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Introduction

The purpose of this paper is to give a proof of the parabolic/singular Koszul duality for the category O of affine Kac-Moody algebras. The main motivation for this is the conjecture in [START_REF] Varagnolo | Cyclotomic double affine Hecke algebras and affine parabolic category O[END_REF] (proved in [START_REF] Rouquier | Categorifications and cyclotomic rational double affine Hecke algebras[END_REF]) relating the parabolic affine category O and the category O of cyclotomic rational double affine Hecke algebras (CRDAHA for short). Using the present work, we deduce from this conjecture the main conjecture of [START_REF] Chuang | Hidden Hecke algebras and Koszul duality[END_REF] which claims that the category O of CRDAHA's is Koszul and that the Koszul equivalence is related to the level-rank duality on the Fock space.

There are several possible approaches to Koszul duality for affine Kac-Moody algebras. In [START_REF] Bezrukavnikov | On Koszul duality for Kac-Moody groups[END_REF], a geometric analogue of the composition of the Koszul and the Ringel duality is given, which involves Whittaker sheaves on the affine flag variety. Our principal motivation comes from representation theory of CRDAHA's. For this, we need to prove a Koszul duality for the category O itself rather than for its geometric analogues.

One difficulty of the Kac-Moody case comes from the fact that, at a positive level, the category O has no tilting modules, while at a negative level it has no projective modules. One way to overcome this is to use a different category of modules than the usual category O, as the Whittaker category in loc. cit. or a category of linear complexes as in [START_REF] Mazorchuk | Quadratic duals, Koszul dual functors, and applications Trans[END_REF]. To remedy this, we use a truncated version of the (affine parabolic) category O. Under truncation any singular block of an affine parabolic category O at a non-critical level yields a finite highest-weight category which contains both tilting and projective objects. We prove that these highest weight categories are Koszul and are Koszul dual to each other.

Note that the affine category O is related to two different types of geometry. In negative level it is related to the affine flag ind-scheme and to finite dimensional affine Schubert varieties. In positive level it is related to Kashiwara's affine flag manifold and to finite codimensional affine Schubert varieties. In negative level, a localization theorem (from the category O to perverse sheaves on the affine flag ind-scheme) has been worked out by Beilinson-Drinfeld and Frenkel-Gaitsgory in [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF], [START_REF] Frenkel | Localization of g-modules on the affine Grassmannian[END_REF]. A difficulty in the proof of the main theorem comes from the absence of a localization theorem (from the category O to perverse sheaves on Kashiwara's affine flag manifold) at the positive level. To overcome this we use standard Koszul duality and Ringel duality to relate the positive and negative level.

Our general argument is similar to the one in [START_REF] Backelin | Koszul duality for parabolic and singular category O[END_REF], [START_REF] Beilinson | Koszul duality patterns in representation theory[END_REF]. For this, we need an affine analogue of the Soergel functor on the category O. We use the functor introduced by Fiebig in [START_REF] Fiebig | The combinatorics of category O over symmetrizable Kac-Moody algebras[END_REF]. To define it, we must introduce the deformed category O, which is a highest weight category over a localization of a polynomial ring, and some category of sheaves over a moment graph.

By the work of Fiebig, sheaves over moment graphs give an algebraic analogue of equivariant perverse sheaves associated with finite dimensional affine Schubert varieties. An important new tool in our work is a relation between sheaves over some moment graph and equivariant perverse sheaves associated with finite codimensional affine Schubert varieties, see Appendix A. This relation is of independent interest.

Let us now explain the structure of the paper. Section 2 contains generalities on highest weight categories and standard Koszul duality. In Section 3 we introduce the affine parabolic category O and its truncated version. Section 4 contains some genreralities on moment graphs and the relation with the deformed affine category O. The section 5 is technical and contains the proof of the main theorem. Next, we apply the Koszul duality to CRDAHA's and q-Schur algebras in Section 6.

The Kazhdan-Lusztig equivalence [START_REF] Kazhdan | Tensor structures arising from affine Lie algebras, I-IV[END_REF] implies that the module category of the q-Schur algebra is equivalent to a highest weight subcategory of the affine category O of GL n at a negative level. Thus, our result implies that the q-Schur algebra is Morita equivalent to a Koszul algebra (and also to a standard Koszul algebra), see Section 6.6 1 . To our knowledge, this was not proved so far. There are different possible approachs for proving that the q-Schur algebra is Koszul. Some are completely algebraic, see e.g., [START_REF] Parshall | New graded methods in representation theory[END_REF]. Some use analogues of the Bezrukavnikov-Mirkovic modular localization theorem, see e.g., [START_REF] Riche | Koszul duality and modular representations of semisimple Lie algebras[END_REF]. Our approach has the advantage that it yields an explicit description of the Koszul dual of the q-Schur algebra.

Finally, we apply the Koszul duality of the category O to CRDAHA's. More precisely, in [START_REF] Varagnolo | Cyclotomic double affine Hecke algebras and affine parabolic category O[END_REF] some higher analogue of the q-Schur algebra has been introduced. It is a highest-weight subcategory of the affine parabolic category O. Since the category is standard Koszul, these higher q-Schur algebras are also Koszul and their are Koszul dual to each other. Next, it was conjectured in loc. cit. (and proved in [START_REF] Rouquier | Categorifications and cyclotomic rational double affine Hecke algebras[END_REF]) that these higher q-Schur algebras are equivalent to the category O of the CRDAHA. Thus, our result also implies that the CRDAHA's are Koszul. Using this, we prove the level-rank conjecture for CRDAHA's in [START_REF] Chuang | Hidden Hecke algebras and Koszul duality[END_REF].

Preliminaries on Koszul rings and highest weight categories

2.1. Categories. For an object M of a category C let 1 M be the identity endomorphism of M . Let C op be the category opposite to C.

A functor of additive categories is always assumed to be additive. If C is an exact category then C op is equipped with the exact structure such that 0 → M ′ → M → M ′′ → 0 is exact in C op if and only if 0 → M ′′ → M → M ′ → 0 is exact in C. An exact functor of exact categories is a functor which takes short exact sequences to short exact sequences. Unless specified otherwise, a functor will always be a covariant functor. A contravariant functor F : C → C ′ is exact if and only if the functor F : C op → C ′ is exact.

Given an abelian category C, let Irr(C) be the set of isomorphism classes of simple objects. Let Proj(C) and Inj(C) be the sets of isomorphism classes of indecomposable projective, injective objects respectively. For an object M of C we abbreviate Ext C (M ) = Ext C (M, M ), where Ext C stands for the direct sum of all Ext i C 's.

Let R be a commutative, noetherian, integral domain. An R-category is an additive category enriched over the tensor category of R-modules. Unless mentioned otherwise, a functor of R-categories is always assumed to be R-linear. A hom-finite R-category is an R-category whose Hom spaces are finitely generated over R. 1 After our paper was written, we received a copy of [START_REF] Chuang | Hidden Hecke algebras and Koszul duality[END_REF] where a similar result is obtained by different methods An additive category is Krull-Schmidt if any object has a decomposition such that each summand is indecomposable with local endomorphism ring. A full additive subcategory of a Krull-Schmidt category is again Krull-Schmidt if every idempotent splits (i.e., if it is closed under direct summands). A hom-finite k-category over a field k is Krull-Schmidt if every idempotent splits (e.g., if it is abelian).

We call finite abelian k-category a k-category which is equivalent to the category of finite dimensional modules over a finite dimensional k-algebra.

For any abelian category C, let D b (C) be the corresponding bounded derived category.

2.2. Graded rings. For a ring A let A op be the opposite ring. Let A-Mod be the category of left A-modules and let A-mod be the subcategory of the finitely generated ones. We abbreviate Irr(A) = Irr(A-mod), Proj(A) = Proj(A-mod) and Inj(A) = Inj(A-mod).

By a graded ring Ā we'll always mean a Z-graded ring. Let Ā-gmod be the category of finitely generated graded Ā-modules. We abbreviate D b ( Ā) = D b ( Ā-gmod), Irr( Ā) = Irr( Ā-gmod), Inj( Ā) = Inj( Ā-gmod) and Proj( Ā) = Proj( Ā-gmod). Given a graded Ā-module M and an integer j, let M j be the graded Ā-module obtained from M by shifting the grading by j, i.e., such that (M j ) i = M i-j . Given M, N ∈ Ā-gmod let hom Ā(M, N ) and ext Ā(M, N ) be the morphisms and extensions in the category of graded modules.

We say that the ring Ā is positively graded if Ā<0 = 0 and if Ā0 is a semisimple ring. A finite dimensional graded algebra Ā over a field k is positively graded if Ā<0 = 0 and Ā0 is semisimple as an Ā-module. Here Ā0 is identified with Ā/ Ā>0 .

A graded module M is called pure of weight i if it is concentrated in degree -i, i.e., M = M -i . Suppose Ā is a positively graded ring. Then any simple graded module is pure, and any pure graded module is semisimple.

Assume that k is a field and that Ā is a positively graded k-algebra. We say that Ā is basic if Ā0 isomorphic to a finite product of copies of k as a k-algebra.

Assume that Ā is finite dimensional. Let {1 x ; x ∈ Irr( Ā0 )} be a complete system of primitive orthogonal idempotents of Ā0 . The Hilbert polynomial of Ā is the matrix P ( Ā, t) with entries N[t] given by P ( Ā, t) x,x ′ = i t i dim 1 x Āi 1 x ′ for each x, x ′ . Assume further that Ā is positively graded. We have canonical bijections Irr(A) = Irr( Ā0 ) = { Ā0 1 x } such that x is the isomorphism class of Ā0 1 x . Since A-mod is Krull-Schmidt, there is a canonical bijection top : Proj(A) → Irr(A), P → top(P ). We have top(A1 x ) = Ā0 1 x = x. The set {1 x ; x ∈ Irr( Ā0 )} is a complete system of primitive orthogonal idempotents of A.

Given a graded commutative, noetherian, integral domain R, a graded R-category is an additive category enriched over the monoidal category of graded R-modules.

Koszul duality.

Let k be a field and Ā be a graded k-algebra. Let A be the (non graded) k-algebra underlying Ā.

The Koszul dual of Ā is the graded k-algebra E( Ā) = Ext A ( Ā0 ). Forgetting the grading of E( Ā), we get a k-algebra E(A). It is finite dimensional if A is finite dimensional and has finite global dimension.

A linear projective resolution of a graded Ā-module M is a graded projective resolution • • • → P 1 → P 0 → M → 0 such that, for each i, the projective graded Ā-module P i is finitely generated by a set of homogeneous elements of degree i.

Assume that Ā is positively graded (in the sense of Section 2.2). We say that Ā is Koszul if each simple graded module which is pure of weight 0 has a linear projective resolution. If Ā is Koszul, then we say that A has a Koszul grading. If Ā is finite dimensional then this grading is unique up to isomorphism of graded k-algebras, see [5, cor. 2.5.2].

Assume that Ā is finite dimensional, has finite global dimension and is Koszul. Then E( Ā) is Koszul and E 2 ( Ā) = Ā canonically, see [5, thm. 1.2.5]. Put Ā! = E( Ā) op and A ! = E(A) op . Note that Ā! is also Koszul by [5, prop. 2.2.1].

For each x ∈ Irr(A) = Irr( Ā0 ) the idempotent 1 x ∈ Ā0 yields an idempotent 1 !

x = E(1 x ) ∈ E(A) in the obvious way. The set {1 ! x ; x ∈ Irr(A)} is a complete system of primitive orthogonal idempotents of E(A).

By [5, thm. 2.12.5, 2.12.6], there is an equivalence of triangulated categories

E : D b ( Ā) → D b ( Ā! ) such that E(M i ) = E(M )[-i] -i and E( Ā0 1 x ) = Ā! 1 !
x for each x ∈ Irr(A). We'll call it the Koszul equivalence. By forgetting the grading, we get a bijection Irr(A)

→ Proj(A ! ), x → A ! 1 ! x . It induces a bijection (•) ! = top • E : Irr(A) → Irr(A !
), which will be called the natural bijection between Irr(A) and Irr(A ! ).

Let C be a finite abelian k-category. We say that C has a Koszul grading if there is a projective generator P such that the ring A = End C (P ) op has a Koszul grading Ā. We may also simply say that C is Koszul and we abbreviate C ! = A ! -mod .

The following lemmas are well-known.

Lemma 2.1. Let P , A, C be as above. If Ā is a positively graded then E( Ā) = Ext C (L), where L = top(P ).

Proof. The equivalence C → A-mod, X → Hom C (P, X) takes L to Ā/ Ā>0 . Therefore An object M ∈ C belongs to D if and only if Hom C (P L , M ) = 0 whenever L / ∈ Irr(D). Therefore, the equivalence Hom C (P, •) : C → A-mod identifies D with the full subcategory of A-mod consisting of the modules killed by I. We deduce that D is equivalent to A I -mod. Now, let Ā be the Koszul grading on A. Since Ā is positively graded, the idempotent 1 PL has degree 0. Thus I is an homogeneous ideal of Ā. Hence Ā yields a grading ĀI on A I such that Ā<0 I = 0 and Ā0

E( Ā) = Ext C (L).
I is semi-simple as an ĀImodule. Thus ĀI is also positively graded.

Fix a graded lift L of L ∈ Irr(A), see Section 2.6. The graded Ā-module L is pure. Let d L be its degree. By [5, prop. 2.1.3] 

we have ext i Ā( L, L′ ) = 0 unless i = d L ′ -d L for L, L ′ ∈ Irr(C). We must check that ext i ĀI ( L, L′ ) = 0 unless i = d L ′ -d L if L, L ′ ∈ Irr(D)
. This is obvious because the inclusion ĀI -gmod ⊂ Ā-gmod induces injections on extensions.

2.4. Highest weight categories. Let R be a commutative, noetherian ring with 1 which is a local ring with residue field k.

Let C be an R-category which is equivalent to the category of finitely generated modules over a finite projective R-algebra A.

The category C is a highest weight R-category if it is equipped with a poset of isomorphisms of objects (∆(C), ) called the standard objects satisfying the following conditions:

• the objects of ∆(C) are projective over R • given M ∈ C such that Hom C (D, M ) = 0 for all D ∈ ∆(C), we have M = 0 • given D ∈ ∆(C)
, there is a projective object P ∈ C and a surjection f : P ։ D such that ker f has a (finite) filtration whose successive quotients are objects

D ′ ∈ ∆ with D ′ > D. • given D ∈ ∆, we have End C (D) = R • given D 1 , D 2 ∈ ∆ with Hom C (D 1 , D 2 ) = 0, we have D 1 ≤ D 2 .
See [39, def. 4.11]. Note that since R is local, any finitely generated projective R-module is free, hence the set ∆ in loc. cit. is the set of finite direct sums of objects in ∆. The partial order is called the highest weight order on C. We write ∆(C) = {∆(λ)} λ∈Λ for Λ an indexing poset.

Lemma 2.3. Let C be a highest weight R-category. Given λ ∈ Λ, there is a unique (up to isomorphism) indecomposable projective (resp. injective, tilting, costandard) object associate with λ, denoted by P (λ) (rep.

I(λ), T (λ), ∇(λ)) such that (∇) Hom C (∆(µ), ∇(λ)) ≃ δ λµ R and Ext 1 C (∆(µ), ∇(λ))
= 0 for all µ ∈ Λ, (P ) there is a surjection f : P (λ) ։ ∆(λ) such that ker f has a filtration whose successive quotients are ∆(µ)'s with µ > λ, (I) there is an injection f : ∇(λ) ֒→ I(λ) such that cokerf has a filtration whose successive quotients are ∇(µ)'s with µ > λ, (T ) there is an injection f : ∆(λ) ֒→ T (λ) and a surjection g : T (λ) ։ ∇(λ) such that cokerf (resp. ker g) has a filtration whose successive quotients are ∆(µ)'s (resp. ∇(µ)'s) with µ < λ.

See e.g. [40, prop .2.1]. The objects ∇(λ), ∆(λ), P (λ), I(λ) and T (λ) are projective over R. We have Proj(C) = {P (λ)} λ∈Λ , Inj(C) = {I(λ)} λ∈Λ . The set Tilt(C) = {T (λ)} λ∈Λ is the set of isomorphism classes of indecomposable tilting objects in C. Let ∇(C) = {∇(λ)} λ∈Λ . Note that ∆(λ) has a unique simple quotient L(λ). The set of isomorphism classes of simple objects in C is given by Irr(C) = {L(λ)} λ∈Λ .

Let C ∆ , C ∇ be the full subcategories of C consisting of the ∆-filtered and ∇filtered objects, i.e., the objects having a finite filtration whose successive quotients are standard, costandard respectively. These categories are exact. Recall that a tilting object is by definition an object that is both ∆-filtered and ∇-filtered.

The opposite of C is a highest weight R-category such that ∆(C op ) = ∇(C) with the opposite highest weight order.

Given a commutative local R-algebra S and an R-module M , we write SM = M ⊗ R S. Let SC = SA-mod . We have the following, see e. An ideal in the poset Λ is a subset of the form I = i∈I { i}.

(a) if S is R-flat then S Ext d C (M, N ) = Ext d SC (SM, SN ) for all d 0, (b) if either M ∈ C is projective or (M ∈ C ∆ and N ∈ C ∇ ), then we have S Hom C (M, N ) = Hom SC (SM, SN ), (c) if M is R-projective then M is projective in C (resp. M is tilting in C, M ∈ C ∆ ) if and only if kM is projective in kC (resp. kM is tilting in kC, kM ∈ kC ∆ ), (d) if either (M is projective in C and N is R-projective) or (M ∈ C ∆ and N ∈ C ∇ ) then Hom C (M, N ) is R-projective, ( 
A coideal is the complement of an ideal, i.e., a subset of the form J = j∈J { j}. Now, assume that C is a highest weight category over a field k, and that I, J are respectively an ideal and a coideal of Λ. Then C[I], C(J) are highest weight categories and the inclusion C[I] ⊂ C induces injections on extensions by [10, thm. 3.9], [12, prop. A.3.3].

Ringel duality.

Let R be a commutative, noetherian ring with 1 which is a local ring with residue field k.

Let C be a highest-weight R-category which is equivalent to A-mod for a finite projective R-algebra A.

We call T = λ∈Λ T (λ) the characteristic tilting module.

Set D(A) = End C (T ) and A ⋄ = D(A) op . The Ringel dual of A is the R-algebra A ⋄ , the Ringel dual of C is the category C ⋄ = A ⋄ -mod .
The category C ⋄ is a highest-weight R-category on the poset Λ op . We have an equivalence of triangulated categories (•)

⋄ : D b (C) → D b (C ⋄ ) called the Ringel equivalence. It restricts to an equivalence of exact categories (•) ⋄ : C ∆ → (C ⋄ ) ∇ such that M → RHom C (M, T ) * .
Here (•) * is the dual as a k-vector space. We have ∆(λ) ⋄ = ∇ ⋄ (λ), P (λ) ⋄ = T ⋄ (λ) and T (λ) ⋄ = I ⋄ (λ), for each λ ∈ Λ, see [39, prop. 4.26].

The ring (A ⋄ ) ⋄ is Morita equivalent to A, see loc. cit. and [12, sec. A.4]. Now, assume that R = k. For each primitive idempotent e ∈ A, there is a unique λ ∈ Λ such that Ae = P (λ). We define e ⋄ ∈ A ⋄ to be the primitive idempotent such that A ⋄ e ⋄ = P ⋄ (λ). The bijection (•) ⋄ : Irr(C) → Irr(C ⋄ ) given by L(λ) → L ⋄ (λ) is called the natural bijection between Irr(C) and Irr(C ⋄ ).

The following is well-known, see, e.g., [12, prop. A.4.9].

Lemma 2.6. A subset I ⊂ Λ is an ideal if and only if it is a coideal in Λ op . We have C[I] ⋄ = C ⋄ (I), and the Ringel equivalence factors to an equivalence of categories

C[I] ∆ → C ⋄ (I) ∇ .
2.6. Standard Koszul duality. Let k be a field and C be a highest weight kcategory. Assume that C is equivalent to the category of finitely generated left modules over a finite dimensional k-algebra A.

Let Ā be a graded k-algebra which is isomorphic to A as an k-algebra. We call Ā a graded lift of A. A graded lift of an object M ∈ C is a graded Ā-module which is isomorphic to M as an A-module.

Assume that Ā is positively graded (in the sense of Section 2.2). We have the following Proposition 2.7. Given λ ∈ Λ there exists unique graded lifts L(λ), P (λ), Ī(λ), ∆(λ), ∇(λ), T (λ) such that • L(λ) is pure of degree zero, • the surjection P (λ) ։ L(λ) is homogeneous of degree zero, • the injection L(λ) ֒→ Ī(λ) is homogeneous of degree zero, • the surjection f : P (λ) ։ ∆(λ) in (P ) is homogeneous of degree zero, • the injection f : ∇(λ) ֒→ Ī(λ) in (I) is homogeneous of degree zero, • both the injection f : ∆(λ) ֒→ T (λ) and the surjection g : T (λ) ։ ∇(λ) in (T ) are homogeneous of degree zero.

Proof. The existence of the graded lifts is proved in [31, cor. 4,5]. They are unique up to isomorphisms because, by [5, lem. 2.5.3], the graded lift of an indecomposable object of kC is unique up to a graded Ā-module isomorphism and up to a shift of the grading.

The gradings above will be called the natural gradings. In particular, let T = λ∈Λ T (λ). The grading on T induces a grading on the k-algebra A ⋄ given by Ā⋄ = End C ( T ) op . It is called the natural grading.

A chain complex of projective (resp. injective, tilting) modules

• • • → M i → M i-1 → . .
. is called linear provided that for every i ∈ Z all indecomposable direct summands of M i -i have the natural grading.

Following [START_REF] Agoston | Quasi-hereditary extension algebras[END_REF], we say that Ā is standard Koszul provided that all standard modules have linear projective resolutions and all costandard modules have linear injective coresolutions. By [2, thm. 1], a standard Koszul graded algebra is Koszul.

