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KOSZUL DUALITY OF AFFINE KAC-MOODY ALGEBRAS AND

CYCLOTOMIC RATIONAL DOUBLE AFFINE HECKE

ALGEBRAS

P. SHAN, M. VARAGNOLO, E. VASSEROT

Abstract. We give a proof of the parabolic/singular Koszul duality for the
category O of affine Kac-Moody algebras. The main new tool is a relation
between moment graphs and finite codimensional affine Schubert varieties.
We apply this duality to q-Schur algebras and to cyclotomic rational double
affine Hecke algebras.
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1. Introduction

The purpose of this paper is to give a proof of the parabolic/singular Koszul
duality for the category O of affine Kac-Moody algebras. The main motivation for
this is the conjecture in [41] relating the parabolic affine category O and the category
O of cyclotomic rational double affine Hecke algebras (CRDAHA for short).

They are several possible approaches to Koszul duality for affine Kac-Moody
algebras. In [6], a geometric analogue of the composition of the Koszul and the
Ringel duality is given, which involves Whittaker sheaves on the affine flag variety.
Our principal motivation comes from CRDAHA’s. For this, we need to prove Koszul
duality for the category O itself reather than for its geometric analogues.

One difficulty of the Kac-Moody case comes from the fact that, at a positive level,
the category O has no tilting module, while at a negative level it has no projective
module. One way to overcome this is to use a different category of modules than
the usual category O, as the Whittaker category in loc. cit. or a category of linear
complexes as in [31]. Since we want a version of Koszul duality which we can
apply to q-Schur algebras and CRDAHA’s, we use a different point of view. Under
truncation the affine, parabolic, singular category O at a non-critical level yields
a finite highest-weight category which contains both tilting and projective objects.
We prove that these highest weight categories are Koszul and are Koszul dual to
each other.

Another difficulty comes from the absence of a localization theorem (from the
category O to perverse sheaves) at the positive level. To overcome this we use
standard Koszul duality. See Section 2.6 below for details.

Our general argument is similar to the one in [5] : we use the affine analogue
of the Soergel functor introduced in [14]. It uses the deformed category O, which
is a highest weight category over a localization of a polynomial ring. It also uses
some category of sheaves over a moment graph. Note that the affine category O is
related to two different types of geometry. In negative level it is related to the affine
flag ind-scheme and to finite dimensional affine Schubert varieties. In positive level
it is related to Kashiwara’s affine flag manifold and to finite codimensional affine
Schubert varieties. An important new tool in our work is a relation between sheaves
over some moment graph and equivariant perverse sheaves on finite codimensional
affine Schubert varieties. This relation is of independent interest.

Next, we apply this Koszul duality to q-Schur algebras. The Kazhdan-Lusztig
equivalence [27] implies that the module category of the q-Schur algebra is equiv-
alent to a highest weight subcategory of the affine category O of GLn at a neg-
ative level. Thus, our result implies that the q-Schur-algebra is Koszul (and also
standard Koszul), see Remark B.61. To our knowledge, this was not proved so
far. There are different possible approachs for proving that the q-Schur algebra is
Koszul. Some are completely algebraic, see e.g., [33]. Some use analogues of the
Bezrukavnikov-Mirkovic modular localization theorem, see e.g., [34]. Our approach
has the advantage that it yields an explicit description of the Koszul dual of the
q-Schur algebra.

Finally, we also apply this duality to CRDAHA’s. More precisely, in [41] some
higher analogue of the q-Schur algebra has been introduced. It is a highest-weight
subcategory of the parabolic category O of an affine Kac-Moody algebra at a neg-
ative level. It is conjectured in loc. cit. that these higher q-Schur algebras are
equivalent to the category O of the CRDAHA. Our result implies that these higher
q-Schur algebras are Koszul and are Koszul dual to each other. This result should

1After our paper was written, we received a copy of [9] where a similar result is obtained by
different methods
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be regarded as an analogue of a conjectural Koszulity of the CRDAHA, see e.g.,
[9].

2. Preliminaries

2.1. Categories. For an object M of a category C let 1M be the identity endo-
morphism of M . Let Cop be the category opposite to C.

If C is an exact category then Cop is equip with the exact structure such that
0 → M ′ → M → M ′′ → 0 is exact in Cop if and only if 0 → M ′′ → M → M ′ → 0
is exact in C. An exact functor of exact categories is a functor which takes short
exact sequences to short exact sequences. A contravariant functor F : C′ → C is
exact if the functor F : C′ → Cop is exact.

Let C be an abelian category. Let Irr(C) be the set of isomorphism classes of
simple objects and let Proj(C) be the set of isomorphism classes of indecomposable
projective objects. For an object M of C we abbreviate ExtC(M) = ExtC(M,M).

Let A be a commutative, noetherian, integral domain. An A-category is an
additive category enriched over the tensor category of A-modules. A graded A-
category is an additive category enriched over the monoidal category of graded A-
modules. Unless mentioned otherwise, a functor of A-categories is always assumed
to be A-linear. A Hom-finite A-category is an A-category whose Hom spaces are
finitely generated over A.

An additive category is Krull-Schmidt if any object has a decomposition such that
each summand is indecomposable with local endomorphism ring. A full additive
subcategory of a Krull-Schmidt category is again Krull-Schmidt if and only if every
idempotent splits.

If A = k is a field a Hom-finite k-category is Krull-Schmidt if and only if every
idempotent splits. In particular a Hom-finite exact k-category is Krull-Schmidt. A
finite abelian k-category is a Hom-finite abelian k-category whose objects have a
finite length. It is equivalent to the category of finite dimensional modules over a
finite dimensional k-algebra if and only if it admits a projective generator.

2.2. Graded rings. For a ring R let Mod(R) be the category of all R-modules
and let mod(R) be the category of the finitely generated ones. We abbreviate

Irr(R) = Irr(mod(R)), Proj(R) = Proj(mod(R)).

By a graded ring R̄ we’ll always mean a Z-graded ring. Let gmod(R̄) be the
category of the finitely generated graded R̄-modules. We abbreviate

Irr(R̄) = Irr(gmod(R̄)), Proj(R̄) = Proj(gmod(R̄)).

Given a graded R̄-module M and an integer j, let M{j} be the graded R̄-module
obtained from M̄ by shifting the grading by j, i.e., such that M{j}i =M i+j . The
ring R̄ is positively graded if R̄<0 = 0 and R̄>0 is the radical of R̄, e.g., a finite
dimensional graded algebra R̄ over a field k is positively graded if R̄<0 = 0 and R̄0

is semisimple as a R̄-module. Here R̄0 is identified with R̄/R̄>0.
Assume that k is a field and that R̄ is a positively graded finite dimensional

k-algebra. We say that R̄ is basic if R̄0 isomorphic to a finite product of copies of k
as a k-algebra. Let {1x} be a complete system of primitive orthogonal idempotents
of R̄0. The Hilbert polynomial of R̄ is the matrix P (R̄, t) with entries

P (R̄, t)x,x′ =
∑

i

ti dim
(
1xR̄

i1x′

)
∈ N[[t]].
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2.3. Koszul duality. Let k be a field and R̄ be a positively graded finite dimen-
sional k-algebra. The Koszul dual of R̄ is the graded k-algebra

E(R̄) = ExtR(R̄
0),

where R is the (non graded) k-algebra underlying R̄. Forgetting the grading, we
get a k-algebra E(R). Assume that R̄ is Koszul. Then E(R̄) is also Koszul, we
have E2(R̄) = R̄, and there is a natural contravariant equivalence of triangulated
categories

E : Db(gmod(R̄)) → Db(gmod(E(R̄)))

which takes simple graded modules to projective ones. Let {1x ; x ∈ Irr(R̄0)} be a
complete system of primitive orthogonal idempotents of R̄0. Note that

Irr(R) = Irr(R̄0) = {R̄01x}.

Via the canonical bijection Proj(R) ≃ Irr(R), the elements 1x, x ∈ Irr(R̄0), can
be viewed as a complete system of primitive orthogonal idempotents of R. The
functor E yields a bijection

φ : Irr(R) → Proj(E(R)).

We set E(1x) = 1φ(R̄01x). The elements E(1x), x ∈ Irr(R), form a complete system

of primitive orthogonal idempotents of E(R). We may abbreviate 1x = E(1x).
Via the canonical bijection Proj(E(R)) ≃ Irr(E(R)) the map φ can be viewed as a
bijection φ : Irr(R) → Irr(E(R)). We’ll call it the natural bijection.

If R̄ is Koszul we say that R has a Koszul grading. If R has a Koszul grading then
this grading is unique up to isomorphism of graded k-algebras, see [5, cor. 2.5.2].

Let C be a finite abelian k-category with a projective generator P . We say that
C has a Koszul grading if R = EndC(P )

op has a Koszul grading. The following
lemmas are well-known, see e.g., [5].

Lemma 2.1. Let P , R, C be as above. If R̄ is a positively graded k-algebra then
E(R̄) = ExtC(L), where L is the top of P .

Lemma 2.2. Let C be a finite abelian k-category with a Koszul grading. If C′ is a
thick subcategory and the inclusion C′ ⊂ C induces injections on extensions, then
C′ has also a Koszul grading.

2.4. Highest weight categories. Let A be a commutative, noetherian, integral
domain which is a local ring with residue field k. Let K be its fraction field. Note
that any finitely generated projective A-module is free. Let C be an A-category
equivalent to the category of finitely generated modules over a finite projective A-
algebra R. Assume that C is of highest-weight over A, see [36, def. 4.11]. The
sets ∆(C), ∇(C) of isomorphisms classes of standard and costandard objects are
uniquely defined by [36, rk. 4.17, prop. 4.19]. Let C∆, C∇ be the full subcategories
of C consisting of the ∆-filtered and ∇-filtered objects, i.e., the objects having a
finite filtration whose successive quotients are standard, costandard respectively.
These categories are exact. Recall that the opposite of C is a highest weight
category such that ∆(Cop) = ∇(C) with the opposite order. Let Tilt(C) be the
set of isomorphism classes of indecomposable tilting objects.

For an A-module M we write kM = M ⊗A k. Write also kC = mod(kR). We
call the functorM 7→ kM the reduction to k. The k-category kC is a highest weight
category [36, thm. 4.15] and the reduction to k yields bijections

∆(C) → ∆(kC), ∇(C) → ∇(kC), Irr(C) → Irr(kC).

We have also canonical bijections

∆(C) ≃ ∇(C) ≃ Irr(C).
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We call tilting generator a tilting object which is also a tilting complex, see e.g.,
[36, sec. 4.1.5]. We call full tilting module a minimal tilting generator. We call full
projective module a minimal projective generator. We have the following analogue
of [13, prop. 2.6].

Proposition 2.3. Let KC be split semisimple.
(a) The reduction to k gives bijections

Proj(C) → Proj(kC), Tilt(C) → Tilt(kC). (2.1)

(b) There are natural bijections

Tilt(C) = Proj(C) = ∆(C) = ∇(C) = Irr(C). (2.2)

Proof. An object M ∈ C is projective if and only if it is projective over A and kM
is projective over kR. By [11, sec. 6, ex. 16], an objectM ∈ C is indecomposable if
and only if kM is indecomposable in kC. Thus the reduction to k gives a map from
Proj(C) to Proj(kC). It takes obviously a projective generator of C to a projective
generator of kC. Thus it gives a bijection Proj(C) → Proj(kC). Finally, by [36,
prop. 4.26], the reduction to k takes a tilting generator of C to a tilting generator
of kC. So we get also a bijection Tilt(C) → Tilt(kC). This proves (a). Part (b)
follows from (a), because (b) is obviously true for a highest weight category over a
field. �

Remark 2.4. If (2.2) holds then any of the sets Tilt(C), Proj(C), ∆(C), ∇(C),
Irr(C) can be regarded as a poset for the highest weight order.

Remark 2.5. An ideal of a poset (S,6) is a subset I such that I =
⋃
i∈I{6 i}. A

coideal is the complement of an ideal. For a subset I ⊂ Irr(C), let C[I] be the thick
subcategory generated by I and let C(I) be the Serre quotient C/C[Irr(C) \ I].
Assume that C is a highest weight category over a field k, and that I, J are an
ideal and a coideal of (Irr(C),6). Then C[I], C(J) are highest weight categories
and the inclusion C[I] ⊂ C induces injections on extensions by [10, thm. 3.9], [12,
prop. A.3.3].

2.5. Ringel duality. Let A be a commutative, noetherian, integral domain which
is a local ring with residue field k. Let C be a highest-weight category over A which
is equivalent to the category of finitely generated modules over a finite projective
A-algebra R. Let T be a tilting generator. The Ringel dual of R is the A-algebra
D(R) = EndC(T )

op, the Ringel dual of C is the category D(C) = mod(D(R)).
The category D(C) is a highest-weight category over A with

∆(D(C)) = {HomC(T,∇) ; ∇ ∈ ∇(C)} ≃ ∆(C).

The order on ∆(D(C)) is the opposite of the order on ∆(C). We have an exact
contravariant equivalence called the tilting equivalence

D : C∆ → D(C)∆, M 7→ HomC(M,T ).

It takes tilting objects to projective ones, and projective objects to tilting ones.
The algebra D2(R) is Morita equivalent to R. See [36, prop. 4.26], [12, sec. A.4].

Assume that (2.2) holds for C, D(C). Then the tilting equivalence yields bijec-
tions ψ : Proj(C) → Tilt(D(C)) ≃ Proj(D(C)). So, we get a bijection

{1x ; x ∈ Proj(R)} → {1x ; x ∈ Proj(D(R))}, 1x 7→ D(1x) = 1ψ(x).

Remark 2.6. The canonical map kHomC(M,N) → HomkC(kM, kN) is invertible
for any R-modulesM,N which are free of finite type over A [36, prop. 4.30]. Thus,
the tilting equivalence commutes with the reduction to k.
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Remark 2.7. Let C be a highest-weight category over a field k. Let I ⊂ Irr(C) be
an ideal. We may regard to ψ as a map Irr(C) → Irr(D(C)) in the obvious way.
Then ψ(I) is a coideal of Irr(D(C)) and the tilting equivalence D : C∆ → D(C)∆

factors to an equivalence C[I]∆ → D(C)(ψ(I))∆. It induces an equivalence of
highest weight categories D(C[I]) ≃ D(C)(ψ(I)), see e.g., [12, prop. A.4.9].

2.6. Standard Koszul duality. Let A be a commutative, noetherian, integral
domain which is a local ring with residue field k. Assume that A is positively
graded. Let C be a highest weight category over A which is equivalent to the
category of finitely generated modules over a finite projective A-algebra R. Let R̄
be a positively graded A-algebra which is isomorphic to R as an A-algebra. We
call graded lift of an object M of C a R̄-module which is isomorphic to M as a
R-module. Recall the following lemma.

Lemma 2.8. Let M be an indecomposable R-module which is finite projective over
A and such that kM is indecomposable over kR. If M has a graded lift then this lift
is unique up to a graded R̄-module isomorphism and up to a shift of the grading.

Proof. If A = k a proof is given in [5, lem. 2.5.3]. For the general case it is enough
to check that EndR(M) is a local ring. This is obvious, because, since M is finite
projective over A, an element x ∈ EndR(M) is invertible if and only if is reduction
to k is invertible in EndkR(kM) by the Nakayama lemma. �

Assume that (2.1) holds. Objects of Irr(C) have graded lifts which are pure of
degree 0. Objects of Proj(C) have graded lifts such that the projection to their
top is homogeneous of degree 0. Objects of ∆(C) have graded lifts such that the
projection from their projective cover is homogeneous of degree 0. The proof is
the same as in the case where A is a field, see e.g., [29, cor. 4]. Finally, objects of
Tilt(C) have graded lifts such that the inclusion of the highest standard object is
homogeneous of degree 0. The proof is the same as in the case where A is a field,
see e.g., [29, cor. 5], using the construction of tilting modules in [36, prop. 4.26]
instead of Ringel’s construction in [35]. The gradings above are called the natural
gradings. Note that the natural grading commutes with the reduction to k.

The natural grading on the full tilting module gives a grading on D(R) which
is called again the natural grading. Let D(R̄) denote the A-algebra D(R) with its
natural grading. Assume that D(R̄) is a positively graded A-algebra. The con-
travariant functor M 7→ HomR(M, T̄ ) takes the natural graded indecomposable
tilting objects to the natural graded indecomposable projective ones. It takes also
the natural graded indecomposable projective objects to natural graded indecom-
posable tilting ones.

Now, let A = k. Let 6 be the highest weight order on {1x ; x ∈ Irr(R)}.
Following [2, thm. 1.4, 3.4], we say that R̄ is standard Koszul provided that E(R̄)
is quasi-hereditary relatively to the poset ({E(1x) ; x ∈ Irr(R)},>). Following [29,
thm. 7], we say that R̄ is balanced if it is standard Koszul and if the graded k-algebra
D(R̄) is positive. If R̄ is balanced then the following holds [30, thm. 1]

• R̄ is Koszul and standard Koszul,
• R̄, D(R̄), E(R̄) and DE(R̄) are positively graded, quasi-hereditary, Koszul
and balanced,

• DE(R̄) = ED(R̄) as graded quasi-hereditary k-algebras,
• the natural bijection φ : Irr(R) → Irr(E(R)) takes the highest weight order
on Irr(R) to the opposite of the highest weight order on Irr(E(R)).

