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In this paper, a model-based fault estimation method for a particular class of discrete-time Descriptor Linear Parameter Varying (D-LPV) systems is developed. The main contribution of this work consists in the design of an observer that performs simultaneously both, the states estimation and the fault magnitude vectors, considered as unknown inputs. The conditions for the existence of such observer are given. Such conditions guarantee the observer stability and they are proved through a Lyapunov analysis combined with a Linear Matrix Inequalities (LMI) formulation. The fault estimation scheme is evaluated through numerical simulations.

INTRODUCTION

Descriptor systems (also known as singular systems) are a special class of systems that include ordinary algebraic equations, (differential) state-space equations, combinations of algebraic and differential equations and noncausal systems [START_REF] Luenberger | Dynamic equations in descriptor form[END_REF]. From the point of view of process modeling, descriptor systems can be considered as a generalization of state-space linear systems where algebraic relations resulting from the interaction of the process dynamics exist. Several works dealing with linear and nonlinear descriptor systems exist in literature (see for instance [START_REF] Dai | Singular control systems[END_REF] for linear systems and [START_REF] Müller | Stability and optimal control of nonlinear descriptor systems: a survey[END_REF] for the nonlinear case). Some recent works dealing with descriptor systems are [START_REF] Sun | Optimal and self-tuning fusion Kalman filters for discrete-time stochastic singular systems[END_REF][START_REF] Ishihara | H∞ filtering for regular discrete-time descrptor systems[END_REF][START_REF] Darouach | H∞ unbiased filtering for linear descrptor systems via LMI[END_REF] where different observer approaches are used for this kind of systems. Different fault diagnosis techniques for descriptor systems are recently synthesized in [START_REF] Frisk | Sensor placement for fault isolation in linear differential-algebraic systems[END_REF][START_REF] Hu | Fault detection and diagnosis for singular stochastic systems via B-spline expansions[END_REF].

On the other hand, Linear Parameter Varying (LPV) systems (which can be considered as a particular case of Linear Time Varying systems LTV) can be used to approximate nonlinear systems, hence systematic and generic available theoretical results for LPV systems can be applied to derive nonlinear control laws for nonlinear systems. For instance, in [START_REF] Wei | Gain scheduled H∞ control for air path systems of diesel engines using LPV techinques[END_REF] the authors use the LPV approach to model and control diesel engines. In [START_REF] Grenaille | A method for designing fault diagnosis filters for LPV polytopic systems[END_REF] a method for designing structured fault diagnosis filters (with guaranteed H ∞ nuisance attenuation and fault transmission H -gain) for polytopic LPV systems is developed and simulated for a secondary circuit of a nuclear power plant. An application of fault detection and isolation to a Boeing 747-100/200 aircraft is presented in [START_REF] Ganguli | An application of H∞ fault detection and isolation to a transport aircraft[END_REF].

In recent years, fault detection and isolation for LPV systems has been investigated for several authors. The case of robust fault detection and isolation of multiple simultaneous faults for affine LPV systems affected by disturbances is presented in [START_REF] Armeni | Robust fault detection and isolation for LPV systems under a sensitivity constraint[END_REF], where the authors design a residual generator filter that maximizes the DC-transmission gain from a specific fault to the residual while attenuating the effect caused by the nuisances. The authors in [START_REF] Abdalla | Fault detection and isolation filter design for linear parameter varying systems[END_REF] present an H ∞ approach for fault detection and isolation (and estimation), where a linear fractional transformation (LFT) representation of the LPV system is adopted. In [START_REF] Balas | Failure detection for LPV systems -a geometric approach[END_REF][START_REF] Bokor | Detection filter design for LPV systems -a geometric approach[END_REF], failure detection for LPV systems is investigated by using a geometric approach, where a procedure was derived to obtain the detection filter gain via the construction of a suitable family of invariant subspaces. Parameter-dependent observers with pole assignment are used to synthesize the residual generators for LPV systems in [START_REF] Bara | Parameter-dependent state observer design for affine LPV systems[END_REF][START_REF] Millerioux | Bounded state reconstruction error for LPV systems with estimated parameters[END_REF][START_REF] Casavola | A fault detection, filter-design method for linear parametervarying systems[END_REF]. A robust state-based approach to estimate faults in uncertain LPV systems can be found in [START_REF] Henry | Robust fault diagnosis in uncertain linear parameter-varying sistems[END_REF].

