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ABSTRACT 

 

In this paper, we detail the main simulation methods used in practice to measure one-year reserve 

risk, and describe the bootstrap method providing an empirical distribution of the Claims 

Development Result (CDR) whose variance is identical to the closed-form expression of the prediction 

error proposed by Wüthrich et al. (2008). In particular, we integrate the stochastic modeling of a tail 

factor in the bootstrap procedure. We demonstrate the equivalence with existing analytical results 

and develop closed-form expressions for the error of prediction including a tail factor. A numerical 

example is given at the end of this study. 
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1. Introduction	
 

Solvency II is the updated set of regulatory requirements for insurance firms which operate in the 

European Union. It is scheduled to come into effect late 2012. Solvency II introduces strong changes 

comparing to prudential rules currently in force in Europe (Solvency I). These new solvency 

requirements will be more risk-sensitive and more sophisticated than in the past. Thus, the Solvency 

Capital Requirement (SCR) shall correspond to the Value-at-Risk of the basic own funds of an 

insurance or reinsurance undertaking subject to a confidence level of 99.5 % over a one-year period. 

The Solvency Capital Requirement shall cover at least several risks, including non-life underwriting 

risk. The non-life underwriting risk module shall reflect the risk arising from non-life insurance 

obligations, in relation to the perils covered and the processes used in the conduct of business. 

 

One of the main sources of uncertainty for a non-life company is the estimation of its insurance 

liabilities, in particular the amount of claims reserves. In the Solvency II framework, claims reserves 

have to be evaluated based on a “best estimate” approach. The best estimate should correspond to 

the probability weighted average of future cash-flows taking account of the time value of money. The 

uncertainty regarding this evaluation essentially arises from the fact that the amount of future 

payments relative to incurred claims is unknown at the valuation date. We focus in this study on the 

measure of this uncertainty (reserve risk). 

 

Solvency capital calculations will be based on the standard formula or an internal model. When using 

an internal model, risks calibration (in particular the calibration of reserve risk) has to rely on internal 

data and insurance companies have to define their own methodology to measure risks. Regarding the 

evaluation of the reserve risk, undertaking-specific parameters may also be used. In order to use an 

internal model or undertaking-specific parameters, insurance companies are required to ask for 

supervisory approval first. 

 

Given the time horizon defined in the Directive, one of the major issues raised by Solvency II to non-

life insurance undertakings is to understand how to measure volatility in their claims reserves over a 

one-year time horizon. 

 

Insurance undertakings generally use stochastic reserving methods that enable them to measure 

volatility in their “best estimate” evaluation. The two most common methods are the model of Mack 

(1993) and the bootstrap procedure. However, these methods provide in their “standard” version an 

ultimate view of the claims reserves volatility and not a one-year view as required per the Solvency II 

framework. 

 

The model of Wüthrich et al. (2008) is the first model to meet the one year time horizon in order to 

measure the volatility in claims reserves. This method, giving a closed-form expression of the one-

year volatility of claims reserves, is one of the standardized methods for undertaking-specific 

parameters for reserve risk. 

 

The goal of this study is to assess an alternative methodology to the model of Wüthrich et al. (2008) 

to measure the uncertainty of claims reserves over a one-year time horizon. This alternative method 

is based on the bootstrap procedure. 
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Compared to the model of Wüthrich et al. (2008), the bootstrap adaptation outlined in this study has 

many advantages: 

• The model replicates the results of Wüthrich et al. (2008), 

• When using an internal model, the method allows to obtain a distribution of one-year future 

payments and a distribution of the best estimate of claims reserves at time � = � + 1, 

• The method also allows to take into account a tail factor, including a volatility measure with 

regard to this tail factor. 
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2. Reserve	risk:	definition	and	measure	
 

Reserve risk corresponds to the risk that technical provisions set up for claims already occurred at the 

valuation date will be insufficient to cover these claims. A one-year period is used as a basis, so that 

the reserve risk is only the risk of the technical provisions (in the Solvency II balance sheet) for 

existing claims needing to be increased within a twelve-month period. 

 

Let’s consider an insurance company which faces the reserve risk only. By simplification, we will 

ignore the discount effect, and we will not take into account risk margin and differed tax. 

We define the “best estimate” as the probability weighted average of future cash-flows, without 

prudential margin, and without discount effect. 

 

Thus, the NAV (Net Asset Value) is given by: ��	
�� = �
�� − 
��� = �
�� − ����,����� − ��,����, 
and ��	
� + 1� = �
� + 1� − 
����� = �
�� − ��,����� − ����,������� − ��,��� − ��,������, 
with 

• �
��: market value of assets at � = �, 
 

• ��	
��: Net Asset Value at � = �, 
 

• ��	
� + 1�: Net Asset Value at � = � + 1, 

 

• ���,����� : best estimate of the total ultimate claim for accident year �, given the available 

information up to time � = �, 
 

• 
���: best estimate of claims reserves for accident year �, given the available information up to 

time � = �, 
 

• ���,������� : best estimate of the total ultimate claim for accident year �, given the available 

information up to time � = � + 1, 

 

• 
�����: best estimate of claims reserves for accident year �, given the available information up 

to time � = � + 1, 

 

• ��,�����: incremental payments between � = � and � = � + 1 for accident year �, 
 

• ��,���: cumulative payments at � = � for accident year �. 
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The insurance company only faces to the reserve risk. Thus, we have: 

 ��
� ! �" = ��	
�� − 	#
$,%%���	
� + 1��, ��
� ! �" = �
�� − ����,����� − ��,���� − 	#
$,%% '�
�� − ��,����� − ����,������� − ��,��� − ��,������(, ��
� ! �" = �
�� − ���,����� + ��,��� − �
�� − ��,��� − 	#
$,%%�−���,������� �, ��
� ! �" = −	#
$,%%����,����� − ���,������� �, ��
� ! �" = −	#
$,%% '
��� − �
����� + ��,������(. 
 

The amount ���,����� − ���,������� = 
��� − �
����� + ��,������  corresponds to �*
+�
� + 1� . The Claims 

Development Result (CDR) is then defined to be the difference between two successive predictions of 

the total ultimate claim. This definition has been introduced for the first time by Wüthrich et al. 

(2008).  

 

The changes in the economic balance sheet between � = � and � = � + 1 are shown in Figure 1. 

 

                                                                      
 

                                        Figure 1: Economic balance sheet over a one-year period. 

 

Thus, the Solvency Capital Requirement for the reserve risk is equal to the opposite of the 0.5%-

percentile of the CDR distribution.  

Solvency capital calculations will be based on the standard formula or an internal model. Regarding 

the evaluation of the reserve risk, undertaking-specific parameters may also be used. 

 

Standard formula 

In the standard formula framework, the reserve risk is part of the Non-life premium & reserve risk 

module. The evaluation of the capital requirement for the Non-life premium & reserve risk module is 

based on a volume measure and a function of the standard deviations given for each line of business. 

For reserve risk, the volume measure corresponds to the best estimate of claims reserves. This 

amount should be net of the amount recoverable from reinsurance and special purpose vehicles, and 

should include expenses that will be incurred in servicing insurance obligations. The best estimate has 

to be evaluated for each line of business. The market-wide estimates of the net of reinsurance 

standard deviation for reserve risk are given for each line of business. For each one, standard 

deviation coefficient corresponds to the standard deviation of 
,�-./0�1-,.2-/0,�-. . The calibration of these 

coefficients is to date still the purpose of debates and analysis.  

NAV(I)A(I) NAV(I+1)A(I+1)
Market risk, underwriting risk, 

credit risk,…  

I I+1

Hazard in period (I ;I+1]  

Balance sheet at time I Balance sheet at time I+1
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Standard formula with « undertaking-specific » parameters 

Undertaking-specific parameters are an important element of the standard formula: they contribute 

to more risk-sensitive capital requirements and facilitate the risk management of undertakings. 

Subject to the approval of the supervisory authorities, insurance and reinsurance undertakings may, 

within the design of the standard formula, replace the standard deviation for non-life premium risk 

and the standard deviation for non-life reserve risk, for each segment. 

In any application for approval of the use of undertaking-specific parameters to replace a subset of 

parameters of the standard formula, insurance and reinsurance undertakings shall in particular 

demonstrate that standard formula parameters do not reflect the risk profile of the company. 

Such parameters shall be calibrated on the basis of the internal data of the undertaking concerned, or 

of data which is directly relevant for the operations of that undertaking using standardized methods. 

When granting supervisory approval, supervisory authorities shall verify the completeness, accuracy 

and appropriateness of the data used.  

Insurance and reinsurance undertakings shall calculate the standard deviation of the undertaking by 

using, for each parameter, a standardized method.  

Regarding the reserve risk in the QIS5 exercise, 3 standardized methods have been defined for the 

calibration of undertaking-specific parameters: 

• The first one corresponds to a retrospective approach, based on the volatility of historical 

economic boni or mali, 

• The two other methods are based on the model of Wüthrich et al. (2008). 

 

In the context of the QIS 5 calculation, the data used should meet a set of binding requirements. In 

particular the estimation should be made on complete claims triangles for payments. 

Many undertakings have also expressed the wish of a wider panel of standardized methods which 

includes simulation methods such as those proposed in this study. 

 

Internal model 

For one accident year �, the CDR has been defined as follows:  �*
+�
� + 1� = ���,����� − ���,������� = 
��� − �
����� + ��,������. 
This CDR corresponds to the difference between two successive predictions of the total ultimate 

claim. 

The capital requirement for the reserve risk, for accident year � is given by: ��
�é! �" � = −	#
$,%% '�*
+�
� + 1�(. 
For all accident years: 

��
�é! �" = −	#
$,%% 45�*
+�
� + 1��
�6� 	8 = −	#
$,%% 45�*
+
� + 1��

�6� 	8. 
When using an internal model, the goal is to evaluate the 0.5%-percentile of the �*
+
� + 1� 
distribution. This allows to calculate the capital requirement for the reserve risk in a stand-alone 

approach (before aggregation with other risks). 
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3. State	of	the	art	of	one-year	stochastic	reserving	methods	
 

This section deals with the analytical results of Wüthrich et al. (2008) and existing simulation 

methods providing an empirical distribution of the next-year CDR. The results shown in this paper are 

applied to a loss development triangle with incremental payments ���,9, 0 ≤ � + < ≤ ��	or cumulative 

payments ���,9, 0 ≤ � + < ≤ ��, illustrated by Figure 2. So we suppose in this paper that the number 

of accident years is equal to the number of development years, and the results are presented in this 

context. Finally, we will not deal with inflation. However, the adaptation of the methods thereafter 

presented with the aim of its integration raises no theoretical problem. 

 

 
Development year = 

Accident year � 0 1 = > − ? > 

0 �$,$ �$,� … �$,��� �$,� 
1 ��,$ ��,� … ��,��� 

 

� … … … 
  

> − ? ����,$ ����,� 
   

> ��,$ 
    

   

                                   Figure 2: Loss development triangle of cumulative payments. 

 

3.1. Analytical	results	on	the	volatility	of	the	CDR	

 

The aim of the paper of Wüthrich et al. (2008) is to quantify the uncertainty linked to the re-

evaluation of the best estimate between time � and � + 1. We refer to Wüthrich et al. (2008) for the 

proof of the presented results, which are used thereafter. 

 

3.1.1. Model	assumptions	

 

The time series model of Wüthrich et al. (2008) has been proposed by Buchwalder et al. (2006) and is 

based on the assumptions below: 

• The cumulative payments ��9 in different accident years � ∈ {0,… , �} are independent. 