We will identify Λ = {L(λ)} λ∈Λ = {1 x ; x ∈ Irr(A)} and equip the latter with the partial order . Assume that Ā is Koszul. By [2, thm. 3], the graded k-algebra Ā is standard Koszul if and only if Ā! is quasi-hereditary relatively to the poset {1 !

x ; x ∈ Irr(A)} such that 1 ! x 1 ! y ⇐⇒ 1 x 1 y . Following [START_REF] Mazorchuk | Koszul duality for stratified algebras I. Balanced quasi-hereditary algebras[END_REF], we say that Ā is balanced provided that all standard modules have linear tilting coresolutions and all costandard modules have linear tilting resolutions. By [31, thm. 7], the graded k-algebra Ā is balanced if and only if it is standard Koszul and if the graded k-algebra D( Ā) is positive.

If Ā is balanced, then the following hold [32, thm. 1] • Ā, Ā⋄ , Ā! and ( Ā! ) ⋄ are positively graded, quasi-hereditary, Koszul, standard Koszul and balanced, • ( Ā! ) ⋄ = ( Ā⋄ ) ! as graded quasi-hereditary k-algebras,

• the natural bijection Irr(A) → Irr(A ! ) takes the highest weight order on Irr(A) to the opposite of the highest weight order on Irr(A ! ). Note that the notation E( Ā) in [START_REF] Mazorchuk | Koszul duality for stratified algebras I. Balanced quasi-hereditary algebras[END_REF] corresponds to our notation Ā! .

We'll say that C is standard Koszul or balanced if we can choose the graded k-algebra Ā in such a way that it is standard Koszul or balanced respectively. Remark 2.8. Assume that the graded k-algebra Ā is standard Koszul. In particular, it is finite dimensional, Koszul and with finite global dimension. The Koszul equivalence is given by E = RHom A ( Ā0 , •), up to the grading. See [5, Remark 2.9. Assume that Ā, Ā⋄ are both positively graded (in the sense of Section 2.2). The functor Hom C (•, T ) * takes the natural graded indecomposable tilting objects in Ā-gmod to the natural graded indecomposable projective ones in Ā⋄ -gmod. It takes also the natural graded indecomposable injective objects in Ā-gmod to natural graded indecomposable tilting ones in Ā⋄ -gmod.

Let C be a highest weight category over a field k and I ⊂ Irr(C) be an ideal. Put J = Irr(C) \ I. Assume that C is standard Koszul.

The category C[I] has a Koszul grading by Lemma 2.2 and Remark 2.5. The natural bijection Irr(C) → Irr(C ! ) is an anti-isomorphism of posets. Thus, the images I ! , J ! of I, J are respectively a coideal and an ideal of Irr(C ! ). Since C is standard Koszul, its Koszul dual C ! is a highest weight category. We have

C ! (I ! ) = C ! /C ! [J ! ], because J ! = Irr(C ! ) \ I ! . Since C ! [J ! ]
is the Serre subcategory of C ! generated by J ! , it consists of the Ext C (L)-modules killed by e. This implies the lemma.

Affine Lie algebras and the parabolic category O

3.1. Lie algebras. Let g be a simple Lie C-algebra and let G be a connected simple group over C with Lie algebra g. Let T ⊂ G be a maximal tori and let t ⊂ g be its Lie algebra. Let b ⊂ g be a Borel subalgebra containing t.

The elements of t, t * are called coweights and weights respectively. Given a root α ∈ t * let α ∈ t denote the corresponding coroot. Let Π ⊂ t * be the set of roots of g, Π + ⊂ Π the set of roots of b, and ZΠ be the root lattice. Let ρ be half the sum of the positive roots. Let Φ = {α i ; i ∈ I} be the set of simple roots in Π + . Let W be the Weyl group. Let N be the dual Coxeter number of g.

3.2.

Affine Lie algebras. Let g be the affine Lie algebra associated with g. Recall that g = C∂ ⊕ Lg, where Lg is a central extension of Lg = g ⊗ C[t, t -1 ] and ∂ = t∂ t is a derivation of Lg acting trivially on the canonical central element 1 of Lg.

Consider the Lie subalgebras

b = b ⊕ g ⊗ tC[t] ⊕ C∂ ⊕ C1 and t = C∂ ⊕ t ⊕ C1.
Let Π, Π + be the sets of roots of g, b respectively. We'll call an element of Π an affine root. The set of simple roots in Π + is Φ = {α i ; i ∈ {0} ∪ I}.

The elements of t, t * are called affine coweights and affine weights respectively. Let (• : •) : t * × t → C be the canonical pairing. Let δ, Λ 0 , ρ be the affine weights given by (δ :

∂) = (Λ 0 : 1) = 1, (Λ 0 : C∂ ⊕ t) = (δ : t ⊕ C1) = 0 and ρ = ρ + N Λ 0 .
An element of t * /Cδ is called a classical affine weight. Let cl : t * → t * /Cδ denote the obvious projection.

Let e be an integer = 0. We set t * e = {λ ∈ t * ; (λ : 1) = -e -N }. We'll use the identification t * = C × t * × C such that α i → (0, α i , 0) if i = 0, Λ 0 → (0, 0, 1) and δ → (1, 0, 0).

Let α ∈ t be the affine coroot associated with the real affine root α. Let • : • be the non-degenerate symmetric bilinear form on t * such that (λ : αi ) = 2 λ : α i / α i : α i and (λ : 1) = λ : δ . Using • : • we identify α with an element of t * for any real affine root α.

Let W = W ⋉ ZΠ be the affine Weyl group and let S = {s i = s αi ; α i ∈ Φ} be the set of simple affine reflections. The group W acts on t * . For w ∈ W ,

τ ∈ ZΠ we have w(Λ 0 ) = Λ 0 , w(δ) = δ, τ (δ) = δ, τ (λ) = λ -τ : λ δ and τ (Λ 0 ) = τ + Λ 0 -τ : τ δ/2.
The •-action on t * is given by w • λ = w(λ + ρ)ρ. It factors to a W -action on t * /Cδ. Two (classical) affine weights λ, µ are linked if they belong to the same orbit of the •-action, and we write λ ∼ µ. Let W λ be the stabilizer of an affine weight λ under the •-action. We say that λ is regular if W λ = {1}.

Set C ± = {λ ∈ t * ; λ + ρ : α 0, α ∈ Π ± }. An element of C -(resp. of C + ) is called an antidominant affine weight (resp. a dominant affine weight). We write again C ± for cl(C ± ). We have the following basic fact, see e.g., [24, lem. 2.10].

Lemma 3.1. Let λ be an integral affine weight of level -e -N . We have (a)

♯( W • λ ∩ C -) = 1 and ♯( W • λ ∩ C + ) = 0 if e > 0, (b) ♯( W • λ ∩ C + ) = 1 and ♯( W • λ ∩ C -) = 0 if e < 0.
We say that λ is negative in the first case, and positive in the second case. For λ ∈ C ± the subgroup W λ of W is finite and is a standard parabolic subgroup. It is isomorphic to the Weyl group of the root system {α ∈ Π ; λ + ρ : α = 0}.

3.3.

The parabolic category O. Let P be the set of proper subsets of Φ. An element of P is called a parabolic type. Fix a parabolic type ν. If ν is the empty set we say that ν is regular, and we write ν = φ.

Let p ν ⊂ g be the unique parabolic subalgebra containing b whose set of roots is generated by Φ ∪ (-ν). Let Π ν be the root system of a levi subalgebra of p ν . Set Π + ν = Π + ∩ Π ν . Let W ν ⊂ W be the Weyl group of Π ν . Let w ν be the longest element in W ν . Let Õν be the category of all g-modules M such that M = λ∈t * M λ with M λ = {m ∈ M ; xm = λ(x)m, x ∈ t} and U (p ν ) m is finite dimensional for each m ∈ M . An affine weight λ is ν-dominant if (λ : α) ∈ N for all α ∈ Π + ν . For any ν-dominant affine weight λ, let V ν (λ), L(λ) be the parabolic Verma module with the highest weight λ and its simple top.

Recall that e is an integer = 0. For any weight λ ∈ t * , let λ e = λ-(e + N )Λ 0 and z λ = λ : 2ρ + λ /2e. Let O ν ⊂ Õν be the full subcategory of the modules such that the highest weight of any of its simple subquotients is of the form λe = λ e + z λ δ, where λ is a ν-dominant integral weight. We'll abbreviate V ν (λ e ) = V ν ( λe ) and L(λ e ) = L( λe ). Now, fix µ ∈ P and assume that e > 0. We use the following notation • o µ,-is an antidominant integral classical affine weight of level -e-N whose stabilizer for the 

•-action of W is equal to W µ , • o µ,+ = -o µ,--2 ρ is a dominant integral classical affine weight of level e -N whose stabilizer for the •-action of W is equal to W µ , • O ν µ,± ⊂ O ν is
µ φ,+ ⇐⇒ x -1 ∈ I µ,+ , (b) x ∈ I µ φ,-⇐⇒ x -1 ∈ I µ,-, (c) I µ φ,± ∩ I ν,∓ = {xw ν ; x ∈ I µ ν,± }, (d) x ∈ I µ ν,+ ⇐⇒ w µ xw ν ∈ I µ ν,-.
Proof. To prove (a) note that, since o φ,+ is dominant regular, we have

I µ φ,+ = {x ∈ W ; x • o φ,+ is µ-dominant} = {x ∈ W ; o φ,+ + ρ : x -1 (α) 0, ∀α ∈ Π + µ } = {x ∈ W ; x -1 (Π + µ ) ⊂ Π + } = {x ∈ W ; x -1 ∈ I µ,+ }.
The proof of (b) is similar and is left to the reader. Now we prove part (c). Choose positive integers d, f such that ±(fd) > -N . Then, the translation functor For each x ∈ I ν µ,∓ , we write x ± = w ν xw µ ∈ I ν µ,± . From Lemma 3.2 and its proof, we get the following.

T φ,ν : z O φ,± → z O ν,± in
Corollary 3.3. (a) We have I µ ν,+ = {x ; xw ν ∈ (I min µ ) -1 ∩ I max ν } and I µ ν,-= {x ; xw ν ∈ (I max µ ) -1 ∩ I min ν }. (b) The map I ν µ,± → I µ ν,± , x → x -1 is an isomorphism of posets. (c) The map I ν µ,∓ → I ν µ,± , x → x ± is an anti-isomorphism of posets.
The category O ν µ,± is a direct summand in O ν by the linkage principle, see [43, thm. 6.1], and we have Irr

(O ν µ,± ) = {L(x • o µ,± ) ; x ∈ I ν µ,± }. Further, for each x ∈ I ν µ,+ , the simple module L(x • o µ,+ ) has a projective cover P ν (x • o µ,+ ) in O ν µ,+ . For each x ∈ I ν µ,-, there is a tilting module T ν (x • o µ,-) in O ν µ,-with highest weight x • o µ,-
, see e.g., [START_REF] Soergel | Character formulas for tilting modules over Kac-Moody algebras[END_REF]. Note that O ν µ,+ does not have tilting objects and O ν µ,-does not have projective objects. Let O ν,∆ µ,± be the full subcategory of O ν,∆ µ,± consisting of objects with a finite filtration by the parabolic Verma modules. The following is a version of Ringel equivalence for the categories O ν µ,± .

Lemma 3.4.

There is an equivalence of exact categories which maps a simple module to itself, maps a parabolic Verma module to a dual parabolic Verma module, and maps a tilting module to itself. Let O ν,∇ µ,-be the full subcategory of O ν µ,-consisting of objects with a finite filtration by dual parabolic Verma modules. Then we have an equivalence

D : O ν,∆ µ,+ ∼ → (O ν,∆ µ,-) op which maps V ν (x • o µ,+ ) to V ν (x -• o µ,-), and P ν (x • o µ,+ ) to T ν (x -• o µ,-). Proof. Note that x -• o µ,-= w ν x • o µ,-= -w ν (x • o µ,+ + ρ) -ρ. So
d • D : O ν,∆ µ,+ ∼ → O ν,∇ µ,- which maps V ν (x • o µ,+ ) to d(V ν (x -• o µ,-)), and P ν (x • o µ,+ ) to T ν (x -• o µ,-).
3.4. The truncated category O. Fix parabolic types µ, ν ∈ P and an integer e > 0. Fix an element w ∈ W . We define the truncated parabolic category O at the negative/positive level in the following way.

First, set w I ν µ,-= {x ∈ I ν µ,-; x w} and let w O ν µ,-be the full subcategory of O ν µ,-[ w I ν µ,-] consisting of the finitely generated modules. We have Irr(

w O ν µ,-) = {L(x • o µ,-) ; x ∈ w I ν µ,-}. For each x ∈ w I ν µ,-, the modules V ν (x • o µ,-) and T ν (x • o µ,-) belong to w O ν µ,-. We may write T ν (x • o µ,-) = w T ν (x • o µ,-). The module L(x•o µ,-) has a projective cover in w O ν µ,-.
We denoted it by w P ν (x•o µ,-). Let w P ν µ,-be the minimal projective generator, w T ν µ,-the characteristic tilting module, and let w L ν µ,-be the sum of simple modules.

Definition 3.6. Set w Āν µ,-= Extw O ν µ,-( w L ν µ,-) op and w A ν µ,-= Endw O ν µ,-( w P ν µ,-) op . Lemma 3.7. The category w O ν µ,-≃ w A ν µ,--mod is a highest weight category with the set of standard objects ∆( w O ν µ,-) = {V ν (x • o µ,-) ; x ∈ w I ν µ,-
} and the highest weight order given by the partial order on w I ν µ,-.

Proof. First, the category O ν µ,-is a highest weight category in the sense of [10, def. 3.1], i.e., it satisfies the axioms in Section 5 although it is not equivalent to the module category of a finite dimensional algebra. By [10, thm. 3.5] 

the subcategory w O ν µ,-is also highest weight. Since w O ν µ,-≃ w A ν µ,--mod and w A ν µ,-is finite dimensional, the category w O ν µ,
-is a highest weight category in the sense of Section 5.

Next, set w I ν µ,+ = {x ∈ I ν µ,+ ; x w} and let w O ν µ,+ be the full subcategory of O ν µ,+ ( w I ν µ,+ ) consisting of the finitely generated objects. We have Irr(

w O ν µ,+ ) = {L(x • o µ,+ ) ; x ∈ w I ν µ,+ }. Let w L ν µ,+ = x∈ w I ν µ,+ L(x • o µ,+ ) and let w P ν µ,+ = x∈ w I ν µ,+ P ν (x • o µ,+ ). Definition 3.8. Set w Āν µ,+ = Extw O ν µ,+ ( w L ν µ,+ ) op and w A ν µ,+ = Endw O ν µ,-( w P ν µ,+ ) op .
Consider the quotient functor

F = Hom O ν µ,+ ( w P ν µ,+ , •) : O ν µ,+ → w A ν µ,+ -Mod . Its kernel is the full subcategory generated by the modules L(x•o µ,+ ) with x ∈ v I ν µ,+ . So, we have an equivalence of categories O ν µ,+ ( v I ν µ,+ ) ≃ w A ν µ,+ -Mod. It restricts to an equivalence w O ν µ,+ ≃ w A ν µ,+ -mod . For each x ∈ w I ν µ,+ , we'll view V ν (x • o µ,+ ) as an object in w O ν µ,+ by identifying it with the w A ν µ,+ -module F (V ν (x•o µ,+ )). We denote w P ν (x•o µ,+ ) = F (P ν (x•o µ,+ )). For each x ∈ w I ν µ,± , let 1 x be the (obvious) idempotents in the C-algebras w Āν µ,± and w A ν µ,± , associated with the modules L(x • o µ,± ) and w P ν (x • o µ,± ). We'll abbreviate 1 ⋄ x = (1 x ) ⋄ , w A ν,⋄ µ,-= ( w A ν µ,-) ⋄ and v O ν,⋄ µ,-= ( v O ν µ,-) ⋄ . Proposition 3.9. Assume that w ∈ I ν µ,+ and v = w -∈ I ν µ,-. (a) The category w O ν µ,+ ≃ w A ν µ,+ -mod is a highest weight category with the set of standard objects ∆( w O ν µ,+ ) = {V ν (x • o µ,+ ) ; x ∈ w I ν µ,+
} and the highest weight order given by the partial order on w I ν µ,+ . (b) There is an equivalence of highest weight categories

v O ν,⋄ µ,-≃ w O ν µ,+ which takes V ν (x • o µ,-) ⋄ to V ν (x + • o µ,+ ) for any x ∈ v I ν µ,-. (c) There is a C-algebra isomorphism w A ν,⋄ µ,-≃ v A ν µ,+ such that 1 ⋄ x → 1 (x+) for any x ∈ v I ν µ,-.
Proof. First, note that the anti-isomorphism of posets I ν µ,+ → I ν µ,-, x → x -, in Corollary 3.3 restricts to an anti-isomorphism of posets

w I ν µ,+ ∼ → v I ν µ,-.
Therefore by Remark 3.5 the functor d • D maps w P ν µ,+ to v T ν µ,-, and yields an algebra isomorphism End

O ν µ,+ ( w P ν µ,+ ) op ≃ End O ν µ,-( v T ν µ,-) op . So, we have w O ν µ,+ = ( v O ν µ,-) ⋄ .
In particular w O ν µ,+ is a highest weight category because it is the Ringel dual of a highest weight category. The rest of the proposition follows from the generalities on Ringel duality in Section 2.5.

We'll denote by w T ν (x • o µ,+ ) the tilting object associated with

V ν (x • o µ,+ ) in w O ν µ,+
and by w T ν µ,+ the characteristic tilting module. If ν = φ, we also abbreviate w O µ,± = w O φ µ,± , suppressing φ everywhere in the notation.

Remark 3.10. The highest weight category w O ν µ,± does not depend on the choice of o µ,± and e but only on µ, ν and on the sign of the level, see [14, thm. 11].

Remark 3.11. Write D = d • (•) ⋄ , where d is the BGG duality. Then, D restrict to an equivalence of categories w O ν,∆ µ,+ → ( v O ν,∆ µ,-) op .

Parabolic inclusion and truncation. Let

i = i ν,φ be the canonical inclusion w O ν µ,± ⊂ w O µ,± .
It is a fully faithful functor and it admits a left adjoint τ = τ φ,ν which takes an object of w O µ,± to its largest quotient which lies in w O ν µ,± . We'll call i the parabolic inclusion functor and τ the parabolic truncation functor.

Since i is exact, the functor τ takes projectives to projectives. We have

(a) i(L(x • o µ,± )) = L(x • o µ,± ) for x ∈ w I ν µ,± , (b) τ ( w P (x • o µ,± )) = w P ν (x • o µ,± ) for x ∈ w I ν µ,± , (c) τ ( w P (x • o µ,± )) = 0 for x ∈ w I µ,± \ w I ν µ,± .
The same argument as in [5, thm. 3.5.3], using [18, thm. 5.5], implies that the functor i is injective on extensions in w O ν µ,-. See the proof of Proposition 4.47 for more details.

By Lemma 2.6, for each w ∈ I ν µ,-, the Ringel equivalence yields equivalences of triangulated categories

D b ( v O µ,+ ) → D b ( w O µ,-) and D b ( v O ν µ,+ ) → D b ( w O ν µ,-), where v = w + := w ν ww µ , such that the diagram below commutes D b ( v O µ,+ ) / / D b ( w O µ,-) D b ( v O ν µ,+ ) / / i O O D b ( w O ν µ,-). i O O
Thus, the parabolic inclusion functor i is also injective on extensions in v O ν µ,+ .

3.6. The main result. Fix integers e, f > 0 and parabolic types µ, ν ∈ P. We choose o µ,± of level ±e -N and o ν,± of level ±f -N . Fix an element w ∈ W . Assume that w ∈ I ν µ,+ , and set v = w -1 -∈ I µ ν,-. The main result of this paper is the following. Theorem 3.12. We have C-algebra

isomorphisms w A ν µ,+ = v Āµ ν,-and w Āν µ,+ = v A µ ν,-such that 1 x → 1 y with y = x -1 -for each x ∈ w I ν µ,∓ .
The graded C-algebras w Āν µ,+ and v Āµ ν,-are Koszul and balanced. They are Koszul dual to each other, i.e., we have a graded C-algebra isomorphism

( w Āν µ,+ ) ! = v Āµ ν,-such that 1 ! x = 1 y for each x ∈ w I ν µ,+ . The categories w O ν µ,+ , v O µ ν,
-are Koszul and are Koszul dual to each other.

We'll abbreviate w Āν,! µ,± = ( w Āν µ,± ) ! .

Remark 3.13. Since w Āν µ,+ and v Āµ ν,-are balanced, the Koszul duality commutes with the Ringel duality. In particular, for

w ∈ I ν µ,-and v = w -1 ∈ I µ ν,-, composing (•) ! and (•) ⋄ we get a graded C-algebra isomorphism ( w Āν,⋄ µ,-) ! = v Āµ ν,-such that (1 ⋄ x ) ! = 1 y with y = x -1 for each x ∈ w I ν µ,-.

Moment graphs, deformed category O and localization

First, we introduce some notation. Fix integers e, f > 0 and parabolic types µ, ν ∈ P.

Let V be a finite dimensional C-vector space, let S be the symmetric C-algebra over V and let m ⊂ S be the maximal ideal generated by V . We may regard S as a graded C-algebra such that V has the degree 2.

Let R be a commutative, noetherian, integral domain which is a (possibly graded) S-algebra with 1.

Let S 0 be the localization of S at the ideal m and let k be the residue field of S 0 . Note that k = C and that S 0 has no natural grading. 

α is a map H → P(V ), h → kα h .
We say that the moment graph G is a GKM-graph if we have kα h1 = kα h2 for any edges h 1 = h 2 adjacent to the same vertex. Definition 4.2. An order on G is a partial order on I such that the two vertices joined by an edge are comparable.

