edge-identifying
codes. Let us first define the decision problems we use. The IDCODE problem is defined as follows:

IDCODE
INSTANCE: A graph G and an integer k.
QUESTION: Does G have an identifying code of size at most k?

IDCODE was proved to be NP-complete even when restricted to the class of bipartite graphs of maximum
degree 3 (see [4]) or to the class of planar graphs of maximum degree 4 and arbitrarily large girth (see [1]).
The EDGE-IDCODE problem is defined as follows:

EDGE-IDCODE
INSTANCE: A graph G and an integer k.
QUESTION: Does G have an edge-identifying code of size at most k?

We will prove that EDGE-IDCODE is NP-hard in some restricted class of graphs by reduction from
PLANAR (≤ 3, 3)-SAT, which is a variant of the SAT problem and is defined as follows [7]:

PLANAR (≤ 3, 3)-SAT
INSTANCE: A collection Q of clauses over a set X of boolean variables, where each clause contains at least
two and at most three distinct literals (a variable x or its negation x). Moreover, each variable appears in
exactly three clauses: twice in its non-negated form, and once in its negated form. Finally, the bipartite
incidence graph of Q, denoted B(Q), is planar (B(Q) has vertex set Q∪X and Q ∈ Q is adjacent to x ∈ X
if x or x appears in clause Q).
QUESTION: Can Q be satisfied, i.e. is there a truth assignment of the variables of X such that each clause
contains at least one true literal?

13

PLANAR (≤ 3, 3)-SAT is known to be NP-complete [7]. We are now ready to prove the main result of
this section.

Theorem 22. EDGE-IDCODE is NP-complete even when restricted to bipartite planar graphs of maximum
degree 3 and arbitrarily large girth.

Proof. The problem is clearly in NP: given a subset C of edges of G, one can check in polynomial time
whether it is an edge-identifying code of G by computing the sets C ∩N [e] for each edge e and comparing
them pairwise.

We now reduce PLANAR (≤ 3, 3)-SAT to EDGE-IDCODE. We first give the proof for the case of girth
8 and show that it can be easily extended to an arbitrarily large girth.

We first need to define a generic sub-gadget (denoted P -gadget) that will be needed for the reduction.
In order to have more compact figures, we will use the representation of this gadget as drawn in Figure 9.
We will say that a P -gadget is attached at some vertex x if x is incident to edge a of the gadget as depicted
in the figure. When speaking of a P -gadget as a subgraph of a graph G, we always mean that it forms an
induced subgraph of G, that is, there are no other edges within the gadget than {a, b, c, d, e} in Figure 9.
Moreover, vertex x is the only vertex of the P -gadget which may be joined by an edge to other vertices
outside the gadget.

x

a

b c

d

e

G

x

G

P

Figure 9: The generic P -gadget

We make the following claims.

Claim 1. In any graph containing a P -gadget, at least three edges of this gadget must belong to any edge-
identifying code.

Claim 1 is true because d is the only edge separating b and c. Similarly c is the only edge separating d
and e. Finally, in order to separate d and c, one has to take at least one of a, b or e.

Claim 2. If G is a pendant-free graph obtained from a graph H with a P -gadget attached at a vertex x of
H, then any edge-identifying code of G must contain an edge of H incident to x.

Claim 2 follows from the fact that edge a must be separated from edge b.

We are now ready to describe the reduction.
Given an instance Q = {Q1, . . . , Qm} of PLANAR (≤ 3, 3)-SAT over the set of boolean variables X =

{x1, . . . , xn} together with an embedding of its bipartite incidence graph B(Q) in the plane, we build the
graph GQ as follows.

14

For each variable xj and clause Qi we build the subgraphs Gxj
and GQi

respectively, as shown in
Figure 10. We recall that a given variable xj appears in positive form in exactly two clauses, say Qp, Qq,
and in negative form in exactly one clause, say Qr. We then unify∗ vertex x1j of Gxj

with vertex lpk
of GQp

which corresponds to xj . We do a similar unification for vertices x2j and xj
1 with corresponding vertices

from GQq
and GQr

. The intuition is that vertices of the form lij in the clause gadgets will represent literals of

the clauses, and vertices of the form xji , xi
j of the vertex gadgets represent positive and negative occurences

of a variable, respectively.
This can be done while ensuring the planarity of GQ, using the given planar embedding of B(Q).