• There exist constants DE > 0 and GE > 0, H	 ∈ 	 {0,… , � − 1} , such that for all < ∈ {1,… , �} and 

for all � ∈ {0,… , �}, ��,9 = D9����,9�� +	G9��I��,9��	ϵ�,9. 
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• Given K$ = L�$,$, … , ��,$M where for all � ∈ {0,… , �}, ��,$ > 0, the random variables N�,9 are 

independent with: ∀� ∈ {0,… , �}	, ∀< ∈ {1,… , �},  PQN�,9RK$S = 0, PQN�,9T RK$S = 1, and ℙQ��,9 > 0RK$S = 1. 
The equations which follow are studied under measure ℙV. |K$X. 
 

Remark: These assumptions defining a time series for each accident year � are stronger than those 

underlying the conditional and non-parametric model of Mack (1993) characterizing only the first two 

moments of the cumulative payments ��,9. 

 

It is pointed out that the development factors estimated by the Chain Ladder method at time � are 

given by 

∀< ∈ {0,… , � − 1},			D�9� = ∑ ��,9����9���6$ �9� , 
with 

�9� = 5 ��,9��9��
�6$ . 

At time � + 1, the Chain Ladder development factors take into account new information, i.e. observed 

cumulative payments in the sub-diagonal to come. These Chain Ladder factors are thus written 

∀< ∈ {0,… , � − 1},			D�9��� = ∑ ��,9����9�6$�9��� , 
with 

�9��� = 5��,9��9
�6$ . 

 

In this context, the unbiased estimator of �G9�T proposed by Mack (1993) and in particular used by 

Wüthrich et al. (2008) is, for all < ∈ {1,… , � − 1}: 
�GZ9��� �T = 1� − <5��,9����9

�6$ [ ��,9��,9�� − D�9��� \T. 
Moreover, the estimate of the last variance parameter can be done for example according to the 

approximation suggested by Mack (1993): 


GZ���� �T = min	 [
GZ��T� �`
GZ��a� �T 	 , min

GZ��a� �T, 
GZ��T� �T�\. 
 

3.1.2. Claims	Development	Result	

 

Within the framework of Solvency II, it is necessary to be able to measure the uncertainty related to 

the re-estimation of the best estimate between time � and � + 1. Thus, the variable of interest is not 

any more the payments until the ultimate but the Claims Development Result defined in this part.  

The re-estimation of the best estimate is based on two sets of information. Let *� denote the 

available information at time � (i.e. the upper triangle). After one year, information *� is enlarged 

with the observation of the cumulative payments of the sub-diagonal to come. Thus, information 
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known at time � + 1, denoted *���, contains the original triangle and the sub-diagonal observed: we 

have thus *� ⊂ *���. 

 

3.1.2.1. True	CDR	

 

Formally, the true Claims Development Result in accounting year 
�, � + 1X for accident year � is 

defined in the following way: �*
�
� + 1� = 	cQ
��R*�S −	���,����� + cQ
����R*���S�, 
where 

• 
�� = ��,� − ��,��� is the expected outstanding liabilities conditional on *� for accident year �, 
• 
���� = ��,� − ��,����� is the expected outstanding liabilities conditional on *��� for accident 

year �, 
• ��,����� = ��,����� − ��,���  denotes the incremental payments between time �  and time � + 1 for accident year �. 

 

The true CDR for aggregated accident years is given by 

�*

� + 1� = 5�*
��
�6� 
� + 1�. 

We can decompose the true CDR of year 
�, � + 1X as the difference between two successive 

estimations of the expected ultimate claims, i.e. �*
�
� + 1� = 	cQ��,�R*�S − cQ��,�R*���S. 
 

3.1.2.2. Observable	CDR	

 

The true CDR defined previously is not observable because the “true” Chain Ladder factors are 

unknown. The CDR which is based on an estimation of the expected ultimate claims by the Chain 

Ladder method is called “observable CDR”. It represents the position observed in the income 

statement at time � + 1 and is defined in the following way: �*
+�
� + 1� = 	
��d. −	���,����� + 
��d./0�, 
where 
��d.  (resp. 
��d./0) is the Chain Ladder estimator of	cQ
��R*�S (resp. cQ
��R*���S), the ultimate 

claims expected value at time � (resp. � + 1). These estimators are unbiased conditionally to ��,���	. 
 

In the same way, the aggregate observable CDR for all accident years is defined by 

�*
+
� + 1� = 5�*
+�
�

�6� 
� + 1�. 
We will present, in the continuation, the error of prediction of the true CDR by the observable CDR at 

time � and we will be more particularly interested in the error of prediction of the observable CDR by 

value 0 at time �. 
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3.1.2.3. Errors	of	prediction	

 

The analytical results of Wüthrich et al. (2008) relate to two errors of prediction : 

• The prediction of the true CDR by the observable CDR at time �, 
• The prediction of the observable CDR by 0 at time �. 

 

The conditional Mean Square Error of prediction (MSE) of the true CDR by the observable CDR, given *�, is defined by 

e�cd. 45�*
+�
� + 1��
�6� 8 = P f45�*
+�
� + 1��

�6� −5�*
�
� + 1��
�6� 8T g*�h. 

This error represents the conditional average quadratic difference between the true CDR and the 

observable CDR, given information *� contained in the upper triangle.  

As for the conditional mean square error of prediction of the observable CDR by 0, given *�, it is 

defined by 

Pf45�*
+�
� + 1��
�6� − 08T g*�h. 

This error, homogeneous to a moment of order 2, is linked to a prospective vision: which error does 

one make by predicting the observable CDR, which will appear in the income statement at the end of 

the accounting year 
�, � + 1X, by value 0 at time � ? The quantification of this error is the object of 

the following developments  

 

3.1.3. Error	of	prediction	of	the	true	CDR	by	the	observable	CDR	

 

For accident year �, the conditional mean square error of prediction of the true CDR by the 

observable CDR is e�cd. '�*
+�
� + 1�( = 	Φ�,�� +	�PQ�*
+�
� + 1�│*�S�T, 
3.5� 
with Φ�,�� = 	#m��*
�
� + 1� − �*
+�
� + 1�R*��											= 		#m
�*
�
� + 1�|*�� + 		#m��*
+�
� + 1�R*��− 2	�op�	�*
+�
� + 1�, �*
�
� + 1�R*��.				
3.6� 
The first term is the process error of the true CDR and the second can be interpreted as the process 

error of the observable CDR (the CDR observed at time � + 1 is a random variable at time �). The last 

term (covariance) takes into account the correlation between the true CDR and the observable CDR. 

 

Estimation of the first moment for accident year � 
The expression �cQ�*
+�
� + 1�│*�S�T is related to the bias of the observable CDR as an estimator of 

the true CDR. In general, the estimation error quantifies the distance between an unknown 

parameter and the estimator proposed to approach this parameter. Here, the existence of this term 

comes from the estimation error made by approaching the unknown development factors by the 

Chain Ladder factors. Wüthrich et al. (2008) proposes the estimator ����,9�T	Δs�,��  of the (mean square) 

estimation error, with  
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Δs�,�� =	 �GZ���� �T�D����� �T����� + 5 [���9,9�9��� \
T �GZ9��T�D�9��T�9�

���
96����� 	.					
3.10� 

 

Estimation of the second moment for accident year �  
The (mean square) process error for accident year � corresponding to the equation 
3.6� is estimated 

by Wüthrich et al. (2008) in the following way: 

Φs �,�� =	����,��T t1 + �GZ���� �T�D����� �T��,��� 	u t v 41 + �GZE��T�D�E��T
�E����T 	���E,E8 − 1���
E6����� u.				
3.9� 

Finally, Wüthrich et al. (2008) proposes the following estimator of the (mean square) error of 

prediction for each accident year �: e�c+d. '�*
+�
� + 1�( = Φs �,� +	����,��T		Δs�,�� . 
The mean square error of prediction for aggregated accident years is estimated by 

e�c+d. 45�*
+�
� + 1��
�6� 8 = 5e�c+d. '�*
+�
� + 1�(�

�6� + 2 5 �Ψs�,y� + ���,�� ��y,�� Λsy,�� ��{y{$ , 
with, for � > | > 1, 

Ψs�,y� = ���,����y,�� 41 + �GZ��y� �T�D���y� �T���y���841 + �GZ��y� �T�D���y� �T�y,��y8
��Φsy,�� , 

Λsy,�� = �y,��y���y��� �GZ��y� �T�D���y� �T���y� + 5 [���9,9�9��� \
T �GZ9��T�D�9��T�9�

���
96��y�� ,							
3.13� 

and Ψs�,�� = 0 for � > 1. 

3.1.4. Error	of	prediction	of	the	observable	CDR	by	0	

 

The estimator of the error of prediction of the observable CDR by 0 proposed by Wüthrich et al. 

(2008) partly refers to previously presented expressions. This error of prediction is defined by 

Pf45�*
+�
� + 1��
�6� − 08T g*�h

= Psd. f4P t5�*
+�
� + 1��
�6� − 0}*�u8T	h~������������������������
�����!��

	+ 		#m� 45�*
+�
� + 1��
�6� }*�8 . 
3.15� 

 

The error of prediction for aggregated accident years is decomposed as follows:  

• On the one hand, the term “
� − ��#��T	” of Wüthrich et al. (2008) is the expected 

quadratic existing bias between the observable CDR and its estimator (the value 0). 

This term can be interpreted as the overall estimation error linked to this prediction 

at time �.  
• On the other hand, the variance of the observable CDR is the process error related to 

this prediction. This inevitable error results from the randomness of the variable to 

be predicted (here the observable CDR).  
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The aggregated estimation error breaks up into estimation errors for each accident year and terms 

linked to the correlation between accident years in the following way: 


� − ��#��T = 5����,�� �T	Δs�,���
�6� + 2 5 ���,�� ��y,�� Λsy,��

���{y�� .				
3.14� 
In the same way, the estimated aggregated process error is written 

	#m� 45�*
+�
� + 1��
�6� }*�8 = 5Γ��,���

�6� + 2 5 Υs�,y����{y�� .				
3.16� 
The estimator of the process error proposed by Wüthrich et al. (2008) for accident year � ≥ 1 is given 

by Γ��,�� = 	#m� ��*
+�
� + 1�R*��
= ����,�� �T �41 + �GZ���� �T�D����� �T��,���8 v 41 + �GZE��T���E,E�D�E��T	
�E����T8

���
E6����� − 1�,				
3.17� 

and for � > | > 0, the following covariance terms are given: Υs�,y� = �op� ��*
+�
� + 1�, �*
+y
� + 1�R*��
= ���,�� ��y,�� �41 + �GZ��y� �T�D���y� �T���y���8 v 41 + �GZE��T���E,E�D�E��T	
�E����T8

���
E6����y − 1�.				
3.18� 

These analytical results are the subject of section 4. 

 

3.2. One-year	simulation	methods	

 

3.2.1. Adaptation	of	ultimate	simulation	methods	to	one-year	horizon	

 

In this section we synthesize the main steps of simulation methods measuring the one-year reserve 

risk, having for references Ohlsson et al. (2008) and Diers (2008). We also mention the main methods 

used in practice for one-year reserve risk simulation raised in the study of AISAM-ACME (2007). 

The three steps below present the obtaining of a distribution of one-year future payments and best 

estimate starting from a loss development triangle: 

1) Calculation of best estimate at time �. This best estimate is regarded as determinist 

since calculated on realized data, thus known at time �, contained in the upper triangle.  

2) Simulation of the one-year payments between time � and time � + 1: they are the 

incremental payments in the sub-diagonal of the loss development triangle.  

