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SUMMARY

The main contribution of this paper is the design of a polytopic Unknown Input Proportional Integral
Observer (UIPIO) for Linear Varying Parameter (LPV) descriptor systems. This observer is used for actuator
Fault Detection and Isolation (FDI). The proposed method isbased on the representation of LPV descriptor
systems in polytopic form where its parameters evolve in a hypercube domain. The designed polytopic
UIPIO is also able to estimate the states and the unknown inputs of the LPV descriptor system. Stability
conditions of such observer are expressed in terms of LinearMatrix Inequalities (LMI). An example
illustrates the performances of such polytopic UIPIO for multiple actuator faults estimation in spite of
disturbances.
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1. INTRODUCTION

The topic of Fault Detection and Isolation (FDI) in dynamic systems has been an active research
area in the last two decades, as can be seen, in survey papers by [23] for linear systems, [19] for
multi-models representation and [3] for nonlinear systems. For many processes it is feasible touse
differential-algebraic equations to describe the plant dynamic behavior. The use of the physical or
chemical laws is often a natural choice. In the most general form, a set of so-called descriptor system
equations can be used as discussed by [4].
Model-based FDI techniques use mathematical models of the monitored process and extract features
from measured signals, to generate fault indicating signals, that is, the residuals. Hence, generation
of residual signals is a central issue in model-based FDI anda rich variety of methods are available
for FDI. The basic idea behind the observer-based approaches is to estimate the outputs of the
system from the measurements by using observers. Then, the output estimation error is used as a
residual.
The problem of designing observers has been investigated bymany authors. The authors in [8] have
proposed full and reduced order observers for linear descriptor systems. In [11], the authors have
developed an observer design method based on singular valuedecompositions and the concept of
generalized inverse matrix. Observer design for nonlineardescriptor systems was studied in [4]. The
authors in [14] have proposed an unknown inputs multi-observer for nonlinear descriptor systems
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FAULT DETECTION AND ISOLATION FOR LPV DESCRIPTOR SYSTEMS VIA PI OBSERVER 3

described by multi-models. As in the conventional systems,in view of the advantages of integral
actions, some researchers have introduced the integral term in observer design for descriptor systems
[1, 13]. Full and reduced order Proportional Integral (PI) observers for fuzzy descriptor system
subject to parameter variations have been designed in [12]. These observers allow estimation of
both the state and the unknown inputs. The authors in [24], [22] have synthesized robust control
laws for fuzzy descriptor systems. More recently, Linear Parameter Varying (LPV) modeling of
the monitored system has been considered. Such models can beused efficiently to represent some
ordinary nonlinear systems. Some researchers from the fault detection and isolation community have
developed model-based FDI methods [9, 26] and Fault Tolerant Control [20] using LPV systems.
For polytopic LPV systems, a polytopic unknown inputs observer has been also used for the state
estimation of uncertain systems and for FDI of nonlinear systems described by a multi-models
representation [21].
The authors in [16, 17] have designed gain-scheduled controllers for LPV descriptor systems. In
spite of that, there are few studies on state reconstructionand fault diagnosis for LPV descriptor
systems despite of a method for actuator fault detection andestimation proposed in [10].
The main contribution of this paper is associated with the design of a polytopic Unknown Input
Proportional Integral Observer (UIPIO) for LPV descriptorsystems and for fault detection and
isolation. In this modeling framework, the dynamic behavior of the LPV descriptor system is given
in a polytopic form, that allows to describe the system as a convex combination of subsystems
defined by the vertices of a convex polytope. These submodelsare then combined by a convex
weighing functions to yield the global model.
The first step of this work consists of modeling the LPV descriptor system by a polytopic form. The
second step is devoted to the design of a polytopic UIPIO for LPV descriptor systems subjected to
external disturbances. The obtained observer is used for state, unknown inputs estimation and for
actuator faults detection and isolation. Note that, in one hand, to estimate the state and unknown
inputs, all matrices of the LPV descriptor systems are considered with time-varying parameters.
On the other hand, to ensure the fault detection and estimation, the control matrix and disturbance
matrix of the dynamic systems are considered with static parameters.
This paper is organized as follows: The polytopic representation of LPV descriptor systems is
presented in Section 2. The polytopic Unknown Input Proportional Integral Observer (UIPIO)
design corresponding to the polytopic models and its stability conditions are studied in Section 3.
Section 4 is devoted to detection, isolation and estimationof the actuator faults by using a set of
polytopic UIPIO for LPV descriptor systems. Finally, an illustrative example is provided to show
the effectiveness of the proposed approach.
In this paper, the notation is standard.R denotes the set of real numbers;C is the complex plane;
A+ denotes the generalized inverse of A;Q > 0 or (Q < 0) indicates that the matrix Q is positive
(or negative) definite. Also,∀ means ”for all”.