Moreover, GQ is bipartite because B(Q) is bipartite, there are no odd cycles in the variable and clause
gadgets and there is no path of odd length between lij ’s. Finally, it is easy to see that GQ has maximum
degree 3 and girth 8. Since a clause gadget has fourty-five vertices and a variable gadget, fourty-two vertices,
GQ has 45m+ 42n vertices and, therefore, the construction has polynomial size in terms of the size of Q.

li1

bi1

ai1

c1

c2

c0

ai2

bi2

li2

ai3 bi3
li3

P

P

P

P

P

P P

(a) Clause gadget GQi

d1 e1
f1

d2 e2
f2

d3 e3
f3

e4
f4

d4

t1j

x1j

tj
1

xj
1

t2j

x2j

tj
2

f5

P P P

P

P

(b) Variable gadget Gxj

Figure 10: Reduction gadgets for clause Qi and variable xj

We will need two additional claims in order to complete the proof.

Claim 3. In a variable gadget Gxj
, in order to separate the four pairs of edges {di, ei} for 1 ≤ i ≤ 4, at

least two edges of A = {di, ei | 1 ≤ i ≤ 4}∪{t1j , tj
1
, t2j , tj

2} belong to any edge-identifying code C. Moreover,

if |C ∩ A| = 2, then either C ∩ A = {t1j , t2j} or C ∩ A = {tj1, tj2}.

∗We use the term “unify” instead of the usual term “identify” in order to avoid confusion with identifying codes.

15

The first part of Claim 3 follows from the fact that the two edges of each of the pairs {d1, e1} and {d3, e3}
must be separated. The second follows from an easy case analysis.

The following claim follows directly from Claim 2.

Claim 4. Let v1v2v3v4 be a path of four vertices of GQ where each of the vertices v2 and v3 has its own
P -gadget attached and both v2 and v3 have degree 3. Then, at least one of the three edges of the path belong
to any identifying code of the graph. If exactly one belongs to a code, it must be v2v3.

We now claim that Q is satisfiable if and only if GQ has an edge-identifying code of size at most
k = 25m+ 22n.

For the sufficient side, given a truth assignment of the variables satisfying Q, we build an edge-identifying
code C as follows. For each P -gadget, edges a, c, d are in C. For each clause gadget GQi

, edge c0 belongs to
C. For each literal lik of Qi, 1 ≤ k ≤ 3, if lik is true, edge aik belongs to C; otherwise, edge bik belongs to
C. If Qi has only two literals and vertex lik is the vertex not corresponding to a literal of Qi, then edge bik
belongs to C. Now, one can see that all edges of GQi

are dominated. Furthermore, all pairs of edges of GQi

are separated. This can be easily seen for all pairs besides {c1, c2}. For this pair, since we are considering a
satisfying assignment of Q, in every clause Qi of Q, there exists a true literal. Hence, for each clause Qi, at
least one edge aij with 1 ≤ j ≤ 3, must be in the code and, therefore, the pair {c1, c2} is separated.

Next, in each variable gadget Gxj
, if xj is true, edges t1j and t2j belong to C. Otherwise, edges tj

1

and tj
2

belong to C. Edges f1, f2, f3, f4 and f5 also belong to C. Because of this choice, all edges of

Gxj
\ {t1j , t2j , tj

1} are dominated. Since each of the three edges t1j , t
2
j , tj

1
is incident to a vertex of a P -gadget

of some clause gadget, they are also dominated. Moreover, all pairs of edges containing at least one edge of

Gxj
\ {t1j , t2j , tj

1} are clearly separated. Now, since for each P -gadget of the clause gadgets, edge a is in C,

t1j , t
2
j , tj

1
are separated from all edges in GQ.

We conclude that C is an edge-identifying code of size k.

For the necessary side, let C′ be an edge-identifying code of GQ with |C′| ≤ k. It follows from Claim 1
that at least three edges of each of the seven P -gadgets of a clause gadget GQi

must belong to C′. Moreover,
by Claim 2, edge c0 is forced to be in any code. Finally, by Claim 2, for each vertex lik (1 ≤ k ≤ 3) of GQi

,
at least one of the edges aik and bik is in C′.

Note that this is a total of at least twenty-five edges per clause gadget.
Similarly, it follows from Claim 1 that in each variable gadget Gxj

, at least fifteen edges of C′ are
contained in the P -gadgets of Gxj

. Following Claim 2, all edges fi (1 ≤ i ≤ 5) belong to C′. Note that this
is a total of at least twenty edges in each variable gadget. We have considered 25m + 20n edges of C′ so
far. Hence 2n edges remain to be considered. It follows from Claim 3 that for each variable gadget, at least
two additional edges belong to C′ (in order to separate the pairs {di, ei}, for 1 ≤ i ≤ 4). Therefore, since
|C′| ≤ k, in each variable gadget, exactly two of these edges belong to C′. Hence, following the second part

of Claim 3, either {t1j , t2j} or {tj1, tj2} is a subset of C′.
Remark that we have now considered all k = 25m + 22n edges of C′. Therefore, in each clause gadget

GQi
, exactly one of the edges aik and bik of GQi

belongs to C′.
We can now build the following truth assignment: for each variable gadget, if {t1j , t2j} is a subset of C′,

xj is set to TRUE. Otherwise, {tj1, tj2} is a subset of C′ and xj is set to FALSE. Let us prove that this
assignment satisfies Q.