3) On the basis of step 2, calculation of the best estimate at time � + 1. 

 

These steps are illustrated by Figure 3 below, extracted from Diers (2008): 
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     Figure 3: One-year reserve risk simulation. 

 

In practice, these steps are used as a basis in order to adapt existing ultimate simulation methods to 

one-year horizon. One can in particular raise in AISAM-ACME (2007) the use of bootstrap methods 

using the time series model of Wüthrich et al. (2008) as well as the adaptation of Bayesian simulation 

methods to one-year horizon. We present in the following sections these two methods, and two 

possible adaptations of GLM bootstrap methods to measure one-year uncertainty for reserves. 

 

3.2.2. Bayesian	methods	

 

The adaptation of the Bayesian simulation methodology to one-year horizon raised by AISAM-ACME 

(2007) is in particular based on the model suggested by Scollnik (2004). An adaptation to one-year 

horizon of this method is also mentioned by Lacoume (2008). We propose in this part a synthesis of 

the use of the Bayesian simulation method and its adaptation to the one-year horizon. 

 

3.2.2.1. Model	assumptions	

 

We present the Bayesian framework of the Chain Ladder model, developed by Scollnik (2004), which 

models the individual development factors. Based on the observation of the similar values of �D�,9�$������ for the same development year <, the following model is suggested: D�,9 ∼ ���9, �� where �9 ∼ �
��, ���. 
 

3.2.2.2. A	priori	distributions	

 

The characteristic of the Bayesian methodology is the specification of an a priori distribution for each 

model parameter, seen like a random variable (here �, �� et ��). This a priori distribution can be 

informative (reduced variance) or non-informative (high variance). The non-informative a priori 

distributions are generally applied to several parameters, possibly having different characteristics, in a 

generic way. The choice between these two kinds of information does not return within the 

framework of this paper, and we refer to Scollnik (2004) for more details. The a priori distributions 

suggested by Scollnik (2004) are 
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� ∼ Γ
#, ��, �� ∼ �
#�, ���, �� ∼ Γ
#��, ����, 
where #, �, #�, ��, #��	and	�′′ are fixed parameters. 

 

3.2.2.3. Calculation	of	the	a	posteriori	distribution	of	the	parameters	

 

First, let � = 
�, �� , ���  denote the parameters of interest and D��,9  the observed individual 

development factors. The aim of this step is to provide a distribution having for density	 
�|D��,9�, the 

conditional probability of the parameters of interest given the observed data: it is the a posteriori 

distribution of the parameters. According to Bayes’ theorem, this a posteriori density is written 

 ��RD��,9� =  �D��,9R�� 
��¡ �D��,9R�� 
��¢�, 
where  �D��,9R�� is the conditional density of the data, given the parameters of interest and  
�� is 

the density of the parameters of interest (specification of a priori distributions). 

 

3.2.2.4. Markov	Chain	Monte	Carlo	(MCMC)	algorithm	

 

To obtain a conditional empirical distribution of the parameters of interest, given the observed data, 

one uses MCMC technique. The aim of MCMC algorithm is to build a Markov chain whose stationary 

law is  ��RD��,9�. Thus, it makes it possible to generate samples from the a posteriori law of the 

parameters of interest and we denote here 
�£���£�¤ the distribution of parameters generated 

thanks to this procedure. We refer to Scollnik (2001) for a more detailed presentation of MCMC 

algorithm. 

 

3.2.2.5. A	posteriori	distribution	of	the	variable	of	interest	

 

The final goal is to obtain an empirical distribution of future individual development factors D�,9. The 

conditional distribution of the future development factors, given the observed data, is written  �D�,9RD��,9� = ¥ 
D�,9|�� 
�|D��,9�¢�. 
The ergodic property of the Markov chain built by MCMC algorithm makes it possible to write 

 �D�,9RD��,9� ≈ 1�5 �D�,9R�£�¤
£6� . 

Thus, to obtain samples of D�,9 conditionally on the observed data, one simulates D�,9 conditionally on 

the generated parameters �£ for all � ∈ {1,… ,�}, thanks to the model expression. 

 

3.2.2.6. Adaptation	of	this	method	to	one-year	horizon	

 

The steps carrying out the adaptation to one-year horizon of Bayesian approaches are mentioned by 

Lacoume (2008) and AISAM-ACME (2007). We present here a synthesis of this adaptation in three 

steps: 
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1) Calculation of Kc�  using the original Chain Ladder factors. 

Iteration No § 

2) Simulation of the sub-diagonal to come using the Bayesian model: the method described 

above generates a realization of the next year development factors �D�,���y ��∈{�,…,�}, and 

then a realization of the payments of the sub-diagonal �̈��y by 

�̈��y = 5D�,���y ��,��� − ��,����
�6� . 

3) Re-estimation of the Chain Ladder factors on the trapezoid and calculation of the best 

estimate at time � + 1, Kc���y . 

End of iteration No § 

 

The variance related to the revision of the best estimate between time � and time � + 1 is given by 	#m '� �̈��y + Kc���y ���y�©(, 
where ª is the sample size. 

Thus, Bayesian Chain Ladder model is a simulation tool providing a one-year empirical distribution. 

Nevertheless, the use of this method is tricky because MCMC algorithm can diverge in certain cases. 

We refer to Scollnik (2004) and Lacoume (2008) for the implementation of the method using 

WinBUGS software and for practical problems. 

 

3.2.3. One-year	GLM	bootstrap	

 

We present in this section two existing adaptations of GLM (Generalized Linear Models) bootstrap 

methodologies, generating samples of the CDR in a one-year view. Historically, the generalized linear 

models have been proposed by J. Nelder and R. Wedderburn in 1972 and in the field of non-life 

reserving, Renshaw et al. (1994, 1998) have studied log-Poisson model reproducing results of the 

Chain Ladder method while generating a full empirical distribution of future payments. 

 

This bootstrap method is applied to a loss development triangle with incremental payments ���,9�$���9��. We present here the particular case of a GLM model with Over-Dispersed Poisson 

(ODP) distribution. Within this framework, the incremental payments ��,9  are modelled with an ODP 

distribution with mean ��,9 and variance Φ��,9T , where  PQX�,9S = ��,9 = exp�� + ¯� + °9�. 
 

3.2.3.1. First	approach	

 

In the context of the adaptation of these methods to measure one-year reserve risk, this first 

approach has been proposed by Boisseau (2010) and Lacoume (2008). This method, which is applied 

to the residuals of the incremental payments of the loss development triangle, is described below. 
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Step 1 

1.a. Estimation of the model parameters 	�̂, 
 Z̄��$���� , and �°�9�$�9��on the upper triangle and 

calculation of the expected values ��̂�,9�$���9��. 
1.b. Calculation of best estimate at time � by Kc� = 5 exp	
	�̂ +��9���� Z̄� + °�9�. 
1.c. Calculation of the scale parameter ²� = ∑'�-,³́(�µ�¶ 	where 

• · is the number of incremental payments in the upper triangle, 

• ¸ is the number of parameters, 

• m�,9¹ = º-,³�	»¼-,³I½�»¼-,³�  is the Pearson residual of ��,9. 

1.d. Calculation of the adjusted residuals by m�,9¾ = I µµ�¶ m�,9¹ . 

 

Iteration No ¿ 

 

Step 2  

Resampling with replacement of the residuals m�,9¾  and construction of a pseudo-triangle of values ���,9� �$���9��. 
 

Step 3 

Re-estimation of the model parameters and calculation of the following new parameters : �̂�,�, � Z̄��,��$����	and	�°�9�,��$�9�� . 
 

Step 4 

Calculation of expected values ��̂�,9�,����96��� in the sub-diagonal to come. 

 

Step 5  

Taking into account of process error. We obtain an incremental payment ��,9� 	by simulation from a law 

with mean �̂�,9�,� and variance ²�	��̂�,9�,��T. The one-year future payments are then 

�̈��� = 5 ��,9���96��� . 
 

Step 6 

Re-estimation of the model parameters  �̂�,T, � Z̄��,T�$����	  and �°�9�,T�$�9�� on the trapezoid À���,9� �$���9�� ∪ ���,9� ���96���Â  in order to calculate new expected values ��̂�,9�,T���9���T  in the 

following diagonals. 

 

Step 7 

Calculation of best estimate at time � + 1 by 
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Kc���� = 5 5 �̂�,9�,T�
96����T 	�

�6T . 
We can notice here that only the expected incremental payments in the lower triangle, except the 

sub-diagonal, are required for the best estimate calculation at time � + 1. 

 

End of iteration No ¿  

 

This method provides: 

• An empirical distribution of one-year future payments �̈���  in the sub-diagonal 
�, � + 1X, 
• An empirical distribution of the best estimate at time � + 1, Kc���� . 

 

We deduct then an empirical distribution of the CDR by �*
� = Kc� − �̈��� − Kc���� . 
The variance of this empirical distribution provides the prediction error, to compare with the 

prediction error 
3.15� of Wüthrich et al. (2008). 

 

3.2.3.2. Improvement	of	this	method	

 

3.2.3.2.1. Limits of the previous approach 

 

The approach previously detailed raises two statistical issues. The statistical aspects mentioned below 

are raised and detailed by Boisseau (2010). 

 

Independence of the random variables 

Step 4 provides expected values in the sub-diagonal starting from the GLM parameters estimated on 

the upper triangle. Thus, at step 6 of re-estimation of the GLM parameters on the trapezoid by 

maximum likelihood, the random variables of the upper triangle and those of the sub-diagonal are 

not independent. The framework of maximum likelihood estimation, in which total probability breaks 

up into product of probabilities of the incremental payments, is thus not verified. 

 

Estimation error 

This method estimates the GLM parameters twice (steps 3 and 6): first to obtain incremental 

payments in the sub-diagonal and second to calculate the expected future payments (lower triangle). 

This approach tends to significantly increase the estimation error compared to the result of Wüthrich 

et al. (2008), and thereafter the total variance. 

 

The second approach thereafter suggested makes it possible to overcome these limits. 

 

3.2.3.2.2. Steps of the improved bootstrap GLM procedure 

 

This improvement has been proposed by Boisseau (2010). In each iteration of this new approach, the 

residuals of the original triangle are resampled on the trapezoid containing the upper triangle and the 

sub-diagonal. We present below the steps of this procedure. 
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Step 1 is identical to that of the first approach. 

 

Iteration No ¿ 

 

Step 2 

Resampling with replacement of the residuals in the trapezoid and calculation of a pseudo-trapezoid 

of incremental payments ��,9� . This provides a realization of the payments of the sub-diagonal (taking 

into account of process error) from resampled residuals (taking into account of estimation error). 

 

Step 3 

Re-estimation of the model parameters on the pseudo-trapezoid. This provides new parameters �̂� , � Z̄���, �°�9�� and new expected values �̂�,9�  in the following diagonals starting from year � + 1. 

We then calculate the best estimate at time � + 1 by : 

5 5 �̂�,9��
96����T 	�

�6T . 
End of iteration No ¿ 

 

The variance of the distribution provides the prediction error linked to the CDR calculation. 

 

3.2.4. One-year	recursive	bootstrap	method	

 

The boostrap method proposed by De Felice et al. (2006) using the conditional resampling version of 

Mack model introduced by Buchwalder et al. (2006), is the basis of the study in section 4. This one-

year simulation method is also mentioned by AISAM-ACME (2007) and Diers (2008). 

