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SUMMARY

In this paper, a model-based fault estimation method for a particular class of discrete-time Descriptor
Linear Parameter Varying (D-LPV) systems is developed. The main contribution of this work consists
in the design of an observer that performs simultaneously both, the states estimation and the fault
magnitude vectors, considered as unknown inputs. The conditions for the existence of such observer
are given. Such conditions guarantee the observer stability and they are proved through a Lyapunov
analysis combined with a Linear Matrix Inequalities (LMI) formulation. The fault estimation scheme
is evaluated through numerical simulations. Copyright c© 2002 John Wiley & Sons, Ltd.

key words: fault estimation; observers; LPV systems; descriptor systems

1. INTRODUCTION

Descriptor systems (also known as singular systems) are a special class of systems that include
ordinary algebraic equations, (differential) state-space equations, combinations of algebraic and
differential equations and noncausal systems [1]. From the point of view of process modeling,
descriptor systems can be considered as a generalization of state-space linear systems where
algebraic relations resulting from the interaction of the process dynamics exist. Several works
dealing with linear and nonlinear descriptor systems exist in literature (see for instance [2]
for linear systems and [4] for the nonlinear case). Some recent works dealing with descriptor
systems are [5, 6, 7] where different observer approaches are used for this kind of systems.
Different fault diagnosis techniques for descriptor systems are recently synthesized in [8, 9].
On the other hand, Linear Parameter Varying (LPV) systems (which can be considered

as a particular case of Linear Time Varying systems LTV) can be used to approximate
nonlinear systems, hence systematic and generic available theoretical results for LPV systems
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can be applied to derive nonlinear control laws for nonlinear systems. For instance, in [10]
the authors use the LPV approach to model and control diesel engines. In [11] a method for
designing structured fault diagnosis filters (with guaranteedH∞ nuisance attenuation and fault
transmission H− gain) for polytopic LPV systems is developed and simulated for a secondary
circuit of a nuclear power plant. An application of fault detection and isolation to a Boeing
747-100/200 aircraft is presented in [12].

In recent years, fault detection and isolation for LPV systems has been investigated for
several authors. The case of robust fault detection and isolation of multiple simultaneous
faults for affine LPV systems affected by disturbances is presented in [13], where the authors
design a residual generator filter that maximizes the DC-transmission gain from a specific
fault to the residual while attenuating the effect caused by the nuisances. The authors in [14]
present an H∞ approach for fault detection and isolation (and estimation), where a linear
fractional transformation (LFT) representation of the LPV system is adopted. In [15, 16],
failure detection for LPV systems is investigated by using a geometric approach, where a
procedure was derived to obtain the detection filter gain via the construction of a suitable
family of invariant subspaces. Parameter-dependent observers with pole assignment are used
to synthesize the residual generators for LPV systems in [17, 18, 19]. A robust state-based
approach to estimate faults in uncertain LPV systems can be found in [20].

Although the idea of merging descriptor and LPV systems is not new (see for instance [21]),
there are very few works dealing with observer and controller synthesis, stabilization, fault
diagnosis and other topics on automatic control for this kind of systems. Some recent papers
on this topic dealing with the problem of control and stabilization are [22, 23], whereas the
authors in [24] addresses the problem of observer-based controllers.

The aim of this work is to develop a fault estimation method for discrete-time descriptor
linear parameter varying systems (in the sequel referred as D-LPV systems), described by a
polytopic system representation. In order to achieve this objective, an observer for D-LPV
systems is synthesized. The observer is based on the observer proposed in [25] where a method
to design full-order observers for LTI descriptor systems is considered. The existence conditions
of the observer are given. Such conditions guarantee the observer convergence proved through
a combined method based on the original approach proposed by [25] and a Lyapunov analysis.

By taking into account some simple matrix manipulations, this observer can estimate both,
the states and the unknown inputs, simultaneously. In order to achieve a robust fault detection
and identification, the unknown input estimation feature is used to build a fault diagnosis
scheme based on a bank of observers. The effectiveness and performance of the proposed
scheme are illustrated through a numerical example.