Remark 2.9. Assume that C is a highest weight category over k which is balanced.
Let I ⊂ Irr(C) be an ideal. The category C[I] has a Koszul grading by Lemma 2.2
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and Remark 2.5. Let φ : Irr(C) → Irr(E(C)) be the natural bijection. Note that
φ(I) is a coideal of Irr(E(C)). By Lemma 2.1 and Remark 2.5 we have E(C[I]) =
E(C)(φ(I)).

2.7. Lie algebras. Let g be a simple Lie C-algebra and let G be a connected
simple group over C with Lie algebra g. Let T ⊂ G and t ⊂ g be maximal tori,
with Lie(T )=t. Let b ⊂ g be a Borel subalgebra containing t. The elements of t, t∗

are called coweights and weights respectively. Given a root α ∈ t∗ let α̌ ∈ t denote
the corresponding coroot. Let ρ be half the sum of the positive roots. Let Π ⊂ t∗

be the set of roots, Π+ ⊂ Π the set of positive roots and ZΠ be the root lattice.
Let Φ = {αi ; i ∈ I} be the set of simple roots in Π+. Let W be the Weyl group.
Let m be the dual Coxeter number of g.

2.8. Affine Lie algebras. Let g be the affine Lie algebra associated with g. Recall

that g = C∂⊕ L̂g, where L̂g is a central extension of Lg = g⊗C[t, t−1] and ∂ = t∂t
is a derivation of L̂g acting trivially on the canonical central element 1 of L̂g.
Consider the Lie subalgebras

b = C∂ ⊕ Lb⊕ C1, t = C∂ ⊕ t⊕ C1.

The elements of t, t∗ are called affine coweights and affine weights respectively. Let

(• : •) : t∗ × t → C be the canonical pairing, let Π̂ be the set of roots of g and

let Π̂+ be the set of roots of b. We set Π̂− = −Π̂+. We’ll call an element of Π̂ an
affine root. The set of simple roots in Π̂+ is Φ̂ = {αi; i ∈ {0} ∪ I}. Let α̌ ∈ t be
the affine coroot associated with the real affine root α. Let δ, Λ0, ρ̂ be the affine
weights given by

(δ : ∂) = (Λ0 : 1) = 1, (Λ0 : C∂ ⊕ t) = (δ : t⊕ C1) = 0, ρ̂ = ρ+mΛ0.

We’ll use the identification t∗ = C × t∗ × C such that αi 7→ (0, αi, 0) if i 6= 0,
Λ0 7→ (0, 0, 1) and δ 7→ (1, 0, 0). An element of t∗/Cδ is called a classical affine
weight. Let cl : t∗ → t∗/Cδ denote the obvious projection. Let 〈• : •〉 be the
non-degenerate symmetric bilinear form on t∗ such that

(λ : α̌i) = 2〈λ : αi〉/〈αi : αi〉, (λ : 1) = 〈λ : δ〉.

Using 〈• : •〉 we identify α̌ with an element of t∗ for any real affine root α. Let

Ŵ = W ⋉ ZΠ be the affine Weyl group and let S = {si = sαi
; αi ∈ Φ̂} be the set

of simple affine reflections. The group Ŵ acts on t∗. For w ∈W , τ ∈ ZΠ we have

w(Λ0) = Λ0, w(δ) = δ, τ(δ) = δ,

τ(λ) = λ− 〈τ : λ〉δ, τ(Λ0) = τ + Λ0 − 〈τ : τ〉δ/2.

The •-action on t∗ is given by w • λ = w(λ + ρ̂) − ρ̂. This action factors to a

Ŵ -action on t∗/Cδ. Two (classical) affine weights λ, µ are linked if they belong to
the same orbit of the •-action, and we write λ ∼ µ. Let Wλ be the stabilizer of an
affine weight λ. We say that λ is regular if Wλ = {1}. For e ∈ C we set

t∗e = {λ ∈ t∗; (λ : 1) = −e−m}.

From now on we assume that e is an integer 6= 0. Set

C± = {λ ∈ t∗ ; 〈λ+ ρ̂ : α〉 > 0, α ∈ Π̂±}.

An element of C−, resp. of C+, is called an antidominant affine weight, resp. a
dominant affine weight. We write again C± for cl(C±). For any integral affine
weight λ of level −e−m we have{

♯(Ŵ • λ ∩ C−) = 1, ♯(Ŵ • λ ∩ C+) = 0, if e > 0,

♯(Ŵ • λ ∩ C+) = 1, ♯(Ŵ • λ ∩ C−) = 0 if e < 0,
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see e.g., [23, lem. 2.10]. In the first case we say that λ is positive, in the second one

that it is negative. For λ ∈ C± the subgroup Wλ of Ŵ is finite and parabolic. It is

isomorphic to the Weyl group of the root system {α ∈ Π̂ ; 〈λ+ ρ̂ : α〉 = 0}.

2.9. Parabolic category O. Let P be the set of proper subsets of Φ̂. An element
of P is called a parabolic type. Fix a parabolic type ν. If ν is the empty set we
say that ν is regular, and we write ν = φ. Let pν ⊂ g be the corresponding
parabolic subalgebra containing b. Let Πν be the root system of a levi of pν , and
let Π+

ν = Π+ ∩ Πν be the system of positive roots of Πν . An affine weight λ is
ν-dominant if (λ : α̌) ∈ N for all α ∈ Π+

ν . Let wν be the longest element in Wν .

We consider the category Õν of the g-modules M such that

• M =
⊕

λ∈t∗ Mλ with Mλ = {m ∈M ;xm = λ(x)m, x ∈ t},

• U(pν)m is finite dimensional for each m ∈M .

For a ν-dominant affine weight λ let V ν(λ), L(λ) be the parabolic Verma module

with the highest weight λ and its simple top. Let Oν ⊂ Õν be the full subcategory
of the modules such that the highest weight of any of its simple subquotients is of
the form

λ̃e = λe + zλδ, λe = λ− (e +m)Λ0, zλ = 〈λ : 2ρ+ λ〉/2e,

where λ ∈ t∗ is an integral weight and e 6= 0. We abbreviate

V ν(λe) = V ν(λ̃e), L(λe) = L(λ̃e).

For µ ∈ P and e > 0 we use the following notation

• oµ,− is an antidominant integral classical affine weight of level −e−m whose

stabilizer for the •-action of Ŵ is equal to Wµ,
• oµ,+ = −oµ,− − 2ρ̂ is a dominant integral classical affine weight of level

e−m whose stabilizer for the •-action of Ŵ is again equal to Wµ.

Let Oν
µ,± be the full subcategory of Oν consisting of the modules such that the

highest weight of any of its simple subquotients is linked to oµ,±. Note that Oν
µ,±

is a direct summand in Oν by [39, thm. 6.1].

2.10. Truncations. Fix e > 0, µ, ν ∈ P and w ∈ Ŵ . Let Imin
µ , Imax

µ be the sets of

minimal and maximal length representatives of the left cosets in Ŵ/Wµ.

• Consider the poset Iµ,− = (Imax
µ ,4) with 4 equal to the Bruhat order 6.

Let Iνµ,− = {x ∈ Iµ,− ; x • oµ,− is ν-dominant}. By Appendix C we have

Irr(Oν
µ,−) = {L(x • oµ,−) ; x ∈ Iνµ,−},

Iνµ,− = {xwµ ; x ∈ (Imax
ν )−1 ∩ Imin

µ }.

Let wOν
µ,− be the category consisting of the finitely generated modules in

Oν
µ,−[

wIνµ,−], where
wIνµ,− = {x ∈ Iνµ,− ; x 4 w}. It is a highest weight

category (for the order 4) with

Irr(wOν
µ,−) = {L(x • oµ,−) ; x ∈ wIνµ,−},

∆(wOν
µ,−) = {V ν(x • oµ,−) ; x ∈ wIνµ,−}.

• Consider the poset Iµ,+ = (Imin
µ ,4) with 4 the opposit Bruhat order. Let

Iνµ,+ = {x ∈ Iµ,+ ; x • oµ,+ is ν-dominant}. By Appendix C we have

Irr(Oν
µ,+) = {L(x • oµ,+) ; x ∈ Iνµ,+},

Iνµ,+ = {xwµ ; x ∈ (Imin
ν )−1 ∩ Imax

µ },
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Let wOν
µ,+ be the category consisting of the finitely generated objects in

Oν
µ,+(

wIνµ,+), where
wIνµ,+ = {x ∈ Iνµ,+ ; x <w}. By Remark 2.14, it is a

highest weight category (for the order 4) with

Irr(wOν
µ,+) = {L(x • oµ,+) ; x ∈ wIνµ,+},

∆(wOν
µ,+) = {V ν(x • oµ,+) ; x ∈ wIνµ,+}.

We abbreviate wOν
µ,± for either wOν

µ,+ or wOν
µ,−. Let

wP ν(x • oµ,±) be the pro-

jective cover of L(x • oµ,±). If ν = φ is regular we abbreviate wOµ,± = wO
φ
µ,±, and

so on, suppressing φ in the notation. By Remark 2.12 we have an anti-isomorphism
of posets Iνµ,− → Iνµ,+, x 7→ x+ = wνxwµ. Let x 7→ x− denote its inverse.

Proposition 2.10. For w ∈ Iνµ,− and v = w+ ∈ Iνµ,+ we have

(a) the tilting equivalence is an exact contravariant equivalence wO
ν,∆
µ,− → vO

ν,∆
µ,+

which takes V ν(x • oµ,−) to V ν(y • oµ,+) with y = x+,
(b) there is a C-algebra isomorphism D(wRνµ,−) =

vRνµ,+ such that D(1x) = 1y.

Proof. Part (b) is just a reformulation of (a). By [39, thm. 6.6] there is an exact
contravariant autoequivalence D of Oν,∆ which takes V ν(λ) to V ν(−wν(λ+ ρ̂)− ρ̂).
Note that −wν(x • oµ,− + ρ̂) − ρ̂ = wνx • oµ,+. Thus the proposition follows from
Remarks 2.7, 2.12. �

Remark 2.11. The highest weight category wOν
µ,± does not depend on the choice

of oµ,± and e but only on µ, ν, see [14, thm. 11].

Remark 2.12. (a) Appendix C gives an anti-isomorphism of posets Iνµ,∓ → Iνµ,±,
x 7→ x±. If w ∈ Iνµ,∓ and v = w± this anti-isomorphism takes wIνµ,∓ onto vIνµ,±.

(b) We have an isomorphism of posets Iνµ,± → Iµν,±, x 7→ x−1. If w ∈ Iνµ,± and

v = w−1 this isomorphism takes wIνµ,± onto vIµν,±.

(c) We abbreviate x−1± = (x±)
−1 = (x−1)±. The assignment x 7→ x−1± is an

anti-isomorphism of posets Iνµ,∓ → Iµν,±.

Remark 2.13. Let i be the inclusion wOν
µ,± → wOµ,±. The left adjoint functor τ

to i takes a module to its maximal quotient which lies in wOν
µ. We’ll call i the

parabolic inclusion functor and τ the parabolic truncation functor. We have

(a) i(L(x • oµ,±)) = L(x • oµ,±) for x ∈ wIνµ,±,
(b) τ(wP (x • oµ,±)) = wP ν(x • oµ,±) for x ∈ wIνµ,±,
(c) τ(wP (x • oµ,±)) = 0 for x ∈ wIµ,± \ wIνµ,±.

The same argument as in [5, thm. 3.5.3], using [18, prop. 3.41], implies that i is
injective on extensions in wOν

µ,−. For w ∈ Iνµ,− and v = w+, the tilting equivalence

yields an equivalence of derived categories Db(vOν
µ,+) → Db(wOν

µ,−). Thus i is also
injective on extensions in wOν

µ,+.

Remark 2.14. A simple module L(x • oµ,+) in Oν
µ,+ has a projective cover P ν(x •

oµ,+), see e.g., [39]. Let P ⊂ Oν
µ,+ be the full subcategory with set of objects

{P ν(x • oµ,+)}. Consider the algebra without 1 given by

Q =
⊕

x,y

EndOν
µ,+

(
P ν(x • oµ,+), P

ν(y • oµ,+)
)op

,

where x, y run over Iνµ,+. Set e =
∑

x 1x in Q, where x ∈ wIνµ,+. We have

eQe = EndOν
µ,+

(⊕

x

P ν(x • oµ,+)
)op

, x ∈ wIνµ,+.

By [32, thm. 3.1], assigning to M the restriction of the functor HomOν
µ,+

(•,M) to

P yields an equivalence of abelian C-categories Oν
µ,+ → Mod(Q). Consider the
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adjoint pair of functors (F,G) given by

F : Mod(Q) → Mod(eQe), M 7→ eM = HomQ(Qe,M),

G : Mod(eQe) → Mod(Q), M 7→ HomeQe(eQ,M).

The functor F is a quotient functor, i.e., we have F ◦ G = 1, and its kernel is
Oν
µ,+[ 6<w]. Therefore, F factors to an equivalence of abelian categories

wOν
µ,+ → mod(eQe).

Since eQe is a finite dimensional algebra, the axioms of a highest weight category
are now easily verified for wOν

µ,+.

Remark 2.15. Taking a module M ∈ Oν
µ,± to its graded dual M∗ =

⊕
λ∈t∗(Mλ)

∗

with the contragredient g-action yields a duality on Oν
µ,± called the BGG duality.

Since the BGG duality fixes the simple modules it is easy to see that it factors to
a duality on the highest weight category wOν

µ,±.

2.11. The main result. Fix e, f > 0 and µ, ν ∈ P . We choose the integral classical
affine weights oµ,± and oν,± such that oµ,± has level ±e − m and oν,± has level

±f −m. For w ∈ Ŵ let wT νµ,±,
wP νµ,± and wLνµ,± be the full tilting module, the

full projective module and the direct sum of all simple modules in wOν
µ,±. For

x ∈ wIνµ,± the projections

wLνµ,± → L(x • oµ,±),
wP νµ,± → wP ν(x • oµ,±)

define idempotents in the C-algebras

wR̄νµ,± = ExtwOν
µ,±

(wLνµ,±),
wRνµ,± = EndwOν

µ,±
(wP νµ,±)

op.

Both are denoted by the symbol 1x.

Theorem 2.16. Let w ∈ Iνµ,+ and v = w−1− ∈ Iµν,−. We have C-algebra isomor-

phisms wRνµ,+ = vR̄µν,− and wR̄νµ,+ = vRµν,− such that 1x 7→ 1y with y = x−1− . The

graded C-algebras wR̄νµ,+ and vR̄µν,− are Koszul and are Koszul dual to each other.

The categories wOν
µ,+,

vO
µ
ν,− are Koszul and are Koszul dual to each other.

Remark 2.17. Indeed, we’ll prove that wR̄νµ,+ and vR̄µν,− are balanced. In particular,
Koszul duality commutes with Ringel duality. Note that we equipped the highest
weight categories vOµ

ν,−,
wOν

µ,+ with the Bruhat and opposite Bruhat order. We
compute both the Koszul dual and the Ringel dual with respect to this order, rather
than the BGG order, as it is usually done in the literature.

3. Moment graphs, deformed category O and localization

First, we fix some general notation. Fix e, f > 0 and µ, ν ∈ P . Let V be a finite
dimensional C-vector space. Let S be the symmetric C-algebra over V , with the
grading such that V has the degree 2. Let S0 be the localization of S at the ideal
V S. Let k be the residue field of S0. Note that k = C. By A we’ll always denote a
commutative, noetherian, integral domain which is a graded S-algebra with 1.

3.1. Moment graphs. Let us recall some basic fact on moment graphs. In this
section A is the localization of S with respect to some multiplicative subset.

Definition 3.1. A moment graph over V is a tuple G = (I,H, α) where (I,H) is
a graph with a set of vertices I, a set of edges H, each edge joins two vertices, and
α is a map H → P(V ), h 7→ kαh.
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Definition 3.2. An order on G is a partial order 4 on I such that the two vertices
joined by an edge are comparable.

Remark 3.3. We use the terminology in [21]. In [15] a moment graph is ordered.
We’ll also assume that G is finite, i.e., the sets I and H are finite.

Given an order 4 on G let h′, h′′ denote the origin and the goal of the edge h,
i.e., the two vertices joined by h with h′ ≺ h′′. Let dx be the set of edges with goal
x. Let ux be the set of edges with origin x. Let ex = dx

⊔
ux.

Definition 3.4. A graded A-sheaf over G is a tuple M = (Mx,Mh, ρx,h) with

• a graded A-module Mx for each x ∈ I,
• a graded A-module Mh for each h ∈ H such that αhMh = 0,
• a graded A-module homomorphism ρx,h : Mx → Mh for h adjacent to x.

A morphism M → N is a tuple f of graded A-module homomorphisms fx : Mx →
Nx and fh : Mh → Nh which are compatible with (ρx,h).

For J ⊂ I we set

M(J) =
{
(mx)x∈J ; mx ∈ Mx, ρh′,h(mh′) = ρh′′,h(mh′′)

}
.

The space of global sections of the graded A-sheafM is the graded A-module M(I).
We say that M has finite type if all Mx and all Mh are finitely generated graded
A-modules. The graded A-module M(I) is finitely generated for M of finite type.
The structural algebra of G is the graded A-algebra Z̄A given by

Z̄A =
{
(ax) ∈ A⊕I ; ah′ − ah′′ ∈ αhA}.

Definition 3.5. Let F̄A be the category of the graded A-sheaves of finite type over
G whose stalks are torsion free A-modules. Let Z̄A be the category of the graded
Z̄A-modules which are finitely generated and torsion free over A.