 

This method provides a full empirical distribution of ultimate future payments (Liability-at-Maturity 

approach) and of one-year payments and best estimate (Year-End-Expectation approach), whose 

variance reproduces closed-form expressions proposed by De Felice et al. (2006). These expressions, 

with no taking into account of any discount effect, are equivalent to the estimators obtained by 

Wüthrich et al. (2008) related to the prediction error of the observable CDR by 0. 

This one-year recursive bootstrap method resamples the residuals of the individual development 

factors, and can be applied to the residuals of the cumulative payments in the same way. 

 

In the following, we detail the steps of this method and propose the inclusion of a tail factor. We also 

propose the proofs of equivalence of the variance of the simulated empirical distribution and 

analytical results of Wüthrich et al. (2008), and propose closed-form expressions including the 

stochastic modeling of the tail factor. 
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4. One-year	recursive	bootstrap	method	and	inclusion	of	a	tail	factor	
 

4.1. Introduction	

 

The bootstrap method presented in this section provides an empirical distribution of the CDR whose 

variance replicates the prediction error of Wüthrich et al. (2008) mentioned in 3.1.4. In particular, this 

method makes it possible to include a tail factor simulated in each bootstrap iteration. Two 

alternatives of this method, providing the estimation error on the one hand and the process error on 

the other hand, are proposed in this section. Proofs of equivalence with the existing estimators are 

developed, and we also propose closed-form expressions including a tail factor. 

 

This one-year bootstrap methodology including a tail factor is motivated by the need for replicating 

the analytical results of Wüthrich et al. (2008) used by CEIOPS for the calibration of reserve risk and 

proposed to date as a possible method for the “undertaking-specific” calibration. Indeed, the 

bootstrap methodology proposed in this section replicates existing closed-form expressions, while 

overcoming the limits of such an approach. In fact, deriving a full empirical distribution from  the first 

two moments measurement proposed by Wüthrich et al. (2008) or splitting the distribution of the 

CDR into one-year payments and best estimate calculation in one year is not possible without 

additional assumption. These limits make it difficult to integrate the reserve risk in an internal model 

for example. One can also notice that analytical results of Wüthrich et al. (2008) do not include a tail 

development factor. 

 

We present below the main advantages and the possible extensions of the bootstrap methodology 

proposed in this section. 

 

• This method provides a full empirical distribution of the CDR and is thus not restricted to the 

calculation of the first two moments. It also measures reserve risk without assumption on the 

distribution of the CDR and provides a split between one-year payments and best estimate 

calculation in one year. Therefore, the inclusion of this method in an internal model taking 

into account other risks is direct. 

 

• This one-year extension includes a stochastic modeling of the tail factor. Its use is therefore 

not restricted to loss triangles that are completely developed, which can be useful for lines of 

business with long development or having a lack of historical data. 

 

• The calculation of the empirical distribution of the CDR allows also to take into account the 

whole dependency structure between lines of business, this one modeled for example by 

means of copulas. 

 

• This method can be extended to measure the variability of the CDR in ª years, which is in 

particular useful within the ORSA (Own Risk and Solvency Assessment) framework. Here also, 

one will be able to obtain payments of year 
� + ª, � + ª + 1X on one hand, and best 

estimate at time � + ª + 1 on the other hand.  
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• Lastly, this method makes it possible to take into account “management rules”, i.e. the 

internal standards of the insurance company in terms of reserving policy. That can result, for 

example, in the exclusion of atypical individual development factors or the use of the 

Bornhuetter-Ferguson method to calculate the ultimate claim for the most recent accident 

years. 

 

The study of the tail factor and the calculation of its variance are developed in 4.2. The steps of the 

bootstrap procedure are detailed in 4.3. We also propose a proof of equivalence between the 

variance of the empirical distributions and the estimators of the process and estimation errors 

suggested by Wüthrich et al. (2008) (see 4.4) as well as the closed-form expressions of the process 

and estimation errors including a tail factor (see 4.5). Finally, numerical results are shown in 4.6. 

 

4.2. Inclusion	of	a	tail	factor	

 

4.2.1. Extrapolation	of	the	development	factors	

 

If the development of the triangle is not complete after � development years, one can use a tail factor 

in order to estimate the ultimate payments at time ��E£ > �. This tail development factor can be 

calculated by a linear extrapolation in the following way: ∀	< ∈ {0,… , � − 1}, ln�D9 − 1� = #. < + �, 
with 

D�E£ = v D9������
96� . 

 

4.2.2. Analytical	estimate	for	the	variance	of	the	tail	factor	

 

In this section, we propose an analytical estimate G�E£T  for the variance of the tail factor related to the 

estimation error of the parameters # and � estimated by maximum likelihood technique. The linear 

extrapolation model at time � can be written Ä = �Å, 
with 

Ä = Æ ln	
D�$ − 1�⋮ln	
D���� − 1�È, 
 

� = 4 0 1⋮ ⋮� − 1 18, 
and Å = '#�(. 
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The maximum likelihood estimator Å�  is1
 Å� = � �£ ���� �£ Ä. 

The variance of the extrapolated tail factor is written 

	#m�D��E£� 	= 	#mÆ v D�9������
96� È = 	#mÆ v �1 + exp�#Z. < + ����	������

96� È = 	#m 'É�������Å��(, 
with 

É�������Å�� = v �1 + exp�#Z. < + ����������
96� . 

This allows to calculate the variance by means of the Delta method: 	#m� �D��E£� 	≈ ∇É������
£ Å��	Σ
Å��+	∇É�������Å��,	 
where Σ
Å��+	 is an estimator of the variance-covariance matrix of Å�. 
Thus, to diffuse the uncertainty related to the estimation of the parameters # and �, one can 

simulate a tail development factor with mean 

D��E£ = v D�9������
96� , 

and variance G�E£T = ∇É������
£ Å��	Σ
Å��+	∇É�������Å�� in each bootstrap iteration. 

 

4.2.2.1. Calculation	of	the	variance-covariance	matrix	

 

The maximum likelihood estimator Å�  being efficient, Σ
Å��+	is the inverse of the estimated Fisher 

information matrix ��: Σ
Å��+ 	= ����. 
The inverse of the estimated Fisher information matrix is written ���� = GZT� �£ ����, 
with 

GZT = 1� 5�H·�D�9 − 1� − #Z	< − ���T���
96$ , 

the biased estimator of the variance of the residuals. 

 

4.2.2.2. Calculation	of	ÌÍ>ÎÏÐ�?	
 

The tail development factor extrapolated by parameters # and � is written 

É������
#, �� = v 
1 + exp
#. < + ���	������
96� . 

In order to reduce the formulas, we propose here a recursive expression of ∇É������
#, ��. 
 

                                                           
1
 In the framework of standard linear model in which residuals are supposed gaussian, the maximum likelihood 

estimator of Å is the same as the least square estimator, whose expression is given here. 
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Partial derivative with respect to Ñ 

Let < ≥ 2. We have É��9
#, �� = �1 + Ò�
��9����É��9��
#, ��, 
then ÓÉ��9Ó# 
#, �� = 	 
� + <�Ò�
��9���É��9��
#, �� + �1 + Ò�
��9���� ÓÉ��9��Ó# 
#, ��. 
The original case is  

ÔÕ.Ô� 
#, �� = �Ò����. 

 

Partial derivative with respect to ¿ 

Let < ≥ 2. We have ÓÉ��9Ó� 
#, �� = 	 Ò�
��9���É��9��
#, �� + �1 + Ò�
��9����ÓÉ��9��Ó� 
#, ��, 
 

with 
ÔÕ.Ô� 
#, �� = Ò����. 

These two results give the recursive expression of the gradient of function É������: 

∇É������
#, �� = ÖÓÉ������Ó# 
#, ��	ÓÉ������Ó� 
#, ��	×. 
Finally, we express once again the calculation of the variance of the tail factor by means of the Delta 

method: 	#m� �D��E£� 	≈ ∇É������
£ Å��	Σ
Å��+	∇É�������Å��.					
∗� 

 

4.2.3. Assumptions	on	the	distribution	of	the	tail	factor	

 D��E£ is a function of the maximum likelihood estimator (MLE) 
#Z, ���. By invariance of this one by 

functional transformation, D��E£ is the MLE of 

D�E£ = v 
1 + Ò�9���������
96� . 

Within an asymptotic framework, D��E£ is thus gaussian. We can then model the tail factor by a normal 

distribution with mean D��E£ and variance G�E£T . 

Nevertheless, it is also possible to adopt a more prudent approach by simulating a log-normal 

distribution as generally done in practice.  

 

4.3. Description	of	the	bootstrap	procedure	

 

We detail and illustrate the one-year bootstrap algorithm in 4.3.1, including the simulation of a tail 

factor. The remarks allowing to characterize the links between the simulation method and the 

analytical results are proposed in 4.3.2. 
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4.3.1. Steps	of	the	bootstrap	algorithm	

 

This method carries out the resampling of the individual development factors residuals. The steps of 

this method are described below: step 1 is the original step carried out only once while steps 2 to 7 

are a bootstrap iteration. 

 

Step 1 

1.a. Estimation of individual development factors �D�,9�$���9���� and parameters �D�9�$�9���� and �GZ9�$�9���� on the original triangle of cumulative payments ���,9�$���9��. 
1.b. Calculation of the expected tail development factor by extrapolation of the Chain Ladder 

development factors : 

D��E£ = v D�9������
96� = v �1 + Ò�Z9����������

96� . 
1.c. Calculation of the best estimate Kc� at time � by 

Kc� = 5����,���� − ��,�����
�6$ , 

with ��$,���� = D��E£�$,� , 
and 

∀� ∈ {1,… , �}, ���,���� = D��E£ Æv D�9���
96��� È��,���. 

1.d. Calculation of the residuals of the individual development factors by 

∀	�, </:	0 ≤ � + < ≤ � − 1, m�,9 = Û��,9�D�,9 − D�9�GZ9 . 
Residuals are then adjusted by 

		∀	�, </∶ 0 ≤ � + < ≤ � − 1, m�,9¾ = Ý � − <� − < − 1Û��,9�D�,9 − D�9�GZ9 . 
Lastly, these residuals are centered. The adjustment by the factor I ��9��9��  allows to correct the bias 

related to the calculation of the bootstrap variance, in order to make the analytical expression of the 

variance and the dispersion of the simulated distribution match. 

 

Iteration No ¿ 

 

Step 2 

Resampling with replacement of the residuals in the upper triangle and obtaining of an upper triangle 

of pseudo-development factors seen at time �: 
∀�, j	/: 0 ≤ � + < ≤ � − 1, D�,9�,� = m�,9� ÝGZ9T��,9 + D�9. 

Step 3 

Re-estimation of the Chain Ladder factors seen at time � by 
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∀	< ∈ {0,… , � − 1}, D9�,� = ∑ ��,9	D�,9�,���9���6$∑ ��,9��9���6$ 	 . 
This is equivalent to calculate Chain Ladder factors by weighted average of the individual 

development factors, with weights equal to the cumulative payments of the original triangle. 

 

Step 4 

Simulation of the one-year payments in order to take into account process error. For all � ∈ {1,… , �}, 
calculation of ��,������  by simulating a normal distribution with mean ��,���	D����,�

 and variance ��,����	GZ���� �T. One deduces from it the future payments in next accounting year 
�, � + 1X by 

	 �̈��� = 5���,������ − ��,�����
�6� . 