2. POLYTOPIC LPV DESCRIPTOR SYSTEM

Consider the class of LPV descriptor systems:

{
Eẋ(t) = Ã(θ(t))x(t) + B̃(θ(t))u(t) + R̃(θ(t))d(t)
y(t) = Cx(t)

(1)

x(t) ∈ R
n is the state vector,u(t) ∈ R

p is the control input,d(t) ∈ R
q is the unknown input vector

and y(t) ∈ R
m represents the measured output vector.Ã(·), B̃(·), R̃(·) are continuous functions

which depend affinely on the time-varying parameter vectorθ(t) ∈ R
l. It is also assumed that this

time-varying parameter vectorθ(t) is bounded and lies into a hypercube such that [2, 6, 25]:

θ(t) ∈ Γ = {θ | θi(t) ≤ θ(t) ≤ θi(t)}, ∀t ≥ 0 (2)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2011)
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4 H. HAMDI, M. RODRIGUES, C. MECHMECHE, D. THEILLIOL AND N. BENHADJ BRAIEK

The LPV descriptor system (1) with the affine parameter dependence (2) allows us to determine
a set of matricesΠi such that:

Π(θ(t)) = Π0 +

h∑

i=1

θi(t)Πi, ∀θ(t) ∈ Γ (3)

where

Π =

(
Ã B̃ R̃

C 0 0

)
(4)

The system (1) can be transformed into a convex interpolation of the vertices ofΓ where the
vertices of the polytope are defined such that [20]: Si =

[
Ai, Bi, C, Ri

]
, ∀i ∈ [1, . . . , h]

whereh = 2l. The polytopic coordinates are denotedρ(θ(t)) and vary into the convex setΩ:

Ω =
{
ρ(θ(t)) ∈ R

h, ρ(θ(t)) = [ρ1(θ(t)), . . . , ρh(θ(t)]T , ρi(θ(t)) ≥ 0,

h∑

i=1

ρi(θ(t)) = 1
}

(5)

Consequently, the polytopic LPV descriptor system with thetime-varying parameter vector
ρ(θ(t)) ∈ Ω is given by:





Eẋ(t) =

h∑
i=1

ρi(θ(t))(Aix(t) + Biu(t) + Rid(t))

y(t) = Cx(t)

(6)

whereAi ∈ R
n×n, Bi ∈ R

n×p, Ri ∈ R
n×q andC ∈ R

m×n are time invariant matrices defined for
theith model.E ∈ R

nxn is a constant matrix andrank(E) = r < n.

The following section presents a design method of a polytopic Unknown Input Proportional
Integral Observer (UIPIO) for LPV descriptor systems subjects to disturbances. This observer is
constructed by the interpolation of a set of sub-UIPIO, according to the parameterρi(θ(t)). As in
ordinary multi-models representation [19] and for multi-observer design, the observability requires
that all the subsystems are observable. Then, the followingassumptions express the observability
properties of the polytopic LPV descriptor system.

Assumption A1: The matrixC is of full-row rank, i.e.,rank(C) = m.
Assumption A2: The triple matrix(E, Ai, C) is R-observable [12], ∀i = 1, . . . , h, i.e.,

rank

[
sE − Ai

C

]
= n, ∀s ∈ C. (7)

Assumption A3: The triple matrix(E, Ai, C) is impulse-observable [12], ∀i = 1, . . . , h, i.e.,

rank




E Ai

0 E

0 C


 = n + rank(E) (8)

Descriptor system is represented by a combined set of Differential and Algebraic Equations (DAE).
The observability reflects the capacity to estimate the whole state. Then, two types of observability
are required:
The R-observabilitycharacterizes the capacity to reconstruct only the state ofthe dynamic part
(governed by differential equations).
The impulse observabilityguarantees the capacity to estimate the state of static part(governed by
algebraic equations).
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3. POLYTOPIC UNKNOWN INPUT PROPORTIONAL INTEGRAL OBSERVERDESIGN