Although the idea of merging descriptor and LPV systems is not new (see for instance [START_REF] Masubuchi | Synthesis of output feedback gain-scheduling controllers based on descriptor LPV system representation[END_REF]), there are very few works dealing with observer and controller synthesis, stabilization, fault diagnosis and other topics on automatic control for this kind of systems. Some recent papers on this topic dealing with the problem of control and stabilization are [START_REF] Chadli | Static output stabilisation of singular LPV systems: LMI formulation[END_REF][START_REF] Masubuchi | Gain-scheduled controller synthesis based on new LMIs for dissipativity of descriptor LPV systems[END_REF], whereas the authors in [START_REF] Bouali | H 2 gain scheduled observer based controllers for rational LPV systems[END_REF] addresses the problem of observer-based controllers.

The aim of this work is to develop a fault estimation method for discrete-time descriptor linear parameter varying systems (in the sequel referred as D-LPV systems), described by a polytopic system representation. In order to achieve this objective, an observer for D-LPV systems is synthesized. The observer is based on the observer proposed in [START_REF] Darouach | Design of observers for descriptor systems[END_REF] where a method to design full-order observers for LTI descriptor systems is considered. The existence conditions of the observer are given. Such conditions guarantee the observer convergence proved through a combined method based on the original approach proposed by [START_REF] Darouach | Design of observers for descriptor systems[END_REF] and a Lyapunov analysis.

By taking into account some simple matrix manipulations, this observer can estimate both, the states and the unknown inputs, simultaneously. In order to achieve a robust fault detection and identification, the unknown input estimation feature is used to build a fault diagnosis scheme based on a bank of observers. The effectiveness and performance of the proposed scheme are illustrated through a numerical example.

PROBLEM FORMULATION

Consider the following discrete-time polytopic D-LPV system where the terms k and k + 1 are the simplified form to write kT s and kT s + T s respectively, and T s is the sampling time:

Ē x(k + 1) = M i=1 ε i (ρ(k)) Āi x(k) + Bi u(k) + F v(k) y(k) = C x(k) (1) where x(k) ∈ R n , u(k) ∈ R q , y(k) ∈ R p , v(k) ∈ R d are
the state, the measured input, the measured output and the unmeasured input vectors which can be classically considered as fault vectors, respectively, Ē ∈ R m×n , Āi ∈ R m×n , Bi ∈ R n×q , C ∈ R p×n , F ∈ R n×d , are constant matrices, ρ(k) is a time-varying bounded parameter vector assumed to be measured on-line and M is the total number of weighting functions ε i (ρ(k)) defined as

M i=1 ε i (ρ(k)) = 1, ε i (ρ(k)) ≥ 0 (2)
Classicaly, the term polytopic comes from the fact that the vector ε(ρ(k)) evolves over the convex set:

Ω = col i : M i=1 ε i (ρ(k)) = 1, ε i (ρ(k)) ≥ 0
The following assumptions are considered ( [START_REF] Darouach | Design of observers for descriptor systems[END_REF]):

(A1) rank Ē = r < n. (A2) rank Ē C = n.
Assumption A1 simply states that Ē is a singular matrix. Assumption A2, guarantees the existence of a nonsingular matrix Γ:

Γ = ᾱ β γ ξ such that ᾱ Ē + β C = I n (3) γ Ē + ξ C = 0 (4)
where ᾱ, β, γ and ξ are constant matrices of appropriate dimensions which can be found by the singular value decomposition of Ē C .

The problem is to synthesize an observer for system (1) such that the estimation error ẽ(k) = x(k) -x(k) converges to zero as k → ∞.

In this paper bias are considered constant faults, called bias, are considered, i.e.