We’ll call again graded A-sheaves the objects of Z̄A. The categories F̄A and Z̄A
are Krull-Schmidt graded A-categories (because they are Hom-finite k-categories
and each idempotent splits). The global sections functor Γ has a left adjoint L
called the localization functor [15, thm. 3.6], [21, prop. 2.14]. We say that M
is generated by global sections if the counit LΓ(M) → M is an isomorphism, or,
equivalently, if M belongs to the essential image of L. This implies that the obvious
map M(G) → Mx is surjective for each x. For E ⊂ H and J ⊂ I we set

ME =
⊕

h∈E

Mh,

ρJ,E =
⊕

x∈J

⊕

h∈E

ρx,h : M(J) → ME .

We abbreviate ρx,E = ρ{x},E . Given an order 4 on G we set

M∂x = Im(ρ≺x,dx), Mx = Ker(ρx,ex), M[x] = Ker(ρx,dx).

We call Mx the stalk of M at x, and Mx its costalk at x. Note that Mx, M[x], Mx

are graded Z̄A-modules such that Mx ⊂ M[x] ⊂ Mx. Assume that M is generated

by global sections. We say that M ∈ F̄A is flabby if Im(ρx,dx) = M∂x for each x,
see [21, lem. 3.3], and that it is ∆-filtered if it is flabby and if the graded Z̄A-module
M[x] is a free graded A-module for each x, see [15, lem. 4.8].

Definition 3.6. Let F̄∆
A,4 be the full subcategory of F̄A consisting of ∆-filtered

objects. Let Z̄∆
A,4 be the essential image of F̄∆

A,4 by Γ. We may abbreviate F̄∆
A =

F̄∆
A,4 and Z̄∆

A = Z̄∆
A,4. They are Krull-Schmidt exact graded A-categories.
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The functors L, Γ are mutually inverse equivalences of graded exact A-categories
between F̄∆

A and Z̄∆
A . For M ∈ Z̄A we set

Mx = L(M)x, M[x] = L(M)[x], Mx = L(M)x,

M≺x = L(M)≺x, M∂x = L(M)∂x, Mh = L(M)h.

Example 3.7. The stalk of Z̄A at any vertex x is A.

Let MJ be the image of the obvious map

M → ΓL(M) →
⊕

x∈J

Mx.

It is a graded (Z̄A)J -module. By [15, lem. 4.5] we have an exact sequence in Z̄∆
A

0 →M ′ →M →M ′′ → 0

if and only if for each x the following sequence of A-modules is exact

0 →M ′[x] →M[x] →M ′′[x] → 0.

Remark 3.8. The canonical functor Z̄∆
A → gmod(Z̄A) is exact by [16, lem. 2.12].

We say that M ∈ Z̄∆
A is projective if the functor HomZ̄A

(M, •) maps short exact

sequences to short exact sequences. We say that M ∈ Z̄A is F-projective if

• L(M) is flabby,
• Mx is a projective graded A-module for each x,
• Mh =Mh′/αhMh′ and ρh′,h is the canonical map for each h,

IfM ∈ Z̄∆
A is F-projective then it is projective [15, prop. 5.1]. We say thatM ∈ Z̄∆

A

is tilting if the contravariant functor HomZ̄A
(•,M) maps short exact sequences to

short exact sequences.
Let M∗ =

⊕
i(M

∗)i, with (M∗)i = gHomA(M,A{i}), be the graded dual of a
graded A-module M . Here gHomA is the Hom’s space of graded A-modules. Since
Z̄A is commutative, the graded dual of a graded Z̄A-module M is a Z̄A-module.
Thus there is a duality D : Z̄A → Z̄A, M 7→M∗ which yields an exact contravariant
equivalence Z̄∆

A,4 → Z̄∆
A,<. This duality yields bijections

Proj(Z̄∆
A,4) → Tilt(Z̄∆

A,<), Tilt(Z̄∆
A,4) → Proj(Z̄∆

A,<).

We say that G is a GKM-graph if kαh1
6= kαh2

for edges h1 6= h2 adjacent to the
same vertex. The support of a graded A-sheaf M on G is the set

supp(M) = {x ∈ I ; Mx 6= 0}.

Definition 3.9. Let (G,4) be an ordered GKM-graph. There is a unique object
B̄A,4(x) in Z̄A which is indecomposable, F-projective, supported on the coideal {<
x} and with B̄A,4(x)x = A. We call B̄A,4(x) a BM-sheaf. We may abbreviate

B̄A(x) = B̄A,4(x), C̄A(x) = C̄A,4(x) = D(B̄A,<(x)).

Remark 3.10. The existence and unicity of BM-sheaves is proved in [15, thm. 5.2]
using the Braden-MacPherson algorithm [7, sec. 1.4]. The construction of B̄A(x) is
as follows. We must define B̄A(x)y , B̄A(x)h and ρy,h for each y, h.

• We set B̄A(x)y = 0 for y 6< x.
• We set B̄A(x)x = A.
• Let y ≻ x and suppose we have already constructed B̄A(x)z and B̄A(x)h
for any z, h such that y ≻ z, h′, h′′ < x. For h ∈ dy let

– B̄A(x)h = B̄A(x)h′/αhB̄A(x)h′ and ρh′,h is the canonical map,
– B̄A(x)∂y = Im(ρ≺y,dy) ⊂ B̄A(x)dy ,

– B̄A(x)y is the projective cover of the graded A-module B̄A(x)∂y ,
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– ρy,h is the composition of the projective cover map B̄A(x)y → B̄A(x)∂y
with the obvious projection B̄A(x)dy → B̄A(x)h.

Definition 3.11. There is a unique object V̄A(x) in Z̄A that is isomorphic to A as
a graded A-module and on which the element (zy) of Z̄A acts by multiplication with
zx. We call it a Verma-sheaf.

Proposition 3.12. (a) The Verma-sheaves are ∆-filtered and self-dual.
(b) We have V̄A(x)

y = V̄A(x)y = V̄A(x)[y] = A if x = y and 0 else.

(c) For M ∈ Z̄A we have

HomZA

(
V̄A(x){i},M

)
=Mx{−i},

HomZA

(
M, V̄A(y){j}

)
= (My)

∗{j},

HomZ̄A

(
V̄A(x){i}, V̄A(y){j}

)
= δx,y A

i−j .

(d) A ∆-filtered graded A-sheaf M is an extension of shifted Verma-sheaves.

Remark 3.13. A ∆-filtered graded A-sheaf M has a filtration 0 = M0 ⊆ M1 ⊆
· · · ⊆Mn =M by graded Z̄A-submodules with [15, rk. 4.4, sec. 4.5]

n⊕

r=1

Mr/Mr−1 =
⊕

y

M[y], Mr/Mr−1 = V̄A(yr){ir}, r 6 s⇒ ys 4 yr.

In particular, the graded A-moduleM is free and finitely generated. IfM ∈ Z̄∆
A and

if B is projective in Z̄∆
A , the graded A-module HomZA

(B,M) has a finite filtration
whose associated graded is

n⊕

r=1

HomZA
(B,Mr/Mr−1) =

n⊕

r=1

HomA(Byr , A{ir}).

Remark 3.14. By Proposition 3.12, we have (My)
∗ = (DM)y.

Remark 3.15. The category Z̄∆
A is graded. Forgetting the gradings we get the

A-category Z∆
A and the objects BA(x), CA(x).

Remark 3.16. For a morphism of local S-algebras A → A′ we have a base change
functor • ⊗A A′ : Z̄A → Z̄A′ which takes Z̄∆

A to Z̄∆
A′ . If A′ is flat as an A-module

the canonical map gives an isomorphism [21, sec. 2.7,3.15]

A′ HomZ̄A
(M,N) → HomZ̄A′

(A′M,A′N).

3.2. The moment graph of O. In this section we set V = t, w ∈ Ŵ , and we
assume that A is the localization of S with respect to some multiplicative subset.

Definition 3.17. Let wGµ denote the moment graph over t whose set of vertices
is wImin

µ = {x ∈ Imin
µ ; x 6 w}, with an edge between x, y if and only if there is an

affine reflection sα ∈ Ŵ such that x ∈ sαyWµ, this edge being labelled by k α̌.

Let wZ̄A,µ be the structural algebra of wGµ and let wZ̄A,µ be the category of
graded wZ̄A,µ-modules which are finitely generated and torsion free over A. Let
V̄A,µ(x) be the Verma-sheaf in wZ̄A,µ whose stalk at x is A. Let wGµ,− be the
ordered moment graph (wGµ,4) with 4 equal to the Bruhat order. Let wGµ,+ be
the ordered moment graph (wGµ,4) with 4 equal to the opposite Bruhat order.
We’ll write wGµ,± for either wGµ,− or wGµ,+. We use a similar notation for all
objects attached to wGµ,±. For instance

wZ̄∆
A,µ,± is the category of ∆-filtered graded

A-sheaves on wGµ,±.

Proposition 3.18. The BM-sheaves on wGµ,± are ∆-filtered.



14 P. SHAN, M. VARAGNOLO, E. VASSEROT

Proof. The BM-sheaves on wGµ,− are ∆-filtered by [15, thm. 5.2]. The BM-sheaves
on wGµ,+ are also ∆-filtered. Indeed, note that a graded A-sheaf is ∆-filtered if
and only if the underlying non graded A-sheaf is ∆-filtered. Next, by Proposition
3.32(c) the BM-sheaves on wGµ,+ are ∆-filtered for A = S0. Thus the claim follows
by Remark 3.16. �

For x ∈ Ŵ let l(x) be its lengh. By Proposition 3.18 there is a unique ∆-filtered
gradedA-sheaf wB̄A,µ,±(x) on

wGµ,± which is indecomposable, projective, supported
on the ideal {<x} and whose stalk at x is equal to A{±l(x)}. There is also a unique
∆-filtered graded A-sheaf wC̄A,µ,±(x) which is indecomposable, tilting, supported
on the ideal {4x} and whose costalk at x is equal to A{±l(x)}. Note that

wB̄A,µ,∓(x) = D(wC̄A,µ,±(x)).

For a future use, we set

wB̄A,µ,± =
⊕

x

wB̄A,µ,±(x),
wC̄A,µ,± =

⊕

x

wC̄A,µ,±(x).

Remark 3.19. The graded A-sheaf wC̄A,µ,±(x) is filtered by Verma-sheaves. The
first term in this filtration is the sub-object

V̄A(x){±l(x)} ⊂ wC̄A,µ,±(x).

The other subquotients are of the form V̄A(y){j} with y ≺ x and j ∈ Z. The graded
A-sheaf wB̄A,µ,±(x) is filtered by Verma-sheaves. The top term in this filtration is
the quotient object

wB̄A,µ,±(x) → V̄A(x){±l(x)}.

The other subquotients are of the form V̄A(y){j} with y ≻ x and j ∈ Z.

Proposition 3.20. We have D(wB̄A,µ,+(x)) =
wB̄A,µ,+(x).

Proof. If µ = φ is regular then the claim is [16, thm. 6.1]. Assume now that µ is no
longer regular. We abbreviate B̄µ(x) =

wB̄A,µ,+(x). The regular case implies that
D(B̄φ(x)) = B̄φ(x). We can assume that w ∈ Imax

µ . Recall that x ∈ wIµ. Then
Proposition 3.40 yields

⊕

y∈Wµ

D(B̄µ(x)){2l(y)− l(wµ)} ⊕D(M) =
⊕

y∈Wµ

B̄µ(x){l(wµ)− 2l(y)} ⊕M,

where M is a direct sum of objects of the form B̄µ(z){j} with z < x. We have also
D(B̄µ(e)) = B̄µ(e). By induction we may assume that D(B̄µ(z)) = B̄µ(z) for all
z < x. Therefore, we have D(B̄µ(x)) = B̄µ(x). �

Remark 3.21. The graded sheaves wB̄A,µ,−(x) are not self-dual.

Proposition 3.22. The category wZ̄∆
A,µ,± is Krull-Schmidt. A projective object is

a direct sum of objects of the form wB̄A,µ,±(x){j}. A tilting object is a direct sum
of objects of the form wC̄A,µ,±(x){j}.

Proof. The first claim is obvious by the discussion in the previous section. The
third claim follows from the second one via the duality. Now, let P be a projective
object. Fix a filtration of P by Verma-sheaves as in Remark 3.13 such that the top
Verma-sheaf in this filtration is of the form V̄A,µ(x){j} with x minimal in supp(P ).
Thus there is an epimorphism P → V̄A,µ(x){j}. There is also an epimorphism
wB̄A,µ,±(x){j ∓ l(x)} → V̄A,µ(x){j}. Thus wB̄A,µ,±(x) is a direct summand in P
and the proposition follows by induction. �
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Let Pµ,qy,x (t) =
∑

i P
µ,q
y,x,i t

i be Deodhar’s parabolic Kazhdan-Lusztig polynomial

“of type q” associated with the parabolic subgroup Wµ of Ŵ and let Qµ,−1x,y (t) =∑
iQ

µ,−1
x,y,i t

i be Deodhar’s inverse parabolic Kazhdan-Lusztig polynomial “of type

−1”. We use the notation in [24, rk. 2.1]. It is not the usual one. We abbreviate
Py,x = Pφ,qy,x and Qy,x = Qφ,−1y,x .

Proposition 3.23. We have graded A-module isomorphisms

(a) wB̄A,µ,+(x)y =
⊕

i>0 A{l(x)− 2i}⊕P
µ,q
y,x,i ,

(b) wB̄A,µ,+(x)[y] =
⊕

i>0A{2l(y)− l(x) + 2i}⊕P
µ,q
y,x,i .

Proof. Part (a) follows from Proposition 3.44 and [24, thm. 1.4]. Part (b) follows
from (a) and Proposition 3.20 as in [16, prop. 7.1] (where it is proved for µ regular).
More precisely, we’ll abbreviate

V̄ (x) = V̄S,φ(x), B̄(x) = wB̄A,µ,+(x), Z = wZS,µ.

Therefore, we have

B̄(x)y ⊂ B̄(x)[y] = Ker(ρy,dy) ⊂ B̄(x)y .

In particular, for αuy
=

∏
h∈uy

αh, we have

αuy
B̄(x)[y] ⊂ B̄(x)y .

The graded S-module B̄(x)y is free and B̄(x)h = B̄(x)y/αhB̄(x)y for h ∈ uy because
B̄(x) is F-projective. Thus we have

B̄(x)y ⊂ αuy
B̄(x)y ,

because αh1
is prime to αh2

in S if h1 6= h2. We claim that

B̄(x)y = αuy
B̄(x)[y]. (3.1)

Let b ∈ B̄(x)y . Write b = αuy
b′ with b′ ∈ B̄(x)y. If ρy,h(b

′) 6= 0 with h ∈ dy then

ρy,h(b) = αuy
ρy,h(b

′) 6= 0,

because the αuy
-torsion submodule of B̄(x)h is zero. Indeed, we have B̄(x)h =

B̄(x)h′/αhB̄(x)h′ , the S-module B̄(x)h′ is free, and αh is prime to αuy
. This

implies the claim (3.1). In particular, we have

B̄(x)[y] = B̄(x)y{2l(y)}

because ♯uy = l(y). Hence, by Remark 3.14 and Proposition 3.20 we have a graded
S-module isomorphism

(B̄(x)y)
∗{2l(y)} = B̄(x)y{2l(y)} = B̄(x)[y].

�

Definition 3.24. We define the graded k-algebra

wĀµ,∓ = kEndwZS0,µ

(
wB̄S0,µ,∓

)op
= kEndwZS0,µ

(
wC̄S0,µ,±

)
.

Let wAµ,± be the k-algebra underlying wĀµ,±. Let 1x be the idempotent of wĀµ,±
associated with the direct summand wB̄S0,µ,±(x) of wB̄S0,µ,±.

Proposition 3.25. The graded k-algebra wĀµ,± is basic. Its Hilbert polynomial is

P (wĀµ,+, t)x,x′ =
∑

y6x,x′

Pµ,qy,x (t
−2)Pµ,qy,x′(t

−2) tl(x)+l(x
′)−2l(y),

P (wĀµ,−, t)x,x′ =
∑

y>x,x′

Qµ,−1x,y (t−2)Qµ,−1x′,y (t−2) t2l(y)−l(x)−l(x
′).
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If µ = φ then the following matrix equation holds

P (wĀφ,−, t)P (
vĀφ,+,−t) = 1,

where v = w−1 and the sets of indices of the matrices in the left and right factors
are identified through the map x 7→ x−1.

Proof. By Remark 3.13, for each x, x′ there is a finite filtration of the graded S0-
module HomwZS0,µ

(
wB̄S0,µ,+(x

′),wB̄S0,µ,+(x)
)
whose associated graded is

=
⊕

y

⊕

i>0

HomS0

(
wB̄S0,µ,+(x

′)y , S0

)
{2l(y)− l(x) + 2i}⊕P

µ,q
y,x,i

=
⊕

y

⊕

i,i′>0

S0{2l(y)− l(x)− l(x′) + 2i+ 2i′}
⊕Pµ,q

y,x,i P
µ,q

y,x′ ,i′ .