2. PROBLEM FORMULATION

Consider the following discrete-time polytopic D-LPV system where the terms k and k+1 are
the simplified form to write kTs and kTs + Ts respectively, and Ts is the sampling time:

Ēx̃(k + 1) =

M∑

i=1

εi(ρ(k))
(
Āix̃(k) + B̄iu(k)

)
+ F̄ v(k)

y(k) = C̄x̃(k)

(1)
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where x̃(k) ∈ R
n, u(k) ∈ R

q, y(k) ∈ R
p, v(k) ∈ R

d are the state, the measured input, the
measured output and the unmeasured input vectors which can be classically considered as
fault vectors, respectively, Ē ∈ R

m×n, Āi ∈ R
m×n, B̄i ∈ R

n×q, C̄ ∈ R
p×n, F̄ ∈ R

n×d, are
constant matrices, ρ(k) is a time-varying bounded parameter vector assumed to be measured
on-line and M is the total number of weighting functions εi(ρ(k)) defined as

M∑

i=1

εi(ρ(k)) = 1, εi(ρ(k)) ≥ 0 (2)

Classicaly, the term polytopic comes from the fact that the vector ε(ρ(k)) evolves over the
convex set:

Ω =

{

col

i
:

M∑

i=1

εi(ρ(k)) = 1, εi(ρ(k)) ≥ 0

}

The following assumptions are considered ([25]):

(A1) rank Ē = r < n.

(A2) rank

(
Ē

C̄

)

= n.

Assumption A1 simply states that Ē is a singular matrix. Assumption A2, guarantees the
existence of a nonsingular matrix Γ̄:

Γ̄ =

(
ᾱ β̄

γ̄ ξ̄

)

such that

ᾱĒ + β̄C̄ = In (3)

γ̄Ē + ξ̄C̄ = 0 (4)

where ᾱ, β̄, γ̄ and ξ̄ are constant matrices of appropriate dimensions which can be found by

the singular value decomposition of

(
Ē

C̄

)

.

The problem is to synthesize an observer for system (1) such that the estimation error
ẽ(k) = x̃(k)− ˆ̃x(k) converges to zero as k → ∞.
In this paper bias are considered constant faults, called bias, are considered, i.e.

(A3) v(k) = v(k − 1).

This assumption may be considered as restrictive, however in many practical situations,
once a fault appears, it remains constant during a significant time period that is long enough
to estimate the fault. In this way, the system (1) can be rewritten in the following form:

Ex(k + 1) =
M∑

i=1

εi(ρ(k)) (Aix(k) +Biu(k))

y(k) = Cx(k)

(5)

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2002; 00:1–6
Prepared using acsauth.cls
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where

E =

(
Ē −F̄

0d×n Id

)

(6)

Ai =

(
Āi 0m×d

0d×n Id

)

(7)

Bi =

(
B̄i

0d×q

)

(8)

C =
(
C̄ 0p×d

)
(9)

Following the idea presented by Darouach [7] for state and unknown input estimation, the
expanded state vector is formed by the usual state variables and the faults at the precedent
time instant

x(k) =

(
x̃(k)

v(k − 1)

)

∈ R
(m+d)×(n+d) (10)

In this way, the faults can be estimated simultaneously with the state variables. The problem
becomes to design an adequate observer for the D-LPV system (5).
Assumption A2 becomes

(A4) rank

(
E

C

)

= n+ d.

Considering Assumption A4, it exists a nonsingular matrix Γ:

Γ =

(
α β

γ ξ

)

such that

αE + βC = In+d (11)

γE + ξC = 0 (12)

where α, β, γ and ξ are constant matrices of appropriate dimensions which can be found by

the singular value decomposition of

(
E

C

)

.

The following additional assumption is considered:

(A5) The pair

(

αAi,

(
γAi

C

))

is detectable.

As proposed in [25], if Assumptions A4 and A5 holds, an observer for the system (5) should
have the following form:

z(k + 1) =
M∑

i=1

εi(ρ(k)) [Niz(k) + L1iy(k) +Giu(k) + L2iy(k)]

x̂(k) = z(k) + βy(k) +Kξy(k)

(13)
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where z(k) ∈ R
n+d is the observer state vector; Ni, L1i, L2i, Gi and K, i = 1, . . . ,M are

constant matrices of appropriate dimensions.
In the next section, sufficient conditions are given, such that system (13) is an observer for

system (5).