(A3) v(k) = v(k -1).
This assumption may be considered as restrictive, however in many practical situations, once a fault appears, it remains constant during a significant time period that is long enough to estimate the fault. In this way, the system (1) can be rewritten in the following form: 

Ex(k + 1) = M i=1 ε i (ρ(k)) (A i x(k) + B i u(k)) y(k) = Cx(k) (5)
A i = Āi 0 m×d 0 d×n I d (6) 
B i = Bi 0 d×q (7) 
C = C 0 p×d (8) 
Following the idea presented by Darouach [START_REF] Darouach | H∞ unbiased filtering for linear descrptor systems via LMI[END_REF] for state and unknown input estimation, the expanded state vector is formed by the usual state variables and the faults at the precedent time instant

x(k) = x(k) v(k -1) ∈ R (m+d)×(n+d) (10) 
In this way, the faults can be estimated simultaneously with the state variables. The problem becomes to design an adequate observer for the D-LPV system [START_REF] Sun | Optimal and self-tuning fusion Kalman filters for discrete-time stochastic singular systems[END_REF].

Assumption A2 becomes

(A4) rank E C = n + d.
Considering Assumption A4, it exists a nonsingular matrix Γ:

Γ = α β γ ξ such that αE + βC = I n+d (11) γE + ξC = 0 (12) 
where α, β, γ and ξ are constant matrices of appropriate dimensions which can be found by the singular value decomposition of E C .

The following additional assumption is considered:

(A5) The pair αA i , γA i C is detectable.
As proposed in [START_REF] Darouach | Design of observers for descriptor systems[END_REF], if Assumptions A4 and A5 holds, an observer for the system (5) should have the following form:

z(k + 1) = M i=1 ε i (ρ(k)) [N i z(k) + L 1i y(k) + G i u(k) + L 2i y(k)] x(k) = z(k) + βy(k) + Kξy(k) (13)
where z(k) ∈ R n+d is the observer state vector; N i , L 1i , L 2i , G i and K, i = 1, . . . , M are constant matrices of appropriate dimensions.

In the next section, sufficient conditions are given, such that system ( 13) is an observer for system (5).

THE OBSERVER SYNTHESIS

For the sake of simplicity, the following notation is used:

Ω(ρ k ) = M i=1 ε i (ρ(k))Ω i i = 1, . . . , M (14) 
Thus, system (13) can be rewritten in the simplified form:

z(k + 1) = N (ρ k )z(k) + L 1 (ρ k )y(k) + G(ρ k )u(k) + L 2 (ρ k )y(k) x(k) = z(k) + βy(k) + Kξy(k) (15) 
Let the observer error e(k) ∈ R n+d be defined as:

e(k) = x(k) -x(k) (16) 
The difference equation of the error is

e(k + 1) = [(α + Kγ) A(ρ k ) -N (ρ k ) (α + Kγ) E -L 1 (ρ k )C -L 2 (ρ k )C] x(k) + [(α + Kγ) B(ρ k ) -G(ρ k )] u(k) + N (ρ k ) [(α + Kγ) Ex(k) -z(k)] e(k) (17) 
If the following conditions are fulfilled

G(ρ k ) = (α + Kγ) B(ρ k ) (18) L 1 (ρ k ) = N (ρ k ) (β + Kξ) (19) 
and

N (ρ k ) = KγA(ρ k ) + αA(ρ k ) -L 2 (ρ k )C (20) 
then [START_REF] Bara | Parameter-dependent state observer design for affine LPV systems[END_REF] reduces to

e(k + 1) = N (ρ k )e(k) (21) 
Equation ( 21) can be written as:

e(k + 1) = M i=1 ε i (ρ(k))( Ãi + Ki Ci )e(k) (22) 
where Ãi = αA i , Ki = (K -L 2i ) and Ci = γA i C .

Equation ( 22) confirms the necessity of Assumption A5. The following subsection is devoted to demonstrated the stability and convergence of the error dynamics given in Equation ( 22).

Observer stability

Theorem 3.1. Considering Assumptions A4-A5, the system (15) is a stable observer for the system (5) if there exist symmetric positive definite matrices H i , nonsingular matrices J i , and matrices L 2i , and K such that

  J T i + J i N T i J T i N i H j 0 J i 0 H -1 i   > 0 ( 23 
)
∀ i = 1, ..., M , j = 1, ..., M , where N i = KγA i G i + αA i G i -L 2i CG i .
Proof:

Consider the following Parameter Dependent Lyapunov Function (PDLF)

V (e(k), ξ(ρ(k))) = e T (k)P (ρ k )e(k) (24) 
where according to notation [START_REF] Abdalla | Fault detection and isolation filter design for linear parameter varying systems[END_REF]:

P (ρ k ) = M i=1 ε i (ρ(k))P i (25) 
P i are symmetric positive definite constant matrices. According to the Lyapunov stability theorem, this PDLF must satisfy:

∆V (k) = V (k + 1) -V (k) = e T (k)(N T (ρ k )P (ρ k+1 )N (ρ k ) -P (ρ k ))e(k) ≤ 0 (26)
It can be seen that the function ∆V (k) is negative definite if

N T (ρ k )P (ρ k+1 )N (ρ k ) -P (ρ k ) < 0 (27)
The following notation is used for P (ρ k+1 ):

P (ρ k+1 ) = M i=1 ε i (ρ(k + 1))P i = M j=1 ε j (ρ(k))P j (28) 
By substituting ( 25) and ( 28) in [START_REF] Gao | Improved H∞ control of discrete-time fuzzy systems: a cone complementary linearization approach[END_REF], it can be deduced that the negative definiteness of ( 27) is guaranteed if [START_REF] Daafouz | Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties[END_REF]:

N T i P j N i -P i < 0, ∀ i = 1, . . . , M, j = 1, . . . , M. (29) 
The authors in [START_REF] Daafouz | Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties[END_REF] have demonstrated that poly-quadratically stability of the system e(k + 1) = N (ρ k )e(k) (which ensures the stability of the observer) is guaranteed if and only if there exist symmetric positive definite matrices H i , and matrices (of appropriate dimensions) Ψ i , i = 1, . . . , M , such that

Ψ i + Ψ T i -H i Ψ T i N T i N i Ψ i H j > 0 (30) 
∀ i = 1, . . . , M, j = 1, . . . , M , with

P (ρ k ) = M i=1 ε i (ρ(k))H -1 i (31)
It is worth to note from equations ( 25), ( 28) and ( 31) that H i = P -1 i and H j = P -1 j . In this way, the feasibility problem of inequalities ( 29) can be replaced for the feasibility problem of inequality (30). If so, then ( 26) is a negative definite and decreasing sequence.

Replacing N i from ( 20) into (30):

Ψ i + Ψ T i -H i (⋆) T KγA i Ψ i + αA i Ψ i -L 2i CΨ i H j > 0 (32) 
∀ i = 1, . . . , M, j = 1, . . . , M . It can be seen that the main difficulty to solve the inequality (32) is the bilinear term KγA i Ψ i , where K and Ψ i are unknown matrices.

Assuming that Ψ i is nonsingular, the positive definiteness of (30) is equivalent to the positive definiteness of the following congruent matrix

Ψ -1 i T 0 0 I Ψ i + Ψ T i -H i Ψ T i N T i N i Ψ i H j Ψ -1 i 0 0 I > 0 (33) or Ψ -1 i T + Ψ -1 i -Ψ -1 i T H i Ψ -1 i N T i N i H j > 0 (34)
Equation ( 34) is the Schur complement of the following positive definite matrix

  J T i + J i N T i J T i N i H j 0 J i 0 H -1 i   > 0 ( 35 
)
with J i = Ψ -1 i . This completes the proof. 2

The inequality [START_REF] Masubuchi | Gain-scheduled controller synthesis based on new LMIs for dissipativity of descriptor LPV systems[END_REF], implies that H j H -1 i = I when i = j, or simply

H i P i = I (36) 
(where P i = H -1 i ). Thus, inequality (23) can be written as:

  J T i + J i N T i J T i N i H j 0 J i 0 P i   > 0, H i P i = I. (37) 
Among various methods to solve LMI problem under a LME constraint, the cone complementary technique has been considered. The following facts are used to give a solution procedure to solve the inequality (37): Fact 3.1. The feasibility of the LMI

H i I I P i ≥ 0, H i > 0; P i > 0 i = 1, . . . , M
implies that Tr(H i P i ) ≥ n, where the equality Tr(H i P i ) = n holds if and only if H i P i = I (see [START_REF] Gao | Improved H∞ control of discrete-time fuzzy systems: a cone complementary linearization approach[END_REF]).