Given an order

on G let h ′ , h ′′ denote the origin and the goal of the edge h. In other words h ′ and h" are two vertices joined by h and we have h ′ ≺ h ′′ . Remark 4.3. We use the terminology in [START_REF] Jantzen | Moment graphs and representations[END_REF]. In [START_REF] Fiebig | Sheaves on moment graphs and a localization of Verma flags[END_REF], a moment graph is always assumed to be ordered. We'll also assume that G is finite, i.e., that the sets I and H are finite.

Definition 4.4. A graded R-sheaf over G is a tuple M = (M x , M h , ρ x,h ) with • a graded R-module M x for each x ∈ I, • a graded R-module M h for each h ∈ H such that α h M h = 0, • a graded R-module homomorphism ρ x,h : M x → M h for h adjacent to x. A morphism M → N is an I ⊔ H-tuple f of graded R-module homomorphisms f x : M x → N x and f h : M h → N h which are compatible with (ρ x,h ).
The R-modules M x are called the stalks of M. For J ⊂ I we set

M(J) = (m x ) x∈J ; m x ∈ M x , ρ h ′ ,h (m h ′ ) = ρ h ′′ ,h (m h ′′ ), ∀h with h ′ , h ′′ ∈ J . Note that M({x}) = M x . The space of global sections of the graded R-sheaf M is the graded R-module Γ(M) = M(I).
We say that M is of finite type if all M x and all M h are finitely generated graded R-modules. If M is of finite type, then the graded R-module Γ(M) is finitely generated, because R is noetherian.

The graded structural algebra of G is the graded

R-algebra ZR = (a x ) ∈ R ⊕I ; a h ′ -a h ′′ ∈ α h R, ∀h}.
Definition 4.5. Let FR be the category consisting of the graded R-sheaves of finite type over G whose stalks are torsion free R-modules. Let ZR be the category consisting of the graded ZR -modules which are finitely generated and torsion free over R.

The categories FR and ZR are Krull-Schmidt graded R-categories (because they are hom-finite R-categories and each idempotent splits). Taking the global sections yields a functor Γ : FR → ZR .

We'll call again graded R-sheaves the objects of ZR , hoping it will not create any confusion.

The We say that M is generated by global sections if the counit LΓ(M) → M is an isomorphism, or, equivalently, if M belongs to the essential image of L. This implies that the obvious map Γ(M) → M x is surjective for each x. The functor Γ is fully faithful on the full subcategory of FR of the graded R-sheaves which are generated by global sections, see [15, sec. 3.7].

For each subsets E ⊂ H and J ⊂ I, we set M E = h∈E M h and

ρ J,E = x∈J h∈E ρ x,h : M(J) → M E .
Let d x be the set of edges with goal x, u x be the set of edges with origin x and e x = d x u x . Given an order on G, we set M ∂x = Im(ρ ≺x,dx ), M x = Ker(ρ x,ex ) and M [x] = Ker(ρ x,dx ), where we abbreviate ρ x,E = ρ {x},E . Following [17, sec. 4

.3], we call M x the costalk of M at x. Note that M x , M [x] , M x are graded ZR -modules such that M x ⊂ M [x] ⊂ M x .
Assume from now on that the moment graph G is a GKM graph. Let us quote the following definitions, see [22, 

M x = L(M ) x , M [x] = L(M ) [x] , M x = L(M ) x , M ≺x = L(M ) ≺x , M ∂x = L(M ) ∂x and M h = L(M ) h .
The categories F∆ R and Z∆ R are exact categories with the exact structures defined as follows. Following [15, lem. 4.5], we say that a sequence 0

→ M ′ → M → M ′′ → 0 in Z∆ R is exact if and only if the sequence of (free) R-modules 0 → M ′ [x] → M [x] → M ′′ [x]
→ 0 is exact for each x ∈ I. This yields an exact structure on Z∆ R . We transport it to an exact structure on F∆ R via the equivalence (L, Γ).

Remark 4.8. The forgetful functor Z∆ R → ZR is exact by [16, lem. 2.12]. Here ZR is equipped with the exact structure naturally associated with its structure of abelian category. To avoid confusion we'll call it the stupid exact structure. Remark 4.9. Let M ∈ Z∆ R . Then, we have M ≃ ΓL(M ) and M x = L(M ) x . For each J ⊂ I, let M J be the image of the obvious map M = ΓL(M ) → x∈J M x , see also [16, def. 2.7]. It is a graded R-module, and we have M J = L(M )(J) by [15, lem. 3.4]. Since ZR,x = R for all x, the set ( ZR ) J is a graded R-subalgebra of R ⊕J . So M J is a graded ( ZR ) J -module.

We'll use two different notions of projective objects in the exact category Z∆ R , compare [22, sec. 3.8]. We say that an object M ∈ Z∆ R is tilting if the contravariant functor HomZ R (•, M ) on Z∆ R maps short exact sequences to short exact sequences. For each graded R-module M, let M * be its dual graded R-module, i.e., we set

Definition 4.10. (a) A module M ∈ Z∆ R is projective if the functor HomZ R (M, •) on Z∆ R maps short exact sequences to short exact sequences. (b) A module M ∈ ZR is F-projective if L(M ) is flabby, M x is a projective graded R-module for each x, M h = M h ′ /α h M h ′ and ρ h ′ ,h is the canonical map for each h.
M * = i (M * ) i with (M * ) i = hom R (M, R i ).
Here hom R is the Hom's space of graded R-modules. Since ZR is commutative, the graded dual R-module M * of a graded ZR -module M is a graded ZR -module.

As above, let the symbols Tilt and Proj denote the sets of indecomposable tilting and projective objects. By [15, sec. 4.6], the following holds. We define the support of a graded R-sheaf M on G to be the set supp(M ) = {x ∈ I ; M x = 0}. We can now turn to the following important definition.

Proposition-Definition 4.13 ([15]). Let (G, ) be an ordered GKM-graph. There is a unique object BR, (x) in ZR which is indecomposable, F-projective, supported on the coideal { x} and with BR, (x) x = R. We call BR, (x) a graded BM-sheaf.

We may abbreviate BR (x) = BR, (x) and CR (x) = CR, (x) = D( BR, (x)).

Remark 4.14. The existence and unicity of graded BM-sheaves is proved in [15, thm. 5.2] using the Braden-MacPherson algorithm [7, sec. 1.4]. See also [17, thm. 6.3]. The construction of BR (x) is as follows.

• Set BR (x) y = 0 for y x.

• Set BR (x) x = R.

• Let y ≻ x and suppose we have already constructed BR (x) z and BR (x) h for any z, h such that Proposition-Definition 4.16. There is a unique object VR (x) ∈ ZR that is isomorphic to R as a graded R-module and on which the tuple (z y ) ∈ ZR acts by multiplication with z x . We call it a graded Verma-sheaf. 

y ≻ z, h ′ , h ′′ x. For h ∈ d y set -BR (x) h = BR (x) h ′ /α h BR (x) h ′ and ρ h ′ ,
Hom ZR VR (x) i , M = M x -i , Hom ZR M, VR (y) j = (M y ) * j , hom ZR VR (x) i , VR (y) j = δ x,y R i-j .
Proof. Obvious, see e.g., [22, sec. 3.11].

Remark 4.18. A ∆-filtered graded R-sheaf M has a filtration 0 = M 0 ⊆ M 1 ⊆ • • • ⊆ M n = M by graded ZR -submodules with [15, rk. 4.4, sec. 4.5] n r=1 M r /M r-1 = y M [y] , M r /M r-1 = VR (y r ) i r , r s ⇒ y s y r .
In particular, a ∆-filtered graded ZR -module is free and finitely generated as a graded R-module.

Remark 4.19. From Proposition 4.17(c) we deduce that (M y ) * = (M * ) y .

Ungraded version and base change.

Assume that R is the localization of S with respect to some multiplicative set. Then, we define an R-sheaf over G, its space of global sections, the structural algebra Z R , the categories F R , Z R , etc., in the obvious way, by forgetting the grading in the definitions above. In particular, we define as above an exact category Z ∆ R . Now, assume that R = S. Forgetting the grading yields a faithful and faithfully exact functor Z∆ R → Z ∆ R . See, e.g., [START_REF] Ishikawa | Faithfully exact functors and their applications to projective modules and injective modules[END_REF], for details on faithfully exact functors. Let V R (x), B R (x), C R (x) be the images of VR (x), BR (x), CR (x). We call V R (x) a Verma-sheaf and B R (x) a BM-sheaf.

Next, for each morphism of S-algebras R → R ′ we consider the base change

functor • ⊗ R R ′ : R-mod → R ′ -mod given by M → R ′ M = M ⊗ R R ′ .
Assume that R ′ is the localization of R with respect to some multiplicative subset. Then, the base change yields functors 

• ⊗ R R ′ : F R → F R ′ and • ⊗ R R ′ : Z R → Z R ′ . These functors commute with Γ, L and the canonical map R ′ Hom ZR (M, N ) → Hom Z R ′ (R ′ M, R ′ N ) is
V R (x) = RV S (x), B R (x) = RB S (x) and C R (x) = RC S (x). Note that B R (x), C R (x) are F-projective by [22, sec. 3.8], and that if R = S 0 then B R (x), C R (x) are indecomposable by [22, sec. 3.16]. Further, any F -projective R- sheaf in F R is a direct sum of objects of the form B R (x) with x ∈ I, see [22, prop. 3.13].
Forgetting the grading and taking the base change, we get the functor ε : S-gmod → S 0 -mod. It is faithful and faithfully exact. Indeed, if ε(M ) = 0, then there is an element f ∈ S \ m such that f M = 0. Since M is graded, this implies that M = 0. Hence ε is faithful, and by [21, thm. 1.1] it is also faithfully exact. Finally, note that a graded S-module M is free over S (as a graded module) if and only if ε(M ) is free over S 0 .

Similarly, consider the functor ε : ZS → Z S0 given by forgetting the grading and taking the base change. We have the following lemma. Unless specified otherwise, we'll set V = t. In this section, we define a moment graph w G µ,± over t which is naturally associated with the truncated categories w O µ,± . Then, we consider its category of (graded) R-sheaves over w G µ,± . In the graded case we'll assume that R = S, with the grading above. In the ungraded one, we'll assume that R = S or S 0 , see the previous section for details. Definition 4.21. Let w G µ,± be the moment graph over t whose set of vertices is w I µ,± , with an edge between x, y labelled by k α if there is an affine reflection s α ∈ W such that s α y ∈ xW µ . We equip w G µ,+ with the partial order given by the opposite Bruhat order, and we equip w G µ,-with the partial order given by the Bruhat order.

Let w

ZS,µ,± be the graded structural algebra of w G µ,± . Let w ZS,µ,± be the category of graded w ZS,µ,± -modules which are finitely generated and torsion free over S. Let w Z∆ S,µ,± be the category of ∆-filtered graded S-sheaves on w G µ,±, . Let VS,µ,± (x) ∈ w ZS,µ,± be the (graded) Verma-sheaf whose stalk at x is S. We'll use a similar notation for all other objects attached to w G µ,± .

We'll use the same notation as in Section 4.2. For example w B S,µ,± (x) is the nongraded analogue of w BS,µ,± (x), and w B R,µ,± (x) = R w B S,µ,± (x).

We also set w Zk,µ,± = k w ZS,µ,± , w Z k,µ,± = k w Z S0,µ,± , w Zk,µ,± = w Zk,µ,± -gmod and w Z k,µ,± = w Z k,µ,± -mod. In the graded case, we put w Bk,µ,± (x) = k w BS,µ,± (x). In the non graded case, we put w B k,µ,± (x) = k w B S0,µ,± (x). To unburden the notation we may omit the subscript k and write w Z µ,± = w Z k,µ,± , w Z µ,± = w Z k,µ,± , etc.

Proposition 4.22. The (graded) BM-sheaves on w G µ,± are ∆-filtered.

Proof. The (graded) BM-sheaves on w G µ,-are ∆-filtered by [15, thm. 5.2]. We claim that the (graded) BM-sheaves on w G µ,+ are also ∆-filtered.

By Section 4.2, a graded S-sheaf M is ∆-filtered if and only if the S 0 -sheaf ε(M ) is ∆-filtered. Now, by Proposition 4.33(c) below, the BM-sheaves on w G µ,+ are ∆-filtered for R = S 0 . This proves our claim.

Let l(x) be the length of an element x ∈ W . From Propositions 4.13, 4.22, we deduce the following. Proposition 4.23. For each x ∈ w I µ,± , there is a unique ∆-filtered graded Ssheaf w BS,µ,± (x) ∈ w Z∆ S,µ,± which is indecomposable, F-projective, supported on the coideal { x} and whose stalk at x is equal to S ±l(x) .

Assume that w ∈ I µ,+ and let v = w -∈ I µ,-. From the anti-isomorphism of posets w I µ,+ ≃ v I µ,-in Corollary 3.3(c), we deduce that w G µ,+ and v G µ,-are the same moment graph with opposite orders. In particular, we have w ZS,µ,+ = v ZS,µ,as graded algebras. Further, by Proposition 4.12, there is an exact equivalence D : w Z∆ S,µ,+ → ( v Z∆ S,µ,-) op . The same is true if + andare switched everywhere. We define w CS,µ,± (x) = D( v BS,µ,∓ (y)) with y = x ∓ , v = w ∓ for each x ∈ w I µ,± . It is a ∆-filtered graded Ssheaf on w G µ,± which is indecomposable, tilting, supported on the ideal { x} and whose costalk at x is equal to S ±l(x) . We abbreviate w BS,µ,± = x w BS,µ,± (x) and w CS,µ,± = x w CS,µ,± (x).

By Remark 4.18 we have the following lemma.

Lemma 4.24. (a) The graded S-sheaf w BS,µ,± (x) is filtered by graded Vermasheaves. The top term in this filtration is VS,µ,± (x) ±l(x) , which is a quotient of w BS,µ,± (x). The other subquotients are of the form VS,µ,± (y) j with y ≻ x and j ∈ Z.

(b) The graded S-sheaf w CS,µ,± (x) is filtered by graded Verma-sheaves. The first term in this filtration is the sub-object VS,µ,± (x) ±l(x) . The other subquotients are of the form VS,µ,± (y) j with y ≺ x and j ∈ Z.

Since w

ZS,µ,+ = v ZS,µ,we may also regard v CS,µ,-(x -) = D( w BS,µ,+ (x)) as a graded w ZS,µ,+ -module. The following proposition says that w BS,µ,+ (x) is self-dual.

Proposition 4.25. For each x ∈ w I µ,+ , we have w BS,µ,+ (x) = v CS,µ,-(x -) as graded w ZS,µ,+ -modules.

Proof. If µ = φ is regular then the claim is [16, thm. 6.1]. Assume now that µ is not regular. We abbreviate Bµ (x) = w BS,µ,+ (x). We must prove that D( Bµ (x)) = Bµ (x). The regular case implies that D( Bφ (x)) = Bφ (x). We can assume that w ∈ I µ,-and that x ∈ w I µ .

From Proposition 4.41(e), (f ) below, we deduce that

y∈Wµ D( Bµ (x)) 2l(y) -l(w µ ) ⊕ D(M ) = y∈Wµ Bµ (x) l(w µ ) -2l(y) ⊕ M,
where M is a direct sum of objects of the form Bµ (z) j with z < x. We have also D( Bµ (e)) = Bµ (e). Thus, by induction, we may assume that D( Bµ (z)) = Bµ (z) for all z < x, and the equality above implies that D( Bµ (x)) = Bµ (x).

Remark 4.26. The graded sheaf w BS,µ,-(x) is not self-dual, i.e., w BS,µ,-(x) is not isomorphic to v CS,µ,+ (x + ) in general.

Let P µ,q y,x (t) = i P µ,q y,x,i t i be Deodhar's parabolic Kazhdan-Lusztig polynomial "of type q" associated with the parabolic subgroup W µ of W .

Let

Q µ,-1 x,y (t) = i Q µ,-1
x,y,i t i be Deodhar's inverse parabolic Kazhdan-Lusztig polynomial "of type -1".

We use the notation in [25, rk. 2.1], which is not the usual one. We abbreviate P y,x = P φ,q y,x and Q y,x = Q φ,-1 y,x .

Proposition 4.27. For each x, y ∈ w I µ,+ , we have graded S-module isomorphisms (a) w BS,µ,+ (x) y = i 0 (S l(x) -2i ) ⊕P µ,q y,x,i , (b) w BS,µ,+ (x) [y] = i 0 (S 2l(y)l(x) + 2i ) ⊕P µ,q y,x,i .

Proof. Any finitely generated projective S-module is free, and that the S-module In particular, for α uy = h∈uy α h , we have α uy B(x

) [y] ⊂ B(x) y .
Next, the graded S-module B(x) y is free and B(x

) h = B(x) y /α h B(x) y for h ∈ u y because B(x) is F-projective. Thus we have B(x) y ⊂ α uy B(x) y , because α h1 is prime to α h2 in S if h 1 = h 2 .
We claim that B(x

) y = α uy B(x) [y] . Let b ∈ B(x) y . Write b = α uy b ′ with b ′ ∈ B(x) y . If ρ y,h (b ′ ) = 0 with h ∈ d y then ρ y,h (b) = α uy ρ y,h (b ′ ) = 0, because the α uy -torsion submodule of B(x) h is zero (we have B(x) h = B(x) h ′ /α h B(x) h ′ , the S-module B(x) h ′ is
free, and α h is prime to α uy ). This implies the claim.

In particular, we have B(x) For each x ∈ w I µ,± , let 1 x ∈ w Āµ,± be the idempotent associated with the direct summand w BS,µ,± (x) of w BS,µ,± .

Proposition 4.29. The graded k-algebra w Āµ,± is basic. Its Hilbert polynomial is

P ( w Āµ,+ , t) x,x ′ = y x,x ′ P µ,q y,x (t -2 ) P µ,q y,x ′ (t -2 ) t l(x)+l(x ′ )-2l(y) , P ( w Āµ,-, t) x,x ′ = y x,x ′ Q µ,-1 x,y (t -2 ) Q µ,-1 x ′ ,y (t -2 ) t 2l(y)-l(x)-l(x ′ ) .
If µ = φ then the matrix equation P ( w Āφ,-, t) P ( v Āφ,+ , -t) = 1 holds. Here v = w -1 and the sets of indices of the matrices in the left and right factors are identified through the map x → x -1 .

Proof. First, note that if M, B ∈ Z∆ S and if B is projective, then the filtration (M r ) of M in Remark 4.18 yields a filtration of the graded S-module Hom ZS (B, M ) whose associated graded is, see Proposition 4.17,

n r=1 Hom ZS (B, M r /M r-1 ) = n r=1 (B yr ) * i r .
Further, for each x ′ , the graded BM-sheaf w BS,µ,+ (x ′ ) is projective by Remark 4.11 and Proposition 4.23.

Therefore, for each x, x ′ , there is a finite filtration of the graded S-module Homw ZS,µ,+ w BS,µ,+ (x ′ ), w BS,µ,+ (x) whose associated graded is, see Proposition 4.27,

y i 0 w BS,µ,+ (x ′ ) y * 2l(y) -l(x) + 2i ⊕P µ,q y,x,i = = y i,i ′ 0
S 2l(y)l(x)l(x ′ ) + 2i + 2i ′ ⊕P µ,q y,x,i P µ,q y,x ′ ,i ′ .

Thus we have a graded k-vector space isomorphism

1 x w Āµ,+ 1 x ′ = y x,x ′ i,i ′ 0 k 2l(y) -l(x) -l(x ′ ) + 2i + 2i ′ ⊕P µ,q y,x,i P µ,q y,x ′ ,i ′ ,
where y, x, x ′ run over w I µ,+ . We deduce that

P ( w Āµ,+ , t) x,x ′ = y x,x ′ P µ,q y,x (t -2 ) P µ,q y,x ′ (t -2 ) t l(x)+l(x ′ )-2l(y) .
In other words, the matrix equation P ( w Āµ,+ , t) = P µ,+ (t) T P µ,+ (t) holds with P µ,+ (t) y,x = P µ,q y,x (t -2 ) t l(x)-l(y) and x, y ∈ w I µ,+ . Note that P µ,q y,x,i = 0 if l(y)l(x) + 2i > 0 and that if l(y)l(x) + 2i = 0 then P µ,q y,x,i = 0 unless y = x. Thus we have

P ( w Āµ,+ , t) x,x ′ ∈ δ x,x ′ + tN[[t]]. Hence the graded k-algebra w Āµ,+ is basic. Set Q µ,-(t) x,y = Q µ,-1
x,y (t -2 ) t l(y)-l(x) for each x, y ∈ w I µ,+ . The matrix equation

P ( w Āµ,-, t) = Q µ,-(t) Q µ,- (t) 
T is proved in Proposition A.5 below. Hence w Āµ,is also basic.

Next, for each x, x ′ , y ∈ w I µ,+ and a = -1, q we have, see e.g., [25, (2.39)]

x y x ′ (-1) l(y)-l(x) Q µ,a x,y (t) P µ,a y,x ′ (t) = δ x,x ′ .

Further, if µ = φ is regular then we have P y,x (t) = P µ,q y,x (t) and Q x,y (t) = Q µ,q x,y (t). So, we have the matrix equations Q φ,-(t) P φ,+ (-t) = 1, P φ,+ (-t) Q φ,-(t) = 1. We deduce that

P ( w Āφ,-, t)P ( w Āφ,+ , -t) = Q φ,-(t) Q φ,-(t) T P φ,+ (-t) T P φ,+ (-t) = 1.
The matrix equation in the proposition follows easily, using the fact that P y,x = P y -1 ,x -1 and Q

x,y = Q x -1 ,y -1 .
Remark 4.30. The grading on w Āµ,± is positive, because P µ,q y,x,i = 0 if l(y)l(x) + 2i > 0 and P µ,q y,x,i = 0 if l(y)l(x) + 2i = 0 and y = x.