Thus we have a graded k-vector space isomorphism

1x
wĀµ,+1x′ =

⊕

y6x,x′

⊕

i,i′>0

k{2l(y)− l(x)− l(x′) + 2i+ 2i′}
⊕Pµ,q

y,x,i P
µ,q

y,x′ ,i′ ,

where y, x, x′ run over wIµ,+. Therefore, we have

P (wĀµ,+, t)x,x′ =
∑

y6x,x′

Pµ,qy,x (t
−2)Pµ,qy,x′(t

−2) tl(x)+l(x
′)−2l(y).

In other words, the following matrix equation holds

P (wĀµ,+, t) = Pµ,+(t)
T Pµ,+(t), Pµ,+(t)y,x = Pµ,qy,x (t

−2) tl(x)−l(y), x, y ∈ wIµ,+.

Note that Pµ,qy,x,i = 0 if l(y) − l(x) + 2i > 0 and that if l(y) − l(x) + 2i = 0 then

Pµ,qy,x,i = 0 unless y = x. Thus we have

P (wĀµ,+, t)x,x′ ∈ δx,x′ + tN[[t]].

Hence the graded k-algebra wĀµ,+ is basic. The matrix equation

P (wĀµ,−, t) = Qµ,−(t)Qµ,−(t)
T , Qµ,−(t)x,y = Qµ,−1x,y (t−2) tl(y)−l(x), x, y ∈ wIµ,+

is proved in Proposition A.5. Hence wĀµ,− is also basic. Next, we have, see e.g.,
[24, (2.39)]

∑

x6y6x′

(−1)l(y)−l(x)Qµ,ax,y(t)P
µ,a
y,x′(t) = δx,x′, x, x′, y ∈ wIµ,+, a = −1, q.

Further, if µ = φ is regular then we have also Py,x(t) = Pµ,qy,x (t) and Qx,y(t) =
Qµ,qx,y(t). So we have the matrix equation

Qφ,−(t)Pφ,+(−t) = Pφ,+(−t)Qφ,−(t) = 1.

Therefore, we have

P (wĀφ,−, t)P (
wĀφ,+,−t) = Qφ,−(t)Qφ,−(t)

T Pφ,+(−t)
T Pφ,+(−t) = 1.

The matrix equation in the proposition follows easily, using the fact that Py,x =
Py−1,x−1 and Qx,y = Qx−1,y−1 . �

Remark 3.26. The Hilbert polynomial P (wĀµ,+, t) can also be computed in the
same way as the Hilbert polynomial P (wĀµ,−, t) in Proposition A.5. The proof
above is of independent interest.

Remark 3.27. Forgetting the gradings we define in the same way wBA,µ,±(x),
wBA,µ,±,

wCA,µ,±(x),
wCA,µ,±, and VA,µ(x).
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Remark 3.28. For V = t∗, let wG∨µ be the moment graph over V whose set of
vertices is wIµ,+, with an edge between x, y if and only if there is an affine reflection
sα such that x ∈ sαyWµ, this edge being labelled by k α. Let S be the symmetric
k-algebra over V and let A be a commutative, noetherian, integral domain which
is a graded S-algebra with 1. We define wZ̄∨A,µ,

wZ̄∨A,µ,
wB̄A,µ,±(x)

∨, wC̄A,µ,±(x)
∨,

etc., in the obvious way. Next, set wZ̄∨µ = kwZ̄∨S,µ. Let
wZ̄∨µ be the category of the

finite dimensional graded wZ̄∨µ -modules. We define

wB̄∨µ,±(x) = kwB̄∨S,µ,±(x),
wC̄∨µ,±(x) = kwC̄∨S,µ,±(x).

Remark 3.29. The results in this section have obvious analogues in finite type.
Then, we may omit the truncation and Proposition 3.23, Corollary A.4 yield

B̄A,µ,+(x)y =
⊕

i>0

A{l(x)− 2i}⊕P
µ,q
y,x,i

B̄A,µ,−(x)y{l(w0)} =
⊕

i>0

A{l(w0x)− 2i}⊕Q
µ,−1

x,y,i ,

where w0 is the longuest element in the Weyl group W . Indeed, we have

ω∗B̄A,µ,+(w0xwµ) = B̄A,µ,−(x){l(w0wµ)},

where ω : Gµ,− → Gµ,+ is the ordered moment graph isomorphism induced by
the bijections Iµ,+ → Iµ,+, x 7→ w0xwµ and t → t, h 7→ w0(h). Note that [24,
prop. 2.4,2.6] and Kazhdan-Lusztig’s inversion formula give

Qµ,−1x,y = Pµ,qw0ywµ,w0xwµ
.

3.3. Deformed category O. In this section we set V = t and we assume that A

is a local S0-algebra. Let w ∈ Ŵ . For λ ∈ t∗ let Aλ be the (t, A)-bimodule which is
free of rank one over A and such that x ∈ t acts by multiplication by the image of
the element λ(x) + x by the canonical map S0 → A. The deformed Verma module
with highest weight λ is the (g, A)-bimodule given by

VA(λ) = U(g)⊗U(b) Aλ.

We’ll write r ·m for the action of an element r ∈ A on an element m ∈ M . The
category OA,µ,± consists of (g, A)-bimodules M such that

• M =
⊕

λ∈t∗ Mλ with Mλ = {m ∈M ; xm = (λ(x) + x) ·m, x ∈ t},

• U(b) (A ·m) is finitely generated over A for each m ∈M ,

• the highest weight of any simple subquotient is linked to oµ,±.

The morphisms are the (g, A)-bimodule homomorphisms. We are interested by the
following categories :

• wOA,µ,− is the thick subcategory of OA,µ,− of the finitely generated mod-
ules such that the highest weight of any simple subquotient is of the form
λ = x • oµ,− with x 4 w and x ∈ Iµ,−.

• wOA,µ,+ is the category of the finitely generated objects in the Serre quo-
tient of OA,µ,+ by the thick subcategory of the modules such that the
highest weight of any simple subquotient is of the form λ = x • oµ,+ with
x 6< w and x ∈ Iµ,+. We use the same notation for a module in OA,µ,+ and
a module in the quotient category wOA,µ,+.

Proposition 3.30. (a) The category wOA,µ,± is a highest weight category over A.
The standard objects are the deformed Verma modules VA(x • oµ,±) with x ∈ wIµ,±.

(b) For w ∈ Iνµ,± the tilting equivalence gives a duality D : wOA,µ,± → vOA,µ,∓

where v = w∓.
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Proof. First, we consider the category wOA,µ,−. The deformed Verma modules are
split, i.e., their endomorphism ring is A. Further, the A-category wOA,µ,− is Hom
finite. Thus we must check that wOA,µ,− has a projective generator and that the
projective modules are ∆-filtered. Both statements follow from [13, thm. 2.7].

Next, we consider the category wOA,µ,+. Once again it is enough to check
that wOA,µ,+ has a projective generator and that the projective modules are ∆-
filtered. By [13, thm. 2.7], a simple module L(x • oµ,+) in OA,µ,+ has a projective
cover PA(x • oµ,+). Note that the deformed category O in loc. cit. is indeed a
subcategory of OA,µ,+ containing all finitely generated modules. Since PA(x•oµ,+)
is finitely generated, the functor HomOA,µ,+

(PA(x • oµ,+), •) commutes with direct
limits. Thus, since any module in OA,µ,+ is the direct limit of its finitely generated
submodules, the module PA(x• oµ,+) is again projective in OA,µ,+. Now, the same
argument as in Remark 2.14 using [32, thm. 3.1] shows that the functor

HomOA,µ,+

(⊕

x

PA(x • oµ,+), •
)
, x ∈ wIµ,+,

factors to an equivalence of abelian A-categories

wOA,µ,+ → mod(R), R = EndOA,µ,+

(⊕

x

PA(x • oµ,+)
)op

,

where R is a finite projective A-algebra. Using this, the axioms of a highest weight
category over A are easily verified for wOA,µ,+, using, e.g., [36, thm. 4.15]. This
finishes the proof of (a).

The tilting equivalence D is constructed in the more general context of highest
weight categories over a ring in [36], see Section 2.5 for details. To prove (b) it is
enough to check that D(wOA,µ,+) =

wOA,µ,−. This follows from [14, sec. 2.6] and
the characterization of tilting objects in a highest weight category over a ring in
[36, lem. 4.21, def. 4.25]. �

Recall that wO∆
A,µ,± is the full subcategory of wOA,µ,± of the ∆-filtered modules.

Let wPA(x • oµ,±) be the projective cover of VA(x • oµ,±). Set

wTA(x • oµ,±) = D
(
wPA(x • oµ,∓)

)
.

It is a tilting object. For a morphism of local S0-algebras A→ A′ we have an exact
base change functor wOA,µ,± → wOA′,µ,±, M 7→ A′M =M ⊗A A

′.

Proposition 3.31. (a) For x ∈ wIµ,± we have

kwPA(x • oµ,±) =
wP (x • oµ,±), kwTA(x • oµ,±) =

wT (x • oµ,±).

(b) Projective objects in wO∆
A,µ,± are finite direct sums of wPA(λ)’s, tilting objects

are finite direct sums of wTA(λ)’s.
(c) Base change takes projectives to projectives and tiltings to tiltings. The

obvious map A′Hom(M,N) → Hom(A′M,A′N) is invertible for M,N ∈ wO∆
A,µ,±.

Proof. The proposition follows from Proposition 3.30 and from the general theory
of a highest weight category over a ring. For instance, the last claim in (c) follows
from the proof of [36, prop. 4.30]. See also [13, thm. 2.7, prop. 2.4]. �

Proposition 3.32. There is a functor V : wO∆
A,µ,± → wZA,µ such that

(a) V is exact (for the exact structure on mod(wZA,µ)),
(b) V commutes with base change,
(c) if A = S0 and x ∈ wImin

µ then we have

- V ◦D = D ◦ V,
- V is an equivalence of exact categories wO∆

A,µ,± → wZ∆
A,µ,±,

- V(wPS0
(x • oµ,±)) = wBS0,µ,±(x),
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- V(wTS0
(x • oµ,±)) = wCS0,µ,±(x),

- V(VS0
(x • oµ,±)) = VS0,µ,±(x),

(d) if A = k then V is fully-faithful on projectives in wO∆
µ,+.

Proof. A functor V on O∆
A,µ,± is defined in [14]. It is exact for the exact structure

on wZA,µ induced by the embedding wZA,µ ⊂ mod(wZA,µ) and by the usual exact
structure on the right hand side, see [14, prop. 2]. Further, the functor V commutes
with base change and with the tilting equivalence, see [14, prop. 2, sec. before
rem. 6]. Here we define V on wO∆

A,µ,− as the composition of V and of the embedding
wO∆

A,µ,− ⊂ OA,µ,−, and we define V on wO∆
A,µ,+ as the composition of V and D.

This proves (a), (b) and the first claim of (c). The second claim of (c) follows
from [15, thm. 7.1]. Note that we use here the non-standard exact structure on
wZ∆

A,µ,±, see [15, sec. 7.1] and Remark 3.8. The third claim of (c) follows from [15,

prop. 7.2]. The last one follows from the proof of [14, prop. 2, sec. before rem. 6].
Finally, the fourth claim of (c) follows from the second one. Part (d) follows from
[40, thm. 3.9]. �

Corollary 3.33. We have a k-algebra isomorphism wRµ,± → wAµ,± such that
1x 7→ 1x if x ∈ wIµ,+, and 1x 7→ 1xwµ

if x ∈ wIµ,−.

Proof. Propositions 3.31, 3.32(c) yield

wRµ,± = EndwOµ,±
(wPµ,±)

op

= kEndwOS0,µ,±
(wPS0,µ,±)

op

= kEndwZS0,µ
(wBS0,µ,±)

op

= wAµ,±.

�

Remark 3.34. The highest weight category wOν
A,µ,± over A does not depend on the

choice of oµ,± and e but only on µ, ν, see [14, thm. 11].

Remark 3.35. We set wZ̄µ = kwZ̄S0,µ and wB̄µ,+ = kwB̄S0,µ,+, compare Remark
3.28. By Proposition 3.32(c) we have

EndwZµ
(wBµ,+)

op = EndwOµ,+
(wPµ,+)

op

= kEndwOS0,µ,+
(wPS0,µ,+)

op

= kEndwZS0,µ
(wBS0,µ,+)

op

= wAµ,+.

Hence we have also a graded k-algebra isomorphism

EndwZµ
(wB̄µ,+)

op = wĀµ,+.

This isomorphism can also be recovered from the results in Section 3.6.

Remark 3.36. By Corollary A.6 and Proposition 3.32(c) we have

EndwZµ
(V(wPµ,−))

op = EndwZµ
(wBµ,−)

op

= wAµ,−

= kEndwOS0,µ,−
(wPS0,µ,−)

op

= EndwOµ,−
(wPµ,−)

op.

This implies that for A = k the functor V is fully-faithful on projectives in wO∆
µ,−.

This is an analogue of Proposition 3.32(d) for negative level.
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3.4. Translation functors in O. In this section we set V = t and we assume
that A is a local S0-algebra. Assume that e 6= d∓m and that oµ,−, oφ,− have the
level −e−m, −d−m respectively. Then oµ,±− oφ,± is an integral affine weight of
level ±(e− d). It is positive if ±(e− d) > −m and negative else, see Section 2.8.

Proposition 3.37. Let z ∈ Imax
µ , w ∈ zWµ and ±(e−d) > −m. We have k-linear

functors
Tφ,µ : zO∆

A,φ,± → wO∆
A,µ,±, Tµ,φ : wO∆

A,µ,± → zO∆
A,φ,± (3.2)

such that the following hold
(a) Tφ,µ, Tµ,φ are exact,
(b) Tφ,µ, Tµ,φ are bi-adjoint if A = S0 or k,
(c) Tφ,µ, Tµ,φ commute with base change.

Proof. The functors Tφ,µ, Tµ,φ on O∆
A,φ,±, O

∆
A,µ,± are constructed in [13]. Since z ∈

Imax
µ , by [14, thm. 4(2)] the functors Tφ,µ, Tµ,φ preserve the subcategories zO∆

A,φ,−,
wO∆

A,µ,−. For the same reason the functors Tφ,µ, Tµ,φ factor to the categories
zO∆

A,φ,+,
wO∆

A,µ,+. �

Proposition 3.38. Let A = k, z ∈ Imax
µ , w ∈ zWµ and ±(e− d) > −m. We have

a k-linear functor
Tφ,µ : zOφ,± → wOµ,± (3.3)

such that (3.2), (3.3) coincide on zO∆
φ,± and the following hold

(a) Tφ,µ has a left adjoint functor Tµ,φ,
(b) Tφ,µ is exact and takes projectives to projectives,
(c) Tφ,µ, Tµ,φ preserve the parabolic category O and commute with i, τ ,
(d) Tµ,φ(

zP ν(x • oµ,±)) = wP ν(xwµ • oφ,±) for x ∈ zIµ,±,
(e) Tφ,µ(L(xwµ • oφ,±)) = L(x • oµ,±) for x ∈ zIµ,±,
(f) Tφ,µ(L(xwµ • oφ,±)) = 0 iff x ∈ zIφ,± \ zIµ,±,
(g) Tφ,µ(

zLνφ,±) =
wLνµ,±.

Proof. The definition of the translation functor Tφ,µ : Oφ,± → Oµ,± in (3.3) is
well-known, see e.g., [23], and, by construction, its restriction to ∆-filtered objects
coincides with (3.2) if A = k. It satisfies the identities (e), (f) by [23, prop. 3.8].
Thus, since z ∈ Imax

µ , the functor Tφ,µ factors to a functor as in (3.3), which
satisfies again (e), (f). The existence of the left adjoint functor Tµ,φ follows from
the following general fact, see e.g., [37, lem. 2.8],

Claim 3.39. Let A, B be noetherian k-algebras and T : mod(A) → mod(B) be a
right exact k-linear functor which commutes with direct sums. Then T has a right
adjoint.

This implies that the functor Tφ,µ in (3.3) has a right adjoint. Composing this
right adjoint with the BGG duality we get a left adjoint, see Remark 2.15. Hence,
claim (a) is proved. Part (b) follows from Proposition 3.37. Claim (c) is obvious,
and (d) is a consequence of (e), (f). To prove (g), note that (e) implies that
Tφ,µ(

zLφ,±) =
wLµ,±. Thus (c) gives Tφ,µ(

zLνφ,±) ⊂
wLνµ,±. Further, for x ∈ zIνµ,±

part (e) yields

L(xwµ • oφ,±) ⊂ Tµ,φTφ,µL(xwµ • oφ,±) = Tµ,φL(x • oµ,±). (3.4)

Thus, by adjunction, for each x ∈ zIνµ,± we have a surjective map

Tφ,µL(xwµ • oφ,±) → L(x • oµ,±).

Now, since the right hand side of (3.4) is in wOν
φ,± by (c), the left hand side is also

in zOν
φ,±. Thus, we have a surjective map Tφ,µ(

zLνφ,±) →
wLνµ,±. �
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3.5. Translation functors in Z. In this section we set V = t and we assume that
A is the localization of S0 with respect to some multiplicative subset. Fix z ∈ Imax

µ .

An element of zZ̄A,φ is a tuple (ax) of elements of A with x 6 z. The assignment
y · (ax) = (axy) defines a left Wµ-action on zZ̄A,φ. For w ∈ zWµ the map

wZ̄A,µ → zZ̄A,φ, (ax) 7→ (axy) with axy = ax, x ∈ wImin
µ , y ∈ Wµ

identifies wZ̄A,µ with the set of Wµ-invariant elements in zZ̄A,φ. Let

θ̄φ,µ : zZ̄A,φ → wZ̄A,µ, θ̄µ,φ : wZ̄A,µ → zZ̄A,φ

be the restriction and induction functors with respect to the inclusion

wZ̄A,µ ⊂ zZ̄A,φ.