 

Step 5 

5.a. Calculation of new individual development factors �D��9,9�,����$�9����  on the simulated sub-

diagonal, and calculation of new Chain Ladder factors at the end of year 
�, � + 1X. These new Chain 

Ladder factors are estimated by the cumulative payments of the original triangle (information *�) and 

the new individual development factors in the following way:  

∀	< ∈ {0,… , � − 1}, D9�,��� = ∑ ��,9	D�,9��9���6$ +	���9,9	D��9,9�,���
∑ ��,9��9�6$ . 

5.b. Taking into account of the estimation error of the extrapolation parameters by simulating a tail 

development factor with mean D��E£ and variance G�E£T . 

 

Step 6 

Calculation of the best estimate Kc����  seen at time � + 1, starting from the simulated sub-diagonal ���,������ ������, the pseudo-factors �D9�,������9���� and the tail factor D�E£�  by 

Kc��� = 5���,����� − ��,������ ��
�6$ , 

with �$,����� = D�E£� �$,� , ��,����� = D�E£� ��,�� , 
and 

∀� ∈ {2,… , �}, ��,����� = D�E£� Æ v D9�,������
96����� È��,������ . 

 

Step 7  

Calculation of the CDR of iteration No �: �*
� = Kc� − �̈��� − Kc���� . 
 

End of iteration No ¿. 

 



27 

 

4.3.2. Remarks	

 

The previous algorithm allows to replicate the error of prediction of the observable CDR by 0 of 

Wüthrich et al. (2008) (see 4.4) and to obtain closed-form expressions including a tail factor (see 4.5). 

We emphasise here on the characteristics leading to such a result and propose the extensions 

allowing for the calculation of the two kinds of error. 

 

• In step 1, we adopt the bias correction proposed by Mack (1993). The unbiased estimator of 

the variance parameter is written 

�GZ9��T = � − <� − < − 1 × 1� − <	 5 ��,9��9��
�6$ �D�,9 − D�9��T = 1� − <	 5 fÝ � − <� − < − 1I��,9�D�,9 − D�9�h��9��

�6$
T. 

The adjusted residuals are 

∀	�, <	/:	0 ≤ � + < ≤ � − 1, m�,9¾ = Ý � − <� − < − 1Û��,9�D�,9 − D�9�GZ9 . 
These are the residuals included in the calculation of the scale parameter �GZ9��T. This 

adjustment causes the increase of the variance of the residuals and thus the variance of the 

empirical distribution, while leaving the mean of the residuals approximately unchanged 

(close to 0). This adjustment allows for the comparison with the analytical results and leads to 

very satisfactory relative differences (see section 4.6). Nevertheless, there are other possible 

bias corrections, proposed in particular by England et al. (1999,2002,2006) and Pinheiro et al. 

(2003). 

 

• In step 4, the calculation of expected cumulative payments in the sub-diagonal, based on 

resampled pseudo-development factors, takes into account estimation error. Moreover, the 

simulation of these cumulative payments, given the variance parameters, includes process 

error: the calculated amounts are realizations of random variables. The taking into account of 

the two error components for the first sub-diagonal and the estimation error on the following 

diagonals is the same as in analytical results of Wüthrich et al. (2008) (eq. 3.17). 

 

• At step 5, the re-estimation of Chain Ladder development factors at time � + 1 is done 

conditionally to the information in the trapezoid including the original triangle. This is written *� ⊂ *���, which is consistent with the CDR definition of Wüthrich et al. (2008) and 

compatible with the « actuary-in-the-box » point of view. 

 

• The process and estimation errors including the tail development factor can be separately 

estimated by adapting this bootstrap procedure: 

 

� The process error is obtained by not carrying out neither the resampling of the residuals 

of the individual development factors, nor the tail factor simulation (we don’t take into 

account the estimation error of the extrapolation parameters # and �). This result is 

produced by deleting steps 2 and 5.b. 
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� The estimation error is obtained by not carrying out the simulation of the cumulative 

payments of the sub-diagonal, those being then seen as expected values: the process 

variance resulting from randomness of the cumulative payments is ignored. This 

modification corresponds to the calculation of ��,������ = ��,���	D����,�
 at step 4. 

 

4.4. Proof	 of	 equivalence	 with	 the	 analytical	 results	 of	 Wüthrich	 et	 al.	

(2008)	

 

In this section we prove that, with no tail factor, the variance of the distribution generated by the 

bootstrap procedure is equal to the prediction error of the observable CDR by 0 proposed by 

Wüthrich et al. (2008). 

Let �*
+� denote the CDR taking into account only estimation error and �*
� the CDR taking into 

account pure process error. 

 

4.4.1. Estimation	error	

 

We neglect here process variance, therefore for all 	� ∈ {1,… , �}, ��,������ = D����,�	��,���. 
 

4.4.1.1. Estimation	error	for	a	single	accident	year	

 

For � ∈ {1,… , �}, the variance of the CDR is written 

	#m��*
+�� = 	#mÆ��,��� v D�9���
96��� − D����,���,��� v D9�,������

96����� È. 
Remark: Here and in all this study, an empty product is equal to 1, just as an empty sum is equal to 0. 

 

The following results will be used thereafter, for < ∈ {0,… , � − 1}: 
• D9�,� = ∑ à-,³	á-,³â,..2³20-ãä∑ à-,³.2³20-ãä 	  avec D�,9�,� = m�,9� Ýå¼³�à-,³ + D�9, 
• PQD9�,�S = D�9, 
• P æ�D9�,��Tç = 	#m�D9�,�� + D�9T = å¼³�è³. + D�9T, 
• D9�,��� = ∑ à-,³/0	.2³20-ãä �	à.2³,³/0â

∑ à-,³.2³-ãä = '∑ à-,³	.2³20-ãä (∑ é-,³	ê-,³.2³20-ãä∑ é-,³	.2³20-ãä �	à.2³,³/0â
∑ à-,³.2³-ãä = è³.è³./0 	D�9 + D9�,� à.2³,³è³./0 , 

• 	#m�D9�,���	� = ëà.2³,³è³./0 ìT 	#m�D9�,�� = ëà.2³,³è³./0 ìT å¼³�è³. , 
• P æ�D9�,����Tç = ëà.2³,³è³./0 ìT å¼³�è³. + D�9T. 

 

Using the independence of the pseudo-development factors for different development years, we 

have 
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P f��,��� v D�9���
96��� − D����,���,��� v D9�,������

96����� h = ��,��� v D�9���
96��� − PQD����,�S~����á�.2- ��,��� v PQD9�,���S~������á�³

���
96����� = 0. 

 

Thus, we have 

	#m��*
+�� = P íÆ��,��� v D�9���
96��� − D����,���,��� v D9�,������

96����� ÈTî, 
								#m��*
+�� = 	��,���T

ïð
ñv D�9T���
96��� + Pæ�D����,��Tç v Pæ�D9�,����Tç	���

96�����~��������������������¾�
	

− 2P fD����,�	D���� v D�9���
96����� D9�,���	h~������������������ò�

	
óô
õ	. 

Calculation of ö? 

�1 = [GZ���T����� + D����T \ v t[���9,9�9��� \
T GZ9T�9� + D�9Tu	���

96����� ,	
�1 = Æv D�9T	���

96��� È[1 + GZ���TD����T 	����� \ v t[���9,9�9��� \
T GZ9TD�9T	�9� + 1u	���

96����� , 
where 

[���9,9�9��� \
T GZ9TD�9T	�9� ≤ GZ9T�9� ≈ 0	. 

Using the linear approximation v
1+ �9�9 ≈ 1 +5�99 , 
we obtain 

�1 ≈ Æv D�9T	���
96��� Èf1 + GZ���TD����T 	����� + 5 [���9,9�9��� \

T GZ9TD�9T	�9�
���

96����� h	. 
Calculation of 	÷? 

Using the independence of pseudo-development factors, we have 

K1 = v D�9T���
96��� . 

Thus, we obtain 

	#m��*
+�� ≈ ��,���T fv D�9T���
96��� +Æv D�9T	���

96��� ÈÆ1 + GZ���TD����T 	����� + 5 [���9,9�9��� \
T GZ9TD�9T	�9�

���
96����� È− 2 v D�9T���

96��� h, 
i.e. 
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	#m��*
+�� ≈ 	���,�T Æ GZ���TD����T 	����� + 5 [���9,9�9��� \
T GZ9TD�9T	�9�

���
96����� È.													
1� 

 

This formula corresponds to the estimator of the estimation error proposed by Wüthrich et al. (2008) 

for accident year � (equations (3.10) and (3.14)). 

4.4.1.2. Estimation	error	for	aggregated	accident	years	

 

The estimation error for aggregated accident years is written 

	#m 45�*
+�
�

�6� 8 = 5	#m��*
+���
�6� + 2 5 �op��*
+�, �*
+9����ø9�� , 

with �op��*
+�, �*
+9� = c��*
+��*
+9� − c��*
+��c��*
+9�. 
According to what precedes, �op��*
+�, �*
+9� = c��*
+��*
+9�. 
With no process error, we can write ��,������ = D����,�	��,���. We suppose � < <, thus � − � > � − <. We 

have then P��*
+��*
+9�	
= P f4��,��� v D�y���

y6��� − D����,���,��� v Dy�,������
y6����� 8Æ�9,��9 v D�y���

y6��9 − D��9�,��9,��9 v Dy�,������
y6����9 Èh 

= ��,����9,��9P úûû
ûü4 v D�y���

y6��� 8Æ v D�y���
y6��9 È+ D����,�	D��9�,� 4 v Dy�,������

y6����� 8Æ v Dy�,������
y6����9 È~����������������������������¾

− D����,� 4 v Dy�,������
y6����� 8Æ v D�y���

y6��9 È~��������������������ò
	− D��9�,� Æ v Dy�,������

y6����9 È4 v D�y���
y6��� 8~��������������������à ýþþ

þ�. 
Using the independence of pseudo-development factors seen at time � + 1, we obtain 

PVKX = PV�X = 4 v D�y���
y6��� 8Æ v D�y���

y6��9 È. 
Calculation of PVöX 

PV�X = P fD����,�	D��9�,� 4 v Dy�,������
y6����� 8Æ v Dy�,������

y6����9 Èh, 
and as � − � > � − <, we have 

PV�X = P fD��9�,� D����,�	D����,���~������
not independents

Æ v Dy�,��������
y6����9 È4 v �Dy�,����T���

y6����� 8h. 
Using the independence of development factors for different years, we have 
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PV�X = PQD��9�,� S~����á�.2³
PQD����,�	D����,���SÆ v PQDy�,���S~������á��

�����
y6����9 È4 v Pæ�Dy�,����Tç���

y6����� 8. 
Since 

P æ�Dy�,����Tç = [���y,y�y��� \
T GZyT�y� + D�yT, 

and  

D����,��� = ������������ 	D���� + D����,� ��,���������� 	, 
we write  PV�X	
= D���9P �D����,� 	[������������ 	D���� + D����,� ��,����������\�Æ v D�y�����

y6����9 È v 4[���y,y�y��� \
T GZyT�y� + D�yT8���

y6����� , 
= D���9P �D����,� 	[������������ 	D���� + D����,� ��,����������\�Æ v D�y�����

y6����9 È4 v D�yT���
y6����� 8 v 4[���y,y�y��� \

T GZyT�y�D�yT + 18���
y6����� , 

= D���9 [������������ 	D����PQD����,�S
+ ��,���������� P æ�D����,��Tç\Æ v D�y�����

y6����9 È4 v D�yT���
y6����� 8 v 4[���y,y�y��� \

T GZyT�y�D�yT + 18���
y6����� . 