Remark 4.31. The results in this section have obvious analogues in finite type. In this case, we may omit the truncation and Proposition 4.27, Corollary A.4 yield

BS,µ,+ (x) y = i 0 S l(x) -2i ⊕P µ,q y,x,i BS,µ,-(x) y {l(w 0 )} = i 0 S l(w 0 x) -2i ⊕Q µ,-1 x,y,i ,
where w 0 is the longuest element in the Weyl group W . Indeed, we have

ω * BS,µ,+ (w 0 xw µ ) = BS,µ,-(x) l(w 0 w µ ) ,
where ω : G µ,-→ G µ,+ is the ordered moment graph isomorphism induced by the bijections I µ,+ → I µ,+ , x → w 0 xw µ and t → t, h → w 0 (h). Note that [25, prop. 2.4,2.6] and Kazhdan-Lusztig's inversion formula give Q µ,-1

x,y = P µ,q w0ywµ,w0xwµ .

Deformed category O.

Assume that R = S 0 or k. If R = k we may drop it from the notation. We define O R,µ,± as the category consisting of the (g, R)-bimodules M such that

• M = λ∈t * M λ with M λ = {m ∈ M ; xm = (λ(x) + x) • m, x ∈ t}, • U (b) (R • m) is finitely generated over R for each m ∈ M ,
• the highest weight of any simple subquotient is linked to o µ,± . Here, for each r ∈ R and each element m of an R-module M , the element r • m is the action of r on m. Further, in the symbol λ(x) + x we view x as the element of R given by the image of x under the canonical map S = S(t) → R. The morphisms are the (g, R)-bimodule homomorphisms.

Next, consider the following categories • w O R,µ,-is the Serre subcategory of O R,µ,-consisting of the finitely generated modules such that the highest weight of any simple subquotient is of the form λ = x • o µ,-with x w and x ∈ I µ,-. • w O R,µ,+ is the category of the finitely generated objects in the Serre quotient of O R,µ,+ by the Serre subcategory consisting of the modules such that the highest weight of any simple subquotient is of the form λ = x • o µ,+ with x w and x ∈ I µ,+ . We'll use the same notation for a module in O R,µ,+ and a module in the quotient category w O R,µ,+ , hoping it will not create any confusion. For each λ ∈ t * let R λ be the (t, R)-bimodule which is free of rank one over R and such that the element x ∈ t acts by multiplication by the image of the element λ(x) + x by the canonical map S → R. The deformed Verma module with highest weight λ is the (g, R)-bimodule given by V R (λ) = U (g) ⊗ U(b) R λ . 

: w O ∆ R,µ,± → v O ∇ R,µ,∓ where v = w ∓ .
Proof. First, we consider the category w O R,µ,-. The deformed Verma modules are split, i.e., their endomorphism ring is R. Further, the R-category ) is finitely generated, the functor Hom OR,µ,+ (P R (x • o µ,+ ), •) commutes with direct limits. Thus, since any module in O R,µ,+ is the direct limit of its finitely generated submodules, the module P R (x•o µ,+ ) is again projective in O R,µ,+ . Now, a standard argument using [34, thm. 3.1] shows that the functor Hom OR,µ,+

x P R (x • o µ,+ ), • , x ∈ w I µ,+ , factors to an equivalence of abelian R-categories w O R,µ,+ → A-mod, where A is the finite projective R-algebra A = End OR,µ,+ x P R (x • o µ,+ ) op .
Therefore by Proposition 3.9(a) and [39, thm. 4.15] the category w O R,µ,+ is a highest weight category over R. This finishes the proof of (a). By [14, sec. Let w P R (x • o µ,± ) and w T R (x • o µ,± ) be respectively the projective and the tilting objects in the highest weight categories w O R,µ,± as given by Lemma 2.3. Set w P R,µ,± = x w P R (x • o µ,± ) and w T R,µ,± = x w T R (x • o µ,± ), where x runs over the set w I µ,± . Composing the Ringel duality and the BGG duality, we get an equivalence

D = d • (•) ⋄ : w O ∆ R,µ,± → ( v O ∆ R,µ,∓ ) op . (4.1)
Consider the base change functor w O S0,µ,± → w O k,µ,± such that M → kM. By Proposition 2.4 we have

k w P S0 (x • o µ,± ) = w P (x • o µ,± ) and k w T S0 (x • o µ,± ) = w T (x • o µ,± ) for each x ∈ w I µ,± .
4.5. The functor V. Assume that R = S 0 or k. There is a well defined functor

V R = Homw OR,µ,-( w P (o µ,-), •) : w O ∆ R,µ,-→ w Z R,µ,-, called the structure functor, see [14, sec. 3.4].
At the positive level, following [14, sec. before rem. 6], we define the structure functor V R as the composition 

w O ∆ R,µ,+ D / / ( v O ∆ R,µ,-) op VR / / ( v Z R,µ,-) op D / / w Z R,µ,+ .
V S0 on w O ∆ S0,µ,± is such that (i) V S0 • D = D • V S0 , (ii) V S0 is an equivalence of exact categories w O ∆ S0,µ,± → w Z ∆ S0,µ,± , (iii) for each x ∈ w I µ,± we have -V S0 (V S0 (x • o µ,± )) = V S0,µ,± (x), -V S0 ( w P S0 (x • o µ,± )) = w B S0,µ,± (x), -V S0 ( w T S0 (x • o µ,± )) = w C S0,µ,± (x).
Proof. Parts (a), (b) and the first claim of (c) follow from the construction of V R .

The second claim of (c) follows from [15, thm. 7.1]. Note that we use here the exact structure on w Z ∆ S0,µ,± defined before Remark 4.8, see [15, sec. 7.1]. The first claim of (c)(iii) is given by [14, prop. 2 [START_REF] Agoston | Quasi-hereditary extension algebras[END_REF]]. The second one is proved in [15, rk. 7.6]. The third one follows from the second and (c)(i). Now, we compare the k-algebra w A µ,± in Definition 3.6 with the k-algebra w A µ,± in Definition 4.28.

Corollary 4.34. We have a k-algebra

isomorphism w A µ,± ∼ → w A µ,± such that 1 x → 1 x for each x ∈ w I µ,± .
Proof. By applying Proposition 2.4 to base change functor w O S0,µ,± → w O k,µ,± , we get w A µ,± = k Endw OS 0 ,µ,± ( w P S0,µ,± ) op . Thus, Proposition 4.33(c) yields w A µ,± = k Endw ZS 0 ,µ,± ( w B S0,µ,± ) op = k Endw ZS,µ,± ( w B S,µ,± ) op = w A µ,± .

Translation functors in O.

Assume that R = S 0 or k.

Fix positive integers d, e. Assume that o µ,-, o φ,-have the level -e -N , -d -N respectively. Thus, the integral affine weights o µ,+ , o φ,+ have the level e -N , d -N respectively. In particular, the integral affine weight o µ,±o φ,± has the level ±(ed). Assume that ed = ∓N , hence we have ±(ed) = -N . The affine weight o µ,±o φ,± is positive if ±(ed) > -N and it is negative else, see Section 3.2 for the terminology.

First, we consider the translation functors on the (deformed) ∆-filtered modules. We have the following. 

z O ∆ R,φ,± → w O ∆ R,µ,± and T µ,φ : w O ∆ R,µ,± → z O ∆ R,φ,±
such that (a) T φ,µ , T µ,φ are exact, (b) T φ,µ , T µ,φ are bi-adjoint, (c) T φ,µ , T µ,φ commute with base change.

Proof. The functors T φ,µ , T µ,φ on O ∆ R,φ,± , O ∆ R,µ,± are constructed in [START_REF] Fiebig | Centers and translation functors for the category O over Kac-Moody algebras[END_REF], see also [14, thm. 4(2)]. Since z ∈ I µ,-, the functors T φ,µ , T µ,φ preserve the subcategories Next, in the non-deformed setting, we consider the translation functors on the whole category O. We have the following. 

z O ∆ R,φ,-, w O ∆ R,
T φ,µ (L(xw µ • o φ,± )) = L(x • o µ,± ) for each x ∈ z I µ,± , (e) T φ,µ (L(xw µ • o φ,± )) = 0 for each x ∈ z I φ,± \ z I µ,± , (f ) T φ,µ ( z L ν φ,± ) = w L ν µ,± , (g) T µ,φ ( w P ν (x • o µ,± )) = z P ν (xw µ • o φ,± ) for each x ∈ w I ν µ,± .
Proof. The existence of the left adjoint T µ,φ follows from the following general fact.

Claim 4.37. Let A, B be finite dimensional k-algebras and T : A-mod → B-mod be an exact k-linear functor. Then T has a left and a right adjoint.

The exactness of T φ,µ is obvious by construction, see e.g., [24, sec. 3]. It is easy to check that T φ,µ commutes with the BGG duality. Thus, its right adjoint is the conjugate of T µ,φ by the duality. So, to check that T µ,φ is exact it is enough to prove that T φ,µ takes projectives to projectives. This follows from Proposition 4. [START_REF] Parshall | New graded methods in representation theory[END_REF].

Part (b) follows from the proof of (a). Part (c) for T φ,µ is obvious by construction. For T µ,φ , it follows by adjunction.

To prove (f ), note that (d) implies that T φ,µ ( z L φ,± ) = w L µ,± . Thus (c) gives

T φ,µ ( z L ν φ,± ) ⊂ w L ν µ,± . Further, for each x ∈ z I ν µ,± part (e) yields L(xw µ • o φ,± ) ⊂ T µ,φ T φ,µ L(xw µ • o φ,± ) = T µ,φ L(x • o µ,± ). (4.2)
Thus, by adjunction, we have a surjective map

T φ,µ L(xw µ • o φ,± ) → L(x • o µ,±
). Now, since the right hand side of (4.2) is in w O ν φ,± by (c), the left hand side is also in z O ν φ,± . Thus, we have a surjective map T φ,µ ( z L ν φ,± ) → w L ν µ,± . Part (g) is a consequence of (a), (d), (e). The algebra z ZS,φ,+ = z ZS,φ,consists of the tuples (a x ) of elements of S labelled by elements x ∈ W such that x z and a xa y ∈ αS for all x, y such that x = s α y.

Since z is maximal in the left coset zW µ , switching the coordinates yields a left W µ -action on such tuples such that y • (a x ) = (a xy ) for each y ∈ W µ . This yields a left W µ -action on the algebra z ZS,φ,± .

Assume that w belongs to the left coset zW µ . Then, we have a map w ZS,µ,± → z ZS,φ,± such that (a x ) → (b xy ), where we define b xy = a x for each x ∈ w I µ,± and y ∈ W µ . This map identifies the algebra w ZS,µ,± with the set of W µ -invariant elements in the algebra z ZS,φ,± . Proof. It is enough to prove the Lemma for w ZS,µ,+ because we have an isomorphism of graded algebra w ZS,µ,-= v ZS,µ,+ for w ∈ I µ,-and v = w + ∈ I µ,+ .

By Proposition 4.43(a) below, the graded S-algebra w ZS,µ,+ is isomorphic to the equivariant cohomology (graded) algebra H T ( Xµ,w ) of the affine Schubert variety Xµ,w = Xµ,z . Therefore, the Bruhat decomposition yields Let θφ,µ : z ZS,φ,± → w ZS,µ,± and θµ,φ : w ZS,µ,± → z ZS,φ,± be the restriction and induction functors with respect to the inclusion w ZS,µ,± ⊂ z ZS,φ,± . Next, let R = S or S 0 . Forgetting the gradings, we define in the same way as above the functors θ φ,µ : z Z R,φ,± → w Z R,µ,± and θ µ,φ : w Z R,µ,± → z Z R,φ,± . Proposition 4.41. Assume that w ∈ zW µ and z ∈ I µ,-. Then, we have (a)

w ZS,µ,+ = H T ( Xµ,z ) = x∈Iµ,-,x z H T (X µ,x ) 2l(z) -2l(x) , z ZS,φ,+ = H T ( Xφ,z ) = y∈Wµ x∈Iµ,-,x z H T (X φ,xy ) 2l(z) -2l(y) -2l(x) . Since the obvious projection X φ,xWµ → X µ,x is a P µ /B-fibration, we have H T (X µ,x ) = y∈Wµ H T (X φ,
V S0 • T φ,µ = θ φ,µ • V S0 on z O ∆ S0,φ,± , and V S0 • T µ,φ = θ µ,φ • V S0 on w O ∆ S0,µ,± , (b) θφ,µ and θµ,φ are exact functors z Z∆ S,φ,± → w Z∆ S,µ,± and w Z∆ S,µ,± → z Z∆ S,φ,± , (c) ( θµ,φ , θφ,µ , θµ,φ 2l(w µ ) ) is a triple of adjoint functors, (d) θφ,µ • D = D • θφ,µ and θµ,φ • D = D • θµ,φ • 2l(w µ ) , (e) for each x ∈ w I µ,+ , there is a sum M of w BS,µ,+ (t) j 's with t < x such that θφ,µ ( z BS,φ,+ (xw µ )) = y∈Wµ w BS,µ,+ (x) l(w µ ) -2l(y) M, (f ) We have (i) θµ,φ ( w BS,µ,+ (x)) = z BS,φ,+ (xw µ ) -l(w µ ) for x ∈ w I µ,+ , (ii) θµ,φ ( w BS,µ,-(x)) = z BS,φ,-(xw µ ) for x ∈ w I µ,-.
Proof. Part (a) is proved in [14, thm. 9]. For (b), note that the base change with respect to S → S 0 commutes with θ φ,µ , θ µ,φ and with the functor M → M [x] , see Section 4.2. Now, by (a) and by Propositions 4.33(c), 4.35(a), the functors θ φ,µ , θ µ,φ preserve z Z ∆ S0,φ,± , w Z ∆ S0,µ,± . Hence, by Lemma 4.20(c), the functor θφ,µ , θµ,φ preserve z Z∆ S,φ,± , w Z∆ S,µ,± . Next, to prove the exactness of θφ,µ , θµ,φ it is enough to check the exactness of θ φ,µ , θ µ,φ , because ε is faithfully exact by Lemma 4.20(b). This follows from (a) and Propositions 4. 

To prove this, we use the geometric approach to sheaves over moment graphs recalled in Section 4.8 below. We also use the notation given there (for the dual root system). The Zφ -module Bφ (xw µ ) ∈ Z∆ φ is a graded BM-sheaf on z G φ,+ . Since Finally, we prove (f ). By Propositions 4.33(c), 4.36(g) and part (a) we have θ µ,φ ( w B S,µ,± (x)) = z B S,φ,± (xw µ ) for each x ∈ w I µ,± . To identify the gradings, note that, by [16, prop. 5 Zµ from the beginning of Section 4.3, and the translation functors T µ,φ , T φ,µ in Section 4.6.

We define θφ,µ : z Zφ → w Zµ and θµ,φ : w Zµ → z Zφ to be the restriction and induction functors with respect to the inclusion w Zµ ⊂ z Zφ . They are exact (for the stupid exact structure).

In the non-graded case, we define θ µ,φ , θ φ,µ in a similar way. Then, we have 4.8. Moment graphs and the flag ind-scheme. Fix a parabolic type µ ∈ P. Let P µ ⊂ G(k((t))) be the parabolic subgroup with Lie algebra p µ . Write B = P φ and let T be the torus with Lie algebra t. Note that T is the product of k × × k × by the maximal torus of G.

V k • T φ,µ = θ φ,µ • V k and V k • T µ,φ = θ µ,φ • V k on ∆-
Let X ′ be the partial (affine) flag ind-scheme G(k((t)))/P µ . The affine Bruhat cells are indexed by the cosets W /W µ , which we identify with I µ,+ (= I min µ ). For each w ∈ I µ,+ let X w ⊂ Xw ⊂ X ′ be the corresponding finite dimensional affine Bruhat cell and Schubert variety. To avoid confusions we may write X ′ µ = X ′ , X µ,w = X w and Xµ,w = Xw . For any subset J ⊂ I µ,+ we abbreviate X J = w∈J X w . The group T acts on Xw , with the first copy of k × acting by rotating the loop and the last one acting trivially. The varieties Xw form an inductive system of complex projective varieties with closed embeddings and X ′ is represented by the ind-scheme ind w Xw . Recall that Xw has dimension l(w) and Xw = x∈ w Iµ,+ X x .

Let D b ( Xw ) be the bounded derived category of constructible sheaves of kvector spaces on Xw , which are locally constant along the B-orbits, and let P( Xw ) be the full lubcategory of perverse sheaves. Let D b T ( Xw ) and P T ( Xw ) be be their T -equivariant analogue.

For each x ∈ w I µ,+ , let w IC( Xx ) be the intersection cohomology complex in P( Xw ) associated with Xx and let w IC T ( Xx ) be its T -equivariant analogue. Let IH( Xx ) be the intersection cohomology of Xx and let IH T ( Xx ) be its T -equivariant analogue. Finally, let H( Xx ), H T ( Xx ) denote the (T -equivariant) cohomology of Xx . See Section A.1 for details.

In this section we set V = t * . Since S is the symmetric algebra over V , we have S = H T (•). Let S ∨ denote the symmetric algebra over V * = t.

Let w G ∨ µ,± be the moment graph over V whose set of vertices is w I µ,± , with an edge labelled by k α between x, y if there is an affine reflection s α such that s α y ∈ xW µ .

We define w Z∨ S,µ,± , w Z∨ S,µ,± , w BS,µ,± (x) ∨ , w CS,µ,± (x) ∨ , etc., in the obvious way. We'll also write w F∨ S,µ,± for the category of graded S-sheaves of finite type over w G ∨ µ,± whose stalks are torsion free as S-modules. We also write w B∨ µ,± (x) = k w B∨ S,µ,± (x), w C∨ µ,± (x) = k w C∨ S,µ,± (x), w Z∨ µ,± = k w Z∨ S,µ,± , w Z∨ µ,± = w Z∨ µ,± -mod, etc. In the non graded case we use a similar notation. Corollary 4.44. Assume that w ∈ I µ,+ and z = w -∈ I µ,-. For each x ∈ z I φ,+ , the graded w Z∨ S,µ,+ -module θφµ ( z B∨ S,φ,+ (x)) is a direct sum of graded modules of the form w B∨ S,µ,+ (y) j with y ∈ w I µ,+ and j ∈ Z.

Proof. The obvious projection π : Xφ,z → Xµ,w is proper. By Proposition 4.43, for each E ∈ P T ( Xφ,z ), we may regard the cohomology spaces H(E), H(π * E) as graded modules over z Z∨ S,φ,+ and w Z∨ S,µ,+ respectively. Since θφ,µ is the restriction of graded modules with respect to the inclusion w Z∨ S,µ,+ ⊂ z Z∨ S,φ,+ , we have an obvious isomorphism of graded w Z∨ S,µ,+ -modules H(π * E) ≃ θφµ H(E). Setting E = w IC T ( Xφ,x ), we obtain a graded module isomorphism H(π * ( z IC T ( Xφ,x ))) ≃ θφµ ( z B∨ S,φ,+ (x)). Now, by the decomposition theorem, the complex π * ( z IC T ( Xφ,x )) is a direct sum of complexes of the form w IC T ( Xµ,y )[j], with y ∈ w I µ,+ and j ∈ Z. We deduce that θφµ ( z B∨ S,φ,+ (x)) is a direct sum of graded w Z∨ S,µ,+ -modules of the form w B∨ S,µ,+ (y) j . Recall that the poset x I µ,+ is equipped with the opposite Bruhat order. An ideal J ⊂ x I µ,+ is a coideal in the set {y ∈ I min µ ; y x} equipped with the Bruhat order. Hence the variety X J is a T -stable open subvariety of Xx . We have the following proposition.

Lemma 4.46. Let w ∈ I µ,+ . For any x ∈ w I µ,+ and any ideal J ⊂ x I µ,+ there is an isomorphism of graded ( w Z∨ S,µ,+ ) J -modules w B∨ S,µ,+ (x) J = IH T (X J ).

Proof. The T -variety X J satisfies the assumption in [7, sec. 1.1]. Hence, by loc. cit., one can associate a moment graph G ∨ J to it. By construction, the graph G ∨ J is the same as the subgraph of w G ∨ µ,+ consisting of the vertices which belong to J and the edges h with h ′ , h ′′ ∈ J. Let Z∨ S,J be the graded structural algebra of G ∨ J . We have Z∨ S,J = ( w Z∨ S,µ,+ ) J as graded rings, see Remark 4.9. For any y ∈ J, let B∨ S,J (y) be the set of sections of the graded BM-sheaf on G ∨ J associated with y, as defined in Proposition-Definition 4.13. By [7, thm. 1.5,1.7], we have a graded ring isomorphism Z∨ S,J = H T (X J ) and a graded Z∨ S,J -module isomorphism B∨ S,J (y) = IH T ( Xy ∩X J ). In particular, we have B∨ S,J (x) = IH T (X J ). Next, since J ⊂ x I µ,+ is an ideal, it follows from the construction of BMsheaves recalled in Remark 4.14 that we have canonical identifications B∨ S,J (x) y = w B∨ S,µ,+ (x) y , B∨ S,J (x) h = w B∨ S,µ,+ (x) h for any y, h ∈ G ∨ J which are compatible with the maps ρ y,h . This implies that B∨ S,J (x) = w B∨ S,µ,+ (x) J as graded Z∨ S,J -modules. We deduce that w B∨ S,µ,+ (x) J = IH T (X J ) as ( w Z∨ S,µ,+ ) J -modules.