The following matrices are introduced

H = diag (H 1 , . . . , H M ) (38) 
P = diag (P 1 , . . . , P M ) (39) 
By taking into account Fact 3.1, it is easy to deduce the following: In this way, the problem of finding a solution of (37) is equivalent to solve the following minimization problem: min Tr(HP) subject to

                         J T i + J i N T i J T i N i H j 0 J i 0 P i   > 0 H I I P > 0 H > 0 P > 0 (40) 
∀ i = 1 . . . , M and ∀ j = 1 . . . , M . The bilinear objective problem: min Tr(HP), in (40) is solved by using the cone complementary algorithm proposed in [START_REF] El-Ghaoui | A cone complementarity linearization algorithm for static outputfeedback and related problems[END_REF].

The following notation is introduced:

H [k]
is used to denote the k-th element of the matrix sequence H [0] , H [1] , . . . , H [kopt] .

The cone complementary algorithm propose to transform the bilinear objective problem given in (40) by a linear objective problem of the form

min Tr(H [k-1] P [k] + P [k-1] H [k] ) subject to                                J [k] i T + J [k] i N [k] i T J [k] i T N [k] i H [k] j 0 J [k] i 0 P [k] i     > 0 H [k] I I P [k] > 0 
H [k] > 0 P [k]
> 0 (41) for k = 1, . . . , k opt , and to find recursively the values of H = H [kopt] , P = P [kopt] ,

J i = J [kopt] i , N i = N [kopt] i
, where k opt represents the iteration number where the sequence converges to min Tr(H

[k-1] P [k] + P [k-1] H [k] ) = 2nM or equivalently min Tr(HP) = nM , in other words min Tr(H [k-1] i P [k] i + P [k-1] i H [k] i ) = 2n or equivalently min Tr(H i P i ) = n.
A small enough value of a constant stopping criterion ε > 0 should be considered with the purpose of reduce the convergence time of the algorithm, i.e., once the value of Tr(H [k] P [k] ) < nM + ε, the algorithm stops. As indicated [START_REF] El-Ghaoui | A cone complementarity linearization algorithm for static outputfeedback and related problems[END_REF], each step of the algorithm has a simple LMI problem. The recursive sequence is bounded and decreases if and only if H [k] P [k] is at the optimum. For more details concerning the used of such method, the authors recommend to read carefully [START_REF] El-Ghaoui | A cone complementarity linearization algorithm for static outputfeedback and related problems[END_REF] and associated papers.

The initial matrices H [0] and P [0] , are obtained by computing an initial feasible point of the simple LMIs

    J [0] i T + J [0] i N [0] i T J [0] i T N [0] i H [0] j 0 J [0] i 0 P [0] i     > 0 H [0] I I P [0] > 0 H [0] > 0 P [0] > 0 (42) 
∀ i = 1 . . . , M and ∀ j = 1 . . . , M .

Observer gain design based on a pole placement

The observer should generate an accurate state and unknown inputs estimations based on an appropriate gain design. Among various kind of LMI regions, such as disk, cone, subplane, a pole placement through a disk as proposed by [START_REF] Kim | Pole placement of uncertain discrete systems in the smallest disk by state feedback[END_REF] has been considered. In fact, any region included inside the disk D(0, 1) can be chosen. However, if pole placement design is not considered, then the algorithm used to solve (41) could compute any H i , J i , L 2i and K satisfying the LMI [START_REF] Masubuchi | Gain-scheduled controller synthesis based on new LMIs for dissipativity of descriptor LPV systems[END_REF], such that the matrices N i , i = 1, ..., M have eigenvalues anywhere inside the unit circle, disregarding if they are near from the origin or near from the border of the unit circle. Then, in order to ensure an adequate pole placement of matrices N i , i = 1, . . . , n, the following inequalities can be taken into account instead of the inequalities shown in ( 29):

(N i -λ i I) T P j (N i -λ i I) -δ 2 i P i < 0, ∀ i = 1, . . . , M, j = 1, . . . , M. (43) 
By doing so, the poles of matrices N i are assigned in a disk D(λ i , δ i ) defined by the radius δ i > 0 and the real number

λ i ∈ R such that δ i ≤ 1 -|λ i |, ∀ i = 1, .
. . , M . The parameters associated to a disk region are chosen from the nominal dynamic behavior of the system in order to stabilize and to guarantee an efficient state estimation.