3. THE OBSERVER SYNTHESIS

For the sake of simplicity, the following notation is used:

Ω(ρk) =

M∑

i=1

εi(ρ(k))Ωi i = 1, . . . ,M (14)

Thus, system (13) can be rewritten in the simplified form:

z(k + 1) = N(ρk)z(k) + L1(ρk)y(k) +G(ρk)u(k) + L2(ρk)y(k)

x̂(k) = z(k) + βy(k) +Kξy(k)
(15)

Let the observer error e(k) ∈ R
n+d be defined as:

e(k) = x(k)− x̂(k) (16)

The difference equation of the error is

e(k + 1) = [(α+Kγ)A(ρk)−N(ρk) (α+Kγ)E − L1(ρk)C − L2(ρk)C]x(k)

+ [(α+Kγ)B(ρk)−G(ρk)]u(k) +N(ρk) [(α+Kγ)Ex(k)− z(k)]
︸ ︷︷ ︸

e(k)

(17)

If the following conditions are fulfilled

G(ρk) = (α+Kγ)B(ρk) (18)

L1(ρk) = N(ρk) (β +Kξ) (19)

and

N(ρk) = KγA(ρk) + αA(ρk)− L2(ρk)C (20)

then (17) reduces to

e(k + 1) = N(ρk)e(k) (21)

Equation (21) can be written as:

e(k + 1) =

M∑

i=1

εi(ρ(k))(Ãi + K̃iC̃i)e(k) (22)

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2002; 00:1–6
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where Ãi = αAi, K̃i = (K − L2i) and C̃i =

(
γAi

C

)

.

Equation (22) confirms the necessity of Assumption A5. The following subsection is devoted
to demonstrated the stability and convergence of the error dynamics given in Equation (22).

3.1. Observer stability

Theorem 3.1. Considering Assumptions A4-A5, the system (15) is a stable observer for the
system (5) if there exist symmetric positive definite matrices Hi, nonsingular matrices Ji, and
matrices L2i, and K such that





JT
i + Ji NT

i JT
i

Ni Hj 0
Ji 0 H−1

i



 > 0 (23)

∀ i = 1, ...,M , j = 1, ...,M , where Ni = KγAiGi + αAiGi − L2iCGi.

Proof:

Consider the following Parameter Dependent Lyapunov Function (PDLF)

V (e(k), ξ(ρ(k))) = eT (k)P (ρk)e(k) (24)

where according to notation (14):

P (ρk) =
M∑

i=1

εi(ρ(k))Pi (25)

Pi are symmetric positive definite constant matrices. According to the Lyapunov stability
theorem, this PDLF must satisfy:

∆V (k) = V (k + 1)− V (k)

= eT (k)(NT (ρk)P (ρk+1)N(ρk)− P (ρk))e(k) ≤ 0
(26)

It can be seen that the function ∆V (k) is negative definite if

NT (ρk)P (ρk+1)N(ρk)− P (ρk) < 0 (27)

The following notation is used for P (ρk+1):

P (ρk+1) =
M∑

i=1

εi(ρ(k + 1))Pi =
M∑

j=1

εj(ρ(k))Pj (28)

By substituting (25) and (28) in (27), it can be deduced that the negative definiteness of
(27) is guaranteed if [26]:

NT
i PjNi − Pi < 0, ∀ i = 1, . . . ,M, j = 1, . . . ,M. (29)

The authors in [26] have demonstrated that poly-quadratically stability of the system
e(k+1) = N(ρk)e(k) (which ensures the stability of the observer) is guaranteed if and only if

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2002; 00:1–6
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there exist symmetric positive definite matrices Hi, and matrices (of appropriate dimensions)
Ψi, i = 1, . . . ,M , such that

(
Ψi +ΨT

i −Hi ΨT
i N

T
i

NiΨi Hj

)

> 0 (30)

∀ i = 1, . . . ,M, j = 1, . . . ,M , with

P (ρk) =

M∑

i=1

εi(ρ(k))H
−1
i (31)

It is worth to note from equations (25), (28) and (31) that Hi = P−1
i and Hj = P−1

j . In this
way, the feasibility problem of inequalities (29) can be replaced for the feasibility problem of
inequality (30). If so, then (26) is a negative definite and decreasing sequence.
Replacing Ni from (20) into (30):

(
Ψi +ΨT

i −Hi (⋆)T

KγAiΨi + αAiΨi − L2iCΨi Hj

)

> 0 (32)