Proposition 4.47. Assume that w ∈ I µ,+ . Let v = w -1 -∈ I µ φ,-. There is an equivalence of abelian categories

Φ = Φ µ : v O µ φ,-→ P( Xµ,w ) such that Φ µ (L(y • o φ,-)) = w IC( Xµ,x ) with x = y -1 + for each y ∈ v I µ φ,-.
Proof. Set z = v -1 ∈ I µ,-. We have w = zw µ and x = y -1 w µ . By Corollary 3.3(b)(c), the assignment y → x yields a bijection v I µ φ,-→ w I µ,+ . By [18, thm. 5.5], see also [4, thm. 7.15, 7.16] and [START_REF] Kashiwara | Kazhdan-Lusztig conjecture for affine Lie algebras with negative level[END_REF], we have an equivalence of abelian categories Φ

φ : v O φ,-→ P( Xφ,z ) such that L(u • o φ,-) → z IC( Xu -1 ) for each u ∈ v I φ,-. Composing Φ φ and the parabolic inclusion functor i µ,φ : v O µ φ,-→ v O φ,-yields an embedding of abelian categories Φ φ • i µ,φ : v O µ φ,-→ P( Xφ,z ). It takes L(y • o φ,-) to z IC( Xy -1 ) for each y ∈ v I µ φ,-.
Finally, since z ∈ I µ,-, the obvious projection π : Xφ,z → Xµ,w is smooth. Hence, the functor π ! * = π * [dim π] yields an embedding of abelian categories P( Xµ,w ) → P( Xφ,z ) such that w IC( Xµ,x ) → z IC( Xφ,xwµ ) for each x ∈ w I µ,+ . The essential images of the functors Φ φ • i µ,φ and π ! * are Serre subcategories of P( Xφ,v -1 ) generated by the same set of simple objects. Thus, they are equivalent. Hence, the categories v O µ φ,-and P( Xµ,w ) are also equivalent.

By Proposition 4.43, composing Φ µ and the cohomology we get a functor

H = H µ : v O µ φ,-→ w Z ∨ µ,+ for each w ∈ I µ,+ , v ∈ I µ φ,-such that v = w -1 -.
Proposition 4.48. Let v, w be as above and

z = v -1 . Let y, t ∈ v I µ φ,-. Set x = y -1 + and s = t -1 + . We have (a) H µ (L(y • o φ,-)) = w B ∨ µ,+ (x) 
, (b) we have graded k-vector space isomorphisms

Extv O µ φ,-L(y • o φ,-), L(t • o φ,-) = k Homw Z ∨ S,µ,+ w B∨ S,µ,+ (x), w B∨ S,µ,+ (s) = Homw Z ∨ µ,+ w B∨ µ,+ (x), w B∨ µ,+ (s) , (c) there is a morphism of functors θ µ,φ • H µ → H φ • i µ,φ which yields a z Z ∨ φ,+ - module isomorphism θ µ,φ H µ (L) ≃ H φ i µ,φ (L) for each L ∈ Irr( v O µ φ,-).
Proof. Part (a) follows from Propositions 4.43, 4.47. To prove part (b), note that, by Proposition 4.47, we have a graded k-vector space isomorphism

Extv O µ φ,-L(y • o φ,-), L(t • o φ,-) = Ext D b ( Xw) w IC( Xx ), w IC( Xs ) .
Further, by Propositions A.1, 4.43, we have graded k-vector space isomorphisms

Ext D b T ( Xw ) w IC T ( Xx ), w IC T ( Xs ) = Homw Z ∨ S,µ,+ w B∨ S,µ,+ (x), w B∨ S,µ,+ (s) , Ext D b ( Xw ) w IC( Xx ), w IC( Xs ) = k Ext D b T ( Xw) w IC T ( Xx ), w IC T ( Xs ) .
This proves the first isomorphism in (b). To prove the second one, note that we have w B∨ µ,+ (x) = k w B∨ S,µ,+ (x). Thus, by Propositions 4.43, A.1, we have graded k-vector space isomorphisms

k Homw Z ∨ S,µ,+ w B∨ S,µ,+ (x), w B∨ S,µ,+ (s) = k End HT ( Xw) IH T ( Xx ), IH T ( Xs ) , = End H( Xw ) IH( Xx ), IH( Xs ) , = Homw Z ∨ µ,+ w B∨ µ,+ (x), w B∨ µ,+ (s) 
. Now, we prove (c). By Proposition 4.43, taking the cohomology gives a functor P( Xµ,w ) → w Z ∨ µ,+ -mod such that E → H(E). Since z ∈ I µ,-, the obvious projection π : Xφ,z → Xµ,w is smooth. By Proposition 4.43, for each E ∈ P( Xµ,w ) we may regard the cohomology spaces H(E), H(π * E) as modules over w Z ∨ µ,+ and z Z ∨ φ,+ respectively. The unit 1 → π * π * yields a map H(E) → H(π * π * E). By Proposition 4.43, it may be viewed as natural morphism of w Z ∨ µ,+ -modules H(E) → θ φ,µ H(π * E). Hence, by adjunction, we get a morphism of functors θ µ,φ • H → H • π * from P( Xµ,w ) to z Z ∨ φ,+ -mod. Let Φ µ : v O µ φ,-→ P( Xµ,w ) and Φ φ : v O φ,-→ P( Xφ,z ) be as above. The proof of Proposition 4.47 implies that

H µ = H • Φ µ , H φ = H • Φ φ and Φ φ •i µ,φ = π ! * •Φ µ . Hence, we have a morphism of functors θ µ,φ •H µ → H φ •i µ,φ .
We claim that, for each

L ∈ Irr( v O µ φ,-), the corresponding z Z ∨ φ,+ -module ho- momorphism f : θ µ,φ H µ (L) → H φ i µ,φ (L) is an isomorphism. Indeed, set L = L(y • o φ,-) with y ∈ v I µ φ,-. By part (a), we have H µ (L) = z B ∨ µ,+ (x), H φ i µ,φ (L) = z B ∨ φ,+ (xw µ ) with x = y -1 + .
Hence, by Proposition 4.41(f ) and base change, we have 

θ µ,φ H µ (L) = H φ i µ,φ (L) = z B ∨ φ,+ (xw µ ),
Endz Z ∨ φ,+ z B ∨ φ,+ (xw µ ) = k Endz Z ∨ S,φ,+ z B ∨ S,φ,+ (xw µ ) , = k Endz O ∨ S,φ,+ z P ∨ S (xw µ • o φ,+ ) , = Endz O ∨ φ,+ z P ∨ (xw µ • o φ,+ ) .
Here, the symbols O ∨ and P ∨ denote the category O and the projective modules associated with the dual root system. Since the module z P ∨ (xw µ •o φ,+ ) is projective and indecomposable, we deduce that the k-algebra

Endz Z ∨ φ,+ z B ∨ φ,+ (xw µ
) is local. Thus, to prove the claim it is enough to observe that the map f is not nilpotent.

We can now prove the following graded analogue of (part of) Corollary 4.34 which compares the graded k-algebra v Āµ φ,-in Definition 3.6 with the graded kalgebra w Āµ,+ in Definition 4.28. The comparison between u Āµ φ,+ and z Āµ,will be done in Corollary 5.8 below.

Corollary 4.49. Let w ∈ I µ,+ and v = w -1 -∈ I µ φ,-. We have a graded k-algebra isomorphism v Āµ φ,-→ w Āµ,+ such that 1 y → 1 x with x = y -1 + for each y ∈ v I µ φ,-.

Proof. We have w Āµ,+ = k Endw Z S ∨ ,µ,+ w BS ∨ ,µ,+ op , where w BS ∨ ,µ,+ ∈ w ZS ∨ ,µ,+ is the space of sections of a direct sum of graded BM-sheaves on w G µ,+ . Next,

since v Āµ φ,-= Extv O µ φ,-( v L µ φ,-) op by Definition 3.6, we have a graded k-algebra isomorphism v Āµ φ,-= k Endw Z ∨ S,µ ( w B∨ S,µ,+ ) op by Proposition 4.48(b). Thus, we must check that k Endw Z ∨ S,µ ( w B∨ S,µ,+ ) ≃ k Endw Z S ∨ ,µ w BS ∨ ,µ,+ .
The choice of a W -invariant pairing on t yields a W -equivariant isomorphism t * ≃ t. It induces a W -equivariant graded algebra isomorphism S ≃ S ∨ . The moment graphs w G ∨ µ,+ and w G µ,+ are indeed isomorphic. Using Remark 4.14, it is easy to check that this isomorphism identifies the graded BM-sheaves L( w B∨ S,µ,+ ) and L( w BS ∨ ,µ,+ ). This proves the corollary.

Corollary 4.50. For any w ∈ I µ,± , the following hold (a) we have graded k-algebra isomorphisms w Āµ,± → Endw Zµ,± ( w Bµ,± ) op , (b) the functor V k is fully-faithful on projective objects in w O ∆ µ,± .

Proof. The obvious map w Āµ,+ → Endw Zµ,+ ( w Bµ,+ ) op is an isomorphism by Proposition 4.48(b) (applied to the dual root system). This proves (a) in the positive-level case. The negative one is proved in a similar way, see Corollary A.6. Now, let us concentrate on part (b). By Proposition 4.33(b), (c), we have w B µ,+ = V k ( w P µ,+ ) and w A µ,+ = k Endw OS 0 ,µ,+ ( w P S0,µ,+ ) op . The latter is isomorphic to Endw Oµ,+ ( w P µ,+ ) op by Proposition 2.4(b). We deduce that V k yields an isomorphism Endw Zµ,+ (V k ( w P µ,+ )) = Endw Oµ,+ ( w P µ,+ ), which proves that V k is fullyfaithful on projectives in w O ∆ µ,+ . The negative-level case is similar. Indeed, since w P µ,-= k w P S0,µ,-by Proposition 2.4(e), it follows from Proposition 4.33(b), (c) that w B µ,-= V k ( w P µ,-) and

w A µ,-= k Endw OS 0 ,µ,-( w P S0,µ,-) op . Thus Endw Zµ,-(V k ( w P µ,-)) = Endw Oµ,-( w P µ,-)
by Proposition 2.4(b). We deduce that the functor V k is fully faithful on projectives in w O ∆ µ,-.

Remark 4.51. Assume that w ∈ I µ,± . We have w CS,µ,± (x) = D( v BS,µ,∓ (y)) with y = x ∓ , v = w ∓ for each x ∈ w I µ,± . Therefore, there are graded k-algebra isomorphisms v

Āµ,∓ = k Endw ZS,µ,± w CS,µ,± . By Corollary 4.50, we also have graded k-algebra isomorphisms v Āµ,∓ = Endw Zµ,± ( w Cµ,± ). Proposition 5.1. If x ∈ w I µ,+ and y = x -1 -, then y ∈ v I µ φ,-. We have a k-algebra isomorphism w A µ,+ = v Āµ φ,-such that 1 x → 1 y for each x ∈ w I µ,+ . We have a k-algebra isomorphism w Āµ,+ = v A µ φ,-such that 1 x → 1 y for each x ∈ w I µ,+ . The graded k-algebras w Āµ,+ and v Āµ φ,-are Koszul and are Koszul dual to each other. Further, we have 1 x = 1 ! y for each x ∈ w I µ,+ .

Proof. By Corollaries 4.34, 4.49, composing H, V k yields k-algebra isomorphisms

w A µ,+ = w A µ,+ = v Āµ φ,-, (5.1) 
which identify the idempotents 1 y ∈ v Āµ φ,-and 1 x ∈ w A µ,+ , w A µ,+ for each x ∈ w I µ,+ and y = x -1 -. Now, we claim that v A µ φ,-has a Koszul grading. By Lemma 2.2 and Section 3.5, it is enough to check that v A φ,-has a Koszul grading. This follows from the matrix equation in Proposition 4.29 and from [5, thm. 2.11.1], because v A φ,-= v A φ,-as k-algebras by Corollary 4.34.

Equip v A µ φ,-with the Koszul grading above. Then, Lemma 2.1 implies that

v A µ,! φ,-= Extv O µ φ,-( v L µ φ,-) op = v Āµ φ,-. (5.2) 
Therefore, [32, thm. 1], Proposition 3.9 yield u Āµ φ,+ = u A µ,! φ,+ = (( u A µ,⋄ φ,+ ) ! ) ⋄ = ( v A µ,! φ,-) ⋄ . So, using (5.2) and Propositions 5.1, 3.9, we get a k-algebra isomorphism

u Āµ φ,+ = ( v Āµ φ,-) ⋄ = w A ⋄ µ,+ = z A µ,-.
Now, let us prove Lemma 5.3.

Proof of Lemma 5.3. We equip w A µ,+ with the grading given by v Āµ φ,-, see Proposition 5.1. Since v Āµ φ,-is Koszul, we must prove that v Āµ,! φ,-is quasi-hereditary and that the grading on v Āµ,⋄ φ,-is positive, see Section 2.6. We have v Āµ,! φ,-= w Āµ,+ by Proposition 5.1. Hence, it is quasi-hereditary. Next, the grading of z Āµ,is positive by Remark 4.30. Thus, to prove the lemma, it is enough to check that we have a graded k-algebra isomorphism v Āµ,⋄ φ,-= z Āµ,-.

First, we check that w A ⋄ µ,+ = z A µ,-as (ungraded) k-algebras. To do this, note that Proposition 3.9(c) yields a k-algebra isomorphism w A ⋄ µ,+ = z A µ,-. Further, we have z A µ,-= Endz Oµ,-( z P µ,-) op and, by Proposition 3.9(b), the Ringel equivalence takes z O ∆ µ,-to z O ∆ µ,+ . Thus, Propositions 2.4(b), 4.33(c) yield

w A ⋄ µ,+ = Endz Oµ,+ ( z T µ,+ ) op = k Endz OS 0 ,µ,+ ( z T S0,µ,+ ) op = k Endz ZS 0 ,µ,+ ( z C S0,µ,+ ) op = z A µ,-,
where the last equality is Definition 4.28. Now, we must identify the gradings of v Āµ,⋄ φ,-and z Āµ,under the isomorphism w A ⋄ µ,+ = z A µ,-above. First, we consider the grading on v Āµ,⋄ φ,-. Let w Tµ,+ be the graded v Āµ φ,-module equal to w T µ,+ as an w A µ,+ -module, with the natural grading (this is well-defined, because v Āµ φ,-is Koszul). Then, by Section 2. We consider the object w TS,µ,+ of w ŌS,µ,+ given by w TS,µ,+ = ψS ( w CS,µ,+ ).

Recall the functor V S0 : w O ∆ S0,µ,+ → w Z ∆ S0,µ,+ studied in Proposition 4.33. It yields an S 0 -algebra isomorphism Endw OS 0 ,µ,+ ( w P S0,µ,+ ) op → w A S0,µ,+ . Thus, since w P S0,µ,+ is a pro-generator of w O S0,µ,+ , the functor φ S0 = Homw OS 0 ,µ,+ ( w P S0,µ,+ , •) identifies w O S0,µ,+ with the category w A S0,µ,+ -mod .

Consider the functor ψ S0 : w Z S0,µ,+ -mod → w A S0,µ,+ -mod given by ψ S0 = Homw ZS 0 ,µ,+ w B S0,µ,+ , • . We have the commutative triangle (5.6) such that V S0 ( w T S0,µ,+ ) = w C S0,µ,+ . Now, we define the module w T ′ S0,µ,+ = ψ S0 ( w C S0,µ,+ ) in w A S0,µ,+ -mod. It is identified with w T S0,µ,+ by φ S0 , because (5.6) is commutative. By Proposition 4.33(c), the functor ψ S0 yields a k-algebra isomorphism Endw ZS 0 ,µ,+ w C S0,µ,+ → Endw AS 0 ,µ,+ w T ′ S0,µ,+ . Note that φ S0 and ψ S0 are both exact.

w O ∆ S0,µ,+ VS 0 ∼ / / _ φS 0 w Z ∆ S0,µ,+ j J ψS 0 w w o o o o o o o o o o o w A S0,µ,+ -mod,
Since taking hom's commutes with localization, we have ε( w ĀS,µ,+ ) = w A S0,µ,+ . Thus, forgetting the grading and taking base change yield a functor ε : w ŌS,µ,+ → w O S0,µ,+ which is faithful and faithfully exact, see Section 4.2. Let w Ō∆ S,µ,+ ⊂ w ŌS,µ,+ be the full subcategory of the modules taken to w O ∆ S0,µ,+ by ε. We identify w O S0,µ,+ with w A S0,µ,+ -mod by φ S0 . We have the following. Since w A S0,µ,+ is Noetherian, any finitely generated module has a finite presentation. By Proposition 4.33(c), the functor V S0 is exact and we have V S0 ( w P S0,µ,+ ) = w B S0,µ,+ . We identify w O S0,µ,+ with w A S0,µ,+ -mod as above. By the five lemma, the canonical morphism w B S0,µ,+ ⊗w AS 0 ,µ,+ • → V S0 is an isomorphism. We deduce that the left square in Claim 5.6 is commutative.

Next, by definition we have ε • ψS = ψ S0 • ε. From the diagram 5.6, we deduce that ψ S0 maps into w O ∆ S0,µ,+ and is a quasi-inverse to V S0 . Claim 5.6 follows. From claim 5.6 we deduce that ε( w TS,µ,+ ) = w T S0,µ,+ and w TS,µ,+ ∈ w Ō∆ S,µ,+ . Next, since ε : S-gmod → S 0 -mod is faithfully exact by Section 4.2 and ψ S0 gives an isomorphism Endw ZS 0 ,µ,+ w C S0,µ,+ → Endw AS 0 ,µ,+ w T S0,µ,+ , we deduce from claim 5.6 that ψS gives a graded k-algebra isomorphism Endw Ōµ,+ , up to grading shift. Let V (x • o µ,+ ) be the graded v Āµ φ,--module equal to V (x • o µ,+ ) as an w A µ,+ -module, with the natural grading (this is well-defined, because v Āµ φ,-is Koszul). The natural grading is characterized by the fact that there is an inclusion V (x • o µ,+ ) ⊂ w T (x • o µ,+ ) which is homogeneous of degree 0.

The graded object w TS,µ,+ satisfies a similar property. Indeed, by Lemma 4.24, the graded S-sheaf w CS,µ,+ (x) is filtered by shifted Verma-sheaves, and the lower term of this filtration yields an inclusion VS,µ (x) l(x) ⊂ w CS,µ,+ (x). Further, consider the object w TS (x• o µ,+ ) in w ŌS,µ,+ given by w TS (x• o µ,+ ) = ψS ( w CS,µ,+ (x)). Then, we have the decomposition w TS,µ,+ = x w TS (x • o µ,+ ). For each x ∈ w I µ,+ , we consider also the object VS (x • o µ,+ ) in w ŌS,µ,+ given by VS (x • o µ,+ ) = ψS ( VS,µ (x)) l(x) . Since ψS is exact, we deduce that w TS (x • o µ,+ ) is filtered by VS (y • o µ,+ )'s, and the lower term of this filtration yields an inclusion VS (x

• o µ,+ ) ⊂ w TS (x • o µ,+
) which is homogeneous of degree 0. Now, by Proposition 4.33(c), we have 

V S0 (V S0 (x • o µ,+ )) = V S0,µ (x). From the proof of claim 5.6, we deduce that ψ S0 (V S0,µ (x)) = V S0 (x • o µ,+ ). Thus ε( VS (x • o µ,+ )) = ε ψS ( VS,µ (x)) = ψ S0 ε( VS,µ (x)) = V S0 (x • o µ,+ ). Since V S0 (x • o µ,+ )
P (x • o µ,+ ) → V (x • o µ,+ ).
So, we must prove that w P (x We can now prove the following graded analogue of Corollary 4.34. See also Corollary 4.49.

• o µ,+ ) = k w PS (x • o µ,+ ) in w Ōµ,+ . This is obvious, because w P (x•o µ,+ ) = w Āµ,+ 1 
Corollary 5.8. Assume that u ∈ I µ φ,+ . Let z = u -1 -∈ I µ,-. We have an isomorphism of graded k-algebras u Āµ φ,+ → z Āµ,such that 1 y → 1 x with x = y -1 -for each y ∈ v I µ φ,+ .

Proof. By [32, thm. 1] and Lemma 5.3, the graded k-algebra v Āµ,⋄ φ,-= z Āµ,is Koszul. By Proposition 5.4, the graded k-algebra u Āµ φ,+ is Koszul and is isomorphic to w A µ,-as a k-algebra. By Proposition 5.4, we have v Āµ φ,-= w A µ,+ as a k-algebra. Finally, by Proposition 3.9, the Ringel dual of w A µ,+ is w A ⋄ µ,+ = z A µ,-. Thus we have a k-algebra isomorphism z A µ,-= z A µ,-, which lifts to a graded k-algebra isomorphism u Āµ φ,+ = z Āµ,by unicity of the Koszul grading [5, cor. 2.5.2].

5.2. The general case. We can now complete the proof of Theorem 3.12. We first prove a series of preliminary lemmas. Fix parabolic types µ, ν ∈ P and integers d, e, f > 0. Choose integral weights o µ,-, o ν,-, o φ,-of level -e -N , -f -N and -d -N respectively.

Fix an element w ∈ W . Let τ φ,ν : w O µ,+ → w O ν µ,+ be the parabolic truncation functor, see Section 3.5. Applying the functor τ φ,ν to the module w P µ,+ , we get a k-algebra homomorphism τ φ,ν : w A µ,+ → w A ν µ,+ .

Lemma 5.9. Assume that w ∈ I ν µ,+ . Then, the functor the k-algebra homomorphism τ φ,ν : w A µ,+ → w A ν µ,+ is surjective. Its kernel is the two-sided ideal generated by the idempotents 1 x with x ∈ w I µ,+ \ w I ν µ,+ . Further, we have τ φ,ν (1 x ) = 1 x for each x ∈ w I ν µ,+ .

Proof. By Section 3.5, the functor τ φ,ν takes the minimal projective generator of w O µ,+ to the minimal projective generator of w O ν µ,+ . Let i ν,φ be the right adjoint of τ φ,ν . For any M the unit M → i ν,φ τ φ,ν (M ) is surjective. Hence, for any projective module P we have a surjective map Homw Oµ,+ (P, M ) → Homw Oµ,+ (P, i ν,φ τ φ,ν (M )) = Homw O ν µ,+ (τ φ,ν (P ), τ φ,ν (M )). Thus, the k-algebra homomorphism τ φ,ν is surjective.

Let I ⊂ w A µ,+ be the 2-sided ideal generated by the idempotents 1 x such that x ∈ w I µ,+ and τ φ,ν (1 x ) = 0. By Section 3.5(c), the latter are precisely the idempotents 1 x with x ∈ w I µ,+ \ w I ν µ,+ . We have a k-algebra isomorphism w A µ,+ /I ≃ w A ν µ,+ , because w O ν µ,+ is the Serre subcategory of w O µ,+ generated by the simple modules killed by I. Under this isomorphism, the map τ φ,ν is the canonical projection w A µ,+ → w A µ,+ /I.