The inequality shown in (43) can be written in the simplified form:

N T i P j Ni -Pi < 0, ∀ i = 1, . . . , M, j = 1, . . . , M. ( 44 
)
which have the same form of inequality ( 29) with Ni = (N iλ i I) and Pi = δ 2 i P i . According to Theorem 3.1, the feasibility of inequality ( 44) is equivalent to the feasibility of finding symmetric positive definite matrices Hi , and matrices (of appropriate dimensions) Ψ i , i = 1, . . . , M , such that

Ψ i + Ψ T i -Hi Ψ T i N T i Ni Ψ i H j > 0 ( 45 
) ∀ i = 1, . . . , M, j = 1, . . . , M , with P (ρ k ) = M i=1 ε i (ρ(k)) H-1 i ( 46 
)
where Hi = P -1

i = δ -2 i P -1 i = δ -2
i H i Replacing Hi and Ni in (45), and by following an analogous procedure to that described in the proof of Theorem 3.1, the following corollary can be easily derived Corollary 3.1. Considering Assumptions A4-A5, the system (15) is a stable observer for the system (5) if there exist symmetric positive definite matrices H i and nonsingular matrices J i such that 18)-( 20). The poles of N i are located in a disk D(λ i , δ i ) defined by the radius δ i > 0 and the real number

  J T i + J i (N i -λ i I) T J T i (N i -λ i I) H j 0 J i 0 δ 2 i H -1 i   > 0 ( 47 
) ∀ i = 1, . . . , M, j = 1, . . . , M , where N i = KγA i + αA i -L 2i C and L 2i . The matrices G(ρ k ), L 1 (ρ k ) and N (ρ k ) are deduced from (
λ i ∈ R such that δ i ≤ 1 -|λ i |.
Finally, the cone complementary algorithm transforms the problem of feasibility of the inequality shown in (47) in the following linear objective minimization problem:

min Tr(H [k-1] P [k] +P [k-1] H [k] ) subject to                                J [k] i T + J [k] i (N [k] i -λ i I) T J [k] i T (N [k] i -λ i I) H [k] j 0 J [k] i 0 δ 2 i P [k] i     > 0 H [k] I I P [k] > 0 
H [k] > 0 P [k] > 0 ( 48 
) which is solved as described above. If (48) is feasible, then the poles of N i are located in a disk D(λ i , δ i ) defined by the radius δ i > 0 and the real number

λ i ∈ R such that δ i ≤ 1 -|λ i |.

Extended case

In this subsection, the design of a full-order observer for descriptor systems with measurement noises and perturbations is presented.

Let us consider the signal w(t) characterized as the output of the following linear discretetime system: 

x w (k + 1) = A w x w (k) + B w u w (k) w(k) = C w x w (k) (49) where x w (k) ∈ R w , u w (k) ∈ R, w(k) ∈ R
y m (k) = y(k) + w(k) = [C C w ] x(k) x w (k)
The state-space models of systems ( 5) and (49) can be rewritten in the compact form:

Ẽ ẋ(k + 1) = Ã(ρ k )x(k) + B(ρ k )ū(k) y m (k) = C x(k) (50) 
where

Ẽ = E 0 0 I w Ã(ρ k ) = A(ρ k ) 0 0 A w B(ρ k ) = B(ρ k ) 0 0 B w C = C C w x(k) = x(k) x w (k) ū(k) = u(k) u w (k)
The procedure to design an observer for system (50) is equivalent to design an observer for system (5) extended to a classical robust residual generators method [START_REF] Ding | Model-based fault diagnosis techniques -Design schemes, algorithms, and tools[END_REF] .

ILLUSTRATIVE EXAMPLE

Consider a descriptor LPV system of the form (1) in the presence of two structured faults with unknown fault magnitudes given by: 

Ā1 =     2.
    Ā2 =     1 1.4 -0.07 -0.2 1.5 2 -0.15 -0.3 0.4 0.1 0.5 0.2 0 0 -0.5 -0.2     (51) B1 =     0.6047 1.644 -1.709 -1.732     B2 =     0.5 1 -1.5 -1     C = 1 0 0 0 0 1 0 0 (52) Ē =     1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1     F =     1 0 0 0 0 1 0 0     (53) 
where matrices A 1 , B 1 , E and C were taken from [START_REF] Chadli | Static output stabilisation of singular LPV systems: LMI formulation[END_REF] with structured fault matrix F .