∀ i = 1, . . . ,M, j = 1, . . . ,M . It can be seen that the main difficulty to solve the inequality
(32) is the bilinear term KγAiΨi, where K and Ψi are unknown matrices.
Assuming that Ψi is nonsingular, the positive definiteness of (30) is equivalent to the positive

definiteness of the following congruent matrix

(
(
Ψ−1

i

)T
0

0 I

)(
Ψi +ΨT

i −Hi ΨT
i N

T
i

NiΨi Hj

)(
Ψ−1

i 0
0 I

)

> 0 (33)

or (
(
Ψ−1

i

)T
+Ψ−1

i −
(
Ψ−1

i

)T
HiΨ

−1
i NT

i

Ni Hj

)

> 0 (34)

Equation (34) is the Schur complement of the following positive definite matrix





JT
i + Ji NT

i JT
i

Ni Hj 0
Ji 0 H−1

i



 > 0 (35)

with Ji = Ψ−1
i . This completes the proof. 2

The inequality (23), implies that HjH
−1
i = I when i = j, or simply

HiPi = I (36)

(where Pi = H−1
i ). Thus, inequality (23) can be written as:





JT
i + Ji NT

i JT
i

Ni Hj 0
Ji 0 Pi



 > 0, HiPi = I. (37)

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2002; 00:1–6
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Among various methods to solve LMI problem under a LME constraint, the cone
complementary technique has been considered. The following facts are used to give a solution
procedure to solve the inequality (37):

Fact 3.1. The feasibility of the LMI

(
Hi I

I Pi

)

≥ 0, Hi > 0; Pi > 0 i = 1, . . . ,M

implies that Tr(HiPi) ≥ n, where the equality Tr(HiPi) = n holds if and only if HiPi = I (see
[27]).

The following matrices are introduced

H = diag (H1, . . . , HM ) (38)

P = diag (P1, . . . , PM ) (39)

By taking into account Fact 3.1, it is easy to deduce the following:

Fact 3.2. The feasibility of the LMI

(
H I

I P

)

≥ 0, H > 0; P > 0

implies that Tr(HP) ≥ nM , where the equality Tr(HP) = nM holds if and only if HP = I

In this way, the problem of finding a solution of (37) is equivalent to solve the following
minimization problem:

min Tr(HP) subject to











JT
i + Ji NT

i JT
i

Ni Hj 0
Ji 0 Pi



 > 0

(
H I

I P

)

> 0

H > 0

P > 0

(40)

∀ i = 1 . . . ,M and ∀ j = 1 . . . ,M . The bilinear objective problem: min Tr(HP), in (40) is
solved by using the cone complementary algorithm proposed in [28].

The following notation is introduced: H [k] is used to denote the k-th element of the matrix
sequence H [0], H [1], . . . , H [kopt].

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2002; 00:1–6
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The cone complementary algorithm propose to transform the bilinear objective problem
given in (40) by a linear objective problem of the form

min Tr(H[k−1]
P
[k] + P

[k−1]
H

[k]) subject to













(

J
[k]
i

)T

+ J
[k]
i

(

N
[k]
i

)T (

J
[k]
i

)T

N
[k]
i H

[k]
j 0

J
[k]
i 0 P

[k]
i







> 0

(
H

[k] I

I P
[k]

)

> 0

H
[k] > 0

P
[k] > 0

(41)

for k = 1, . . . , kopt, and to find recursively the values of H = H
[kopt], P = P

[kopt], Ji = J
[kopt]
i ,

Ni = N
[kopt]
i , where kopt represents the iteration number where the sequence converges to

min Tr(H[k−1]
P
[k] + P

[k−1]
H

[k]) = 2nM or equivalently min Tr(HP) = nM , in other words

min Tr(H
[k−1]
i P

[k]
i + P

[k−1]
i H

[k]
i ) = 2n or equivalently min Tr(HiPi) = n.