Forgetting the gradings we define in the same way the functors θµ,φ and θφ,µ.

Proposition 3.40. For z ∈ Imax
µ the following hold

(a) θ̄φ,µ, θ̄µ,φ commute with base change,
(b) V ◦ Tφ,µ = θφ,µ ◦ V and V ◦ Tµ,φ = θµ,φ ◦ V,
(c) θ̄φ,µ and θ̄µ,φ are exact functors zZ̄∆

A,φ,± → wZ̄∆
A,µ,± and wZ̄∆

A,µ,± → zZ̄∆
A,φ,±,

(d) (θ̄µ,φ, θ̄φ,µ, θ̄µ,φ{2l(wµ)}) is a triple of adjoint functors,
(e) θ̄φ,µ ◦D = D ◦ θ̄φ,µ and θ̄µ,φ ◦D = D ◦ θ̄µ,φ ◦ {2l(wµ)},
(f) for x ∈ wImin

µ , there is a sum M of wB̄A,µ,+(t){j}’s with t < x such that

θ̄φ,µ(
zB̄A,φ,+(xwµ)) =

⊕

y∈Wµ

wB̄A,µ,+(x){l(wµ)− 2l(y)} ⊕M,

(g) for x ∈ wImin
µ we have

θ̄µ,φ(
wB̄A,µ,−(x)) =

zB̄A,φ,−(x),

θ̄µ,φ(
wB̄A,µ,+(x)) =

zB̄A,φ,+(xwµ){−l(wµ)}.

Proof. Part (a) is obvious. Part (b) is proved in [14, thm. 9]. For (c) it is enough
to check that θφ,µ, θµ,φ preserve zZ∆

A,φ,±,
wZ∆

A,µ,± and are exact. This follows from

claim (b) and Propositions 3.32(c), 3.37(a). Part (d) is proved as in [16, prop. 5.2].
More precisely, since z ∈ Imax

µ there are graded wZ̄A,µ-module isomorphisms

zZ̄A,φ ≃
⊕

y∈Wµ

wZ̄A,µ{−2l(y)}, (3.5)

zZ̄A,φ{2l(wµ)} ≃ HomwZ̄A,µ

(
zZ̄A,φ,

wZ̄A,µ
)
. (3.6)

The second one yields an isomorphism of functors

zZ̄A,φ{2l(wµ)} ⊗wZ̄A,µ
• ≃ HomwZ̄A,µ

(
zZ̄A,φ,

wZ̄A,µ
)
⊗wZ̄A,µ

•

≃ HomwZ̄A,µ

(
zZ̄A,φ, •

)
.

Therefore (θ̄µ,φ, θ̄φ,µ, θ̄µ,φ{2l(wµ)}) is a triple of adjoint of functors. Part (e) follows
from (d). Indeed, since θ̄φ,µ(M) = M as a graded A-module, we have θ̄φ,µ ◦D =
D ◦ θ̄φ,µ. Then, part (d) implies that θ̄µ,φ ◦D = D ◦ θ̄µ,φ ◦ {2l(wµ)}. Now, we prove
(f). We abbreviate B̄µ(x) = wB̄A,µ,+(x), B̄φ(x) = zB̄A,φ,+(x), Z̄µ = wZ̄A,µ and
Z̄φ = zZ̄A,φ. We have B̄φ(xwµ)xWµ

= Z̄φ,xWµ
{l(xwµ)}, see Remark 3.45. Thus, by

[16, prop. 5.3] and (3.5) we have also

θ̄φ,µ(B̄φ(xwµ))x = B̄φ(xwµ)xWµ
=

⊕

y∈Wµ

A{l(xwµ)− 2l(y)}

as a graded A-module. This proves the claim, because for t ∈ Imin
µ we have

t 66 x⇒ θ̄φ,µ(B̄φ(xwµ))t = θ̄φ,µ(B̄φ(xwµ)tWµ
) = 0,
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and because θ̄φ,µ(B̄φ(xwµ)) is a direct sum of objects of the form B̄µ(z){j} since
the right adjoint of θ̄φ,µ is exact. Finally, we prove (g). By Propositions 3.32(c),
3.38(d) and part (b) we have

θµ,φ(
wBA,µ,+(x)) =

zBA,φ,+(xwµ), θµ,φ(
wBA,µ,−(x)) =

zBA,φ,−(x).

To identify the gradings, note that by [16, prop. 5.3], we have

θ̄µ,φ(
wB̄A,µ,±(x))xWµ

= zZ̄φ,xWµ
⊗wZ̄µ,x

wB̄A,µ,±(x)x

= zZ̄φ,xWµ
{±l(x)},

because wZ̄µ,x = A and wB̄A,µ,±(x)x = A{±l(x)}. Therefore, we have

θ̄µ,φ(
wB̄A,µ,+(x))xwµ

= A{l(x)} θ̄µ,φ(
wB̄A,µ,−(x))x = A{−l(x)},

because (zZ̄φ,xWµ
)y = A for all y ∈ xWµ. �

Remark 3.41. The isomorphisms (3.5), (3.6) are only proved for ♯Wµ = 2 in [16,
lem. 5.1]. The general case is similar and is left to the reader.

Remark 3.42. For z ∈ Imax
µ , w ∈ zWµ and e +m > d the functor Tµ,φ : wOµ,+ →

zOφ,+ is faithful on projectives. By Propositions 3.40(b), 3.32(d) it is enough to
check that θµ,φ is faithful on the projective objects in wZµ,+. This is obvious,
because the unit 1 → θµ,φ ◦ θφ,µ is a direct summand by definition of θµ,φ, θφ,µ.

Remark 3.43. If A = k then the functors θ̄µ,φ, θ̄φ,µ and their non graded analogues
are defined in the following way. Recall that wZ̄µ = kwZ̄S0,µ and that wZ̄µ is the
category of the finite dimensional graded wZ̄µ-modules. Then, we define

θ̄φ,µ : zZ̄φ → wZ̄µ, θ̄µ,φ : wZ̄µ → zZ̄φ

to be the restriction and induction functors with respect to the inclusion wZ̄µ ⊂ zZ̄φ.
These functors θ̄µ,φ, θ̄φ,µ are exact, for the obvious exact structure on gmod(wZ̄µ).

3.6. Localization. In this section we set V = t∗. Let Pµ be the “parabolic sub-
group” of G(k((t))) with Lie algebra pµ. Write B = Pφ. Let T ⊂ B be the torus
associated with t.

Let X ′ = G(k((t)))/Pµ be the partial (affine) flag ind-scheme. For w ∈ Ŵ let
X̄w ⊂ X ′ be the corresponding finite dimensional affine Schubert variety. To avoid
confusions we may write X ′µ = X ′ and X̄µ,w = X̄w. The group T acts on X̄w, with

the first copy of k× acting by rotating the loop and the last one acting trivially.
The varieties X̄w form an inductive system of complex projective varieties with
closed embeddings and X ′ is represented by the ind-scheme indwX̄w. Let D

b(X̄w)
be the bounded derived category of constructible sheaves of k-vector spaces on X̄w

which are locally constant along the B-orbits. Let P(X̄w) be the full subcategory
of perverse sheaves. Recall that X̄w has dimension l(w) for w ∈ Imin

µ .

For x ∈ Iµ,+ we have X̄x ⊂ X̄w if and only if x ∈ wIµ,+. Let wIC(X̄x) be
the intersection cohomology complex in P(X̄w) associated with X̄x. Let IH(X̄x)
(resp. IHT (X̄x)) be the (resp. T -equivariant) intersection cohomology of X̄x. See
Section A.1 for details.

Proposition 3.44. We have
(a) HT (X̄w) =

wZ̄∨S,µ and H(X̄w) =
wZ̄∨µ as graded k-algebras,

(b) IHT (X̄x) =
wB̄∨S,µ,+(x) as a graded wZ̄∨S,µ-module,

(c) IH(X̄x) =
wB̄∨µ,+(x) as a graded wZ̄∨µ -module.

Proof. Part (a) follows from [20], parts (b) and (c) from [7, thm. 1.5, 1.6, 1.8]. �
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Remark 3.45. By Proposition 3.44, the graded zZ̄φ,xWµ
-module zB̄A,φ,+(xwµ)xWµ

with x ∈ Imin
µ is the equivariant intersection cohomology of the variety

⋃
y∈Wµ

Xφ,xy.

Since this variety is smooth, we have zB̄A,φ,+(xwµ)xWµ
= zZ̄φ,xWµ

{l(xwµ)}.

Proposition 3.46. Let w ∈ Iµ,+ and v = w−1− , so v ∈ Iµφ,−. There is an equiva-

lence of abelian categories Φ : vOµ
φ,− → P(X̄w) such that vL(y • oφ,−) 7→ wIC(X̄x)

for y ∈ vIµφ,− and x = y−1+ .

Proof. Note that w = v−1wµ and that x = y−1wµ. Further, the assignment y 7→ x
yields a bijection vIµφ,− → wIµ,+ by Remark 2.12. Next, apply [4, thm. 7.15, 7.16],

[18, thm. 2.2] and [26]. �

Recall the category wZ∨µ from Remark 3.28. By Proposition 3.44, composing Φ

and the cohomology, for w ∈ Iµ,+ and v = w−1− = wµw
−1 ∈ Iµφ,−, we get a functor

H : vOµ
φ,− → wZ∨µ .

Proposition 3.47. Let w ∈ Iµ,+ and y, t ∈ vIµφ,−. Set v = wµw
−1, x = y−1+ and

s = t−1+ . We have
(a) H(vL(y • oφ,−)) = wB∨µ,+(x),

(b) ExtvOµ

φ,−

(
vL(y • oφ,−), vL(t • oφ,−)

)
= kHomwZ∨

S,µ

(
wB̄∨S,µ,+(x),

wB̄∨S,µ,+(s)
)
,

(c) For z = v−1 and L ∈ Irr(vOµ
φ,−) we have an isomorphism of zZ∨φ -modules

θµ,φH(L) ≃ Hi(L).

Proof. Part (a) follows from Propositions 3.44, 3.46. Next, Proposition 3.46 gives

ExtvOµ

φ,−

(
vL(y • oφ,−),

vL(t • oφ,−)
)
= ExtDb(X̄w)

(
wIC(X̄x),

wIC(X̄s)
)
.

Further, by Propositions A.1 and 3.44 we have

Ext
Db

T (X̄w)

(
wICT (X̄x),

wICT (X̄s)
)
= HomwZ∨

S,µ

(
wB̄∨S,µ,+(x),

wB̄∨S,µ,+(s)
)
,

ExtDb(X̄w)

(
wIC(X̄x),

wIC(X̄s)
)
= kExtDb

T
(X̄w)

(
wICT (X̄x), k

wICT (X̄s)
)
.

This proves (b). Finally, we prove (c). Note that θµ,φ is well-defined, because
z ∈ Imax

µ and w = zwµ. By Proposition 3.44, taking the cohomology gives a

functor P(X̄µ,w) → mod(wZ̄∨µ ), E 7→ H(E). Since z ∈ Imax
µ , the obvious projection

p : X̄φ,z → X̄µ,w is a smooth map. For E in P(X̄µ,w) we may regard H(E) and
H(p∗E) as modules over wZ̄∨µ and zZ̄∨φ by Proposition 3.44. There is a natural

morphism H(E) → θφ,µH(p∗E). By adjunction, this yields a morphism of functors
θµ,φ◦H → H◦i. This is an isomorphism, by Proposition 3.40(g) via base change. �

Corollary 3.48. Let w ∈ Iµ,+ and v = w−1− . We have a graded k-algebra isomor-

phism vR̄µφ,− → wĀµ,+ such that 1y 7→ 1x with x = y−1+ .

Proof. The choice of a Ŵ -invariant pairing on t yields an isomorphism

kEndwZ∨
S,µ

(wB̄∨S,µ,+)
op = wĀµ,+.

Thus the corollary follows from Proposition 3.47. �
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4. Proof of the main theorem

4.1. Regular case. Fix d, e > 0 and µ ∈ P . Let oµ,−, oφ,− have the level −e−m
and −d−m. Let w ∈ Iµ,+ and z = wwµ, v = wµw

−1, u = w−1. Note that

z ∈ Iµ,−, v ∈ Iµφ,−, u ∈ Iµφ,+.

Proposition 4.1. We have a k-algebra isomorphism wRµ,+ = vR̄µφ,− such that

1x 7→ 1y for x ∈ wIµ,+ and y = x−1− in vIµφ,−. We have a k-algebra isomorphism
wR̄µ,+ = vRµφ,− such that 1x 7→ 1y for x ∈ wIµ,+. The graded k-algebras wR̄µ,+ and
vR̄µφ,−, are Koszul. Further wR̄µ,+ = E(vR̄µφ,−) and 1x = E(1y) for x ∈ wIµ,+.

Proof. Corollaries 3.33, 3.48 yield k-algebra isomorphisms
wRµ,+ = wAµ,+ = vR̄µφ,−

which identify 1y ∈ vR̄µφ,− with 1x ∈ wRµ,+.

Now, we claim that the k-algebra vRµφ,− has a Koszul grading. By Lemma 2.2
and Remark 2.13, it is enough to check that vRφ,− has a Koszul grading. This
follows from the matrix equation in Proposition 3.25 and from [5, thm. 2.11.1],
because vRφ,− = vAφ,− as k-algebras by Corollary 3.33.

Equip vRµφ,− with the Koszul grading above. Then Lemma 2.1 implies that

E(vRµφ,−) =
vR̄µφ,−. Thus vR̄µφ,− is Koszul. Since wRµ,+ = vR̄µφ,−, this implies that

wRµ,+ has a Koszul grading. Thus Lemma 2.1 gives E(wRµ,+) = wR̄µ,+. Hence
wR̄µ,+ is Koszul. Finally, we have k-algebra isomorphisms

vRµφ,− = E(vR̄µφ,−) = E(wRµ,+) =
wR̄µ,+.

They identify the idempotent 1y ∈ vRµφ,− with the idempotent 1x ∈ wR̄µ,+. �

Remark 4.2. The Koszul grading on vRµφ,− can also be obtained using mixed per-

verse sheaves on the ind-scheme X ′ as in [5, thm. 4.5.4], [1]. Our argument via
moment graphs is elementary. Note that there is no analogue, in our situation, of
[5, lem. 3.9.2], because vRφ,− is not Koszul self-dual. Note also that there is no
analogue of the localization functor Φ in Proposition 3.46 for positive levels.

For the next proposition we use standard Koszul duality technics. To do so, we
need the following result.

Lemma 4.3. The quasi-hereditary k-algebra wRµ,+ is balanced.

Now we can prove the second main result of this section.

Proposition 4.4. We have a k-algebra isomorphism zR̄µ,− = uRµφ,+ such that

1x 7→ 1y for x ∈ zIµ,− and y = x−1+ in uIµφ,+. We have a k-algebra isomorphism
zRµ,− = uR̄µφ,+ such that 1x 7→ 1y for x ∈ zIµ,−. The graded k-algebras uR̄µφ,+ and
zR̄µ,− are Koszul. Further zR̄µ,− = E(uR̄µφ,+) and 1x = E(1y) for x ∈ zIµ,−.

Proof. By Proposition 2.10 we have D(wRµ,+) =
zRµ,−. Thus zRµ,− has a Koszul

grading by Lemma 4.3. Next, Lemma 2.1 implies that zR̄µ,− = E(zRµ,−) is Koszul.
Thus [30, thm. 1] and Propositions 2.10, 4.1 yield a k-algebra isomorphism
zR̄µ,− = E(zRµ,−) = DED(zRµ,−) = DE(wRµ,+) = D(wR̄µ,+) = D(vRµφ,−) =

uRµφ,+

such that 1x 7→ 1y. Next, by [30, thm. 1] and the isomorphisms above, uRµφ,+ has

a Koszul grading and is balanced. Hence E(uRµφ,+) =
uR̄µφ,+ is Koszul by Lemma

2.1. So we have
uR̄µφ,+ = E(uRµφ,+) = DED(uRµφ,+) = DE(vRµφ,−) = D(vR̄µφ,−) = D(wRµ,+) =

zRµ,−.

�
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Proof of Lemma 4.3. We equip the quasi-hereditary k-algebra wRµ,+ with the Koszul
grading vR̄µφ,−, see Proposition 4.1. The Koszul dual E(vR̄µφ,−) = wR̄µ,+ is quasi-

hereditary, because it is isomorphic to vRµφ,− as a k-algebra. Since it is also Koszul,

this implies that the graded k-algebra vR̄µφ,− is standard Koszul, see Section 2.6.

Therefore, by [29, thm. 6], we must prove that the grading on D(vR̄µφ,−) is positive.
As k-algebras we have

D(vR̄µφ,−) = D(wRµ,+) = EndwRµ,+
(wTµ,+)

op.

As graded k-algebras we have

D(vR̄µφ,−) = EndwRµ,+
(wT̄µ,+)

op.

Here wT̄µ,+ is the vR̄µφ,−-module equal to wTµ,+ as a wRµ,+-module, with the natural
grading. By Corollary 3.48 we have a graded k-algebra isomorphism

vR̄µφ,− = wĀµ,+.