The last claim in the lemma follows from Section 3.5(b). Now, let v ∈ I ν,-and w = v -1 + . We have w ∈ I ν φ,+ . We equip the k-algebras v A ν,-, v A φ,-with the gradings w Āν φ,+ , w Āφ,+ , see Proposition 5.4. Consider the categories v Ōν,-= w Āν φ,+ -gmod and v Ōφ,-= w Āφ,+ -gmod, which are graded analogues of the categories v O ν,-and v O φ,-.

To unburden the notation, we'll abbreviate L ν = v L ν,-and L φ = v L φ,-. Let Lν , Lφ be the natural graded lifts in v Ōν,-, v Ōφ,of the semi-simple modules L ν , L φ respectively.

For v ∈ I ν,-and d + N > f, we'll use the following graded analogue of the translation functor T φ,ν : v O φ,-→ v O ν,-in Proposition 4.36.

Lemma 5.10. Assume that v ∈ I ν,-and d + N > f . Then, there is an exact functor of graded categories Tφ,ν : v Ōφ,-→ v Ōν,such that Tφ,ν ( Lφ ) = Lν and Tφ,ν coincides with T φ,ν when forgetting the grading. By Proposition 4.36(d), (e) this implies that Tφ,ν ( L) = Tφ,ν ( L′ ), and that it is non zero. Therefore, we have L = L′ , proving the claim.

Recall that Lφ is a semi-simple module, see Section 3.4. Applying the claim to the simple summands L ⊂ Lφ such that Tφ,ν ( L) = 0, we get that top( Θ( Lφ )) = Im η( Lφ ). In particular top( Θ( Lφ )) is pure of degree zero. This implies that we have ℓ = 0. Therefore, the kernel of η( Lφ ) lives in degrees > 0. Hence, by Koszulity of the grading of v Ōφ,-, we get Ext i v Ōφ,-Ker η( Lφ ), Lφ i = 0. Hence the surjectivity of (5.7) for i = j follows from the long exact sequence of Ext's groups associated with the exact sequence 0 → Ker(η( Lφ )) → Θ( Lφ ) → Lφ .

This proves that the map T φ,ν is surjective, proving the first part of the lemma.

Next, we have I µ ν,-= {xw ν ; x ∈ I µ φ,-∩ I ν,+ } by Corollary 3.3(a). Further, we have T φ,ν (1 xwν ) = 0 for x / ∈ I ν,-by Proposition 4.36(e), and xw ν ∈ I ν,+ if and only if x ∈ I ν,-. This proves the second claim of the lemma. Finally, the last claim of the lemma follows from Proposition 4.36(d).

Next, we prove the following. Lemma 5.13. Assume that w ∈ I ν µ,+ . Let v = w -1 -. We have v ∈ I µ ν,-. Assume also that d + N > f and e + N > d. There is a k-algebra isomorphism p µ,ν :

w A ν µ,+ → v Āµ ν,-such that p µ,ν (1 x ) = 1 y for each x ∈ w I ν µ,+
, where y = x -1 -, and such that the following square is commutative (5.8)

Proof. We have v = w µ w -1 w ν . Note that w ν w ∈ I ν φ,-∩ I µ,+ , because by Lemma 3.2 we have w -1 ∈ I µ ν,+ , hence w -1 w ν ∈ I µ φ,+ ∩ I ν,-and w ν w = (w -1 w ν ) -1 ∈ I µ,+ ∩ I ν φ,-. Let π µ,ν : wν w A µ,+ → v Āµ ν,-be the composition of the k-algebra homomorphism T φ,ν : v Āµ φ,-→ v Āµ ν,-in Lemma 5.12 and of the k-algebra isomorphism wν w A µ,+ = v Āµ φ,-in (5.1). Note that wν w A ν µ,+ = w A ν µ,+ . We must construct a k-algebra isomorphism p µ,ν :

w A ν µ,+ → v Āµ ν,-such that π µ,ν = p µ,ν • τ φ,ν . Let x ∈ wν w I µ,+ . Thus w µ x -1 ∈ v I µ φ,-. By Lemma 5.12, we have π µ,ν (1 x ) = 0 ⇐⇒ T φ,ν (1 wµx -1 ) = 0 ⇐⇒ w µ x -1 ∈ I µ φ,-∩ I ν,+
. By Lemma 5.9, we have τ φ,ν (1 x ) = 0 ⇐⇒ x ∈ I ν µ,+ . Again by Lemma 3.2, we have

w µ x -1 ∈ I µ φ,-∩ I ν,+ ⇐⇒ xw µ ∈ I ν φ,+ ∩ I µ,-⇐⇒ x ∈ I ν µ,+
. Hence, we have τ φ,ν (1 x ) = 0 if and only if π µ,ν (1 x ) = 0. Thus, we have Ker(τ φ,ν ) ⊂ Ker(π µ,ν ), because the left hand side is generated by the 1 x 's killed by τ φ,ν and the right hand side contains the 1 x 's killed by T φ,ν . This proves the existence of a k-algebra homomorphism p µ,ν such that π µ,ν = p µ,ν • τ φ,ν and p µ,ν (1 x ) = 1 wµx -1 for each x ∈ w I ν µ,+ . The map p µ,ν is surjective, because the map T φ,ν is surjective by Lemma 5.12. Now, we prove that p µ,ν is injective. By Section 3.5, the parabolic inclusion functor i µ,φ :

v O µ ν,-→ v O ν,-yields a graded k-algebra homomorphism i µ,φ : v Āµ ν,-→ v Āν,-. Set z = v -1 = w ν ww µ .
The following is proved below.

Claim 5.14. We have the commutative diagram wν w

A µ,+ (5.1)

T µ,φ v Āµ φ,-T φ,ν / / i µ,φ v Āµ ν,- i µ,φ z A φ,+ (5.1) v Āφ,- T φ,ν / / v Āν,- . 
(5.9)

Note that z ∈ I µ,-, hence the map T µ,φ is well-defined. Now, by Proposition 4.36(g), the translation functor T µ,φ yields a map w A ν µ,+ → wwµ A ν φ,+ . Consider the diagram

wν w A µ,+ τ φ,ν / / T µ,φ w A ν µ,+ pµ,ν / / T µ,φ v Āµ ν,- i µ,φ z A φ,+ τ φ,ν / / wwµ A ν φ,+ p φ,ν / / v Āν,-. (5.10) 
By Claim 5.14, the outer rectangle in (5.9) is commutative. Thus, the outer rectangle in (5.10) is commutative. The left square in (5.10) is commutative, by Proposition 4.36(c). Thus, since τ φ,ν is surjective, the right square in (5.10) is also commutative.

The middle vertical map in (5.10) is injective by Remark 4.38. Therefore, to prove that p µ,ν is injective it is enough to check that p φ,ν is injective. Now, it is easy to see that the map p φ,ν is indeed invertible, beause it is surjective by the discussion above (applied to the choice ν = φ) and dim( wwµ A ν φ,+ ) = dim( v Āν,-) by Proposition 5.4. Finally, to finish the proof of Lemma 5.13 we must check that p µ,ν (1 x ) = 1 y for each x ∈ w I ν µ,+ , where y = x -1 -. To do that, it suffices to observe that x -= w ν xw µ , and that, by Proposition 5.1 and Lemmas 5.9, 5.12, the square of maps in (5.8) gives the following diagram

1 x (5.1) / / _ τ φ,ν 1 wµx -1 _ T φ,ν 1 x pµ,ν / / 1 wµx -1 wν .
Now, we prove Claim 5.14. The right square in (5.9) is commutative, by Proposition 4.36(c).

Let us concentrate on the left square. We must prove that the isomorphisms ( Finally, we prove our main theorem.

Proof of Theorem 3.12. Since the highest weight categories w O ν µ,+ , v O µ ν,-do not depend on e, f by Remark 3.10, we can assume that there is a positive integer d such that d+ N > f and e + N > d. Thus the hypothesis of Lemma 5.13 is satisfied.

By Propositions 5.1, 5.4 the k-algebra w A µ,± has a Koszul grading. Thus, by Lemma 2.2 and Section 3.5, the k-algebra w A ν µ,± has also a Koszul grading. Let us equip w A ν µ,± with this grading. By Lemma 2.1, we have w A ν,! µ,± = w Āν µ,± as graded k-algebras. Therefore, the graded k-algebra w Āν µ,± is Koszul and its Koszul dual is isomorphic to w A ν µ,± as a k-algebra. We have w Āν,! µ,+ = w A ν µ,+ as a k-algebra. By Lemma 5.13, we have also a kalgebra isomorphism w A ν µ,+ = v Āµ ν,-. Thus, we have w Āν,! µ,+ = v Āµ ν,-as k-algebras. By unicity of the Koszul grading, we deduce that w Āν,! µ,+ = v Āµ ν,-as graded kalgebras.

The involutivity of the Koszul duality implies that we have also w Āν,! µ,-= v Āµ ν,+ as graded k-algebras, and w A ν µ,-= v Āµ ν,+ as k-algebras. Finally, we must check that under the isomorphism w Āν,! µ,+ = v Āµ ν,-we have 1 !

x = 1 y with y = x -1 -for each x ∈ w I ν µ,+ . If ν = φ this is Proposition 5.1. If µ = φ this is Proposition 5.4. The isomorphism w Āν,! µ,+ = w A ν µ,+ above, which is given by Lemma 2.1, identifies the idempotents 1 !

x and 1 x for each x ∈ w I ν µ,+ . Thus, by Lemma 5.13, the isomorphism w Āν,! µ,+ = v Āµ ν,-identifies the idempotents 1 ! x and 1 y , where y = x -1 -.

Type A and applications to CRDAHA's

Fix integers e, ℓ, N > 0. Let g = gl(N ).

6.1. Koszul duality in the type A case. Let b, t ⊂ g be the Borel subalgebra of upper triangular matrices and the maximal torus of diagonal matrices. Let (ǫ i ) be the canonical basis of C N . We identify t * = C N , t = C N and W = S N in the obvious way. Put ρ = (0, -1, . . . , 1 -N ) and α i = ǫ iǫ i+1 for each i ∈ [1, N ). We define the affine Lie algebra g of g as in Section 3.2. For any subset X ⊂ C ℓ and any d ∈ C let X(d) = (x 1 , . . . , x ℓ ) ∈ X ; i x i = d . Set C ℓ d = N ℓ (d) and fix an element ν ∈ C ℓ N . Let ν denote also the parabolic type {α i ; i = ν 1 , ν 1 + ν 2 , ...}. Let p ν ⊂ g be the corresponding parabolic subalgebra. The Levi subalgebra of p ν is the Lie subalgebra g ν = gl(ν 1 ) ⊕ • • • ⊕ gl(ν ℓ ) of g consisting of block diagonal elements.

Let P = Z N be the set of integral weights of g and let P ν ⊂ P be the subset of ν-dominant integral weights. Fix an element µ ∈ C e N . Consider the N -tuple 1 µ = (1 µ1 2 µ2 • • • e µe ). Since 1 µ ∈ P + ρ, the affine weight o µ,-= (1 µρ) e is an antidominant integral classical affine weight of g of level -e -N , see Section 3.3.

Recall that W µ ⊂ W is the parabolic subgroup generated by the simple affine reflections s i with α i / ∈ µ. Let W = S N ⋉ Z N be the extended affine symmetric group. We define the e-action of W on Z N to be such that S N acts by permutation of the entries of a N -tuple, while τ ∈ Z N acts by translation by the N -tuple -e τ . Let w • e x be the result of the e-action of w on the element x ∈ Z N . The stabilizer of the N -tuple 1 µ is equal to W µ . It is a standard parabolic subgroup.

Consider the category O ν µ,-introduced in Section 3. Then the set {∧ ν (a) ; a ∈ P ν + ρ} is a basis of ν (V e ). Further, for each λ ∈ P ν the element ∧ ν (λ + ρ) has the weight wt e (λ). Let ν (V e ) µ be the weight subspace of ν (V e ) of weight μ = e i=1 µ i ε i with respect to the action of sl(e). The set {∧ ν (a) ; a ∈ (P ν + ρ) ∩ ( W • e 1 µ )} is a basis of ν (V e ) µ . In a similar way, we equip the vector space V ℓ = C ℓ ⊗ C[z -1 , z] with the basis {v p+ℓr ; p ∈ [1, ℓ], r ∈ Z}. Then, we define the sl(ℓ)-module µ (V ℓ ) as above.

The following is obvious.

Corollary 6.5. Conjecture 6.3 implies Conjecture 6.2.

6.6. Koszulity of the q-Schur algebra. Now, we consider the case ℓ = 1. By the Kazhdan-Lusztig equivalence [28, thm. 38.1], the category A (N )

-e {d} is equivalent to the module category of the q-Schur algebra. This equivalence is an equivalence of highest-weight categories. This follows from the fact that an equivalence of abelian categories C 1 → C 2 such that C 1 , C 2 are of highest weight and that the induced bijection Irr(C 1 ) → Irr(C 2 ) is increasing is an equivalence of highest weight categories, i.e., it induces a bijection ∆(C 1 ) → ∆(C 2 ). See also [44, thm. A.5.1] for a more detailed proof.

Therefore, Theorem 6.4 implies the following.

Corollary 6.6. The q-Schur algebra is Morita equivalent to a Koszul algebra which is balanced.

See also [START_REF] Chuang | Hidden Hecke algebras and Koszul duality[END_REF] for a different approach to this result. Note that our proof gives an explicit description of the Koszul dual of the q-Schur algebra in term of affine Lie algebras.

Appendix A. Finite codimensional affine Schubert varieties By a scheme we always mean a scheme over the field k, and by a variety we'll mean a reduced scheme of finite type which is quasi-projective. Let T be a torus. A T -scheme is a scheme with an algebraic T -action.

Fix a contractible topological T -space ET with a topologically free T -action. For any T -scheme X, we set X T = X × T ET . There are obvious projections p : X × ET → X and q : X × ET → X T .

We'll identify S with the T -equivariant cohomology k-space H T (•) of a point.

A.1. Equivariant perverse sheaves on finite dimensional varieties. Fix a T -variety X. Let D b T (X) be the T -equivariant bounded derived category. It is the full subcategory of the bounded derived category D b (X T ) of sheaves of k-vector spaces on X T (for the analytic topology on X), consisting of the complexes of sheaves F with an isomorphism q * F ≃ p * F X for some F X ∈ D b (X).

The Let IH T ( Ȳ ) be the k-space of equivariant intersection cohomology of Ȳ and let H T ( Ȳ ) be its equivariant cohomology. We have IH T ( Ȳ ) = H(IC T ( Ȳ )) and H T ( Ȳ ) = H(k Ȳ ). Forgetting the T -action we define IC( Ȳ ), IH( Ȳ ) and H( Ȳ ) in the same way.

We'll say that X is good if the following hold • X has a Whitney stratification X = x X x by T -stable subvarieties,

• X x = A l(x) with a linear T -action, for some integer l(x) ∈ N,

• there are integers n x,y,i ∈ N such that j * y IC T ( Xx ) = p k Xy [l(y)][l(x)l(y) -2p] ⊕nx,y,p (A.1)

where j x is the inclusion X x ⊂ X. Equivalently, we have j ! y IC T ( Xx ) = q k Xy [l(y)][l(y)l(x) + 2q] nx,y,q . (A.2)

We call the third property the parity vanishing.

Proposition A.1. If X is a good T -variety, then the following hold (a) dim Ext i D b (X) IC( Xx ), IC( Xy ) = z,p,q n x,z,p n y,z,q where z, p, q runs over the set of triples such that 2l(z)l(y)l(x) + 2p + 2q = i, Proof. Part (a) is [5, thm. 3.4.1]. We sketch briefly the proof for the comfort of the reader. Set X p = p=l(z) X z . Let j p be the inclusion of X p into X. For each F ∈ D b (X), there is a spectral sequence E p,q 1 = H p+q (j ! p F ) ⇒ H p+q (F ). Therefore, if F = RHom IC( Xx ), IC( Xy ) , we get a spectral sequence n x,z,p n y,z,q , where z, p, q are as in (a). Now, we prove (b). For each F ∈ D b T (X), there is a spectral sequence E p,q 2 = S p ⊗ H q (F X ) ⇒ H p+q (F ), see [20, sec. 5.5]. Thus, if F = RHom IC T ( Xx ), IC T ( Xy ) , we get a spectral sequence E p,q 2 = S p ⊗ Ext q D b (X) (IC( Xx ), IC( Xy )) ⇒ Ext p+q D b T (X) (IC T ( Xx ), IC T ( Xy )). Now, we have Ext q D b (X) (IC( Xx ), IC( Xy )) = 0 for q ≡ l(x) + l(y) modulo 2 by (a). Therefore, since S vanishes in odd degrees, the spectral sequence degenerates at E 2 . Thus, we have S ⊗ Ext D b (X) (IC( Xx ), IC( Xy )) = Ext D b T (X) (IC T ( Xx ), IC T ( Xy )). The proof of (d) is as in [19, sec. 1], [6, sec. 3.3]. Since our setting is slightly different we sketch briefly the main arguments. Fix a partial order on the set of strata such that Xx = X x = y x X y . Consider the obvious inclusions j x : X x → X, i = j <x : X <x → X x and j = j x : X x → X x . For each y x, we set F 1 = j *

x IC( Xx ) and F 2 = j * x IC( Xy ). 

Lemma 2 . 2 .

 22 Let C be a finite abelian k-category with a Koszul grading. If D is a Serre subcategory and the inclusion D ⊂ C induces injections on extensions, then D has also a Koszul grading.Proof. Let P L be the projective cover of L ∈ Irr(C). The set Irr(C) is finite and P = L P L is a minimal projective generator. Set A = End C (P ) op .Let A I be the quotient of A by the two-sided ideal I generated by {1 PL ; L / ∈ Irr(D)}. The pull-back by the ring homomorphism A → A I identifies A I -mod with the full subcategory of A-mod consisting of the modules killed by I.

  g. [40, prop. 2.1, 2.4, 2.5]. Proposition 2.4. Let C be a highest weight R-category, and let S be a commutative local R-algebra with 1. For any M, N ∈ C the following holds :

  e) the category SC is a highest weight S-category on the poset Λ with standard objects S∆(λ) and costandard objects S∇(λ). The projective, injective and tilting objects associated with λ are SP (λ), SI(λ) and ST (λ) Remark 2.5. For any subset Σ ⊂ Λ, let C[Σ] be the Serre subcategory generated by all the L(λ) with λ ∈ Σ and let C(Σ) be the Serre quotient C/C[Irr(C) \ Σ].

Lemma 2 . 10 .

 210 For each ideal I ⊂ Irr(C) we have C[I] ! = C ! (I ! ). Proof. Set L I = L∈I L. By Lemma 2.1 and Remark 2.5, we have C ! = Ext C (L)-mod and C[I] ! = Ext C (L I )-mod . Let e ∈ End C (L) be the projection from L to L I . We have Ext C (L I ) = e Ext C (L) e. The full subcategory K I ⊂ C ! consisting of the modules killed by e is a Serre subcategory and there is an equivalence C ! /K I → C[I] ! , M → eM . In other words, the restriction with respect to the obvious inclusion Ext C (L I ) ⊂ Ext C (L), yields a quotient functor C ! → C[I] ! whose kernel is K I .

  the full subcategory consisting of the modules such that the highest weight of any of its simple subquotients is linked to o µ,± . Let I min µ , I max µ ⊂ W be the sets of minimal and maximal length representatives of the left cosets in W /W µ . Let be the Bruhat order. We'll consider the posets • I µ,-= (I max µ , ) where = , and I ν µ,-= {x ∈ I µ,-; x•o µ,-is ν-dominant}, • I µ,+ = (I min µ , ) where = , and I ν µ,+ = {x ∈ I µ,+ ; x•o µ,+ is ν-dominant}. They have the following properties. Lemma 3.2. For any µ, ν ∈ P we have (a) x ∈ I

  the lemma is given by [43, thm. 6.6, proof of cor. 7.6].Remark 3.5. Recall that the BGG-duality on O ν µ,-is an equivalence d :

4. 1 .

 1 Moment graphs. Assume that R = S, viewed as a graded C-algebra. Definition 4.1. A moment graph over V is a tuple G = (I, H, α) where (I, H) is a graph with a set of vertices I, a set of edges H, each edge joins two vertices, and

Remark 4 .

 4 [START_REF] Curtis | Methods of representation theory, with applications to finite groups and order, I[END_REF]. If M ∈ Z∆ R is F-projective, then it is projective[15, prop. 5.1]. Note that loc. cit. uses reflexive graded R-sheaves. However, ∆-filtered graded R-sheaves are automatically reflexive by[15, sec. 4].

Proposition 4 . 12 .

 412 The duality D : ZR → ZR such that M → M * restricts to an exact equivalence Z∆ R, → ( Z∆ R, ) op . In particular, it yields bijections Proj( Z∆ R, ) → Tilt( Z∆ R, ) and Tilt( Z∆ R, ) → Proj( Z∆ R, ).

Proposition 4 .

 4 17. (a) The graded Verma-sheaves are ∆-filtered and self-dual. (b) We have VR (x) y = VR (x) y = VR (x) [y] = R if x = y and 0 else. (c) For M ∈ ZR we have

Lemma 4 . 4 . 3 .

 443 20. (a) The functor ε commutes with the functor M → M [x] . (b) The functor ε : ZS → Z S0 is faithful and faithfully exact. (c) For each M ∈ ZS , we have M ∈ Z∆ S if and only if ε(M ) ∈ Z ∆ S0 . The moment graph of O. Fix a parabolic type µ ∈ P and fix w ∈ W .

w

  BS,µ,+ (x) y is projective because w BS,µ,+ (x) is F-projective. Hence, part (a) follows from Proposition 4.43 below and [25, thm. 1.4]. Part (b) follows from (a) and Proposition 4.25 as in [16, prop. 7.1] (where it is proved for µ regular). More precisely, write V (x) = VS,φ (x), B(x) = w BS,µ,+ (x) and Z = w Z S,µ,+ . Then, we have B(x) y = Ker(ρ y,ey ) ⊂ B(x) [y] = Ker(ρ y,dy ) ⊂ B(x) y .