In each clause gadget GQi
, note that edges c1 and c2 must be separated by C′; this means that one edge

aik from {ai1 , ai2 , ai3} belongs to C′. Hence, as noted in the previous paragraph, bik /∈ C′ and by Claim 4,
in the path formed by edges {aik , bik , t1j}, t1j belongs to the code (without loss of generality, we suppose

that lik = xj and t1j is the edge of Gxj
incident to vertex lik of GQi

). Therefore, in the constructed truth
assignment, literal lik has value TRUE, and the clause is satisfied. Repeating this argument for each clause
shows that the formula is satisfied.

16

Now, it remains to show that similar arguments can be used to prove the final statement of the theorem for
larger girth. Consider some integers λ ≥ 1 and µ ≥ 2. We build the graph GQ(λ, µ) using modified variable
gadgets Gxj

(µ) and modified clause gadgets GQi
(λ), which are depicted in Figure 11. The construction is

the same as in the previous proof and GQ(λ, µ) has (36λ+ 9)m+ (30µ− 18)n vertices. We claim that the
girth of GQ(λ, µ) is now at least min{4µ, 8(λ+ 1)}. Indeed, Gxj

(µ) has a cycle of size exactly 4µ and since
the girth of B(Q) is at least 4, it follows that the minimum length of a cycle between some clause gadgets
(at least two) and some variable gadgets (at least two) is at least 4(2λ+ 1) + 2 + 2 = 8(λ+ 1).

Now, using a similar proof as the proof for girth 8, it can be shown that Q is satisfiable if and only if
GQ(λ, µ) has an identifying code of size at most k = (21λ+ 4)m+ (17µ− 12)n.

Recall that a graph is perfect if and only if for each of its induced subgraphs H , the chromatic number
of H equals the clique number of H . It is known that a line graph L(G) is perfect if and only if G has
no odd cycles of length more than 3, see [18]. Moreover, one can check that the line graphs of the graphs
constructed in the previous proof are planar, have maximum degree 4 and clique number 3. Therefore, the
following corollary follows:

Corollary 23. IDCODE is NP-complete even when restricted to perfect 3-colorable planar line graphs of
maximum degree 4.

Note that by Theorem 12 and Corollary 20, we have |V (G)|
2 ≤ γEID(G) ≤ |CE | ≤ 2|V (G)| − 3 for any

pendant-free graph G and any inclusionwise minimal edge-identifying code CE of G. Since one can construct
such a code in polynomial time, this gives a polynomial-time 4-approximation algorithm for the optimization
problem associated to EDGE-IDCODE:

Theorem 24. The optimization problems associated to EDGE-IDCODE in general graphs and to IDCODE
when restricted to line graphs are 4-approximable in polynomial-time.

We remark that it is NP-hard to approximate the optimization version of IDCODE within a factor of
o(log(n)) in general graphs on n vertices (see [14, 17]).

In the following, by slightly restricting the class of graphs considered in Theorem 22, we show that
EDGE-IDCODE becomes linear-time solvable in this restricted class.

Let us first introduce some necessary concepts.
A graph property P is expressable in counting monadic second-order logic, CMSOL for short (see [6] for

further reference), if P can be defined using:

• vertices, edges, sets of vertices and sets of edges of a graph

• the binary adjacency relation adj where adj(u, v) holds if and only if u, v are two adjacent vertices

• the binary incidence relation inc, where inc(v, e) holds if and only if edge e is incident to vertex v

• the equality operator = for vertices and edges

• the membership relation ∈, to check whether an element belongs to a set

• the unary cardinality operator card for sets of vertices

• the logical operators OR, AND, NOT (denoted by ∨, ∧, ¬)

• the logical quantifiers ∃ and ∀ over vertices, edges, sets of vertices or sets of edges

It has been shown that CMSOL is particularly useful when combined with the concept of the graph
parameter tree-width (we refer the reader to [6] for a definition). Some important classes of graphs have
bounded tree-width. For example, trees have tree-width at most 1, series-parallel graphs have tree-width at
most 2 and outerplanar graphs have tree-width at most 3.

The following result shows that many graph properties can be checked in linear time for graphs of
bounded tree-width.

17

... ...

..
.

P P P P P

P

P P P P P

P

P

P

P

P

2λ times 2λ times

2
λ

ti
m

es

(a) Clause gadget GQi
(λ)

...

P P P P P P

P

P P P

2µ− 3 times

(b) Variable gadget Gxj
(µ)

Figure 11: Reduction gadgets for clause Qi and variable xj for arbitrarily large girth

Theorem 25 ([6]). Let P be a graph property expressable in CMSOL and let c be a constant. Then, for
any graph G of tree-width at most c, it can be checked in linear time whether G has property P.