We claim that there is also a graded k-algebra isomorphism

D(vR̄µφ,−) =
zĀµ,−. (4.1)

This implies the lemma because zĀµ,− is positively graded by Proposition 3.25. To
prove the claim, observe first that Propositions 2.10, 3.31, 3.32(c) yield a k-algebra
isomorphism

D(wRµ,+) =
zRµ,−

= EndzOµ,−
(zPµ,−)

op

= kEndzOS0,µ,−
(zPS0,µ,−)

op

= kEndzOS0,µ,+
(zTS0,µ,+)

= kEndzZS0,µ
(zCS0,µ,+)

= zAµ,−.

So we just have to identify the gradings in (4.1). Set

wĀS0,µ,+ = EndwZS0,µ

(
wB̄S0,µ,+

)op
,

wAS0,µ,+ = EndwZS0,µ

(
wBS0,µ,+

)op
.

By Proposition 3.32(c) we have

wOS0,µ,+ = mod(wAS0,µ,+).

Consider the graded S0-category

wŌS0,µ,+ = gmod(wĀS0,µ,+).

Let wŌ∆
S0,µ,+

be the full subcategory of wŌS0,µ,+ of the modules taken to wO∆
S0,µ,+

by the canonical functor wŌS0,µ,+ → wOS0,µ,+. Consider the following square

wŌ∆
S0,µ,+

V̄

//

��

wZ̄∆
S0,µ,+

��
wO∆

S0,µ,+
V // wZ∆

S0,µ,+
.

(4.2)

The vertical arrows are the obvious ones and V̄ is the functor given by

V̄(M) = wB̄S0,µ,+ ⊗wĀS0,µ,+
M.

The square (4.2) is commutative. Indeed, view wO∆
S0,µ,+

as a subcategory of

wOS0,µ,+ = mod(wAS0,µ,+).
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Under this identification the module wPS0,µ,+ is taken to wAS0,µ,+. Now, V is a
right exact functor which takes wAS0,µ,+ to wBS0,µ,+. Thus, under the identification
above, for each M in wO∆

S0,µ,+
we have

V(M) = wBS0,µ,+ ⊗wAS0,µ,+
M.

This means precisely that the square (4.2) is commutative. Note that V̄ is fully
faithful on wŌ∆

S0,µ,+
because V is fully faithful on wO∆

S0,µ,+
by Proposition 3.32(c).

Next, by Corollary A.6 we have a graded k-algebra isomorphism
zĀµ,− = EndwZµ

(
wC̄µ,+

)
.

Hence we must prove that there is a graded k-algebra isomorphism

EndwRµ,+
(wT̄µ,+) = EndwZµ

(
wC̄µ,+

)
.

By Remark 3.35 it is enough to check that V̄(wT̄µ,+) =
wC̄µ,+. To do so, we consider

the deformed tilting module wTS0,µ,+ in wOS0,µ,+. It admits a natural grading.
Equipped with this grading wTS0,µ,+ can be regarded as a graded wĀS0,µ,+-module
wT̄S0,µ,+, or, equivalently, an object in wŌS0,µ,+. Since the construction of the
natural grading commutes with the reduction to the field k, we have

wT̄µ,+ = kwT̄S0,µ,+

and since V̄ commutes with base change, it is enough to check that

V̄(wT̄S0,µ,+) =
wC̄S0,µ,+. (4.3)

By Proposition 3.32(c) we just have to identify the gradings in (4.3).
Now, recall that wTS0

(x • oµ,+) is filtered by deformed Verma modules and that
the subquotients of this filtration are either VS0

(x•oµ,+) or of the form VS0
(y•oµ,+)

with y > x. Let V̄S0
(x•oµ,+) be the natural grading on VS0

(x•oµ,+). The inclusion

V̄S0
(x • oµ,+) ⊂

wT̄S0
(x • oµ,+)

is homogeneous of degree 0 by definition of the natural gradings. Next, by Remark
3.19 the graded S0-sheaf

wC̄S0,µ,+(x) is filtered by Verma-sheaves, and this filtration
yields an inclusion

V̄S0
(x){l(x)} ⊂ wC̄S0,µ,+(x).

Therefore, since the grading of an indecomposable object is unique up to a grading
shift, to prove (4.3) it is enough to check that

V̄
(
V̄S0

(x • oµ,+)
)
= V̄S0

(x){l(x)}.

Since V
(
VS0

(x • oµ,+)
)
= VS0

(x) by Proposition 3.32(c), we just have to check the
gradings, once again. But, by definition, we have

wP̄S0
(x • oµ,+) =

wĀS0,µ,+1x,

for some idempotent 1x which is homogeneous of degree 0. Thus, by definition of
V̄, we have

V̄
(
wP̄S0

(x • oµ,+)
)
= wB̄S0,µ,+(x).

Further, by Remark 3.19 the graded S0-sheaf
wB̄S0,µ,+(x) is filtered by Verma-

sheaves, and this filtration yields a surjection
wB̄S0,µ,+(x) → V̄S0

(x){l(x)}.

Since the surjection
wP̄S0

(x • oµ,+) → V̄S0
(x • oµ,+)

is also homogeneous of degree 0 by definition of the natural gradings, we get our
claim, proving the lemma. �

Corollary 4.5. We have an isomorphism of graded k-algebras uR̄µφ,+ = zĀµ,−.
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Proof. By [30, thm. 1] and the proof of Lemma 4.3 the graded k-algebra

D(vR̄µφ,−) =
zĀµ,−

is Koszul. By Proposition 4.4 we have that uR̄µφ,+ is Koszul and is isomorphic to
wRµ,− as a k-algebra. Further vR̄µφ,− = wRµ,+ as a k-algebra andD(wRµ,+) =

zRµ,−.
Thus we have a k-algebra isomorphism

zRµ,− = D(wRµ,+) =
zAµ,−,

which lifts to a graded k-algebra isomorphism uR̄µφ,+ = zĀµ,− by unicity of the
Koszul grading. �

4.2. General case. We can now complete the proof of Theorem 2.16. We first

prove a series of preliminary lemmas. Fix d, e, f > 0, µ, ν ∈ P and w ∈ Ŵ . Choose
integral weights oµ,−, oν,−, oφ,− of level −e−m, −f −m and −d−m.

Lemma 4.6. For w ∈ wIνµ,+ the functor τ yields a surjective k-algebra homomor-
phism τφ,ν : wRµ,+ → wRνµ,+. The kernel of τφ,ν is the two-sided ideal generated by
the idempotents 1x with x ∈ wIµ,+ \wIνµ,+, and we have τφ,ν(1x) = 1x for x ∈ wIνµ,+.

Proof. By Remark 2.13 the functor τ takes the full projective module of wOµ,+ to
the full projective module of wOν

µ,+. For any M the unit M → iτ(M) is surjective.
Hence for P projective we have a surjective map

HomwOµ,+
(P,M) → HomwOµ,+

(P, iτ(M)) = HomwOν
µ,+

(τ(P ), τ(M)).

Thus τ yields a surjective k-algebra homomorphism τφ,ν : wRµ,+ → wRνµ,+. Let
I ⊂ wRµ,+ be the 2-sided ideal generated by the idempotents 1x, x ∈ wIµ,+, such
that τφ,ν(1x) = 0. By Remark 2.13(c) the latter are precisely the idempotents
1x with x ∈ wIµ,+ \ wIνµ,+. We have a k-algebra isomorphism wRµ,+/I ≃ wRνµ,+,
because wOν

µ,+ is the thick subcategory of wOµ,+ generated by the simple modules
killed by I. It is easy to see that, under this isomorphism, τφ,ν is the canonical map
wRµ,+ → wRµ,+/I. The last claim in the lemma follows from Remark 2.13(b). �

Now, let v ∈ Iν,− and w = wνv
−1, so w ∈ Iνφ,+. Recall that

vOν,− = mod(vRν,−)

and vOφ,− = mod(vRφ,−). We equip the k-algebras vRν,− and vRφ,− with the
Koszul gradings wR̄νφ,+ and wR̄φ,+, see Proposition 4.4. Let L̄ν , L̄φ be the natural
graded lifts of Lν , Lφ in the graded categories

vŌν,− = gmod(wR̄νφ,+),
vŌφ,− = gmod(wR̄φ,+).

Lemma 4.7. For v ∈ Iν,− and d +m > f there is an exact graded functor T̄φ,ν
such that the square (4.4) is commutative and T̄φ,ν(L̄φ) = L̄ν

vŌφ,− T̄φ,ν

//

��

vŌν,−

��
vOφ,−

Tφ,ν
// vOν,−.

(4.4)

Proof. First, note that the functor Tφ,ν : vOφ,− → vOν,− is well-defined, because
d+m > f and v ∈ Imax

ν . By Remark 3.36 we have

vOν,− = mod(vAν,−),
vOφ,− = mod(vAφ,−).

The functors V on vO∆
ν,− and vO∆

φ,− are right exact, and under the identifications

above we have V(vAν,−) =
vBν,− and V(vAφ,−) =

vBφ,−. Thus we have respectively

V(M) = vBν,− ⊗vAν,−
M, V(M) = vBφ,− ⊗vAφ,−

M.
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Next, by Corollary 4.5 we have graded k-algebra isomorphisms

wR̄νφ,+ = vĀν,−,
wR̄φ,+ = vĀφ,−.

Therefore, we have the commutative square

vŌ∆
ν,−

V̄

//

��

vZ̄ν,−

��
vO∆

ν,−
V // vZν,−

(4.5)

and the commutative square

vŌ∆
φ,−

V̄

//

��

vZ̄φ,−

��
vO∆

φ,−
V // vZφ,−,

(4.6)

where we have set respectively

V̄(M) = vB̄ν,− ⊗vĀν,−
M, V̄(M) = vB̄φ,− ⊗vĀφ,−

M.

Compare (4.2). Let vŌ
proj
φ,− ⊂ vŌ∆

φ,− be the full subcategory of the projective

objects. We define vŌproj
ν,− , vOproj

ν,− and vOproj
φ,− in a similar way. The functor V̄ is fully

faithful on vŌ
proj
ν,− and vŌ

proj
φ,− , because V is fully faithful on projectives by Remark

3.36. Therefore, we can identify vŌ
proj
ν,− , vŌproj

φ,− with some full subcategories vZ̄proj
ν,− ,

vZ̄
proj
φ,− of vZ̄ν,−,

vZ̄φ,−. By Proposition 3.38(b) the functor Tφ,ν gives an exact

functor vO
proj
φ,− → vO

proj
ν,− . Similarly θ̄φ,ν gives an exact functor vZ̄

proj
φ,− → vZ̄

proj
ν,− ,

see Remark 3.43. Therefore θ̄φ,ν gives an exact functor T̄φ,ν : vŌproj
φ,− → vŌ

proj
ν,−

via V̄. It coincides with Tφ,ν when forgetting the grading, by Proposition 3.40(b).
Using the same argument as in [3, p. 147] via the homotopy category of projective
modules, it gives an exact functor T̄φ,ν : vŌφ,− → vŌν,− which coincides with Tφ,ν
when forgetting the grading. Thus, the square (4.4) is commutative.

Now, we concentrate on the equality T̄φ,ν(L̄φ) = L̄ν . By Proposition 3.38(e) and
(4.4), for x ∈ wIν,− there is an integer j such that

T̄φ,ν(L̄(xwν • oφ,−)) = L̄(x • oν,−){j}.

We must check that j = 0. Recall that vP̄ (x • oν,−) is the module vP (x • oν,−) with
its natural grading. Since T̄ν,φ is left adjoint to T̄φ,ν, it is enough to check that

T̄ν,φ(
vP̄ (x • oν,−)) =

vP̄ (xwν • oν,−).

Now, observe that θ̄φ,ν ◦ V̄ is isomorphic to V̄ ◦ T̄φ,ν on vŌ
proj
φ,− . Therefore, it is

enough to check that

θ̄ν,φ(
vB̄ν,−(xwν)) =

vB̄φ,−(xwν).

This follows from Proposition 3.40(g) by base change. �

Remark 4.8. Let T̄ν,φ be the left adjoint of the functor T̄φ,ν . The existence of T̄ν,φ
follows from general facts as in the proof of Proposition 3.38. By definition of Tν,φ
and the unicity of the left adjoint, the square (4.7) below is commutative (up to an
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isomorphism of functors)

vŌφ,−

��

vŌν,−

��

T̄ν,φ

oo

vOφ,−
vOν,−.

Tν,φ
oo

(4.7)

Lemma 4.9. For v ∈ Iν,− and d + m > f the functor Tφ,ν : vOφ,− → vOν,−

induces a surjective graded k-algebra homomorphism vR̄µφ,− → vR̄µν,−. The kernel of

Tφ,ν contains the two-sided ideal generated by {1x ; x ∈ vIµφ,−, x /∈ Iν,+}, and for

x ∈ vIµφ,− ∩ Iν,+ we have xwν ∈ vIµν,− and Tφ,ν(1x) = 1xwν
.

Proof. First, note that, since v ∈ Imax
ν and d+m > f , the functor Tφ,ν : vOφ,− →

vOν,− is well-defined and it takes vOµ
φ,− into vO

µ
ν,− by Proposition 3.38(c). Com-

posing it with its left adjoint functor Tν,φ we get the functor Θ = Tν,φ ◦ Tφ,ν . To
unburden the notation we abbreviate Lφ = vLµφ,− and Lν = vLµν,−. By Proposition

3.38(g) we have Tφ,ν(Lφ) = Lν. Thus Tφ,ν induces a graded k-algebra homomor-
phism vR̄µφ,− → vR̄µν,−. To prove its surjectivity we must prove that the counit
Θ → 1 yields a surjective map

ExtvOµ
φ,−

(Lφ) → ExtvOµ
φ,−

(Θ(Lφ), Lφ).

The parabolic inclusion vO
µ
φ,− ⊂ vOφ,− is injective on extensions by Remark 2.13.

So we must prove that the counit yields a surjective map

ExtvOφ,−
(Lφ) → ExtvOφ,−

(Θ(Lφ), Lφ). (4.8)

Now, set Θ̄ = T̄ν,φ ◦ T̄φ,ν, where T̄ν,φ, T̄φ,ν are as in Lemma 4.7 and Remark 4.8.
For each i we have

ExtivOφ,−
(Lφ) =

⊕

j

ExtivŌφ,−
(L̄φ, L̄φ[j]),

ExtivOφ,−
(Θ(Lφ), Lφ) =

⊕

j

ExtivŌφ,−
(Θ̄(L̄φ), L̄φ[j]).

Thus we must prove that for each j the counit η : Θ̄ → 1 yields a surjective map

ExtivŌφ,−
(L̄φ, L̄φ[j]) → ExtivŌφ,−

(Θ̄(L̄φ), L̄φ[j]). (4.9)

By Lemma 4.7 we have T̄φ,ν(L̄φ) = L̄ν . Further, the gradings on vŌφ,− and vŌν,−

are Koszul by Proposition 4.4. Thus the right hand side of (4.9), which is equal to
ExtivŌν,−

(L̄ν , L̄ν [j]), is zero unless i = j. Now, let

low = max
{
d ; Θ̄(L̄φ)

d 6= 0
}
.

Recall that vŌφ,− = gmod(wR̄φ,+), and that the grading on wR̄φ,+ is positive.
Thus Θ̄(L̄φ)

low is a quotient module of Θ̄(L̄φ) which is killed by the radical of
wR̄φ,+, i.e., we have

Θ̄(L̄φ)
low ⊂ top(Θ̄(L̄φ)).

Next, we claim that for any simple module L̄ such that T̄φ,ν(L̄) 6= 0, the map η(L̄)
factors to an isomorphism top(Θ̄(L̄)) → L̄. Indeed, η(L̄) is surjective because it is
non zero, and for any simple quotient Θ̄(L̄) → L̄′ we have

0 6= HomvŌφ,−
(Θ̄(L̄), L̄′) = HomvŌν

(T̄φ,ν(L̄), T̄φ,ν(L̄
′)).

By Proposition 3.38(e), (f) this implies that

0 6= T̄φ,ν(L̄) = T̄φ,ν(L̄
′).

Therefore, we have L̄ = L̄′. This proves the claim. Applying this claim to any
simple direct summand L̄ ⊂ L̄φ such that T̄φ,ν(L̄) 6= 0, we get that top(Θ̄(L̄φ)) =



30 P. SHAN, M. VARAGNOLO, E. VASSEROT

Im η(L̄φ). In particular top(Θ̄(L̄φ)) is pure of degree zero. This implies that low =
0. Therefore, the kernel of η(L̄φ) lives in degrees> 0. Hence the surjectivity of (4.9)
for i = j follows from the long exact sequence of Ext’s groups and the vanishing

ExtivŌφ,−

(
Ker η(L̄φ), L̄φ[i]

)
= 0

by Koszulity of the grading of vŌφ,−. This proves the first part of the lemma.
Next, note that Iµν,− = {xwν ; x ∈Iµφ,−∩Iν,+} by Appendix C, that Tφ,ν(1xwν

) =

0 for x /∈ Iν,− by Proposition 3.38(f), and that xwν ∈ Iν,+ if and only if x ∈ Iν,−.
This proves the second claim of the lemma. Finally, the last claim of the lemma
follows from Proposition 3.38(e). �

Lemma 4.10. Let w ∈ Iνµ,+ and v = w−1− , so v ∈ Iµν,−. Assume that d+m > f and
e+m > d. There is a k-algebra homomorphism pµ,ν such that the square (4.10) is

commutative and pµ,ν(1x) = 1y for x ∈ wIνµ,+ and y = x−1−

wνwRµ,+
4.1

τφ,ν

��

vR̄µφ,−

Tφ,ν

��
wRνµ,+

pµ,ν vR̄µν,−.