Polytopic UIPIO of LPV descriptor system (6) is described by the following equations:





ż(t) =
h∑

i=1

ρi(θ(t))(Niz(t) + Giu(t) + Liy(t) + Tid̂(t))

x̂(t) = z(t) + H2y(t)

˙̂
d(t) =

h∑
i=1

ρi(θ(t))Φi(y(t) − ŷ(t))

(9)

wherex̂(t) ∈ R
n, z(t) ∈ R

n andd̂(t) ∈ R
q are the estimated state vector, transformed state vector

and estimated unknown inputs vector respectively.Ni, Gi, Li, Ti, H2 andΦi are unknown matrices
of appropriate dimensions. The unknown inputs can be regarded as signals to be estimated. This
polytopic UIPIO (9) aggregates all local observers defined at each vertex.

Definition 1
System (9) is called a polytopic UIPIO for system (6) if for arbitrary initial conditionsx(0) andz(0)
and arbitrary inputu(t), the following relations hold:

lim
t→∞

(x(t) − x̂(t)) = 0 (10)

lim
t→∞

(d(t) − d̂(t)) = 0, ∀ d̂(0) (11)

�

The state estimation error is equal to:e(t) = x(t) − x̂(t); then it follows from (6) and (9) that

e(t) = x(t) − z(t) − H2Cx(t)

e(t) = (In − H2C)x(t) − z(t)

Assuming there exists a matrixH1 ∈ Rn×n such that:

H1E = In − H2C (12)

which is equivalent to

[
H1 H2

] [
E

C

]
= In (13)

Equation (13) has a solution ifrank

[
E

C

]
= n. By using (12), the state estimation error becomes:

e(t) = H1Ex(t) − z(t) (14)

Now, we assume that the bounded unknown inputs are defined with slow variation, i.eḋ(t) ≃ 0.
Then, forζ(t) = d(t) − d̂(t) the derivative of the unknown input is

ζ̇(t) = −
˙̂
d(t) (15)

By taking into account (6), (9) and (14), the dynamics of the estimation error is given by the
following equation:

ė(t) = H1Eẋ(t) − ż(t) (16)

ė(t) =

h∑

i=1

ρi(θ(t))(Nie(t) + (H1Ai − LiC − NiH1E)x(t) + (H1Bi − Gi)u(t) + Tiζ(t) + (H1Ri − Ti)d(t))

(17)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2011)
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6 H. HAMDI, M. RODRIGUES, C. MECHMECHE, D. THEILLIOL AND N. BENHADJ BRAIEK

If the following relations hold true∀i = 1, . . . , h:

H1Ai − NiH1E − LiC = 0 (18)

Gi = H1Bi (19)

H1E = In − H2C (20)

Ti = H1Ri (21)

and from (9), (15) and (17), the dynamics of the state estimation and the unknown inputerrors
become:

ė(t) =
h∑

i=1

ρi(θ(t))(Nie(t) + Tiζ(t)) (22)

ζ̇(t) = −
h∑

i=1

ρi(θ(t))(ΦiC(x(t) − x̂(t))) (23)

ζ̇(t) = −
h∑

i=1

ρi(θ(t))(ΦiC)e(t) (24)

The above errors dynamics can be represented by connecting (24) to (22) as follows:

[
ė(t)

ζ̇(t)

]
=

h∑

i=1

ρi(θ(t))

[
Ni Ti

−ΦiC 0

] [
e(t)
ζ(t)

]
(25)

If the above augmented error dynamic equation is stable, thestate estimation will converge
asymptotically to the real state.