We have P æ�D����,��Tç = å¼.2-�è.2-. + D����T , thus we obtain 

PV�X = D���9
ïð
ñ������������ 	D����T + ��,���������� D����T~��������������á�.2-�

+ ��,���������� GZ���T����� óô
õ

 

											× Æ v D�y�����
y6����9 È4 v D�yT���

y6����� 8 v 4[���y,y�y��� \
T GZyT�y�D�yT + 18���

y6����� . 
ëà.2�,�è�./0 ìT å¼��è�.á��� ≤ å¼��è�. 	≈ 0, so using the linear approximation 

v
1+ �9�9 ≈ 1 +5�99 , 
we have  

PV�X ≈ D���9 [D����T + ��,���������� GZ���T����� \Æ v D�y�����
y6����9 È4 v D�yT���

y6����� 841 + 5 [���y,y�y��� \
T GZyT�y�D�yT

���
y6����� 8, 

PV�X ≈ 4 v D�y���
y6��� 8Æ v D�y���

y6��9 È
ï
ððð
ñ1 + ��,���������� GZ���T����� D����T~��������

�å¼.2-�è.2-. ≈$ ó
ôôô
õ
ï
ððð
ñ1 + 5 [���y,y�y��� \

T GZyT�y�D�yT~����������
�å¼��è�.≈$

���
y6����� ó

ôôô
õ. 
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Using a similar linear approximation, we obtain 

PV�X ≈ 4 v D�y���
y6��� 8Æ v D�y���

y6��9 È41 + ��,���������� GZ���T����� D����T + 5 [���y,y�y��� \
T GZyT�y�D�yT

���
y6����� 8. 

Thus, 

P��*
+��*
+9� ≈ ��,��9,� 4 ��,���GZ���T�������D����T 	����� + 5 [���y,y�y��� \
T GZyTD�yT	�y�

���
y6����� 8.						
2� 

 

We find the same covariance as proposed by Wüthrich et al. (2008) (equation (3.13)), and lastly the 

same estimator 
� − ��#��T of the aggregated estimation error (equation (3.14)) thanks to equations 

(1) and (2). 

4.4.2. Process	error	

 

4.4.2.1. Process	error	for	single	accident	year	

 

By neglecting estimation error, we have D9�,� = D�9. 

Thus, 

D9�,��� = �9��9��� 	D�9 + ���9,9����9��� , 
with ���9,9��� = D�9���9,9 + GZ9Û���9,9	N��9,9���  where N��9,9��� ~�
0,1�. 
 

The following results will be used thereafter, for	� ∈ {0,… , � − 1} and < ∈ {0,… , � − 1}: 
• 	#m���,������ 	� = ��,���	GZ���T , 
• P æ���,������ �Tç = 	#m���,������ 	� + P���,������ 	�T = ��,���	GZ���T + ��,���T 	D����T , 
• 	#m�D9�,���	� = ½��'à.2³,³/0â 	(

'è³./0(� = à.2³,³å¼³�'è³./0(� , 
• P æ�D9�,����Tç = 	#m�D9�,���	� + P�D9�,���	�T = à.2³,³å¼³�'è³./0(� + D�9T. 

 

The variance of the CDR is written 

	#m
�*
�� = 	#mÆ��,��� v D�9���
96��� −	��,������ 	 v D9�,���	���

96����� È = 	#mÆ��,������ 	 v D9�,���	���
96����� È. 

Using the independence of the D9�,��� for different development years, we have first 

P íÆ��,������ 	 v D9�,���	���
96����� ÈTî = P æ���,������ �Tç v Pæ�D9�,����Tç���

96����� , 
then 

PíÆ��,������ 	 v D9�,���	���
96����� ÈTî = ���,���	GZ���T + ��,���T 	D����T � v ÆD�9T + GZ9T���9,9��9����TÈ

���
96����� . 
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Second, we have 

P f��,������ 	 v D9�,���	���
96����� h = ��,���D���� v D�9���

96����� = ���,� . 
Finally, we obtain 

	#m
�*
�� = ���,���	GZ���T + ��,���T 	D����T � v ÆD�9T + GZ9T���9,9��9����TÈ
���

96����� − ���,�T , 
which can be rewritten as 

	#m
�*
�� = ���,�T f[1 + GZ���T	D����T ��,���\ v Æ1+ GZ9T���9,9D�9T��9����TÈ
���

96����� − 1h.								
3� 
This result is the same as the estimator of process error for a single accident year � of Wüthrich et al. 

(2008), equation (3.17). 

 

4.4.2.2. Process	error	for	aggregated	accident	years	

 

Process error for all accident years is written 

	#m 45�*
��
�6� 8 = 5	#m
�*
���

�6� + 2 5 �op��*
�, �*
9����ø9�� , 
with �op��*
�, �*
9� = P��*
��*
9� − P
�*
��P��*
9�. 
Here, we do not take into account estimation error, thus we have for < ∈ {0,… , � − 1}, D9�,� = D�9, 
and 

D9�,��� = �9��9��� 	D�9 + ���9,9����9��� , 
with ���9,9��� = D�9���9,9 + GZ9I���9,9	N��9,9��� , 
where N��9,9��� ~�
0,1�. 
We have 

PV�*
�X = P f��,��� v D�9���
96��� − ��,������ v D9�,���	���

96����� h ,	
PV�*
�X = ��,��� v D�9���

96��� − PQ��,������ S~������á�.2-à-,.2-
v PQD9�,���S~������á�³
���

96����� 	= 0, 
so �op��*
�, �*
9� = c��*
��*
9�. 
We suppose � < < therefore � − � > � − <. The covariance is written �op
�*
�, �*
9�	
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= P f4��,��� v D�y���
y6��� −	��,������ 	 v Dy�,���	���

y6����� 8Æ�9,��9 v D�y���
y6��9 −	�9,��9��� 	 v Dy�,���	���

y6��9�� Èh. 
 

Using the independence of pseudo-development factors for several development years, we obtain �op
�*
�, �*
9�	
= ��,����9,��9 4 v D�y���

y6��� 8Æ v D�y���
y6��9 È− ��,��� 4 v D�y���

y6��� 8PQ�9,��9��� S~������á�.2³à³,.2³
v PQDy�,���S~������á��
���

y6��9�� 	
−�9,��9 Æ v D�y���

y6��9 ÈPQ��,������ S~������á�.2-à-,.2-
v PQDy�,���S~������á�� 	���

y6����� 	
+P f��,������ D����,���~��������

not independents

�9,��9��� 4 v �Dy�,����T���
y6����� 8 v Dy�,���	�����

y6��9�� h, 
so we have PQ�*
��*
9S
= −���,���9,� + P ���,������ [������������ 	D���� + ��,������������� \�~����������������������d

PQ�9,��9��� S~������á�.2³à³,.2³
v Pæ�Dy�,����Tç~��������å¼��à.2�,��è�./0�� �á���
���

y6����� v PQDy�,���S~������á��
�����

y6��9�� .	
Calculation of D 

* = ������������ 	D���� PQ��,������ S~������á�.2-à-,.2-
+ P æ���,������ �Tç~��������à-,.2-	å¼.2-� �à-,.2-� 	á�.2-�

/������� = [1 + GZ���TD����T �������\D����T ��,���, 
so we have 

PQ�*
��*
9S = [1 + GZ���TD����T �������\D����T ��,���D���9�9,��9 Æ v D�y	�����
y6��9�� È v [GZyT���y,y
�y����T + D�yT\���

y6�����− ���,���9,� . 
Finally, we obtain the following result:  

PQ�*
��*
9S = ���,���9,� t[1 + GZ���TD����T �������\ v [1 + GZyT���y,yD�yT
�y����T\
���

y6����� − 1u.					
4� 
 

This result corresponds to equation (3.18) of Wüthrich et al. (2008) and makes it possible to obtain 

the aggregate process error of equation (3.16), thanks to equations (3) and (4). 

 

4.4.3. Prediction	error	

 

The calculation of the total variance amounts to summing estimation error and process error, those 

being orthogonal (see Appendix). The prediction error for accident year � is thus 	#m
�*
�� + 	#m��*
+��, 
and the prediction error for aggregated accident years is  	#m
�*
� + 	#m��*
+�. 
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4.5. Closed-form	expressions	including	a	tail	factor		

 

In this section, we propose closed-form expressions for estimation, process and prediction errors 

including a tail factor, whose modeling is described in 4.2. Let �*
+��� denote the CDR taking into 

account only estimation error and �*
��� the CDR taking into account pure process error, those two 

CDR including a tail factor. 

 

4.5.1. Estimation	error	

 

Initially, we calculate the expected tail factor D��E£ by the following linear extrapolation: ∀	< ∈ {0,… , � − 1}, ln�D�9 − 1� = #Z. < + ��, 
with 

D��E£ = v �1 + e�Z.9����������
96� . 

In each bootstrap iteration, in order to take into account the estimation error of the parameters #Z 

and ��, we simulate a tail factor D�E£�  with mean D��E£ and variance G�E£T . 

 

4.5.1.1. Estimation	error	for	a	single	accident	year	

 

For � ∈ {1,… , �}, the variance of the CDR is written 

	#m��*
+���� = 	#m f��,��� Æv D�9���
96��� ÈD��E£ − D����,���,��� Æ v D9�,������

96����� ÈD�E£� h. 
By the independent simulation of the tail factor D�E£� , we obtain 

P f��,��� Æv D�9���
96��� ÈD��E£ − D����,���,��� Æ v D9�,������

96����� ÈD�E£� h	
= ��,��� Æv D�9���

96��� ÈD��E£ − D������,��� Æ v D�9���
96����� ÈPQD�E£� S~��á���� 	

= 0. 
Thus, the variance is 

	#m��*
+���� = P íÆ��,��� Æv D�9���
96��� ÈD��E£ − D����,���,��� Æ v D9�,������

96����� ÈD�E£� ÈTî. 
 

Still by the independence argument, this expression can be rewritten as 
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	#m��*
+���� = ��,���T
ï
ððñÆv D�9T���

96��� ÈD��E£T + Pæ�D����,��Tç v Pæ�D9�,����Tç	���
96�����~��������������������¾�

P æ�D�E£� �Tç~������å���� �á�����
	

− 2P fD����,�	D���� v D�9���
96����� D9�,���	h~������������������ò�

	D��E£PQD�E£� S~������á����� ó
ôôõ. 

Using the formulas leading to equation (1), we obtain 

	#m��*
+���� = 	��,���T ÖÆv D�9T���
96��� ÈD��E£T

+ Æv D�9T	���
96��� Èf1 + GZ���TD����T 	����� + 5 [���9,9�9��� \

T GZ9TD�9T	�9�
���

96����� h �G�E£T + D��E£T �	
− 2Æv D�9T���

96��� È	D��E£T ×, 
i.e. 

	#m��*
+���� = 	���,�T f�G�E£T + D��E£T �Æ1 + GZ���TD����T 	����� + 5 [���9,9�9��� \
T GZ9TD�9T	�9�

���
96����� È− D��E£T 	h. 

Finally, the variance is 

	#m��*
+���� = 	���,����T f[1 + G�E£TD��E£T \Æ1 + GZ���TD����T 	����� + 5 [���9,9�9��� \
T GZ9TD�9T	�9�

���
96����� È− 1	h.			
5a� 

 

This result corresponds to the process error of the simulated distribution, including a tail factor and 

for accident year � ≥ 1. 