(4.10)

Proof. Note that v = wµw
−1wν , that wνw ∈ Iνφ,− ∩ Iµ,+ by Appendix C, and that

wνwRνµ,+ = wRνµ,+. Now, let πµ,ν : wνwRµ,+ → vR̄µν,− be the composition of Tφ,ν
and the isomorphism wνwRµ,+ = vR̄µφ,− in Proposition 4.1. We must construct a
k-algebra isomorphism pµ,ν such that πµ,ν = pµ,ν ◦ τφ,ν . Let x ∈ wνwIµ,+. Then
wµx

−1 ∈ vIµφ,−. By Lemmas 4.6, 4.9 we have

πµ,ν(1x) 6= 0 ⇐⇒ Tφ,ν(1wµx−1) 6= 0

⇐⇒ wµx
−1 ∈ Iµφ,− ∩ Iν,+,

τφ,ν(1x) 6= 0 ⇐⇒ x ∈ Iνµ,+.

Next, by Appendix C, we have

wµx
−1 ∈ Iµφ,− ∩ Iν,+ ⇐⇒ xwµ ∈ Iνφ,+ ∩ Iµ,−

⇐⇒ x ∈ Iνµ,+.

Hence, we have τφ,ν(1x) = 0 if and only if πµ,ν(1x) = 0. Thus Ker(τφ,ν) ⊂
Ker(πµ,ν), because the left hand side is generated by the 1x’s killed by τφ,ν and
the right hand side contains the 1x’s killed by Tφ,ν. This proves the existence of
a k-algebra homomorphism pµ,ν such that the diagram above commutes and such
that pµ,ν(1x) = 1wµx−1 for x ∈ wIνµ,+. The map pµ,ν is surjective by Lemma 4.9.

Now, we prove that pµ,ν is also injective. The functor i yields a graded k-algebra
homomorphism vR̄µν,− → vR̄ν,− by Remark 2.13. Consider the diagram

wνwRµ,+
4.1

Tµ,φ

��

vR̄µφ,− Tφ,ν

//

i

��

vR̄µν,−

i

��
zRφ,+

4.1 vR̄φ,−
Tφ,ν

// vR̄ν,−,

(4.11)

where z = v−1 = wνwwµ. Note that z ∈ Iνµ,− ⊂ Imax
µ and that v ∈ Iµν,− ⊂ Imax

ν .
Since d+m > f and e+m > d, we define Tφ,µ and Tφ,ν as in (3.3). Let Tµ,φ be the
left adjoint of Tφ,µ, see Proposition 3.38(a). The right square in (4.11) commutes,
because Tφ,ν and i commute.

Lemma 4.11. The left square in (4.11) is commutative.
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Now, applying the factorization above both to πµ,ν and to πµ,φ we get a diagram

wνwRµ,+ τφ,ν

//

Tµ,φ

��

wRνµ,+ pµ,ν

//

Tµ,φ

��

vR̄µν,−

i

��
zRφ,+

τφ,ν
// wwµRνφ,+

pφ,ν
// vR̄ν,−.

(4.12)

By Lemma 4.11 the outer rectangle in (4.12) is commutative. The left square in
(4.12) is commutative, because Tµ,φ commutes with τ . Thus, since τφ,ν is surjective,
the right square in (4.12) is also commutative. Therefore, since the middle vertical
map (4.12) is injective by Remark 3.42, the injectivity of pµ,ν follows from the
injectivity of pφ,ν . Now, note that pφ,ν is invertible. Indeed, it is surjective by the
discussion above and dim(wRνφ,+) = dim(vR̄ν,−) by Proposition 4.4.

Now, to prove the last claim in Lemma 4.10 it suffices to observe that the square
of maps in (4.10) gives the following diagram for any x in wIνµ,+

1x
�

4.1 //
_

τφ,ν

��

1wµx−1

_

Tφ,ν

��

1x
�

pµ,ν
// 1wµx−1wν

,

see Proposition 4.1 and Lemmas 4.6, 4.9, and that x− = wνxwµ. �

Proof of Lemma 4.11. We must prove that the isomorphisms wνwRµ,+ = vR̄µφ,− and
wRφ,+ = vR̄φ,− in Proposition 4.1 yield a commutative square

wνwRµ,+
4.1

Tµ,φ

��

vR̄µφ,−

i

��
zRφ,+

4.1 vR̄φ,−.

(4.13)

By Proposition 3.38(d), the module Tµ,φ(
wνwPµ,+) is a direct summand in zPφ,+. By

Proposition 3.40(g) and Remark 3.43, the sheaf θµ,φ(
wBµ,+) is a direct summand of

wBφ,+. Further, by Corollary 3.33, Remarks 3.35, 3.43 and Propositions 3.40(b), (g),
we have a commutative diagram

wνwRµ,+
V

Tµ,φ

��

EndwνwZµ
(wνwBµ,+)

op

θµ,φ

��
zRφ,+

V EndzZφ
(zBφ,+)

op.

(4.14)

Next, by Proposition 3.47 and Corollary 3.48, we have a commutative diagram

EndwνwZµ
(wνwBµ,+)

op

θµ,φ

��

vR̄µφ,−
H

i

��

EndzZφ
(zBφ,+)

op vR̄φ,−.
H

(4.15)

Finally, the isomorphism in Proposition 4.1 is the composition of H and V. �

Proof of Theorem 2.16. First, note that, since the highest weight categories wOν
µ,+,

vO
µ
ν,− do not depend on e, f by Remark 2.11, we can assume that there is a positive

integer d such that d + m > f and e + m > d. Thus the hypothesis of Lemma
4.10 is satisfied. Now, by Propositions 4.1, 4.4 the k-algebra wRµ,± has a Koszul
grading. Thus, by Lemma 2.2 and Remark 2.13, the k-algebra wRνµ,± has also a
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Koszul grading. By Lemma 2.1 we have E(wRνµ,±) =
wR̄νµ,± as graded k-algebras.

Therefore the graded k-algebra wR̄νµ,± is Koszul. Now, by Lemma 4.10 we have

E(wR̄νµ,+) =
wRνµ,+ = vR̄µν,−

as k-algebras. Thus, by unicity of the Koszul grading we have E(wR̄νµ,+) =
vR̄µν,−

as graded k-algebras. Note that the involutivity of the Koszul duality implies that
we have also E(wR̄νµ,−) = vR̄µν,+ as graded k-algebras, and wRνµ,− = vR̄µν,+ as k-
algebras. �

Appendix A. Finite codimensional affine Schubert varieties

A.1. Equivariant perverse sheaves on finite dimensional varieties. By a
scheme we always mean a scheme over k. Let T be a torus. A T -scheme is a scheme
with an algebraic T -action. Fix a contractible T -space ET with a topologically free
T -action. For a T -variety X set XT = X ×T ET . There are obvious projections

p : X × ET → X, q : X × ET → XT .

Let Db
T (X) be the T -equivariant bounded derived category. It is the full sub-

category of the bounded derived category Db(XT ) of sheaves of k-vector spaces
on XT that contains all sheaves F with an isomorphism q∗F ≃ p∗FX for some
FX ∈ Db(X). The cohomology of F ∈ Db

T (X) is the graded S-module

H(F) =
⊕

i∈Z

HomDb
T
(X)

(
kX ,F [i]

)
.

Here S is identified with HT (point). Note that for E ,F ∈ Db
T (X) we have

ExtDb
T
(X)(E ,F) = H(RHom(E ,F)), (A.1)

whereRHom(E ,F) is regarded as an object inDb(XT ). If Y ⊂ X is a T -equivariant
embedding, let ICT (Y ) be the minimal extension of kY [dimY ]. It is a perverse sheaf
on X supported on the zariski closure Ȳ in X . Let IHT (Ȳ ) be the equivariant
intersection cohomology of Y and let HT (Y ) be its equivariant cohomology. We
have IHT (Ȳ ) = H(ICT (Ȳ )) and HT (Y ) = H(kY ). Forgetting the T -action we
define IC(Ȳ ) and IH(Ȳ ) in the same way. Now, let X be a quasi-projective T -
variety. We say that X is good if the following holds

• X has a Whitney stratification X =
⊔
xXx by T -stable subvarieties,

• Xx = Al(x) with a linear T -action,
• there are integers nx,y,i > 0 such that

j∗yIC(X̄x) =
⊕

p

kXy
[l(y)][l(x)− l(y)− 2p]⊕nx,y,p (A.2)

where jx is the inclusion Xx ⊂ X . Equivalently, we have

j!yIC(X̄x) =
⊕

q

kXy
[l(y)][l(y)− l(x) + 2q]

⊕
nx,y,q . (A.3)

We call the third property the parity vanishing.

Proposition A.1. If X is a good T -variety then
(a) dimExti

Db(X)

(
IC(X̄x), IC(Xy)

)
=

∑
z,p,q nx,z,pny,z,q where z, p, q runs over

the set of triples such that 2l(z)− l(y)− l(x) + 2p+ 2q = i,
(b) ExtDb(X)

(
IC(X̄x), IC(X̄y)

)
= kExtDb

T
(X)

(
ICT (X̄x), ICT (X̄y)

)
,

(c) ExtDb
T
(X)

(
ICT (X̄x), ICT (X̄y)

)
= HomHT (X)

(
IHT (X̄x), IHT (X̄y)

)
,

(d) ExtDb(X)

(
IC(X̄x), IC(X̄y)

)
= HomH(X)

(
IH(X̄x), IH(X̄y)

)
,
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(e) IH(X̄x) vanishes in degrees 6≡ l(x) modulo 2 and IH(X̄x) = kIHT (X̄x).

Proof. Part (a) is [5, thm. 3.4.1]. We sketch briefly the proof for the comfort of the
reader. Let jp be the inclusion of Xp =

⊔
p=l(x)Xx into X . For F ∈ Db(X) there

is a spectral sequence

Ep,q1 = Hp+q(j!pF) ⇒ Hp+q(F).

Therefore, if F = RHom
(
IC(X̄x), IC(X̄y)

)
, we get a spectral sequence

Ep,q1 =
⊕

z

Hp+qRHom
(
j∗z IC(X̄x), j

!
zIC(X̄y)

)
⇒ Extp+q

Db(X)

(
IC(X̄x), IC(X̄y)

)
,

where z runs over the set of elements with l(z) = p. By (A.2), (A.3) the spectral
sequence degenerates at E1, and we get

dimExti
Db(X)

(
IC(X̄x), IC(Xy)

)
=

∑

z,p,q

nx,z,pny,z,q,

where z, p, q are as above. Now, we prove (b). For F ∈ Db
T (X) there is a spectral

sequence [20, sec. 5.5]

Ep,q2 = Sp ⊗Hq(FX) ⇒ Hp+q(F).

Therefore, if F = RHom
(
ICT (X̄x), ICT (X̄y)

)
, we get a spectral sequence

Ep,q2 = Sp ⊗ Extq
Db(X)

(IC(X̄x), IC(X̄y)) ⇒ Extp+q
Db

T (X)
(ICT (X̄x), ICT (X̄y)).

Now ExtDb(X)(IC(X̄x), IC(X̄y)) vanishes in degrees 6≡ l(x)+ l(y) modulo 2 by (a).
Since S vanishes in odd degrees the spectral sequence degenerates at E2. Thus

S ⊗ ExtDb(X)(IC(X̄x), IC(X̄y)) = Ext
Db

T (X̄)(ICT (X̄x), ICT (X̄y)).

Part (c) is proved as part (d) below. Compare [17, thm. 5.9]. Part (d) is proved
as in [19, sec. 1]. See also [6, sec. 3.3]. Since our setting is slightly different we
sketch briefly the main arguments. Fix a partial order on the set of strata such
that X̄x = X6x =

⊔
y6xXy. Consider the obvious inclusion

X<x
i // X6x Xx.

j
oo

Let F1 = j∗6xIC(X̄x) and F2 = j∗6xICT (X̄y), where j6x is the inclusion X6x ⊂ X .
For any y 6 x and a = 1, 2 we have

j∗yFa =
⊕

p

kXy
[da − 2p]⊕da,y,p , j!yFa =

⊕

q

kXy
[2l(y)− da + 2q]

⊕
da,y,q , (A.4)

for some integers da and da,y,i. Consider the diagram of graded k-vector spaces

ExtDb(X<x)(i
∗F1, i

!F2) //

��

HomH∗(X<x)(H(i∗F1), H(i!F2))

a

��

ExtDb(X6x)(F1,F2) //

��

HomH∗(X6x)(H(F1), H(F2))

b

��

ExtDb(Xx)(j
∗F1, j

∗F2) // HomH∗(Xx)(H(j∗F1), H(j∗F2)).

We’ll prove that the middle map is invertible by induction on x. The short exact
sequence on the left is exact by (A.4), see e.g., [17, lem. 5.3]. For the same reason
the lower map is invertible. The complexes i∗F1 and i!F2 on X<x satisfy again
(A.4) for any stratum Xy ⊂ X<x. Thus, by induction, we may assume that the
upper map is invertible. Then, to prove that the middle map is invertible it is
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enough to check that a is injective and that Im(a) = Ker(b). Now, by (A.4) we
have exact sequences

0 → H(i∗i
!F2) → H(F2) → H(j∗j

∗F2) → 0

0 → H(j!j
∗F1) → H(F1) → H(i∗i

∗F1) → 0,

see e.g., [17, lem. 5.3]. Finally, let φ ∈ Ker(b). Then Im(φ) lies in H(i∗i
!F2). The

cohomology with compact support Hc(Xx) fits into an exact sequence

0 → Hc(Xx) → H(X6x) → H(X<x) → 0.

Let ω ∈ Hc(Xx) be the fundamental class. We have ω◦φ = 0 because ωH(i∗i
!F2) =

0. Thus we have also φ ◦ ω = 0, i.e., the map φ is zero on H(j!j
∗F1) = ωH(F1).

So φ lies in Im(a). Finally, we prove (e). By parity vanishing the spectral sequence

Ep,q1 = Hp+q(i!pIC(X̄x)) ⇒ IHp+q(X̄x)

degenerates. This yields the first claim. The second one follows from the first one,
because the spectral sequence below degenerates

Ep,q2 = Sp ⊗ IHq(X̄x) ⇒ IHp+q(X̄x).

�

A.2. Equivariant perverse sheaves on infinite dimensional varieties. Let
X be an essentially smooth T -scheme, in the sense of [25, sec. 1.6]. Let DT (X) be
the T -equivariant derived category on X . See [25, sec. 2] for a discussion on the
derived category of constructible complexes on X (for the analytic topology) and on
perverse sheaves onX . We use the same terminology as in loc. cit. We formulate our
results in the T -equivariant setting. The equivariant version of the constructions
in [25] is left to the reader. If X,Y are essentially smooth and Y → X is a T -
equivariant embedding of finite presentation, let ICT (Y ) be the minimal extension
of kY [− codimY ] on Y . It is a perverse sheaf on X supported on the zariski closure
Ȳ in X . Note that the convention for perverse sheaves we use in this section differs
from the usual convention for perverse sheaves on finite-dimensional varieties (as
in Section A.1 for instance). Usually kY [dim Y ] is perverse for a smooth finite-
dimensional variety Y . Here kY [− codimY ] is perverse. For F ∈ DT (X) we define
the graded S-module

H(F) =
⊕

i∈Z

HomDT (X)

(
kX ,F [i]

)
. (A.5)

For Y as above we abbreviate

IHT (Ȳ ) = H(ICT (Ȳ )), HT (Y ) = H(kY ).

We call HT (Y ) the equivariant cohomology of Y . Now, assume that X is the limit
of a projective system of smooth schemes

X = lim
←−n

Xn (A.6)
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as in [25, sec. 1.3]. Let pn : X → Xn be the projection and set Yn = pn(Y ). Assume
that Yn is locally closed in Xn. Since kY = p∗nkYn

we have an obvious map

HT (Yn) =
⊕

i∈Z

HomDT (Xn)

(
kXn

, kYn
[i]
)

→
⊕

i∈Z

HomDT (X)

(
p∗nkXn

, p∗nkYn
[i]
)

→
⊕

i∈Z

HomDT (X)

(
kX , kY [i]

)

→ HT (Y ).

It yields an isomorphism

HT (Y ) = lim
−→n

HT (Yn).

It is clear from (A.5) that HT (F) is a HT (X)-module. For a morphism f : Z → X
of essentially smooth T -schemes there is a functor f∗ : DT (X) → DT (Z), see [25,
sec. 3.7]. If f is the inclusion of a T -stable subscheme we write FZ = i∗F and

IHT (Y )Z = H(ICT (Y )Z).

A.3. The Kashiwara flag manifold. Let Pµ be the “parabolic subgroup” cor-
responding to the Lie algebra pµ. Let X = Xµ = G/Pµ be the Kashiwara partial
flag manifold associated with g and pµ, see [22]. Here G is the schematic analogue
of G(k((t))) defined in [22], which has a locally free right action of the group-
k-scheme Pµ and a locally free left action of the group-k-scheme B−, the “Borel
subgroup” opposit to B. Recall that X is an essentially smooth, not quasi-compact,
T -scheme, which is covered by T -stable quasi-compact open subsets isomorphic to
A∞ = Spec k[xk ; k ∈ N]. Let eX = Pµ/Pµ be the origin of X . For x ∈ Iµ,+ we set

Xx = B−xX = B−xPµ/Pµ, xX = xeX .