3.1. UIPIO Matrices Computing

In order to find matrix
[

H1 H2

]
, it follows that equation (13) has a solution since

rank
[

E

C

]
= n, and the solution is given by

[
H1 H2

]
=

[
E

C

]+

(26)

By substituting (20) into (18), we obtain∀i = 1, . . . , h:

H1Ai = Ni(In − H2C) + LiC (27)

Equation (27) can be equivalently written as:

Ni = H1Ai − KiC (28)

with

Ki = Li − NiH2 (29)

and matricesLi can be deduced from equation (29) as follows:

Li = Ki + NiH2 (30)

To compute the gainsKi andΦi, the estimated errors equation (25) can be written as:

[
ė(t)

ζ̇(t)

]
=

h∑

i=1

ρi(θ(t))
(
Āi − K̄iC̄

) [
e(t)
ζ(t)

]
(31)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2011)
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or equivalently such that:

ėa(t) =

h∑

i=1

ρi(θ(t))
(
Āi − K̄iC̄

)
ea(t) = A(t)ea(t) (32)

where:

Āi =

[
H1Ai Ti

0 0

]
, K̄i =

[
Ki

Φi

]
, C̄ =

[
C 0

]
, ea(t) =

[
e(t)
ζ(t)

]
andTi = H1Ri.

Note that this estimation error (32) is a continuous function which depends on the time-varying
parameter vectorρ(t) ∈ Ω.
Obviously, the stability of (32) is ensured if and only if the pair(Āi, C̄) is detectable∀i = 1, . . . , h

which is equivalent to:

rank




sE − H1Ai −H1Ri

0 sIq

C 0



 = n + q, ∀ s ∈ C+. (33)

Equation (33) is the generalization ofR-detectability[12] for the polytopic descriptor system.

3.2. Stability and convergence conditions

The exponential convergence of the estimation error (α-stability of the observer) is a way to
ensure a convergence velocity of the estimation error via a decay rate and to improve dynamic
performances of the observer [18]. The following theorem provides sufficient conditions for
ensuring the exponential convergence of the estimation error (32).

Theorem1
Let consider the system (6) and the polytopic UIPIO (9). The exponential convergence of the
estimation error (32) is guaranteed if there exists a symmetric and positive definite matrix Q,
matricesWi = QK̄i and a positive scalarα for all ρ ∈ Ω such that:

ĀT
i Q + QĀi − C̄T WT

i − WiC̄ + 2αQ < 0, ∀i ∈ [1, . . . , h] (34)

�

Proof 1
The proof of this theorem is performed by using the followingquadratic Lyapunov function:

V (t) = eT
a (t)Qea(t), Q = QT > 0 (35)

The exponential convergence of the estimation error is guaranteed if:

∃Q = QT > 0 : V̇ (t) + 2αV (t) < 0 (36)

whereα is called the decay rate. Indeed, the solution of the Equation (36) is given by:

V (t) ≤ V (0)exp(−2αt), ∀t ≥ 0 (37)

Due toλmin(Q) ‖ ea(t) ‖2≤ V (t) ≤ λmax(Q) ‖ ea(t) ‖2, the norm of the estimation error can be
bounded by:

‖ ea(t) ‖≤

√
λmax(Q)

λmin(Q)
exp(−αt) ‖ ea(0) ‖, ∀t ≥ 0 (38)

The derivative of (35) with respect to time yields:

V̇ (t) = ėT
a Qea + eT

a (t)Qėa(t) (39)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2011)
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that becomes by using equation (32):

V̇ (t) = ea(t)T {A(t)T Q + QA(t)}ea(t) (40)

By using (35) and (40), the inequality (36) becomes:

ea(t)T {A(t)T Q + QA(t) + 2αQ}ea(t) (41)

that is a quadratic form inea(t). Therefore, the above inequality is satisfied if the following
inequality holds:

A(t)T Q + QA(t) + 2αQ < 0 (42)

that is a sufficient condition for ensuring the exponential convergence of the estimation errorea(t).
By considering the fact thatQ is positive definite matrix and thatA(t) is a continuous function
of parameterρ ∈ Ω, andΩ is compact: it is clear that if there exists a positive definite matrixQ

for all ρ ∈ Ω it implies that the left hand side of equation (42) is uniformly negative definite [25].