  [y] = B(x) y 2l(y) because ♯u y = l(y). Hence, by Remark 4.19 and Proposition 4.25 we have a graded S-module isomorphism ( B(x) y ) * 2l(y) = B(x) y 2l(y) = B(x) [y] . Definition 4.28. Consider the graded S-algebra w ĀS,µ,± = Endw ZS,µ,± w BS,µ,± op and the graded k-algebra w Āµ,± = k w ĀS,µ,± . Set also w A S0,µ,± = Endw ZS 0 ,µ w B S0,µ,± op and let w A µ,± be the k-algebra underlying w Āµ,± .

Proposition 4 . 32 .

 432 (a) The category w O R,µ,± is a highest weight R-category. The standard objects are the deformed Verma modules V R (x • o µ,± ) with x ∈ w I µ,± .(b) Assume that w ∈ I ν µ,± . The Ringel equivalence gives an equivalence (•) ⋄

2 . 6 ]

 26 there is an equivalence of exact categories O ∆ R,µ,+ ∼ → (O ∆ R,µ,-) op analogue to the one in Lemma 3.4. It maps V R (x • o µ,+ ) to V R (x -• o µ,-), and P R (x • o µ,+ ) to T R (x -• o µ,-). We deduce that ( v O R,µ,-) ⋄ = w O R,µ,+ for w ∈ I µ,+ and v = w -∈ I µ,-. Now part (b) follows from generalities on Ringel equivalences, see Section 2.5.

Proposition 4 . 33 .

 433 Let R = S 0 or k. The following hold (a) V R is exact on w O R,µ,-and on w O ∆ R,µ,+ , (b) V R commutes with base change, (c) the functor

Proposition 4 . 35 .

 435 Let R = S 0 or k. Let w ∈ W and z ∈ I µ,-. Assume that wW µ = zW µ and that ±(ed) > -N . We have k-linear functors T φ,µ :

  µ,-by[14, thm. 4(2)]. For the same reason the functors T φ,µ , T µ,φ factor to the categories z O ∆ R,φ,+ , w O ∆ R,µ,+ . The claims (a), (b), (c) are proved in[14, thm. 4(1),(6)(4)].

Proposition 4 . 36 .

 436 Let R = k. Let w ∈ W and z ∈ I µ,-. Assume that wW µ = zW µ and that ±(ed) > -N . We have a k-linear functor T φ,µ : z O φ,± → w O µ,± which coincides with the functors in Proposition 4.35 on z O ∆ φ,± and such that the following hold (a) T φ,µ has a left adjoint functor T µ,φ , both functors are exact, (b) T φ,µ , T µ,φ take projectives to projectives, (c) T φ,µ , T µ,φ preserve the parabolic category O and commute with i, τ , (d)

Remark 4 . 38 .

 438 Let w ∈ W and w ∈ I ν µ,+ . Set z = ww µ . We have z ∈ I ν φ,+ ∩ I µ,-. Assume that ed > -N . Then, the functor T µ,φ : w O ν µ,+ → z O ν φ,+ is faithful. To prove this it is enough to check that T µ,φ (L) = 0 for any simple module L. This follows from Proposition 4.36(a), (g).

4. 7 .

 7 Translation functors in Z. Fix elements w ∈ W and z ∈ I µ,-.

Lemma 4 . 39 .

 439 For z ∈ I µ,-and w ∈ I µ,± such that w ∈ zW µ there are graded w ZS,µ,± -module isomorphisms (a) z ZS,φ,± ≃ y∈Wµ w ZS,µ,± -2l(y) , (b) z ZS,φ,± 2l(w µ ) ≃ HomwZ S,µ,± z ZS,φ,± , w ZS,µ,± .

  xy ). This implies part (a). Finally, part (b) follows from (a), because HomwZ S,µ,+ z ZS,φ,+ , w ZS,µ,+ = y∈Wµ HomwZ S,µ,+ w ZS,µ,+ -2l(y) , w ZS,µ,+ = y∈Wµ w ZS,µ,+ 2l(y) = z ZS,φ,+ 2l(w µ ) . Remark 4.40. An algebraic proof of Lemma 4.39 is given in [16, lem. 5.1] in the particular case where ♯W µ = 2.

  33(c), 4.35(a). The proof of part (c) is similar to [16, prop. 5.2]. More precisely, by Lemma 4.39(b) there is an isomorphism of functors z ZS,φ,± 2l(w µ ) ⊗wZ S,µ,± • ≃ HomwZ S,µ,± z ZS,φ,± , w ZS,µ,± ⊗wZ S,µ,± • ≃ HomwZ S,µ,± z ZS,φ,± , • . Therefore ( θµ,φ , θφ,µ , θµ,φ 2l(w µ ) ) is a triple of adjoint of functors. Part (d) follows from (c). Indeed, since θφ,µ (M ) = M as a graded S-module, we have θφ,µ • D = D • θφ,µ . Then, part (c) implies θµ,φ • D = D • θµ,φ 2l(w µ ) by unicity of adjoint functors. Now, we prove (e). To unburden the notation let us temporarily abbreviate Bµ (x) = w BS,µ,+ (x), Bφ (x) = z BS,φ,+ (x), Zµ = w ZS,µ,+ , Zφ = z ZS,φ,+ and Zφ = z ZS,φ,+ . First, note that θφ,µ ( Bφ (xw µ )) is is a direct sum of objects of the form Bµ (z) j by Corollary 4.44 below. Next, for each subset J ⊂ z I φ,+ and each object M ∈ Z∆ φ , we have defined a graded S-module M J = L(M )(J) in Remark 4.9. Setting J = xW µ , we claim that Bφ (xw µ ) xWµ = Zφ,xWµ l(xw µ ) .

  x ∈ I µ,+ , the set xW µ is an ideal of the poset xwµ I µ,+ . Thus, by Lemma 4.46, we have Bφ (xw µ ) xWµ = IH T X φ,xWµ . Since X φ,xWµ is a smooth open subset of Xφ,xwµ (see comments before Lemma 4.46), we deduce that Bφ (xw µ ) xWµ = IH T X φ,xWµ = H T X φ,xWµ l(xw µ ) = Zφ,xWµ l(xw µ ) . Now, by [16, prop. 5.3], for each x ∈ z I µ,+ we have θφ,µ ( Bφ (xw µ )) x = Bφ (xw µ ) xWµ . Thus, by (4.3) and Lemma 4.39(a) we have an isomorphism of graded S-modules θφ,µ ( Bφ (xw µ )) x = ( Zφ,xWµ ) xWµ l(xw µ ) = y∈Wµ ( Zµ,x ) x l(xw µ ) -2l(y) = y∈Wµ S l(xw µ ) -2l(y) .

Finally, since for

  each t ∈ I µ,+ we have t x ⇒ θφ,µ ( Bφ (xw µ )) t = Bφ (xw µ ) tWµ = 0, the support condition in Proposition 4.23 implies that the decomposition of θφ,µ ( Bφ (xw µ )) into direct sums of Bµ (z) j 's has the form as predicted in part (e).

  filtered modules by Proposition 4.41(a), because θ φ,µ , θ µ,φ , T φ,µ , T µ,φ and V commute with base change by Propositions 4.33, 4.35.

Proposition 4 . 43 .

 443 For w ∈ I µ,+ and x ∈ w I µ,+ we have (a) H T ( Xw ) = w Z∨ S,µ,+ and H( Xw ) = w Z∨ µ,+ as graded k-algebras, (b) IH T ( Xx ) = w B∨ S,µ,+ (x) as graded w Z∨ S,µ,+ -modules, (c) IH( Xx ) = w B∨ µ,+ (x) as graded w Z∨ µ,+ -modules. Proof. Part (a) follows from [20], parts (b), (c) from [7, thm. 1.5, 1.6, 1.8].

Remark 4 . 45 .

 445 The counterpart of Proposition 4.43 for w Z∨ S,µ,-and w B∨ S,µ,-(x) is proved in Proposition A.3 below.

  see Remark 4.42. Hence, the map f can be regarded as an element in Endz Z ∨ φ,+ z B ∨ φ,+ (xw µ ) . Now, by part (b) and Propositions 2.4(b), 4.33(b), (c), we have

5. Proof of the main theorem 5 . 1 .

 51 The regular case. Fix integers d, e > 0 and fix µ ∈ P. Assume that the weights o µ,-, o φ,-have the level -e -N and -d -N respectively.Let w ∈ I µ,+ and put u = w -1 , v = w -1 -and z = w -. Note that u ∈ I µ φ,+ , v ∈ I µ φ,-and z ∈ I µ,-. The first step is to compare the algebras w A µ,+ = Endw Oµ,+ ( w P µ,+ ) op and v Āµ φ,-= Extv O µ φ,-( v L µ φ,-) op , and, then, the algebras w Āµ,+ = Extw Oµ,+ ( w L µ,+ ) op and v A µ φ,-= Endv O µ φ,-( v P µ φ,-) op . More precisely, we prove the following.

Claim 5 . 6 .

 56 We have the following commutative diagramVS 0 / / w Z ∆ S0,µ,+ ψS 0 / / w O ∆ S0,µ,+ .

  x by definition of the natural grading of w P (x•o µ,+ ), and because Definition 4.28 yields the chain of isomorphisms w PS (x • o µ,+ ) = ψS ( w BS,µ,+ (x)) = Endw ZS,µ,+ w BS,µ,+ op 1 x = w Āµ,+ 1 x .

A

  µ,+ = v Āµ φ,-and w A φ,+ = v Āφ,in Proposition 5.1 yield a commutative square wν w A µ,+ (5.1)

3 . 6 . 2 .

 362 It is canonically equivalent to a block of a truncated category O of the affine Lie algebra associated with sl(N ), because sl(N ) differs from g by a central element. Hence, all the results above can be applied to the category O ν µ,-. We'll write O ν µ,-e = O ν µ,-and O ν -e = µ∈C e N O ν µ,-e . The classes [V ν (λ e )] with λ ∈ P ν form a C-basis of the complexified Grothendieck group [O ν -e ]. Composing the Koszul equivalence in Theorem 3.12 and the tilting equivalence, we get an equivalence of triangulated categories K= E((•) ⋄ ) : D b (O ν µ,-e ) → D b (O µ ν,-ℓ ), which induces a C-linear isomorphism K : [O ν µ,-e ] → [O µ ν,-ℓ ].The level-rank duality. In thist section, we'll relate the map K above to the level-rank duality. Consider the Lie algebra sl(e). We identify the set of weights of sl(e) with C e /C1 e . Thus, elements of C e can be viewed as weights of sl(e), or equivalently, as level 0 classical affine weights of the affine Kac-Moody algebra sl(e). Let {ε i ; i ∈ [1, e]} be the canonical basis of C e . For each λ ∈ P and each k ∈ [1, N ], we decompose the k-th entry of λ + ρ as the sumλ k + ρ k = i k + e r k with i k ∈ [1,e] and r k ∈ Z. Then, we can view the sum wt e (λ) = N k=1 ε i k + ( N k=1 r k ) δ as a level 0 affine weight of sl(e), and the sum wt e (λ) = N k=1 ε i k as a weight of sl(e). The vector spaces V e = C e ⊗ C[z -1 , z] carries an obvious level zero action of sl(e). It induces an action of sl(e) on the space ν (V e ) = ℓ p=1 νp (V e ) of tensor product of wedge powers. Write v i+er = ε i ⊗ z r ∈ V e for each i ∈ [1, e], r ∈ Z. Note that a tuple a ∈ Z N of the form a = (a 1,1 , a 1,2 , . . . , a ℓ,ν ℓ ) belongs to P ν + ρ if and only if we have a p,1 > a p,2 > • • • > a p,νp for each p ∈ [1, ℓ]. Set ∧ ν (a) = ℓ p=1 (v ap,1 ∧ v ap,2 ∧ • • • ∧ v ap,ν p ).

  cohomology of an object F ∈ D b T (X) is the graded S-module H(F ) = i∈Z Hom D b T (X) k X , F [i] . For each E, F ∈ D b T (X) we have an object RHom(E, F ) in D b (X T ) such that Ext D b T (X) (E, F ) = H(RHom(E, F )). If Y ⊂ X is a T -equivariant embedding, let Ȳ be its closure in X. Let IC T (Y ) be the minimal extension of k Y [dim Y ] (the shifted equivariant constant sheaf).It is a perverse sheaf on X supported on Ȳ .

  (b) Ext D b (X) IC( Xx ), IC( Xy ) = k Ext D b T (X) IC T ( Xx ), IC T ( Xy ) , (c) Ext D b T (X) IC T ( Xx ), IC T ( Xy ) = Hom HT (X) IH T ( Xx ), IH T ( Xy ) , (d) Ext D b (X) IC( Xx ), IC( Xy ) = Hom H(X) IH( Xx ), IH( Xy ) ,(e) IH( Xx ) vanishes in degrees ≡ l(x) modulo 2 and IH( Xx ) = kIH T ( Xx ).

H

  p+q RHom j * z IC( Xx ), j ! z IC( Xy ) ⇒ Ext p+q D b (X) IC( Xx ), IC( Xy ) , where z runs over the set of elements with l(z) = p. By (A.1), (A.2) the spectral sequence degenerates at E 1 , and we get dim Ext i D b (X) IC( Xx ), IC( Xy ) = z,p,q

  For s = 1, 2 and p ∈ N, there are integers d s and d s,y,p such that j * y F s = p k Xy [d s -2p] ⊕ds,y,p , j ! y F s = q k Xy [2l(y)d s + 2q] ds,y,q . (A.3)

  Proposition 4.36 is well-defined for any z ∈ I max

		ν	. By
	Proposition 4.36(d), (e), we have		
	I µ ν,± = {x ; xw ν ∈ I µ φ,± , x ∈ I ν,± } = {x ; xw ν ∈ I µ φ,± ∩ I ν,∓ }.		
	Part (d) is standard. More precisely, by [8, prop. 2.7.5], if x ∈ I µ ν,+ then we have
	W µ ∩x(W ν ) = ∅ and x ∈ (I min µ ) -1 ∩I min ν from which we deduce that w µ xw ν ∈ I µ . Then, we also have w µ x ∈ (I max µ ν,-. The lemma is proved.	) -1 ∩I min ν	,

  lem. 3.2] and [15, lem. 4.8]. Definition 4.6. Assume that M ∈ FR is generated by global sections. Then, (a) M is flabby if Im(ρ x,dx ) = M ∂x for each x ∈ I, (b) M is ∆-filtered if it is flabby and if the graded ZR -module M [x]is a free graded R-module for each x ∈ I. Since ∆-filtered objects are generated by global sections, from the discussion above we deduce that L, Γ are mutually inverse equivalences of graded R-categories between F∆

	Now, we can define the following categories.
	Definition 4.7. Let F∆ R, be the full subcategory of FR consisting of the ∆-filtered objects. Let Z∆ R, be the essential image of F∆ R, by Γ.
	We may abbreviate F∆

R = F∆ R, and Z∆ R = Z∆ R, when the order is clear from the context. The categories F∆ R and Z∆ R are Krull-Schmidt graded R-categories. R and Z∆ R . For each M ∈ Z∆ R we write

  h is the canonical map, -BR (x) ∂y = Im(ρ ≺y,dy ) ⊂ BR (x) dy , -BR (x) y is the projective cover of the graded R-module BR (x) ∂y , -ρ y,h is the composition of the projective cover map BR (x) y → BR (x) ∂y with the obvious projection BR (x) dy → BR (x) h .

Proposition 4.15. An F-projective object in ZR is a direct sum of objects of the form BR (x) j with x ∈ I and j ∈ Z.

Proof. See

[22, prop. 3.9]

.

Next, following [15, sec. 4.5], we introduce the following.

  an isomorphism, see[22, sec. 2.7, 2.18, 3.15]. Further, the base change commutes with the functor M → M [x] , it preserves the flabby sheaves, the Verma sheaves, the F-projective ones and it yields an exact and faithful functorZ ∆ R → Z ∆ R ′ , see[22, sec. 3.15]. Assume now that R is the localization of S with respect to some multiplicative set. Then, we define

  w O R,µ,-is Hom finite. Thus we must check that w O R,µ,-has a projective generator and that the projective modules are ∆-filtered. Both statements follow from [13, thm. 2.7]. Next, we consider the category w O R,µ,+ . Once again it is enough to check that w O R,µ,+ has a projective generator and that the projective modules are ∆filtered. By [13, thm. 2.7], a simple module L(x • o µ,+ ) in O R,µ,+ has a projective cover P R (x • o µ,+ ). Note that the deformed category O in loc. cit. is indeed a subcategory of O R,µ,+ containing all finitely generated modules. Since P R (x • o µ,+

  Zµ,x = S and w BS,µ,± (x) x = S ±l(x) . Since ( z Zφ,x ) y = S for all y ∈ xW µ , we deduce that θµ,φ ( w BS,µ,+ (x)) xwµ = S l(x) and θµ,φ ( w BS,µ,-(x)) x = S -l(x) .Remark 4.42. Now, we consider the case R = k. Recall the algebras w Z µ , w Zµ and the categories w Z µ , w

.3], we have θµ,φ ( w BS,µ,± (x)) xWµ = z Zφ,xWµ ⊗wZ µ,x w BS,µ,± (x) x = z Zφ,xWµ ±l(x) , because w

  Let us identify w A µ,+ = w A µ,+ via (5.1). We must prove the following.

	6, we have v Āµ,⋄ φ,-= Āµ,-. By Corollary A.6, we have z Āµ,-= Cµ,+ . Next, we consider the grading on z Tµ,+ ) op . Endw Aµ,+ ( w k Endw ZS,µ,+ w CS,µ,+ = Endw Zµ,+ w
	Claim 5.5. There is a graded k-algebra isomorphism
		Endw Aµ,+ ( w	Tµ,+ ) = Endw Zµ,+	w	Cµ,+ .
	To do that, we'll need some new material. Consider the graded categories given by w ĀS,µ,+ -gmod . Since we have w Tµ,+ ∈ v Āµ φ,--gmod and w Ōµ,+ = w Āµ,+ -gmod and w Āµ,+ = v Āµ φ,-by Corol-ŌS,µ,+ = lary 4.49, we may view w w Tµ,+ as an object of w Ōµ,+ . We have an isomorphism of graded S-algebras w w BS,µ,+ op . ĀS,µ,+ = Endw ZS,µ,+ Consider the pair of adjoint functors ( VS , ψS ) between w ŌS,µ,+ and w ZS,µ,+ -gmod
	given by				
	VS = w	BS,µ,+ ⊗w ĀS,µ,+ • : w	ŌS,µ,+ → w	ZS,µ,+ -gmod,
	ψS = Homw ZS,µ,+	w	BS,µ,+ , • : w	ZS,µ,+ -gmod → w	ŌS,µ,+ .

  The specialization gives a graded ring homomorphism k Endw AS,µ,+ ( w TS,µ,+ ) → Endw Aµ,+ (k w TS,µ,+ ). Since ε( w TS,µ,+ ) = w T S0,µ,+ , forgetting the grading it is taken to the obvious map k Endw OS 0 ,µ,+ ( w T S0,µ,+ ) → Endw Oµ,+ (k w T S0,µ,+ ). The latter is an isomorphism by Proposition 2.4(b). Since k w TS,µ,+ = w Tµ,+ , we deduce that k Endw AS,µ,+ ( w TS,µ,+ ) = Endw Aµ,+ ( w Tµ,+ ). • o µ,+ ) where w T (x • o µ,+ ) is the natural graded lift of w T (x • o µ,+ ). Since w T (x • o µ,+ ) is indecomposable in w O µ,+ , it admits at most one graded lift in w

	Since we have k Endw ZS,µ,+	w	CS,µ,+ = Endw Zµ	w	Cµ,+ and Endw ZS,µ,+	w	CS,µ,+ =
	Endw AS,µ,+	w	TS,µ,+ , this implies Claim 5.5.
	Now, we prove Claim 5.7. The grading of w way. First, we have a decomposition w Tµ,+ = x Tµ,+ is characterized in the following w T (x
								ZS,µ,+	w	CS,µ,+ →
	Endw AS,µ,+	w	TS,µ,+ .				
	Finally, since the functor ψ S0 is exact and ε is faithfully exact by Section 4.2, we deduce from claim 5.6 that ψS is exact on w Z∆ S,µ,+ . Now, by Definition 4.28, we have w Āµ,+ = k w ĀS,µ,+ . Thus, the specialization at k gives the module k w TS,µ,+ in w Ōµ,+ = w Āµ,+ -gmod .
	Claim 5.7. We have k w	TS,µ,+ = w	Tµ,+ .

  is free over S 0 , we deduce that VS (x • o µ,+ ) is free over S by Section 4.2. Therefore, the inclusion VS (x• o µ,+ ) ⊂ w TS (x • o µ,+ ) gives an inclusion k VS (x • o µ,+ ) ⊂ k w TS (x • o µ,+) which is homogeneous of degree 0. Hence, to prove Claim 5.7 we are reduced to check that we have V (x• o µ,+ ) = k VS (x • o µ,+ ) in wŌµ,+ . Note that V (x • o µ,+ ) and k VS (x • o µ,+ ) are both graded lifts of the Verma module V (x• o µ,+ ), which is indecomposable. Thus they coincide up to a grading shift. Āµ φ,-is Koszul, we can consider the natural graded lift w P (x• o µ,+ ) of w P (x • o µ,+ ) in wŌµ,+ . By definition of the natural grading, we have a surjection w

	To identify this shift, recall that by Lemma 4.24 we have a surjection w VS (x) l(x) . We define w PS (x • o µ,+ ) = ψS ( w BS,µ,+ (x)). Since ψS is exact, we have BS,µ,+ (x) → a surjection w PS (x • o µ,+ ) → VS (x • o µ,+ ).
	Now, since v

  .11) By Proposition 4.36(g), the module T µ,φ ( wν w P µ,+ ) is a direct summand of z P φ,+ . By Proposition 4.41(f ) and Remark 4.42, the sheaf θ µ,φ ( w B µ,+ ) is a direct summand of w B φ,+ . Thus, we have the following diagram Endz Z φ,+ ( z B φ,+ ) op . Note that the horizontal maps are invertible by Corollary 4.50. This diagram is commutative by Remark 4.42, see also Proposition 4.41(a). Next, by Proposition 4.48(c) and Corollary 4.49, we have a commutative diagram Endwνw Zµ,+ ( wν w B µ,+ ) opFinally, the horizontal maps in(5.11) are equal to the composition of H and V k .

	wν w A µ,+	V k	Endwνw Zµ,+ ( wν w B µ,+ ) op
	T µ,φ		θ µ,φ
	z A φ,+	V k	
			H	φ,-v Āµ
		θ µ,φ		i
	Endz Z φ,+ ( z B φ,+ ) op	v	Āφ,-.