For accident year 0, we have 	#m��*
+$��� = 		#m��$,�D��E£ − �$,�D�E£� �, 
thus 	#m��*
+$��� = 		#m��$,�D�E£� � = �$,�T G�E£T .							
5�� 
 

4.5.1.2. Estimation	error	for	aggregated	accident	years	

 

With no process variance, we have ��,������ = D����,�	��,���. Let � ∈ {1,… , �} and < ∈ {� + 1,… , �}. 
We have � − � > � − <, and �op��*
+���, �*
+9��� = P��*
+����*
+9��� − P��*
+����~������$ P��*
+9���~������$ . 
We have �op��*
+��� , �*
+9���	



37 

 

= P f4��,��� 4 v D�y���
y6��� 8D��E£ − D����,���,��� 4 v Dy�,������

y6����� 8D�E£� 8
× Æ�9,��9 Æ v D�y���

y6��9 ÈD��E£ − D��9�,��9,��9 Æ v Dy�,������
y6����9 ÈD�E£� Èh, 

and using the independence properties, we obtain �op��*
+��� , �*
+9���	
= ��,����9,��9 �4 v D�y���

y6��� 8Æ v D�y���
y6��9 ÈD��E£T + P æ�D�E£� �Tç PV�X − D��E£PQD�E£� SPVKX − D��E£PQD�E£� SPV�X	 .	

Using the results leading to equation (2), we obtain 

PV�X ≈ 4 v D�y���
y6��� 8Æ v D�y���

y6��9 È41 + ��,���������� GZ���T����� D����T + 5 [���y,y�y��� \
T GZyT�y�D�yT

���
y6����� 8, 

and 

PVKX = PV�X = 4 v D�y���
y6��� 8Æ v D�y���

y6��9 È, 
thus �op��*
+��� , �*
+9���

≈ ���,���9,� t�G�E£T + D��E£T � 41 + ��,���������� GZ���T����� D����T + 5 [���y,y�y��� \
T GZyT�y�D�yT

���
y6����� 8 − D��E£T 	u. 

Finally, we obtain the covariance including estimation error by �op��*
+��� , �*
+9���
≈ ���,������9,���� t[1 + G�E£TD��E£T \41 + ��,���������� GZ���T����� D����T + 5 [���y,y�y��� \

T GZyT�y�D�yT
���

y6����� 8 − 1	u 
6#� 
 

In addition, for � ≥ 1 we have �op��*
+���, �*
+$���
= P t4��,��� 4 v D�y���

y6��� 8D��E£ − D����,���,��� 4 v Dy�,������
y6����� 8D�E£� 8��$,�D��E£ − �$,�D�E£� �u. 

 

Using the independence properties, we obtain 

�op��*
+��� , �*
+$��� = −���,������$,���� + �$,���,���PQD����,�S 4 v PQDy�,���S���
y6����� 8P æ�D�E£� �Tç, 

i.e. 

�op��*
+��� , �*
+$��� = ���,������$,���� G�E£TD��E£T .										
6�� 

 

Lastly, equations (5) and (6) allow to calculate the estimation error for aggregated accident years, 

including a tail factor, by 
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	#m 45�*
+���
�

�6$ 8 = 5	#m��*
+�����
�6$ + 2 5 �op��*
+���, �*
+9���$��ø9�� . 
7� 

 

4.5.2. Process	error	

 

With no estimation error, the tail factor is seen as an expected value: D�E£� = D��E£. 
 

4.5.2.1. Process	error	for	a	single	accident	year	

 

The simulated CDR is written, for � ∈ {1,… , �}, 
�*
��� = ��,��� Æv D�9���

96��� ÈD��E£ −	��,������ 	Æ v D9�,���	���
96����� ÈD��E£. 

Thus 

	#m��*
���� = D��E£T 		#m Æ��,��� v D�9���
96��� −	��,������ 	 v D9�,���	���

96����� È, 
and using equation (3), 

	#m��*
���� = D��E£T ���,�T f[1 + GZ���T	D����T ��,���\ v Æ1+ GZ9T���9,9D�9T��9����TÈ
���

96����� − 1h. 
Process error for accident year � ≥ 1 is thus written 

	#m��*
���� = ���,����T f[1 + GZ���T	D����T ��,���\ v Æ1+ GZ9T���9,9D�9T��9����TÈ
���

96����� − 1h.							
8a� 
 

We also have 	#m
�*
$��� = 	#m��$,�D��E£ − �$,�D��E£� = 0.				
8�� 

 

4.5.2.2. Process	error	for	aggregated	accident	years	

 

Let � ∈ {1,… , �} and < ∈ {� + 1,… , �}. The covariance is written �op��*
��� , �*
9��� = PQ�*
����*
9��S − PQ�*
���S~������$ PQ�*
9��S~������$ = D��E£T PQ�*
��*
9S. 
Using equation (4), we obtain 

PQ�*
����*
9��S = D��E£T ���,���9,� t[1 + GZ���TD����T �������\ v [1 + GZyT���y,yD�yT
�y����T\
���

y6����� − 1u, 
which can be written as 

PQ�*
����*
9��S = ���,������9,���� t[1 + GZ���TD����T �������\ v [1 + GZyT���y,yD�yT
�y����T\
���

y6����� − 1u.					
9a� 
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We also have, for � ≥ 1, 

P t�*
��� �*
$��~����$ u = 0.					
9�� 
 

Equations (8) and (9) allow to calculate the process error including a tail factor for aggregated 

accident years by 

	#m 45�*
����
�6$ 8 = 5	#m��*
�����

�6$ + 2 5 �op��*
��� , �*
9���$��ø9�� . 
10� 
 

4.5.3. Prediction	error	

 

According to the results in Appendix which can be extended to the inclusion of a tail factor, process 

error and estimation error are orthogonal. Thus, the prediction error for a single accident year � can 

be written as 	#m��*
���� + 	#m��*
+����.					
11�		 
The prediction error for aggregated accident years is given by 

	#m 45�*
����
�6$ 8 + 	#m 45�*
+���

�
�6$ 8.					
12� 

 

4.6. Numerical	example	

 

We apply the bootstrap method described in 4.3.1 and the previous closed-form expressions to the 

loss development triangle used by Wüthrich et al. (2008). The results are obtained with 300 000 

simulations, and we use the adaptations proposed in 4.3.2 for the calculation of the two kinds of 

error. The errors calculated thereafter refer to the standard deviation of the simulated empirical 

distribution. Moreover, the expressions leading to the analytical results are pointed out, and 

calculated by taking their square root to compare results homogeneous to first order moments. 

 

We study the case where the development of the triangle is complete at time � = 8, as well as the 

inclusion of a tail factor to obtain cumulative payments at time ��E£ = 10 in this example. Table 1 

below presents the Chain Ladder factors and the tail development factor, and also the corresponding 

volatilities. 

 

Development 

year =  

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

ultimate 
�= / 
�ÎÏÐ 1.47593 1.07190 1.02315 1.01613 1.00629 1.00559 1.00127 1.00112 1.00049 �¼=� / �ÎÏÐ�  911.44 189.82 97.82 178.75 20.64 3.23 0.36 0.04 3.17E-08
2
 

 

Table 1: Development factors and corresponding volatilities. 

                                                           
2
 The variance of the tail factor is calculated by expression (*) of the Delta method, shown in 4.2. 
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4.6.1. Numerical	results	without	a	tail	factor	

 

Table 2 below shows the numerical results of the various errors without a tail factor.  

 

 Prediction error Estimation error Process error 

 

Accident 

year � 
 

Analytical
3
 

 

Simulated 

 

Relative 

distance
4
 

 

Analytical
5
 

 

Simulated 

 

Relative 

distance4 

 

Analytical
6
 

 

Simulated 

 

Relative 

distance4 

0 - - - - - - - - - 

1 566 567 0.14% 406 406 0.07% 394 394 0.03% 

2 1 487 1 486 0.05% 875 874 0.14% 1 201 1 201 0.03% 

3 3 923 3 918 0.13% 1 922 1 923 0.05% 3 420 3 427 0.22% 

4 9 723 9 707 0.16% 4 298 4 304 0.14% 8 721 8 690 0.36% 

5 28 443 28 411 0.11% 11 636 11 644 0.07% 25 953 25 947 0.02% 

6 20 954 20 974 0.09% 7 863 7 863 0.01% 19 423 19 423 0.00% 

7 28 119 28 148 0.10% 9 836 9 823 0.13% 26 343 26 356 0.05% 

8 53 321 53 279 0.08% 17 558 17 574 0.09% 50 347 50 211 0.27% 

Total 81 081 81 074 0.01% 29 784 29 795 0.04% 75 412 75 433 0.03% 

 

Table 2: Prediction, estimation and process errors without a tail factor. 

The relative distances for the various errors are very low which ensure here the replication of the 

estimators proposed by Wüthrich et al. (2008). These results also allow to check the linear 

approximations used in 4.4. 

4.6.2. Numerical	results	including	a	tail	factor	

 

The procedure presented in 4.3.1 allows to simulate a tail factor independently in each bootstrap 

iteration (step 5.b) by a normal distribution with mean D��E£ ≈ 1,00049  and variance G�E£T = 3,17E− 08 . The calculation of these parameters is presented in 4.2. Table 3 below 

summarizes the numerical results including a tail factor: 

 

 Prediction error Estimation error Process error 

 

Accident 

year � 
 

Analytical
7
 

 

Simulated 

 

Relative 

distance
8
 

 

Analytical
9
 

 

Simulated 

 

Relative 

distance8 

 

Analytical
10

 

 

Simulated 

 

Relative 

distance8 

0 655 655 0.00% 655 655 0.00% 0 0 0.00% 

1 897 896 0.11% 806 805 0.12% 394 393 0.26% 

2 1 642 1 641 0.06% 1 119 1 118 0.09% 1 202 1 199 0.24% 

3 3 976 3 975 0.03% 2 026 2 027 0.05% 3 422 3 425 0.11% 

                                                           
3
 The prediction error is calculated starting from equations (3.10) and (3.17) for a single accident year and (3.15) 

for aggregated accident years. 
4
 We present here absolute values of relative distances. 

5
 The estimation error is calculated by means of equations (3.10) and (3.14). 

6
 The process error is calculated by means of equations (3.17) and (3.16). 

7
 The prediction error is obtained starting from equation (11) for a single accident year and equation (12) for 

aggregated accident years. 
8
 We present here absolute values of relative distances. 

9
 The estimation error is calculated by equations (5), (6) and (7). 

10
 The process error is calculated by equations (8), (9) and (10). 



41 

 

4 9 749 9 739 0.10% 4 349 4 348 0.02% 8 726 8 739 0.15% 

5 28 464 28 479 0.05% 11 661 11 641 0.17% 25 966 25 942 0.09% 

6 20 974 20 959 0.07% 7 893 7 890 0.04% 19 433 19 397 0.18% 

7 28 140 28 130 0.04% 9 861 9 849 0.12% 26 356 26 340 0.06% 

8 53 351 53 320 0.06% 17 578 17 554 0.14% 50 372 50 409 0.07% 

Total 81 336 81 249 0.11% 30 381 30 326 0.18% 75 449 75 465 0.02% 

 

Table 3: Prediction, estimation and process errors including a tail factor. 

 

The measure of the standard deviation of the empirical distribution allows to check the closed-form 

expressions detailed in 4.5. We can notice that the inclusion of a tail factor increases the variability of 

the CDR at several levels: 

• The estimation error is increased because of the direct effect of the volatility of the tail factor 

in the total variance (see equation (5)), 

• The process error of the cumulative payments of the first sub-diagonal is diffused by best 

estimate calculation until time ��E£ > �. The effect of the additional development year after 

time � is to increase the variance of the CDR taking into account process variance (see 

equation (8)). 