Then, from equation (32), let replaceA(t) by
h∑

i=1

ρi(θ(t))
(
Āi − K̄iC̄

)
=

h∑
i=1

ρi(θ(t))Ψi. Hence, the

inequality (42) becomes for allρi(θ(t)) ∈ Ω:

h∑

i=1

ρi(θ(t))Ψ
T
i Q + Q

h∑

i=1

ρi(θ(t))Ψi + 2αQ < 0 (43)

For anyρi(θ(t)) ∈ Ω and due to the properties of this compact set [15], the previous inequality (43)
becomes

h∑

i=1

ρi(θ(t))Ψ
T
i Q + Q

h∑

i=1

ρi(θ(t))Ψi +

h∑

i=1

ρi(θ(t))2αQ < 0 (44)

The inequality (44) holds if the following inequalities are satisfied over allρi(θ(t)) ∈ Ω:

ΨT
i Q + QΨi + 2αQ < 0, ∀i ∈ [1, . . . , h] (45)

or equivalently by substitutingΨi:

ĀT
i Q + QĀi − QK̄iC̄ − (K̄iC̄)T Q + 2αQ < 0, ∀i ∈ [1, . . . , h] (46)

Let us notice that the above inequalities are bilinear inK̄i andQ. Therefore, it is not possible to
solve them directly using standard convex optimization algorithms. However, the following change
of variable:Wi = QK̄i can be useful in order to linearize (46) which becomes:

ĀT
i Q + QĀi − C̄T WT

i − WiC̄ + 2αQ < 0, ∀i ∈ [1, . . . , h] (47)

that are linear inequalities inQ andWi. Now, a solution can be found using classical LMI tools and
the gains are computed with̄Ki = Q−1Wi, ∀i ∈ [1, . . . , h]. �

Remark: Exponential convergence of estimation error (32) is a strong form of convergence; it
implies asymptotic convergence [25]. Indeed, the asymptotic convergence of the estimation error is
obtained by considering a decay rate equal to zero(α = 0).

In the following, the proposed observer is used for fault detection, isolation and estimation of
actuator fault with disturbance rejection.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2011)
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4. FAULT DETECTION AND ISOLATION IN LPV DESCRIPTOR SYSTEM

Fault diagnosis is usually performed to accomplish one or more of the following tasks: fault
detection (or monitoring), to indicate the fault occurrence; fault isolation, to determine the location
of the fault and fault identification, to estimate the fault magnitude.
However, the relative importance of these three tasks are obviously subjective even if fault detection
and isolation are an absolute must for any practical system.Fault identification (estimation), which is
certainly helpful, may not be essential if no reconfiguration action is involved. Hence, fault diagnosis
is very often considered as fault detection and isolation.
In this section, the polytopic UIPIO are specifically designed for fault detection, isolation and
estimation. In the framework of robust fault detection, we are looking forward to generate residual
signals that indicate if a fault occurs or not.

4.1. Residual generation via polytopic UIPIO

A residual generation algorithm using a polytopic UIPIO is considered in order to be sensitive to an
actuator fault vectorf ∈ Rf and insensitive to the disturbance vectord(t) [23].
Consider the following polytopic descriptor system with a constant control matrixBi, i.e.Bi = B

and a constant unknown input matrixRi = R:





Eẋ(t) =

h∑
i=1

ρi(θ(t))(Aix(t) + Bu(t) + Rd(t) + Ff(t))

y(t) = Cx(t)
(48)

For residual generation purposes of (48), the polytopic UIPIO has the following form:





ż(t) =
h∑

i=1

ρi(θ(t))(Niz(t) + Giu(t) + Liy(t) + T f̂(t))

x̂(t) = z(t) + H2y(t)
r(t) = y(t) − ŷ(t)

˙̂
f(t) =

h∑
i=1

ρi(θ(t))Φi(y(t) − ŷ(t))

(49)

wherer(t) is the so-called residual signal generated by the comparison between measured and
estimated outputs. The diverse matrices in (49) will be determined to ensure the convergence of the
estimated errors. In order to describe the dynamic of polytopic UIPIO (49), the estimation error and
the residual equations are defined by:e(t) = x(t) − x̂(t) andr(t) = Ce(t). It can be shown that:

ė(t) =
h∑

i=1

ρi(θ(t))Nie(t) + (H1Ai − NiH1E − LiC)x(t) + (H1B − G)u(t) + H1Rd(t) + (H1F − T )f(t) + Tζf (t)

(50)
where

ζf (t) = f(t) − f̂(t) (51)

The following conditions have to be verified in order to provide robustness to unknown inputs and
sensitivity to faults. Then, equations (18) to (20) and the following equations must be satisfied:

T = H1F (52)

H1R = 0 (53)