A small enough value of a constant stopping criterion ε > 0 should be considered
with the purpose of reduce the convergence time of the algorithm, i.e., once the value of
Tr(H[k]

P
[k]) < nM +ε, the algorithm stops. As indicated [28], each step of the algorithm has a

simple LMI problem. The recursive sequence is bounded and decreases if and only if H[k]
P
[k] is

at the optimum. For more details concerning the used of such method, the authors recommend
to read carefully [28] and associated papers.
The initial matrices H[0] and P

[0], are obtained by computing an initial feasible point of the
simple LMIs







(

J
[0]
i

)T

+ J
[0]
i

(

N
[0]
i

)T (

J
[0]
i

)T

N
[0]
i H

[0]
j 0

J
[0]
i 0 P

[0]
i







> 0

(
H

[0] I

I P
[0]

)

> 0

H
[0] > 0

P
[0] > 0

(42)

∀ i = 1 . . . ,M and ∀ j = 1 . . . ,M .

3.2. Observer gain design based on a pole placement

The observer should generate an accurate state and unknown inputs estimations based on
an appropriate gain design. Among various kind of LMI regions, such as disk, cone, sub-
plane, a pole placement through a disk as proposed by [29] has been considered. In fact, any
region included inside the disk D(0, 1) can be chosen. However, if pole placement design is
not considered, then the algorithm used to solve (41) could compute any Hi, Ji, L2i and K

satisfying the LMI (23), such that the matrices Ni, i = 1, ...,M have eigenvalues anywhere

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2002; 00:1–6
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10 C.M.ASTORGA-ZARAGOZA, D.THEILLIOL, J.C.PONSART AND M. RODRIGUES

inside the unit circle, disregarding if they are near from the origin or near from the border of the
unit circle. Then, in order to ensure an adequate pole placement of matrices Ni, i = 1, . . . , n,
the following inequalities can be taken into account instead of the inequalities shown in (29):

(Ni − λiI)
TPj(Ni − λiI)− δ2i Pi < 0, ∀ i = 1, . . . ,M, j = 1, . . . ,M. (43)

By doing so, the poles of matrices Ni are assigned in a disk D(λi, δi) defined by the radius
δi > 0 and the real number λi ∈ R such that δi ≤ 1 − |λi|, ∀ i = 1, . . . ,M . The parameters
associated to a disk region are chosen from the nominal dynamic behavior of the system in
order to stabilize and to guarantee an efficient state estimation.

The inequality shown in (43) can be written in the simplified form:

N̄T
i PjN̄i − P̄i < 0, ∀ i = 1, . . . ,M, j = 1, . . . ,M. (44)

which have the same form of inequality (29) with N̄i = (Ni − λiI) and P̄i = δ2i Pi.
According to Theorem 3.1, the feasibility of inequality (44) is equivalent to the feasibility
of finding symmetric positive definite matrices H̄i, and matrices (of appropriate dimensions)
Ψi, i = 1, . . . ,M , such that

(
Ψi +ΨT

i − H̄i ΨT
i N̄

T
i

N̄iΨi Hj

)

> 0 (45)

∀ i = 1, . . . ,M, j = 1, . . . ,M , with

P̄ (ρk) =

M∑

i=1

εi(ρ(k))H̄
−1
i (46)

where H̄i = P̄−1
i = δ−2

i P−1
i = δ−2

i Hi

Replacing H̄i and N̄i in (45), and by following an analogous procedure to that described in
the proof of Theorem 3.1, the following corollary can be easily derived

Corollary 3.1. Considering Assumptions A4-A5, the system (15) is a stable observer for the
system (5) if there exist symmetric positive definite matrices Hi and nonsingular matrices Ji
such that





JT
i + Ji (Ni − λiI)

T JT
i

(Ni − λiI) Hj 0
Ji 0 δ2iH

−1
i



 > 0 (47)

∀ i = 1, . . . ,M, j = 1, . . . ,M , where Ni = KγAi + αAi − L2iC and L2i. The matrices G(ρk),
L1(ρk) and N(ρk) are deduced from (18)-(20). The poles of Ni are located in a disk D(λi, δi)
defined by the radius δi > 0 and the real number λi ∈ R such that δi ≤ 1− |λi|.

Finally, the cone complementary algorithm transforms the problem of feasibility of the
inequality shown in (47) in the following linear objective minimization problem:
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min Tr(H[k−1]
P
[k]+P

[k−1]
H

[k]) subject to













(

J
[k]
i

)T

+ J
[k]
i (N

[k]
i − λiI)

T
(

J
[k]
i

)T

(N
[k]
i − λiI) H

[k]
j 0

J
[k]
i 0 δ2i P

[k]
i







> 0

(
H

[k] I

I P
[k]

)

> 0

H
[k] > 0

P
[k] > 0

(48)
which is solved as described above. If (48) is feasible, then the poles of Ni are located in a disk
D(λi, δi) defined by the radius δi > 0 and the real number λi ∈ R such that δi ≤ 1− |λi|.