The system (1) can be rewritten in the form of system [START_REF] Sun | Optimal and self-tuning fusion Kalman filters for discrete-time stochastic singular systems[END_REF], where the augmented matrices E and C are:

E = Ē -F 0 2×4 I 2 C = C 0 2×2 (54) 
It can be verified that

rank E C = n + d = 6 (55) 
The matrices α, β, γ and ξ, satisfying [START_REF] Grenaille | A method for designing fault diagnosis filters for LPV polytopic systems[END_REF] and ( 12) are computed by using the Singular Value Decomposition property of (E C) T :

α =        
0.333 0 0 0 0.333 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 -0.333 0 0 0 0.667 0 0 0 0 0 0 1

        β =         0.667 0 0 1 0 0 0 0 0.333 0 0 0         (56) 
γ = -0.471 0.577 0 0 -0.471 0 0.333 0.817 0 0 0.333 0 ξ = 0.471 0 -0.333 0 (57)

At this point, it is worth to note that the pair αA i ,

γA i C is detectable ∀ i = 1, . . . , 2.
An observer of the form ( 13) can be designed. The disks to place the poles of the matrices N i are D(0.2, 0.8) for i = 1, 2.

Following the procedure described in Section 3, the following matrices are obtained: 18)- [START_REF] Henry | Robust fault diagnosis in uncertain linear parameter-varying sistems[END_REF].

P 1 =         1.
The effectiveness of the proposed observer scheme is illustrated by the system studied in open-loop. In this simulation, the time-varying parameter ρ(k) is the measured input, and it is shown in Fig. 1 in Fig. 2. The time evolution of these functions are in accordance with (2). It can be seen that the system is evaluated over the entire operating envelope. Fault-free dynamic behaviour of the outputs is shown in Fig. 3. It can be noted that a gaussian noise is added to the measured outputs. Two severe faults were simulated. The first fault occurs at the sampled time t k = 50 and the second fault occurs at t k = 130. The faults acts as two unknown inputs to the system, affecting the dynamics of the outputs and the states (see Figs. 45). The state observer tracks well both, the system states, despite the variations on the input (and consequently the changing operating points), the noisy measurements (see Fig. 4), and the faults. In Fig. 6, it can be appreciated that the observer detects these faults.

As expected, the observer is noise sensitive. However, these simulation results show that the observer is very effective in detecting and isolating the fault over the entire operating envelope. The estimation of the faults should be used to generate the residuals which can be evaluated through classical statistical methods with the purpose of generate alarms. The fault diagnosis scheme constructed in this way is able to detect, to isolate and to estimate the fault and it represents an efficient tool in the operator's decision. 

CONCLUSION

In this paper, a model-based fault diagnosis method for discrete-time D-LPV systems is introduced. For that, an observer that performs fault detection and fault magnitude estimation over the entire operating envelope of the system. The observer synthesis is an extension of the work presented in [START_REF] Darouach | Design of observers for descriptor systems[END_REF] where an observer for LTI descriptor systems is reported. By taking into account some simple matrix manipulations, this observer can estimate simultaneously both, the states and the fault magnitude vectors, considered as unknown inputs. Sufficient conditions are stated to ensure the existence and the stability of the proposed observer by using a combined Lyapunov analysis based on LMI formulation. An observer gain synthesis has been also proposed to guarantee the efficiency of the model-based fault diagnosis technique. The proposed method is evaluated successfully via numerical simulations. 

Fact 3 . 2 .

 32 The feasibility of the LMI H I I P ≥ 0, H > 0; P > 0 implies that Tr(HP) ≥ nM , where the equality Tr(HP) = nM holds if and only if HP = I

  are the state, the input and the output of the perturbation model. A w , B w and C w are constant matrices of appropriate dimensions. The signal w(k) can represent either a perturbation signal, or a noise signal. The output y m (k) is given by

Figure 1 .Figure 2 .

 12 Figure 1. Dynamic behaviour of the input

Figure 3 . 2 Figure 4 .

 324 Figure 3. Fault-free dynamic behaviour of the outputs y1 and y2

Figure 5 .

 5 Figure 5. Dynamic behaviour of the states x1, x2, x3 and x4 and their estimated values x1, x2, x3 and x4

1 Figure 6 .

 16 Figure 6. Dynamic behaviour of the faults d1 and d2 and their estimated values d1 and d2
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