Hence, equation (50) becomes:

ė(t) =

h∑

i=1

ρi(θ(t))(Nie(t) + Tζf(t)) (54)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2011)
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By assuming the fault as a step, we find:

ζ̇f (t) = −
˙̂
f(t) (55)

Thus, from (49) we obtain:

˙̂
f(t) = −

h∑

i=1

ρi(θ(t))ΦiCe(t) (56)

Equations (54) and (56) can be combined in an augmented form as follows:

[
ė(t)

ζ̇f (t)

]
=

h∑

i=1

ρi(θ(t))

[
Ni T

−ΦiC 0

] [
e(t)
ζf (t)

]
(57)

The design of the polytopic UIPIO (49) is equivalent to solve equations (18) to (20) under constraint
(53) and to ensure that the augmented error equation (57) is stable. Then, matricesH1 andH2 are
determined such that constraints (20) and (53) are satisfied. Equations (20) and (53) are rewritten in
an augmented matrix equation as

[
H1 H2

] [
E R

C 0

]
=

[
In 0

]
(58)

A solution of (58) exists if [13]:

rank

[
E R

C 0

]
= n + rank(R) (59)

Under (59), the general solution of (58) is:

[
H1 H2

]
=

[
In 0

] [
E R

C 0

]+

(60)

The remaining matricesGi, Ni andLi of this polytopic UIPIO based residual generator are given
by (19), (28) and (30) respectively.
The residuals are generated by integrating the estimated output errors and the occurence of faults
are detected by its magnitudes. Thus, it is verified that the polytopic UIPIO based residual generator
can estimate the state variables and detect faults at the same time.

4.2. Actuator Fault Isolation

The fault isolation problem is to determine in which actuator the fault has occurred. The idea is
to make each residual sensitive to only one actuator fault and insensitive to all other faults [19].
To design robust actuator fault isolation scheme, only one component ofu(t) is considered faulty.
The others are assumed to be fault free and considered as unknown inputs. Hence, for each actuator
fault, the polytopic LPV descriptor system corrupted by faults and unknown inputs is described by:





Eẋ(t) =

h∑
i=1

ρi(θ(t))
(
Aix(t) + Bu(t) +

[
R F r

] [
d(t)
fd(t)

]
+ F jfj(t)

)

y(t) = Cx(t)
(61)

whereF j is thejth column ofB with j ∈ [1, . . . , p], F r is a matrix of the remaining columns of
B. fj represents the faults to be isolated and estimated andfd(t) is considered in this FDI scheme
as an unknown input.

[
R F r

]
is the new disturbance matrix composed by the original unknown

inputs matrixR and the matrixFr. Based on the above system description,p polytopic UIPIO based
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residual generators can be synthesized forj ∈ [1, . . . , p] such that:





żj(t) =
h∑

i=1

ρi(θ(t))(N
j
i z(t) + G

j
i u(t) + L

j
iy(t) + T f̂j(t))

rj(t) = y(t) − ŷ(t)

˙̂
fj(t) =

h∑
i=1

ρi(θ(t))Φ
j
i (y(t) − ŷ(t))

(62)

The observer matrices must satisfy the equations (19), (28), (29) and (60) such that the initial matrix
R is replaced by

[
R F r

]
. Each residual vectorrj(t) produced by thejth polytopic UIPIO, may

be used to isolate a fault according to a statistical test [21]. The isolation scheme can only isolate a
single fault at the same time. This is based on the fact that the probability for two or more faults to
occur at the same time is very small in a real situation.

5. ILLUSTRATIVE EXAMPLE

Let us consider the following LPV descriptor system defined by
{

Eẋ(t) = A(θ(t))x(t) + B(θ(t))u(t) + R(θ(t))d(t)
y(t) = Cx(t)

where

A(θ) =




−1.75 + θ2 1 0 0
−1 −1 + θ1 0 0
−1.8 −1 −0.75 + θ1 0
−1 0 0 −1 + θ2


 , E =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




,

B(θ) =




1 + θ1 1
1 0.5 + θ2

1 0
θ2 0


 , R(θ) =




0
0.6 + θ1

0
1


 andC =




1 0 1 0
0 1 0 1
0 0 1 1





In this example, the polytopic LPV descriptor system is considered where variablesθi vary
according to θ1 ∈ [−0.05, 0.05] and θ2 ∈ [−0.1, 0.1], l = 2. In this case, the polytopic
representation can be written as follows:





Eẋ(t) =

4∑
i=1

ρi(θ(t))(Aix(t) + Biu(t) + Rid(t))

y(t) = Cx(t)

The obtained system evolves in a polytope of 4 vertices corresponding to the extreme values of the
parametersθ1 andθ2. The system matrices are given:

A1 =




−1.85 1 0 0
−1 −1.05 0 0
−1.8 −1 −0.8 0
−1 0 0 −1.1


 , A2 =




−1.65 1 0 0
−1 −1.05 0 0
−1.8 −1 −0.8 0
−1 0 0 −0.9




A3 =




−1.85 1 0 0
−1 −0.95 0 0
−1.8 −1 −0.7 0
−1 0 0 −1.1


 , A4 =




−1.65 1 0 0
−1 −0.95 0 0
−1.8 −1 −0.7 0
−1 0 0 −0.9




B1 =




0.95 1
1 0.4
1 0

−0.1 0


 , B2 =




0.95 1
1 0.6
1 0

0.1 0


 , B3 =




1.05 1
1 0.4
1 0

−0.1 0


 , B4 =




1.05 1
1 0.6
0 0

0.1 0



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R1 = R2 =




0
0.55
0
1


 , R3 = R4 =




0
0.65
0
1


 andC =




1 0 1 0
0 1 0 1
0 0 1 1




The weighing functionsρi(θ(t)) are defined such that:

ρ1(θ(t)) =
θ1 − θ1

θ1 − θ1

θ2 − θ2

θ2 − θ2

=
(θ1 + 0.05)(θ2 + 0.1)

0.02
, ρ2(θ(t)) =

θ1 − θ1

θ1 − θ1

θ2 − θ2

θ2 − θ2

=
(θ1 + 0.05)(0.1 − θ2)

0.02

ρ3(θ(t)) =
θ1 − θ1

θ1 − θ1

θ2 − θ2

θ2 − θ2

=
(0.05 − θ1)(θ2 + 0.1)

0.02
, ρ4(θ(t)) =

θ1 − θ1

θ1 − θ1

θ2 − θ2

θ2 − θ2

=
(0.05 − θ1)(0.1 − θ2)

0.02

5.1. UIPIO Design

The polytopic Unknown Input Proportional Integral Observer is represented by




ż(t) =
4∑

i=1

ρi(θ(t))(Niz(t) + Giu(t) + Liy(t) + Tid̂(t))

x̂(t) = z(t) + H2y(t)

˙̂
d(t) =

4∑
i=1

ρi(θ(t))Φi(y(t) − ŷ(t))

The design procedure of the polytopic UIPIO is thus given as follows:
(i) Based on the system matrices, assumptionsA2 andA3 are satisfied.
(ii) MatricesH1 andH2 are obtained from equation (26).
(iii) By using (21), LMI (47) can be efficiently solved via numerical approach using the LMI toolbox
to determine the gains matrices. Therefore, these inequalities are fulfilled with:

K1 =




−1.1672 2.7989 −2.2082
5.1350 −5.8683 6.9783
3.9170 5.6084 −5.1706
−8.4141 9.8486 0.1051


 , K2 =




−1.1179 2.7162 −2.1058
5.0955 −5.6972 6.7604
2.7157 6.7906 −5.9916
−7.6181 8.8765 0.8780




K3 =




−1.2822 2.9205 −2.3191
5.5822 −6.3372 7.3882
4.2007 5.3086 −4.9580
−8.8752 10.3629 −0.3293


 , K4 =




−1.2307 2.8367 −2.2169
5.5333 −6.1608 7.1708
2.9920 6.4925 −5.7753
−8.0687 9.3878 0.4393




Φ1 =
[

38.2002 −37.1450 31.6370
]
, Φ2 =

[
37.0113 −35.2044 29.8070

]

Φ3 =
[

42.2863 −41.4254 35.1279
]
, Φ4 =

[
41.0013 −39.4316 33.3043

]

whereKi are the proportional andΦi are the integral gains matrices.
(iv) The remaining polytopic UIPIO matricesGi, Ni andLi can be established by (19), (28) and
(29) respectively.
The input signals are constant:u1(t) = u2(t) = 2, the disturbanced(t) is a rectangular signal applied
for 7 ≤ t ≤ 10. The initial values of the original statesx(t) and the unknown inputd(t) are equal
to 0 and the initial values of the estimated states are:x̂(t) =