3.3. Extended case

In this subsection, the design of a full-order observer for descriptor systems with measurement
noises and perturbations is presented.
Let us consider the signal w(t) characterized as the output of the following linear discrete-

time system:

xw(k + 1) = Awxw(k) +Bwuw(k)

w(k) = Cwxw(k)
(49)

where xw(k) ∈ R
w, uw(k) ∈ R, w(k) ∈ R are the state, the input and the output of the

perturbation model. Aw, Bw and Cw are constant matrices of appropriate dimensions.
The signal w(k) can represent either a perturbation signal, or a noise signal. The output ym(k)
is given by

ym(k) = y(k) + w(k) = [C Cw]

[
x(k)
xw(k)

]

The state-space models of systems (5) and (49) can be rewritten in the compact form:

Ẽ ˙̄x(k + 1) = Ã(ρk)x̄(k) + B̃(ρk)ū(k)

ym(k) = C̃x̄(k)

(50)

where

Ẽ =

[
E 0

0 Iw

]

Ã(ρk) =

[
A(ρk) 0

0 Aw

]

B̃(ρk) =

[
B(ρk) 0

0 Bw

]

C̃ =
[
C Cw

]
x̄(k) =

[
x(k)

xw(k)

]

ū(k) =

[
u(k)

uw(k)

]

The procedure to design an observer for system (50) is equivalent to design an observer for
system (5) extended to a classical robust residual generators method [3] .
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4. ILLUSTRATIVE EXAMPLE

Consider a descriptor LPV system of the form (1) in the presence of two structured faults with
unknown fault magnitudes given by:

Ā1 =







2.018 1.326 −0.08691 −0.1644
2.277 2.018 −0.1359 −0.2908
0.4259 0.1666 0.5714 0.1732
0.6659 0.4259 −0.4822 −0.152







Ā2 =







1 1.4 −0.07 −0.2
1.5 2 −0.15 −0.3
0.4 0.1 0.5 0.2
0 0 −0.5 −0.2







(51)

B̄1 =







0.6047
1.644
−1.709
−1.732







B̄2 =







0.5
1

−1.5
−1







C̄ =

(
1 0 0 0
0 1 0 0

)

(52)

Ē =







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1







F =







1 0
0 0
0 1
0 0







(53)

where matrices A1, B1, E and C were taken from [22] with structured fault matrix F .

The system (1) can be rewritten in the form of system (5), where the augmented matrices
E and C are:

E =

(
Ē −F

02×4 I2

)

C =
(
C̄ 02×2

)
(54)

It can be verified that

rank

(
E

C

)

= n+ d = 6 (55)

The matrices α, β, γ and ξ, satisfying (11) and (12) are computed by using the Singular
Value Decomposition property of (E C)T :

α =











0.333 0 0 0 0.333 0
0 0 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0

−0.333 0 0 0 0.667 0
0 0 0 0 0 1











β =











0.667 0
0 1
0 0
0 0

0.333 0
0 0











(56)

γ =

(
−0.471 0.577 0 0 −0.471 0
0.333 0.817 0 0 0.333 0

)

ξ =

(
0.471 0

−0.333 0

)

(57)

At this point, it is worth to note that the pair

(

αAi,

(
γAi

C

))

is detectable ∀ i = 1, . . . , 2.

An observer of the form (13) can be designed. The disks to place the poles of the matrices Ni

are D(0.2, 0.8) for i = 1, 2.
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Following the procedure described in Section 3, the following matrices are obtained:

P1 =











1.0895 0 0 0 0 0
0 1.0895 0 0 0 0
0 0 0.6681 0.3240 −0.0135 −1.0236
0 0 0.3240 6.6398 0.0825 1.1574
0 0 −0.0135 0.0825 1.0909 0.0296
0 0 −1.0236 1.1574 0.0296 2.2746











P2 =











1.0895 0 0 0 0 0
0 1.0895 0 0 0 0
0 0 0.6943 0.5733 0.0165 −0.9729
0 0 0.5733 5.9887 0.0929 0.4898
0 0 0.0165 0.0929 1.0882 0.0002
0 0 −0.9729 0.4898 0.0002 2.0350