H

Thus, the graded k-algebra v Āµ φ,-is also Koszul. Since w A µ,+ = v Āµ φ,-as a kalgebra, this implies that the k-algebra w A µ,+ has a Koszul grading.

Applying Lemma 2.1 once again, we get w A ! µ,+ = Extw Oµ,+ ( w L µ,+ ) op = w Āµ,+ .

(5.3)

In particular, the graded k-algebra w Āµ,+ is also Koszul. Finally, using (5.2), (5.1) and (5.3) we get k-algebra isomorphisms v A µ φ,-= v Āµ,! φ,-= w A ! µ,+ = w Āµ,+ .

They identify the idempotent 1 y ∈ v A µ φ,-with the idempotent 1 x ∈ w Āµ,+ .

Remark 5.2. The Koszul grading on v A µ φ,-can also be obtained using mixed perverse sheaves on the ind-scheme X ′ as in [5, thm. 4.5.4], [START_REF] Achar | Koszul duality and mixed Hodge modules[END_REF]. Note that there is no analogue of [5, lem. 3.9.2] in our situation, because v R φ,-is not Koszul self-dual.

The second step consists of comparing the k-algebras z Āµ,-= Extz Oµ,-( z L µ,-) op , u A µ φ,+ = Endu O µ φ,+ ( u P µ φ,+ ) op and the k-algebras z A µ,-= Endz Oµ,+ ( w P µ,-) op , u Āµ φ,+ = Extu O µ φ,+ ( u L µ φ,+ ) op . We can not argue as in the previous proposition, because we have no analogue of the localization functor Φ in Proposition 4.47 for positive levels. Hence, we have no analogue of Proposition 4.48 and Corollary 4.49.

To remedy this, we'll use the technic of standard Koszul duality. To do so, we need the following crucial result.

Lemma 5.3. The quasi-hereditary k-algebra w A µ,+ has a balanced grading. Now we can prove the second main result of this section. + then y ∈ u I µ φ,+ . We have a k-algebra isomorphism z

Āµ,-= u A µ φ,+ such that 1 x → 1 y for each x ∈ z I µ,-, and a k-algebra isomorphism z A µ,-= u Āµ φ,+ such that 1 x → 1 y for each x ∈ z I µ,-. The graded k-algebras u Āµ φ,+ and z Āµ,are Koszul and are Koszul dual to each other. Further, we have 1 x = 1 ! y for each x ∈ z I µ,-.

Proof. By Proposition 3.9, the Ringel dual of w A µ,+ is w A ⋄ µ,+ = z A µ,-. Thus, since the k-algebra w A µ,+ has a balanced grading by Lemma 5.3, we deduce that the k-algebra z A µ,-has a Koszul grading.

We equip z A µ,-with this grading. Then, Lemma 2.1 implies that

Hence, the graded k-algebra z Āµ,is Koszul and balanced. Therefore, [32, thm. 1], Proposition 3.9 and (5.4) yield a k-algebra isomorphism z Āµ,-= z A ! µ,-= (( z A ⋄ µ,-) ! ) ⋄ = ( w A ! µ,+ ) ⋄ . Hence, using (5.3) and Propositions 5.1, 3.9, we get a k-algebra isomorphism z Āµ,-= w Ā⋄ µ,+ = v A µ,⋄ φ,-= u A µ φ,+ such that 1 x → 1 y . So, the k-algebra u A µ φ,+ has a Koszul grading which is balanced. We equip u A µ φ,+ with this grading. Lemma 2.1 implies that

Hence, the graded k-algebra u Āµ φ,+ is Koszul and balanced.

Proof. First, note that the translation functor T φ,ν 

are Noetherian, any finitely generated module has a finite presentation. Thus, by the five lemma, the obvious morphism of functors 

Ōφ,be the full subcategory of the projective objects. We 

, where K b denotes the bounded homotopy category.

Since v Ōproj ν,-and v Ōproj φ,-have finite global dimensions, there are canonical equivalences

). Thus, we can view Tφ,ν as a functor of triangulated categories

By Proposition 4.36(b), the functor T φ,ν gives an exact functor v O proj φ,-→ v O proj ν,-. By Remark 4.42, the functor Tφ,ν coincides with T φ,ν when forgetting the grading. The functor T φ,ν yields a functor of triangulated categories

) which is t-exact for the standard t-structures and which coincides with T φ,ν when forgetting the grading. Hence, the functor Tφ,ν is also t-exact. Thus, it gives an exact functor Tφ,ν : v Ōφ,-→ v Ōν,which coincides with T φ,ν when forgetting the grading. Now, we concentrate on the equality Tφ,ν ( Lφ ) = Lν . Since Tφ,ν coincides with T φ,ν when forgetting the grading, by Proposition 4.36(d), for each x ∈ w I ν,-there is an integer j such that Tφ,ν ( L(xw ν •o φ,-)) = L(x•o ν,-) j . We must check that j = 0.

Let Tν,φ be the left adjoint to Tφ,ν , see Remark By definition of T ν,φ and the unicity of the left adjoint, the functor Tν,φ coincides with T ν,φ when forgetting the grading. Now, we prove the following lemma which is dual to Lemma 5.9.

Lemma 5.12. Assume that v ∈ I ν,-and d + N > f. Then, the functor T φ,ν :

Its kernel contains the two-sided ideal generated by

Proof. First, note that, since v ∈ I ν,-and d

-is injective on extensions by Section 3.5. So we must prove that the counit yields a surjective map

Let us consider the graded analogue of this statement. Set Θ = Tν,φ • Tφ,ν , where Tν,φ , Tφ,ν are as in Lemma 5.10 and Remark 5.11. We have

Thus we must prove that for each i, j the counit η : Θ → 1 yields a surjective map Āφ,+ -module. Thus Θ( Lφ ) ℓ is a quotient of Θ( Lφ ) which is killed by the radical of w Āφ,+ . We deduce that Θ( Lφ ) ℓ ⊂ top( Θ( Lφ )). Next, we claim that for any simple graded w Āφ,+ -module L such that Tφ,ν ( L) = 0, the map η( L) : Θ( L) → L yields an isomorphism top( Θ( L)) → L. Indeed, η( L) is surjective because it is non zero, and for any simple quotient Θ( L) → L′ we have 0 = Homv Ōφ,-( Θ( L), L′ ) = Homv Ōν ( Tφ,ν ( L), Tφ,ν ( L′ )).

Next, consider the sl(e) × sl(ℓ)-module

Let ν = ℓ p=1 ν p ε p , viewed as a weight of sl(ℓ). The weight subspace of N (V e,ℓ ) of weight μ for the sl(e)-action is isomorphic to the sl(ℓ)-module µ (V ℓ ), and the weight subspace of weight ν for the sl(ℓ)-action is isomorphic to the sl(e)-module ν (V e ). Since ν (V e ) µ and µ (V ℓ ) ν are both canonically identified with the weight (μ, ν)

subspace N (V e,ℓ ) µ,ν of N (V e,ℓ ) for the sl(e) × sl(ℓ)-action, we have a canonical linear isomorphism LR :

More precisely, we have an isomor-

k , and the pair (p, k) runs from (1, 1) to (ℓ, ν ℓ ) in lexicographic order. Next, there is an obvious isomorphism of sl(e) × sl(ℓ)-modules τ : N (V e,ℓ ) → N (V ℓ,e ) which exchanges the vector spaces C e and C ℓ . Then, we define LR = (f ν,µ ) -1 • τ • f µ,ν . We'll call LR the level-rank duality.

Our next result compares the isomorphisms LR and K. To do so, we consider the C-linear isomorphism θ :

µ,-e ] onto the weight subspace ν (V e ) µ . We can now prove the following. Proposition 6.1. We have a commutative square

Proof. Let triv µ , sgn µ be the idempotents of the C-algebra of the parabolic subgroup W µ ⊂ W associated with the trivial representation and the signature.

For each tuple a ∈ Z N we write v(a)

be the subspace of (V e ) ⊗N of weight μ relatively to the sl(e)-action. The element v(a) of (V e ) ⊗N belongs to (V e ) ⊗N µ if and only if a ∈ W • e 1 µ . Therefore, the assignment x

µ,-if and only if the N -tuple x• e 1 µ lies in P ν +ρ. We deduce that the isomorphism above factors to a C-linear isomorphism

this finishes the proof of the proposition.

The claim is a direct consequence of the definition of the map LR. There is a bijection between the set of irreducible representations of Γ d and P ℓ d , see e.g. [39, sec. 6].

We set h = 1/e and h p = ν p+1 /ep/ℓ for each p ∈ Z/ℓZ. Let H ν (d) be the CRDAHA of Γ d with parameters h and (h p ). It is the quotient of the smash product of CΓ d and the tensor algebra of (C 2 ) ⊕d by the relations

The parameters are such that k = -h and -e {d} = µ O ν µ {d}, where µ = (µ 1 , . . . , µ e ) is identified with μ = e i=1 µ i ε i and it runs over the set of all integral weights of sl(e). By [START_REF] Lyle | Blocks of cyclotomic Hecke algebras[END_REF], these blocks are determined by the following combinatorial rule.

For each λ ∈ P ℓ d , an (i, ν)-node in λ is a triple (x, y, p) with x, y > 0 and y (λ p ) x such that yx + ν p = i modulo e. Let n ν i (λ) be the number of (i, ν)nodes in λ. Then, we have ∆ ν e (λ) ∈ O ν µ {d} if and only if λ ∈ Λ ν µ {d}, where

The expression above should be regarded as an equality of integral weights of sl(e).

More precisely, the symbols ω 1 , ω 2 , . . . , ω e-1 and α 1 , α 2 , . . . , α e-1 are respectively the fundamental weights and the simple roots of sl(e), and the subscript ν p in (6.1) should be viewed as the residue class of ν p in [1, e). See [42, lem. 5.16] for details. By [40, rem. 4.5], the condition (6.1) is equivalent to

Note that an integral weight of sl(e) can be represented by an element of Z e (k) if and only if it lies in ω k + eZΠ. Thus, since ν ∈ Z ℓ (N ), if Λ ν µ {d} = ∅ then µ can be represented by an e-tuple in Z e (N ). Indeed, it is not difficult to check that if 

where the partition λ p is viewed as an element in Z l(λp) .

Consider the ν-dominant weight ρ ν = (ν 1 , ν 1 -1, . . . , 1, ν 2 , ν 2 -1, . . . , ν ℓ , . . . 1) ∈ P ν . For each λ ∈ P ν , we abbreviate V ν e (λ) = V ν ((λ + ρ νρ) e ) and L ν e (λ) = L ν ((λ + ρ νρ) e ).

Following [START_REF] Varagnolo | Cyclotomic double affine Hecke algebras and affine parabolic category O[END_REF], let A ν -e {d} ⊂ O ν -e be the Serre subcategory consisting of the finite length g-modules of level -e -N whose constituents belong to the set {L ν e (λ) ; λ ∈ P ν d }. By [START_REF] Varagnolo | Cyclotomic double affine Hecke algebras and affine parabolic category O[END_REF], it is a highest weight category with the set of standard modules ∆(A ν -e {d}) = {V ν e (λ) ; λ ∈ P ν d }. We have the following conjecture [44, . By Proposition 6.1 and the definition of the Schur category, we must compute the element LR(∧ ν (a)), for each a = λ + ρ ν such that λ ∈ P ν and ∧ ν (a) ∈ ν (V e ) µ . First, we consider the C-vector space LR ν (V e ) µ . The map f µ,ν takes the monomial ∧ ν (a), with a = (a p,k ) ∈ P ν +ρ, to the monomial (p,k) (v i p,k ⊗v p ⊗z r p,k ) such that a p,k = i p,k + e r p,k . The weight subspace ν (V e ) µ is spanned by the monomials ∧ ν (a) as above such that

spanned by all the monomials

The subspace θ [A ν µ,-e ] of ν (V e ) µ is spanned by the monomials ∧ ν (a) such that there is an ℓ-partition λ ∈ Λ ν µ with a p,k = λ p,k + ν p + 1k for each p, k. Here λ p,k is the k-th part of the pth partition λ p of λ. Thus, the map f µ,ν takes θ [A ν µ,-e ] to the subspace of N (V e,ℓ ) µ,ν spanned by all the monomials ∧ N (x) as above such that

Now, to finish the proof of the theorem, it is enough to observe that θ([A ν -e [a]]) is the sum, over all affine weights μ ∈ P + aδ, of the intersection of of θ([A ν

-e ]) with the subspace of ν (V e ) of weight μ for the sl(e)-action.

Consider the diagram of graded k-vector spaces given by

In the right side sequence, the Hom's are the k-spaces of graded module homomorphisms over the graded k-algebras H(X <x ), H(X x ), H(X x ) respectively, which are computed in the category of non-graded modules. The horizontal maps are given by taking hyper-cohomology. We'll prove that the middle map is invertible by induction on x. This proves part (d). The short exact sequence associated with the left side is exact by (A.3), see e.g., [17, lem. 5.3] and the references there. The lower map is obviously invertible, because j * F s are constant sheaves on X x for each s = 1, 2. The complexes i * F s and i ! F s on X <x satisfy again (A.3) for any stratum X y ⊂ X <x . Thus, by induction, we may assume that the upper map is invertible. Then, to prove that the middle map is invertible it is enough to check that a is injective and that Im(a) = Ker(b).

By (A.3), the distinguished triangles

where H c (j * F s ) = H(j ! j * F s ) is the cohomology with compact supports of j * F s . Thus, the map a is injective, because a(φ) = α 2 • φ • δ 1 for each φ, α 2 is injective and δ 1 is surjective.

Next, fix an element φ ∈ Ker(b). Since b(φ) • β 1 = β 2 • φ by construction and β 1 is surjective, we have β 2 • φ = 0. Hence, there is an H(X x )-linear map

To do that, set d = dim X x . Since X x ≃ k d , the fundamental class ω of X x belongs to H 2d c (X x ). The cup product with ω restricts to 0 on X <x , because there is an exact sequence 0 → H c (X x ) → H(X x ) → H(X <x ) → 0. Thus, it yields a map g s :

Part (c) is proved as part (d), using equivariant cohomology. Finally, we prove (e). By parity vanishing, the spectral sequence

This yields the first claim, as in part (a). The second one follows from the first one, because the spectral sequence E p,q 2 = S p ⊗ IH q ( Xx ) ⇒ IH p+q ( Xx ) degenerates at E 2 .

A.2. Equivariant perverse sheaves on infinite dimensional varieties. This section is a reminder on equivariant perverse sheaves on infinite dimensional varieties, to be used in the next section.

Let X be an essentially smooth T -scheme, in the sense of [26, sec. 1.6]. In [26, sec. 2] the derived category of constructible complexes on X and perverse sheaves on X (for the analytic topology) are defined. Note that the convention for perverse sheaves here differs from the convention for perverse sheaves on varieties (as in Section A.1

is perverse for a smooth variety Y . We'll use the same terminology as in loc. cit. and we formulate our results in the T -equivariant setting. The equivariant version of the constructions in [START_REF] Kashiwara | Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras, II, in "Operator algebras, unitary representations, enveloping algebras, and invariant theory[END_REF] is left to the reader.

Let D T (X) be the T -equivariant derived category on X. If X, Y are essentially smooth and Y → X is a T -equivariant embedding of finite presentation, let IC T (Y ) be the minimal extension of the equivariant constant shifted sheaf k

Recall that for a morphism f : Z → X of essentially smooth T -schemes there is a functor f * : D T (X) → D T (Z), see [26, sec. 3.7]. If f is the inclusion of a T -stable subscheme we write

Now, assume that X is the limit of a projective system of smooth schemes

as in [26, 

A.3. Moment graphs and the Kashiwara flag manifold. In this section we consider the localization on Kashiwara's flag manifold. The main motivation is Corollary A.6 below that we used in the rest of text, in particular in Corollary 4.50 to prove that the functor V k is fully-faithful on projectives in w O ∆ µ,-. Let P µ be the parabolic subgroup corresponding to the Lie algebra p µ . Let X = X µ = G/P µ be the Kashiwara partial flag manifold associated with g and p µ , see [START_REF] Kashiwara | The flag manifold of Kac-Moody Lie algebra[END_REF]. Here G is the schematic analogue of G(k((t))) defined in [START_REF] Kashiwara | The flag manifold of Kac-Moody Lie algebra[END_REF], which has a locally free right action of the group-k-scheme P µ and a locally free left action of the group-k-scheme B -, the Borel subgroup opposit to B. Recall that X is an essentially smooth, not quasi-compact, T -scheme, which is covered by T -stable quasi-compact open subsets isomorphic to

Let e X = P µ /P µ be the origin of X. For each x ∈ I µ,+ , we set X x = B -xe X = B -xP µ /P µ . Note that X x is a locally closed T -stable subscheme of X of codimension l(x) which is isomorphic to A ∞ . Consider the T -stable subschemes

We call X x a finite-codimensional affine Schubert variety. We call X x an admissible open set.

If Ω is an admissible open set, there are canonical isomorphisms

We can view Ω as the limit of a projective system of smooth schemes (Ω n ) as in [26, lem. 4.4.3]. So, the projection p n : Ω → Ω n is a good quotient by a congruence subgroup B - n of B -. Let n be large enough. Then, we have

which yields an isomorphism

For Ω = X w and x w we abbreviate X [x,w] = X x ∩ X w and X ,w] ). Since p n is a good quotient by B - n and since X x is B - n -stable, we have an algebraic stratification X w n = x w X x n , where X x n is an affine space whose Zarisky closure is X (c) There is a finite number of one-dimensional orbits. The closure of each of them is smooth. Two fixed points are joined by a one-dimensional orbit if and only if the corresponding points in w I µ,+ are joined by an edge in w G µ .

Proof. The T -variety X w n is smooth by [START_REF] Kashiwara | Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras, II, in "Operator algebras, unitary representations, enveloping algebras, and invariant theory[END_REF], because X w is smooth and p n is a B - n -torsor for n large enough. We claim that it is also quasi-projective. Let X 0 be the stack of G-bundles on P 1 . We may assume that P µ is maximal parabolic. Then, by the Drinfeld-Simpson theorem, a k-point of X is the same as a k-point of X 0 with a trivialization of its pullback to Spec(k[[t]]). Here t is regarded as a local coordinate at ∞ ∈ P 1 and we identify B -with the Iwahori subgroup in G(k[[t]]). We may choose B - n to be the kernel of the restriction

n is the same as a k-point of X 0 with a trivialization of its pullback to Spec(k[t]/t n ). We'll prove that there is an increasing system of open subsets U m ⊂ X 0 such that for each m and for n ≫ 0 the fiber product X n × X0 U m is representable by a quasi-projective variety. This implies our claim.

Choosing a faithful representation G ⊂ SL r we can assume that G = SL r . So a k-point of X 0 is the same as a rank r vector bundle on P 1 of degree 0. For an integer m > 0 let U m (k) be the set of V in X 0 (k) with H 1 (P 1 , V ⊗ O(m)) = 0 which are generated by global sections. It is the set of k-points of an open substack U m of X 0 . Note that U m ⊂ U m+1 and X 0 = m U m . Now, the set Y m (k) of pairs (V, b) where V ∈ U m (k) and b is a basis of H 0 (P 1 , V ⊗ O(m)) is the set of k-points of a quasi-projective variety Y m by the Grothendieck theory of Quot-schemes. Further, there is a canonical GL r(m+1) -action on Y m such that the morphism Y m → U m , (V, b) → V is a GL r(m+1) -bundle. Now, for n ≫ 0 the fiber product X n × X0 U m is representable by a quasi-projective variety, see e.g., [45, thm. 5.0.14].

Next, note that X w n is recovered by the open subsets V x n = p n (V x ) with x w. Each of them contains a unique fixed point under the T -action and finitely many one-dimensional orbits.

Finally, the parity vanishing holds : since IC(X [x,w] ) = p * n IC(X Proof. Assuming n to be large enough we may assume that H T (X w ) = H T (X w n ), IH T (X [x,w] ) = IH T (X ) vanishes in odd degree by Proposition A.1 and Lemma A.2. Thus, applying [START_REF] Braden | From moment graphs to intersection cohomology[END_REF] to X Proposition A.5. For each x, y w we have (a) i∈Z t i dim k Ext i DT (X w ) IC T (X [x,w] ), IC T (X [y,w] ) = z Q µ (t) x,z Q µ (t) y,z , (b) Ext DT (X w ) IC T (X [x,w] ), IC T (X [y,w] ) = Hom HT (X w ) IH T (X [x,w] ), IH T (X [y,w] ) , (c) Ext D(X w ) IC(X [x,w] ), IC(X [y,w] ) = Hom H(X w ) IH(X [x,w] ), IH(X [y,w] ) , (d) Ext D(X w ) IC(X [x,w] ), IC(X [y,w] ) = k Ext DT (X w ) IC T (X [x,w] ), IC T (X [y,w] ) .

Proof. Apply Proposition A.1 and Lemma A.2.

Finally, we obtain the following. Proof. Apply Propositions A.3, A.5.