We now show that CMSOL can be used in the context of edge-identifying codes:

Proposition 26. Given a graph G and an integer k, let EID(G, k) be the property that γEID(G) ≤ k.
Property EID(G, k) can be expressed in CMSOL.

18

Proof. Let V = V (G) and E = E(G). We define the CMSOL relation dom(e, f) which holds if and only
if e, f are edges of E and e, f dominate each other, i.e. e and f are incident to the same vertex. We have
dom(e, f) := ∃x ∈ V, (inc(x, e) ∧ inc(x, f)).

Now we define EID(G, k) as follows:

EID(G, k) := ∃C,C ⊆ E, card(C) ≤ k,
(

∀e ∈ E, ∃f ∈ C, dom(e, f)
)

∧
(

∀e ∈ E, ∀f ∈ E, e 6= f, ∃g ∈ C,
(

(dom(e, g) ∧ ¬dom(f, g)) ∨ (dom(f, g) ∧ ¬dom(e, g))
)

)

.

This together with Theorem 25 implies the following corollary.

Corollary 27. EDGE-IDCODE can be solved in linear time for all classes of graphs having their tree-width
bounded by a constant.

This result implies, in particular, that one can find the edge-identifying code number of a tree in linear
time. Note that a similar approach has been used in [15] to show that this holds for IDCODE as well.

The proof of Theorem 25 is constructive and gives a linear-time algorithm, but it is very technical and
hides a large constant depending on the size of the CMSOL expression. Therefore, it would be interesting
to give a simpler and more practical linear-time algorithm for EDGE-IDCODE in trees. Observe that this
has been done in [1] for the case of vertex-identifying codes.

[1] D. Auger. Minimal identifying codes in trees and planar graphs with large girth, European Journal of Combinatorics

31(5):1372–1384, 2010.

[2] L. W. Beineke. Characterizations of derived graphs, Journal of Combinatorial Theory 9(2)2:129–135, 1970.

[3] I. Charon, G. Cohen, O. Hudry and A. Lobstein. New identifying codes in the binary Hamming space, European Journal

of Combinatorics 31(2):491–501, 2010.

[4] I. Charon, O. Hudry and A. Lobstein. Minimizing the size of an identifying or locating-dominating code in a graph is
NP-hard. Theoretical Computer Science 290(3):2109–2120, 2003.

[5] I. Charon, O. Hudry and A. Lobstein. Extremal cardinalities for identifying and locating-dominating codes in graphs.
Discrete Mathematics 307(3-5):356–366, 2007.

[6] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation

85(1):12–75, 1990.

[7] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour and M. Yannakakis. The complexity of multiterminal
cuts. SIAM Journal of Computing 23(4):864–894, 1994.

[8] F. Foucaud, E. Guerrini, M. Kovše, R. Naserasr, A. Parreau and P. Valicov. Extremal graphs for the identifying code
problem. European Journal of Combinatorics 32(4):628–638, 2011.

[9] F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud. On the size of identifying codes in triangle-free graphs. Discrete

Applied Mathematics 160(10-11):1532–1546, 2012.

[10] F. Foucaud and G. Perarnau. Bounds on identifying codes in terms of degree parameters. The Electronic Journal of

Combinatorics 19:P32, 2012.

[11] S. Gravier, R. Klasing and J. Moncel. Hardness results and approximation algorithms for identifying codes and locating-
dominating codes in graphs. Algorithmic Operations Research 3(1):43–50, 2008.

[12] S. Gravier and J. Moncel. On graphs having a V \ {x} set as an identifying code. Discrete Mathematics 307(3-5):432–434,
2007.

[13] M. G. Karpovsky, K. Chakrabarty and L. B. Levitin. On a new class of codes for identifying vertices in graphs. IEEE

Transactions on Information Theory 44:599–611, 1998.

[14] M. Laifenfeld, A. Trachtenberg and T. Y. Berger-Wolf. Identifying codes and the set cover problem. Proceedings of the
44th Annual Allerton Conference on Communication, Control and Computing, Monticello, USA, September 2006.

[15] J. Moncel. Codes Identifiants dans les Graphes. PhD Thesis, Université Joseph-Fourier - Grenoble I, France, June 2005.
Available online at http://tel.archives-ouvertes.fr/tel-00010293.

[16] J. Moncel. On graphs on n vertices having an identifying code of cardinality ⌈log2(n+1)⌉. Discrete Applied Mathematics

154(14):2032–2039, 2006.

[17] J. Suomela. Approximability of identifying codes and locating-dominating codes. Information Processing Letters

103(1):28–33, 2007.

[18] L. E. Trotter. Line perfect graphs. Mathematical Programming 12(1):255–259, 1977.

19