J1 =











0.6129 0 0 0 0 0
0 0.6129 0 0 0 0
0 0 0.3758 0.1823 −0.0076 −0.5757
0 0 0.1823 3.7349 0.0464 0.6510
0 0 −0.0076 0.0464 0.6136 0.0167
0 0 −0.5757 0.6510 0.0167 1.2795











J2 =











0.6129 0 0 0 0 0
0 0.6129 0 0 0 0
0 0 0.3905 0.3225 0.0093 −0.5473
0 0 0.3225 3.3686 0.0523 0.2755
0 0 0.0093 0.0523 0.6121 0.0001
0 0 −0.5473 0.2755 0.0001 1.1447











K =











0.4714 −0.3333
00

5.4512 7.7220
−2.5181 −3.5357
1.1644 −0.0398
2.7433 3.8936











L21 =











−0.1000 0
−0 −0.1000

21.9574 19.2470
−9.2008 −8.3224
−0.3503 0.1037
10.8547 9.6179











L22 =











−0.1000 0
−0 −0.1000

14.5827 19.0106
−6.5026 −8.6696
0.0642 0.0259
7.1491 9.5325











By using these gain matrices the following eigenvalues of Ni are obtained:

eig(N1) = {0.8499, 0.3747, 0.1677, 0.1076, 0.1, 0.1}

and
eig(N2) = {0.6422± 0.0401i, −0.0983, 0.1008, 0.1, 0.1}

Finally, matrices G(ρ), L1(ρ) and N(ρ) are computed by means of Eqs. (18)-(20).

The effectiveness of the proposed observer scheme is illustrated by the system studied in
open-loop. In this simulation, the time-varying parameter ρ(k) is the measured input, and it
is shown in Fig. 1. The weighting functions εi(ρ(k)) i = 1, 2 of the LPV system (1) are shown
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Figure 1. Dynamic behaviour of the input
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Figure 2. Dynamic behaviour of the weighting functions ε1
(solid line) and ε2 (dashed line)

in Fig. 2. The time evolution of these functions are in accordance with (2). It can be seen that
the system is evaluated over the entire operating envelope. Fault-free dynamic behaviour of
the outputs is shown in Fig. 3. It can be noted that a gaussian noise is added to the measured
outputs.
Two severe faults were simulated. The first fault occurs at the sampled time tk = 50 and the

second fault occurs at tk = 130. The faults acts as two unknown inputs to the system, affecting
the dynamics of the outputs and the states (see Figs. 4-5). The state observer tracks well both,
the system states, despite the variations on the input (and consequently the changing operating
points), the noisy measurements (see Fig. 4), and the faults. In Fig. 6, it can be appreciated
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Figure 3. Fault-free dynamic behaviour of the outputs y1 and y2
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Figure 4. Faulty dynamic behaviour of the outputs y1 and y2

that the observer detects these faults.

As expected, the observer is noise sensitive. However, these simulation results show that the
observer is very effective in detecting and isolating the fault over the entire operating envelope.
The estimation of the faults should be used to generate the residuals which can be evaluated
through classical statistical methods with the purpose of generate alarms. The fault diagnosis
scheme constructed in this way is able to detect, to isolate and to estimate the fault and it
represents an efficient tool in the operator’s decision.
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Figure 5. Dynamic behaviour of the states x1, x2, x3 and x4

and their estimated values x̂1, x̂2, x̂3 and x̂4

5. CONCLUSION

In this paper, a model-based fault diagnosis method for discrete-time D-LPV systems is
introduced. For that, an observer that performs fault detection and fault magnitude estimation
over the entire operating envelope of the system. The observer synthesis is an extension of the
work presented in [25] where an observer for LTI descriptor systems is reported. By taking
into account some simple matrix manipulations, this observer can estimate simultaneously
both, the states and the fault magnitude vectors, considered as unknown inputs. Sufficient
conditions are stated to ensure the existence and the stability of the proposed observer by
using a combined Lyapunov analysis based on LMI formulation. An observer gain synthesis
has been also proposed to guarantee the efficiency of the model-based fault diagnosis technique.
The proposed method is evaluated successfully via numerical simulations.
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Figure 6. Dynamic behaviour of the faults d1 and d2 and

their estimated values d̂1 and d̂2
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