[
0.5 1 0.5 −0.5

]T
. The state

estimation and unknown inputs estimation given by the polytopic UIPIO are shown on the following
figures.
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Figure 1. Original statex1(t) and its estimated̂x1(t)
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Figure 2. Original statex2(t) and its estimated̂x2(t)
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Figure 3. Original statex3(t) and its estimated̂x3(t)
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Figure 4. Original statex4(t) and its estimated̂x4(t)

The behavior of the polytopic UIPIO is shown on figures (1) to (4). It can be observed that the
estimated states can closely track the original states of the polytopic descriptor system affected by
an unknown input in spite of measurements which are perturbed by a white Gaussian noise with
variance0.01.
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Figure 5. Unknown inputd(t) and its estimated̂d(t)
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In addition, as seen on the figure (5), the polytopic UIPIO provides a correct unknown input
estimation in spite of noise and disturbances. The polytopic UIPIO design is easy but the restriction
for this polytopic UIPIO is to consider that disturbances have slow variation i.e.̇d(t) ≃ 0. However,
in practice, we can relax this constraint.

5.2. Fault diagnosis with polytopic UIPIO

In this paragraph, we will only consider a constant matrixB and two actuator faults with constant
magnitudes. Let us consider the model (61) and the polytopic UIPIO (49) with the same previous
matrices except for a constant matrixB(θ) :

B(θ) = B =

[
1 1 1 0
1 0.5 0 0

]T

andR(θ) = R =
[

0 0.6 0 1
]T

.

In this part, we recall thatF j is thejth column ofB andF r is the matrixB without thejth column.
In order to detect and isolate the actuators faults, two polytopic UIPIO are designed here, each one
designed to isolate an actuator fault. Let considerf1(t) andf2(t), the fault signals which represent
control input dysfunctions ofu1(t) andu2(t) respectively and defined by:

f1(t) =

{
0.25u1(t) for 10 ≤ t ≤ 14
0 elsewhere

and f2(t) =

{
0.4u2(t) for 15 ≤ t ≤ 19
0 elsewhere

The first polytopic UIPIO is designed to estimate and isolatethe first actuator faultf1(t) and a
second one is also designed to estimate and isolate the second actuator faultf2(t). The performance
of the fault diagnosis system is illustrated for two actuator faults as shown below.
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Figure 6. the residual signalr1(t)
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Figure 7. the residual signalr2(t)
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Figure 8. first actuator faultf1(t) and its estimated̂f1(t)
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Figure 9. second actuator faultf2(t) and its estimated̂f2(t)
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Figures (6) and (7) display the isolation task. One can see that the residual isalmost zero
throughout the time simulation run for fault-free residuals despite noisy environment and increase
in magnitude considerably when actuator faults occur at time t = 10s (Fig.(6)) and at timet = 15s

(Fig.(7)). Then, faults are easily isolated using the information provided by residuals signals.
Figures (8) and (9) display the estimation off1(t) andf2(t). An error appears in the estimation of
bothf1(t) andf2(t) respectively. This is due to the fact that when those faults stop abruptly, there
is a remaining time to give an estimation off1(t) andf2(t) owing to the response of this polytopic
UIPIO. It is important to note that without noise, the estimation is better but we want to present a
more realistic point of view in a noisy environment.

6. CONCLUSION

This paper has addressed the problem of state estimation, fault detection and isolation for dynamic
systems that can be described by polytopic LPV descriptor models subject to disturbances. The
state and unknown inputs estimation are obtained by a polytopic Unknown Inputs Proportional
Integral Observer which has been used here for the detection, isolation and estimation of
actuators faults in spite of disturbances. Stability conditions of this polytopic UIPIO have
been formulated and solved within a linear matrix inequality framework. The developed FDI
scheme for LPV descriptor systems has been applied into an example in order to estimate
both state vector and disturbances. Based on fault estimation, a fault tolerant control scheme
for LPV descriptor systems could be synthesized so as to enhance robustness of the system.
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