 

Finally, we obtain a higher prediction error when we include a tail factor, compared to the case of a 

complete development of the triangle at time �. 
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Conclusion	
 

An alternative method to the model of Wüthrich et al. (2008) has been developed in this study. This 

method consists in an adaptation of the « standard » bootstrap procedure and allows to measure the 

volatility in claims reserves over a one-year period, and to replicates the results of Wüthrich et al. 

(2008). 

 

Compared to the model of Wüthrich et al. (2008), the adaptation of the bootstrap procedure has 

many advantages. In particular, this model provides a split between payments that will be done 

during the next year and best estimate calculation of claims reserves in one year. Therefore, the 

inclusion of this method in an internal model taking into account other risks is easy. The model 

developed in this study also includes a stochastic modeling of the tail factor: its use is therefore not 

restricted to loss triangles that are fully developed  

This method can also be extended to measure the variability of the CDR in ª years, which is 

particularly useful within the ORSA framework. One will be able to obtain payments that will be done 

during the period 
� + ª, � + ª + 1X on one hand, and best estimate of claims reserves at time � + ª + 1 on the other hand. 

 

Several axes could supplement this study. We limited ourselves to a “stand-alone” vision, without 

taking account of a possible diversification effect between lines of business. Nevertheless, many 

insurance companies are led to model the dependencies between lines of business within their 

internal model. One of the axes of development would be to propose methods generalizing the 

bootstrap approach on the residuals in situation of dependencies. The correlation between the 

residuals of each triangle corresponding to the various lines of business could be modeled for 

example by means of copulas. Lastly, within the framework of an internal model, the reserve risk 

could be modeled jointly with other risks. It would then be necessary in this case to identify the links 

with the other risks (the premium risk in particular) and to integrate them in the model. 
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Appendix		
 

Prediction	error	for	a	single	accident	year	�	
 

In this section, we want to decompose the prediction error for a single accident year � into estimation 

error and process error. Let �*
+�� denote the CDR simulated by the bootstrap procedure detailed in 

4.3.1. For accident year � ≥ 1, the variance is written 

	#m��*
+��� = 	#m Æ��,��� v D�9���
96��� − ��,������ v D9�,������

96����� È = 	#mÆ��,������ v D9�,������
96����� È, 

with ��,������ = D����,���,��� + GZ���Û��,���	N����  where N���� ~�
0,1�, 
and for all < ∈ {0,… , � − 1}, D9�,� = ∑ à-,³	á-,³â,..2³20-ãä∑ à-,³.2³20-ãä 	  where D�,9�,� = m�,9� Ýå¼³�à-,³ +	D�9. 
 

Remark: Random variables N9�  simulated to include process variance in the sub-diagonal are 

independent. Thus, those random variables are subscripted over the development years in order to 

reduce the notations, which is enough to differentiate these random variables. 

 

We also have 

∀	< ∈ {0,… , � − 1}, D9�,��� = ∑ ��,9	D�,9��9���6$ +	���9,9���∑ ��,9��9�6$ = �9��9��� 	D�9 + D9�,����9,9�9��� + GZ9Û���9,9N9��9��� . 
Thus, 

	#m��*
+��� = 	#mÖ�D����,���,��� + GZ���Û��,���	N���� � v 4 �9��9��� 	D�9 + D9�,����9,9�9��� + GZ9Û���9,9N9��9��� 8���
96����� ×. 

We will use thereafter the following independence properties: 

• D9�,�and Dy�,� are independent for <	 ≠ |, 
• N9� and Ny� are independent for <	 ≠ |, 
• N9� and Dy�,� are independent for all <, |. 

 

Thus,  

P f�D����,���,��� + GZ���Û��,���	N���� � v 4 �9��9��� 	D�9 + D9�,����9,9�9��� + GZ9Û���9,9N9��9��� 8���
96����� h	

= PQD����,���,��� + GZ���Û��,���	N���� S~��������������������á�.2-à-,.2- v Pt �9��9��� 	D�9 + D9�,����9,9�9��� + GZ9Û���9,9N9��9��� u~������������������������á�³
���

96����� 	
= ���,� . 

  



45 

 

We also have 

P úûû
üÖ�D����,���,��� + GZ���Û��,���	N���� � v 4 �9��9��� 	D�9 + D9�,����9,9�9��� + GZ9Û���9,9N9��9��� 8���

96����� ×
T

ýþþ
�

= Pæ�D����,���,��� + GZ���Û��,���	N���� �Tç~�����������������������-
v Pf4 �9��9��� 	D�9 + D9�,����9,9�9��� + GZ9Û���9,9N9��9��� 8Th~���������������������������³

���
96����� . 

Calculation of ��  ¯� = P æ�D����,���,����Tç + P æ�GZ���Û��,���	N���� �Tç + 2PQD����,���,���S PQGZ���Û��,���	N���� S~������������$ . 
Using results detailed in 4.4.1.1, we obtain 

¯� = ��,���T [GZ���T����� + D����T \ + GZ���T ��,���. 
Calculation of �=  

°9 = 	#m 4 �9��9��� 	D�9 + D9�,����9,9�9��� + GZ9Û���9,9N9��9��� 8 + Pt �9��9��� 	D�9 + D9�,����9,9�9��� + GZ9Û���9,9N9��9��� uT, 
so we have 

°9 = 	#m 4D9�,����9,9�9��� 8 + 	#m [GZ9Û���9,9N9��9��� \ + D�9T, 
then 

°9 = [���9,9�9��� \
T GZ9T�9� + GZ9T���9,9��9����T + D�9T. 

We thus have 

	#m��*
+��� = [��,���T [GZ���T����� + D����T \ + GZ���T ��,���\ v f[���9,9�9��� \
T GZ9T�9� + GZ9T���9,9��9����T + D�9Th���

96����� − ���,�T , 
so 

	#m��*
+��� = ���,�T [ GZ���TD����T ����� + GZ���TD����T ��,��� + 1\ v f[���9,9�9��� \
T GZ9TD�9T�9� + GZ9T���9,9D�9T��9����T + 1h���

96����� − ���,�T . 
As 

å¼.2-�à-,.2- ≈ 0, we use the linear approximation 

v
1+ �9�9 ≈ 1 +5�99 , 
and we obtain 

	#m��*
+��� ≈ ���,�T Æ1 + GZ���TD����T ����� + GZ���TD����T ��,��� + 5 [���9,9�9��� \
T GZ9TD�9T�9� + GZ9T���9,9D�9T��9����T

���
96����� È− ���,�T . 
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Finally, we obtain a split of the total variance into estimation error and process error: 

	#m��*
+��� ≈ ���,�T Æ GZ���TD����T ����� + 5 [���9,9�9��� \
T GZ9TD�9T�9�

���
96����� È~��������������������������

estimation error

+ ���,�T Æ GZ���TD����T ��,��� + 5 GZ9T���9,9D�9T��9����T
���

96����� È~������������������������
process error

. 
13� 
Remark: The process error is written as the first-order linear approximation in 

å¼.2-�à-,.2- of equation (3). 

Thus, for a single accident year �, the prediction error is written, at first order in 
å¼.2-�à-,.2-, as the sum of 

the estimation error and process error, those being then orthogonal. 

 

Prediction	error	for	aggregated	accident	years	

 

The variance of the aggregate CDR is 

	#m 45�*
+��
�

�6� 8 = 5	#m��*
+����
�6� + 2 5 �op��*
+�� , �*
+9�����ø9�� , 

with �op��*
+��, �*
+9�� = P��*
+���*
+9�� − P��*
+���P��*
+9��. 
We have PQ�*
+��S	
= P f��,��� v D�9���

96��� − �D����,���,��� + GZ���Û��,���	N���� � v 4 �9��9��� 	D�9 + D9�,����9,9�9��� + GZ9Û���9,9N9��9��� 8���
96����� h, 

and using the independence properties previously detailed, we obtain PQ�*
+��S	
= ��,��� v D�9���

96��� − PQD����,���,��� + GZ���Û��,���	N���� S v Pt �9��9��� 	D�9 + D9�,����9,9�9��� + GZ9Û���9,9N9��9��� u���
96����� , 

i.e. PQ�*
+��S = 0. 
 

So, the covariance is written �op��*
+�� , �*
+9�� = P��*
+���*
+9��. 
We have �op��*
+��, �*
+9��	
= P

úûû
ûûû
ü 					4��,��� v D�y���

y6��� − �D����,���,��� + GZ���Û��,���	N���� � v [ �y��y��� 	D�y + Dy�,����y,y�y��� + GZyÛ���y,yNy��y��� \���
y6����� 8

× Æ�9,��9 v D�y���
y6��9 − ëD��9�,��9,��9 + GZ��9I�9,��9	N��9� ì v [ �y��y��� 	D�y + Dy�,����y,y�y��� + GZyÛ���y,yNy��y��� \���

y6����9 Èýþþ
þþþ
�
. 

 

We suppose		� < <	 thus � − � > � − < and 
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�op��*
+��, �*
+9��	
= −4��,��� v D�y���

y6��� 8Æ�9,��9 v D�y���
y6��9 È	

+P ��D����,���,��� + GZ���Û��,���	N���� � [������������ 	D���� + D����,���,���������� + GZ���Û��,���N����������� \�~�������������������������������������������������-
	

× v Pf[ �y��y��� 	D�y + Dy�,����y,y�y��� + GZyÛ���y,yNy��y��� \Th~������������������������������

���
y6����� .	

 

Calculation of ��	 
Using the independence properties, we have 

�� = ������������ ��,���D����T + ��,���T������� P æ�D����,��Tç + GZ���T ��,���������� P æ�N���� �Tç ,	
�� = ������������ ��,���D����T + ��,���T������� [GZ���T����� + D����T \ + GZ���T ��,���������� ,	
�� = ��,���D����T + GZ���T ��,���������� + ��,���T������� GZ���T����� . 

Calculation of �§ 

�y = 	#m [ �y��y��� 	D�y + Dy�,����y,y�y��� + GZyÛ���y,yNy��y��� \ + P � �y��y��� 	D�y + Dy�,����y,y�y��� + GZyÛ���y,yNy��y��� �T. 
Using the independence properties, we also have 

�y = [���y,y�y��� \
T 	#m�Dy�,�� + GZyT���y,y
�y����T + D�yT, 

i.e. 

�y = [���y,y�y��� \
T GZyT�y� + GZyT���y,y
�y����T + D�yT. 

The covariance is thus written �op��*
+��, �*
+9��	
= ���,���9,� [1 + ��,���GZ���T�������D����T 	����� + GZ���TD����T �������\ v 41 + [���y,y�y��� \

T GZyTD�yT	�y� + GZyT���y,yD�yT
�y����T8
���

y6����� − 1. 
Using a linear approximation, we finally obtain �op��*
+��, �*
+9��	

= ���,���9,� 4 ��,���GZ���T�������D����T 	����� + 5 [���y,y�y��� \
T GZyTD�yT	�y�

���
y6����� 8~��������������������������������

Covariance of the estimation error

	
+ ���,���9,� 4 GZ���TD����T ������� + 5 GZyT���y,yD�yT
�y����T

���
y6����� 8~������������������������

Covariance of the process error

.			
14� 
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Remark: The covariance of the process error is written as a first-order linear approximation in 

å¼��è�./0 of 

equation (4). 

 

Finally, results (13) and (14) allow to write the prediction error for aggregated accident years as the 

sum of the aggregated estimation error and the aggregated process error at a first-order 

approximation in 
å¼��à�,.2�: 

	#m 45�*
+��
�

�6� 8 = 	#m 45�*
+�
�

�6� 8 + 	#m 45�*
��
�6� 8. 