Note that Xx is a locally closed T -stable subscheme of X of codimension l(x) which
is isomorphic to A∞. Consider the T -stable subschemes

Xx = X>x =
⊔

y>x

Xy, X6x =
⊔

y6x

Xy, X<x =
⊔

y<x

Xy.

We call Xx a finite-codimensional affine Schubert variety. We call X6x an admis-
sible open set. If Ω is an admissible open set, there are canonical isomorphisms

ICT (Xx)Ω = ICT (Xx ∩ Ω), IHT (Xx)Ω = IHT (Xx ∩ Ω).

We can view Ω as the limit of a projective system of smooth schemes (Ωn) as in
[25, lem. 4.4.3]. So, the projection pn : Ω → Ωn is a good quotient by a congruence
subgroup B−n of B−. Let n be large enough. Then

ICT (Xx ∩Ω) = p∗nICT (X
x
Ω,n)

with Xx
Ω,n = pn(Xx ∩Ω) by [25, sec. 2.6]. Thus we have a map

IHT (Xx
Ω,n) =

⊕

i∈Z

HomDT (Ωn)

(
kΩn

, ICT (Xx
Ω,n)[i]

)

→
⊕

i∈Z

HomDT (Ω)

(
kΩ, p

∗
nICT (X

x
Ω,n)[i]

)

→ IHT (Xx ∩Ω)

which yields an isomorphism

IHT (Xx ∩ Ω) = lim
−→n

IHT (Xx
Ω,n).
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For Ω = X6w and x 6 w we abbreviate X [x,w] = Xx ∩ X6w and X
[x,w]
n =

pn(X
[x,w]). Since pn is a good quotient by B−n and since Xx is B−n -stable, we

have an algebraic stratification

X6w
n =

⊔

x6w

Xx
n ,

where Xx
n is an affine space whose Zarisky closure is X

[x,w]
n .

Lemma A.2. (a) The T -variety X6w
n is smooth and good.

(b) It is covered by T -stable open affine subsets with an attractive fixed point.
The fixed points subset is naturally identified with wIµ,+.

(c) There is a finite number of one-dimensional orbits. The closure of each of
them is smooth. Two fixed points are joined by a one-dimensional orbit if and only
if the corresponding points in wIµ,+ are joined by an edge in wGµ.

Proof. The T -variety X6w
n is smooth by [25], because X6w is smooth and pn is a

B−n -torsor for n large enough. We claim that it is also quasi-projective. Let X0

be the stack of G-bundles on P1. We may assume that Pµ is maximal parabolic.
Then, by the Drinfeld-Simpson theorem, a k-point of X is the same as a k-point of
X0 with a trivialization of its pullback to Spec(k[[t]]). Here t is regarded as a local
coordinate at ∞ ∈ P1 and we identify B− with the Iwahori subgroup in G(k[[t]]).
We may choose B−n to be the kernel of the restriction

G(k[[t]]) → G(k[t]/tn).

Then, a k-point of Xn = X/B−n is the same as a k-point of X0 with a trivialization
of its pullback to Spec(k[t]/tn). We’ll prove that there is an increasing system of
open subsets Um ⊂ X0 such that for each m and for n ≫ 0 the fiber product
Xn ×X0

Um is representable by a quasi-projective variety. This implies our claim.
Choosing a faithful representation G ⊂ SLr we can assume that G = SLr. So

a k-point of X0 is the same as a rank r vector bundle on P1 of degree 0. For an
integer m > 0 let Um(k) be the set of V in X0(k) with H

1(P1, V ⊗O(m)) = 0 which
are generated by global sections. It is the set of k-points of an open substack Um
of X0. Note that Um ⊂ Um+1 and X0 =

⋃
m Um. Now, the set Ym(k) of pairs (V, b)

where V ∈ Um(k) and b is a basis of H0(P1, V ⊗O(m)) is the set of k-points of a
quasi-projective variety Ym by the Grothendieck theory of Quot-schemes. Further,
there is a canonical GLr(m+1)-action on Ym such that the morphism Ym → Um,
(V, b) 7→ V is a GLr(m+1)-bundle. Now, for n≫ 0 the fiber product Xn ×X0

Um is
representable by a quasi-projective variety, see e.g., [42, thm. 5.0.14].

Next, note that X6w
n is recovered by the open subsets

V xn = pn(V
x), x 6 w.

Each of them contains a unique fixed point under the T -action and finitely many
one-dimensional orbits.

Finally, the parity vanishing holds : since IC(X [x,w]) = p∗nIC(X
[x,w]
n ) we have

IC(X [x,w]
n )Xy

n
=

⊕

i

kXy
n
[−l(y)][l(y)− l(x)− 2i]⊕Q

µ,−1

x,y,i

by [24, thm. 1.3]. The change in the degrees with respect to Section A.1 is due to
the change of convention for perverse sheaves mentioned above. �

Now we set V = t∗ and we consider the moment graph wG∨.

Proposition A.3. We have
(a) HT (X

6w) = wZ̄∨S,µ and H(X6w) = wZ̄∨µ as graded k-algebras,

(b) IHT (X
[x,w]) = wB̄∨S,µ,−(x) as a graded wZ̄S,µ-module,
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(c) IH(X [x,w]) = wB̄∨µ,−(x) as a graded wZ̄∨µ -module.

Proof. Assuming n to be large enough we may assume that

HT (X
6w) = HT (X

6w
n ), IHT (X

[x,w]) = IHT (X
[x,w]
n ), etc.

By Lemma A.2 the S-module HT (X
6w
n ) is free. Thus we can apply the localization

theorem [20, thm. 6.3], which proves (a). Now, we concentrate on (b). The graded

k-module IH(X
[x,w]
n ) vanishes in odd degree by Proposition A.1 and Lemma A.2.

Thus, applying [7] to X
[x,w]
n , we get a graded wZ̄S,µ-module isomorphism

IH∗T (X
[x,w]
n ) = wB̄∨S,µ,−(x).

Part (c) follows from (b), Proposition A.1 and Lemma A.2. �

Corollary A.4. We have a graded S-module isomorphism

wB̄∨S,µ,−(x)y =
⊕

i>0

S{−l(x)− 2i}⊕Q
µ,−1

x,y,i .

Proof. Apply Proposition A.3 and [24, thm. 1.3(i)]. �

Proposition A.5. For each x, y 6 w we have
(a)

∑
i∈Z t

i dim kExti
DT (X6w)

(
ICT (X

[x,w]), ICT (X
[y,w])

)
=

∑
z Qµ(t)x,zQµ(t)y,z ,

(b) ExtDT (X6w)

(
ICT (X

[x,w]), ICT (X
[y,w])

)
= HomHT (X6w)

(
IHT (X

[x,w]), IHT (X
[y,w])

)
,

(c) ExtD(X6w)

(
IC(X [x,w]), IC(X [y,w])

)
= HomH(X6w)

(
IH(X [x,w]), IH(X [y,w])

)
,

(d) ExtD(X6w)

(
IC(X [x,w]), IC(X [y,w])

)
= kExtDT (X6w)

(
ICT (X

[x,w]), ICT (X
[y,w])

)
.

Proof. Apply Proposition A.1 and Lemma A.2.. �

Corollary A.6. We have a graded k-algebra isomorphism

wĀ∨µ,− = EndwZ∨
µ

(
wB̄∨µ,−

)op
.

Proof. Apply Propositions A.3, A.5. �

Appendix B. Koszul duality and CRDAHA’s

B.1. Combinatorics. Fix e, ℓ,m > 0 and set g = sl(m) and G = SL(m). Let
b, t be the Borel subalgebra of upper triangular matrices and the maximal torus of
diagonal matrices. Let (ǫi) be the canonical basis of Cm. For any subset X ⊂ Cm

and any d ∈ C we set X(d) =
{
(x1, . . . , xm) ∈ X ;

∑
i xi = d

}
. We identify t∗ =

Cm/C 1m, t = Cm(0) and W = Sm in the obvious way. Put

ρ = (−1,−2, . . . ,−m), αi = ǫi − ǫi+1, i ∈ [1,m).

For ν ∈ Nℓ(m), let pν ⊂ g be the parabolic subalgebra with the block diagonal
Levi subalgebra the trace free elements in gl(ν1) ⊕ · · · ⊕ gl(νℓ). The group Wν is
generated by the simple affine reflections si with i 6= ν1, ν1 + ν2, . . . .

Let P (n) be the set of partitions of n. Write |λ| = n and let l(λ) be the length
of λ. Let P (ℓ, n) be the set of ℓ-partitions of n, i.e., the set of ℓ-tuples λ = (λp)
of partitions with

∑
p |λp| = n. Finally, let P (ν, n) = {λ ∈ P (ℓ, n) ; l(λp) 6 νp}.

There is an inclusion

P (ν, n) ⊂ N
m, λ 7→

(
λ10

ν1−l(λ1), λ20
ν2−l(λ2), . . . , λp0

νp−l(λp)
)
. (B.1)

A node in a tuple λ ∈ Nm is a pair of positive integers (x, y) with x 6 m and
y 6 λx. For π ∈ Zm we call (x, y) an (i, π)-node modulo e if y − x + πx = i + 1
modulo e. Let ni(λ, π, e) be the number of (i, π)-nodes modulo e in λ.
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B.2. The CRDAHA. Fix integers e, ℓ,m > 0. Let Γ ⊂ C× be the group of the
ℓ-th roots of 1. Fix ν ∈ Zℓ(m). We set

h = −1/e, hp = νp+1/e− νp/e, p ∈ Z/ℓZ.

For n > 0 we write Γn = Sn ⋉ Γn. Let Hν(n) be the CRDAHA of Γn with
parameters h and (hp) and let Oν(n) be its category O. It is a highest weight
category with, see [38, sec. 3.3, 3.6], [41, sec. 3.6],

∆(Oν(n)) = {∆(λ) ; λ ∈ P (ℓ, n)}.

Write ∆ν
e(λ) = ∆(λ). Let Sνe (λ) be the top of ∆ν

e (λ). We have the block decompo-
sition

Oν(n) =
⊕

µ

Oν
µ(n), (B.2)

where µ runs over the set of integral weights of sl(e). These blocks are determined
by the following combinatorial rule. For λ ∈ P (ℓ, n) a (i, ν)-node in λ is a triple
(x, y, p) with x, y > 0 and y 6 (λp)x such that y − x+ νp = i modulo e. Let nνi (λ)
be the number of (i, ν)-nodes modulo e in λ. Now, we have

∆ν
e(λ) ∈ Oν

µ(n) ⇐⇒ |λ| = n,

ℓ∑

p=1

ωνp − µ =

e−1∑

i=1

(
nνi (λ) − nν0(λ)

)
αi. (B.3)

The right hand side should be regarded as an equality of integral weights, i.e., the
symbols ω1, ω2, . . . , ωe−1 and α1, α2, . . . , αe−1 are the fundamental weights and the
simple roots of sl(e) and µ is a e-tuple modulo Z 1e. See [38, lem. 5.16] for details.

An integral weight of sl(e) can be represented by an element of Ze(m) if and
only if it lies in ωm + eZΠ. Thus, since ν ∈ Zℓ(m), the integral weights µ which
occur in (B.2) or (B.3) can all be represented by e-tuples in Ze(m). We re-write
the block decomposition in the following way. For a ∈ N we set

Oν
µ,a = Oν

µ(n), n =
〈
aδ +

ℓ∑

p=1

ωνp − µ : ρ̂e

〉
.

Then we have

∆ν
e (λ) ∈ Oν

µ,a ⇐⇒ nν0(λ) = a,
ℓ∑

p=1

ωνp − µ =
e−1∑

i=1

(nνi (λ)− a)αi. (B.4)

We are interested by the following conjecture [9, conj. 6].

Conjecture B.1. The blocks Oν
µ,a and Oµ

ν,a are Koszul and are Koszul dual to
each other.

B.3. The Schur category. Fix e, ℓ,m > 0 and ν ∈ Nℓ(m). Set

ρν = (ν1, ν1 − 1, . . . , 1, ν2, ν2 − 1, . . . , νℓ, . . . 1).

For a ν-dominant integral weight λ of sl(m) we abbreviate

λνe = λe + ρν − ρ, V νe (λ) = V ν(λνe ), Lνe(λ) = L(λνe).

Let Sν(n) be the thick subcategory of Oν consisting of the finite length g-modules
of level −e − m whose constituents belong to the set {Lνe(λ) ; λ ∈ P (ν, n)}. The
following is proved in [41].

Proposition B.2. The category Sν(n) is a highest weight category with

∆(Sν(n)) = {V νe (λ) ; λ ∈ P (ν, n)}.

We have also the following conjecture [41, conj. 8.8].
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Conjecture B.3. There is a quotient functor Oν(n) → Sν(n) taking Sνe (λ) to
Lνe(λ) if λ ∈ P (ν, n) and to 0 else. If P (ν, n) = P (n) this functor is an equivalence
of highest weight categories.

B.4. Koszul duality of the Schur category. Fix e, ℓ,m > 0 and ν ∈ Nℓ(m).
Let Sνµ(n) be the thick subcategory of Sν(n) containing the modules Lνe(λ) such
that Sνe (λ) ∈ Oν

µ(n). By (??) and Lemma B.5(a) below, the affine weights λνe such
that Lνe(λ) ∈ Sνµ(n) belong to a single linkage class. More precisely, let Λνµ(n) the
set of ν-dominant integral weights λ ∈ Nm of sl(m) such that

|λ| = n,
ℓ∑

p=1

ωνp − µ =
e−1∑

i=1

(nνi (λ) − nν0(λ))αi. (B.5)

The set Λνµ(n) should be regarded as a set of weights of sl(m), i.e., each λ should
be identified with its class modulo Z 1m. Then, we have

Sνµ(n) = Sν(n) ∩Oν
µ(n),

where Oν
µ(n) is the thick subcategory of Oν consisting of the finite length modules

whose constituents belong to the set {Lνe(λ) ; λ ∈ Λνµ(n)}. Finally, set

Λνµ,a = {λ ∈ Λνµ ; n
ν
0(λ) = a}, Λνµ =

⋃

n>1

Λνµ(n), (B.6)

and define Oν
µ,a and Sνµ,a in the obvious way. The following result can be regarded,

in view of Conjecture B.3, as an analogue of Conjecture B.1.

Theorem B.4. The category Sνµ,a has a Koszul grading. Further, the Koszul dual
of Sνµ,a coincides with the Ringel dual of Sµν,a.

Proof. Follows from Theorem 2.16 and Remark 2.9, because, for any λ ∈ Λνµ,a, the

stabilizer of λνe in Ŵ for the •-action is Wµ by the following lemma. For λ ∈ Nm

we write

mi = ni(ρ
ν ,−ρ, e),

ki(λ) = ni(λ + ρν ,−ρ, e),

k(λ) =
(
k0(λ)− k1(λ), k1(λ) − k2(λ), . . . , ke−1(λ) − k0(λ) +m

)
.

Lemma B.5. For λ, µ ∈ Nm(n) the following hold
(a) ki(λ) = mi + nνi (λ),
(b) λνe ∼ µνe if and only if ki(λ) = ki(µ) for each i ∈ Z/eZ,

(c) the stabilizer of λνe in Ŵ for the •-action is isomorphic to Wk(λ) and, if

k0(λ) = m and λνe ∈ C−, then this stabilizer is equal to Wkν(λ).

�

Remark B.6. Consider the particular case ℓ = 1. Then, by [27], the category Sm(n)
is equivalent to the module category of the q-Schur algebra. Therefore our theorem
implies that the q-Schur algebra is Koszul, compare [9]. We get also an explicit
description of its Koszul dual in term of affine Lie algebras.

Appendix C. Combinatorics

Recall that Iµ,+ = Imin
µ , Iµ,− = Imax

µ and that

Iνµ,− = {x ∈ Iµ,− ; x • oµ,− is ν-dominant},

Iνµ,+ = {x ∈ Iµ,+ ; x • oµ,+ is ν-dominant}.
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Lemma C.1. We have
(a) x ∈ Iµφ,+ ⇐⇒ x−1 ∈ Iµ,+,

(b) x ∈ Iµφ,− ⇐⇒ x−1 ∈ Iµ,−,

(c) Iµφ,± ∩ Iν,∓ = {xwν ; x ∈ Iµν,±},

(d) x ∈ Iµν,− ⇐⇒ wµxwν ∈ Iµν,+.

Proof. To prove (a) note that, since oφ,+ is dominant regular, we have

Iµφ,+ = {x ∈ Ŵ ; x • oφ,+ is µ-dominant}

= {x ∈ Ŵ ; 〈oφ,+ + ρ̂ : x−1(α̌)〉 > 0, ∀α ∈ Π+
µ }

= {x ∈ Ŵ ; x−1(Π+
µ ) ⊂ Π̂+}

= {x ∈ Ŵ ; x−1 ∈ Iµ,+}.

The proof of (b) is similar and is left to the reader. Now we prove part (c). More
precisely, choose positive integers d, f such that ±(f − d) > −m. Then the transla-
tion functor Tφ,ν : zOφ,± → zOν,± in (3.3) is well-defined for any z ∈ Imax

ν . Thus,
by Proposition 3.38(e), (f), (g), we have

Iµν,± = {x ; xwν ∈ Iµφ,±, x ∈ Iν,±}

= {xwν ; x ∈ Iµφ,±, x ∈ Iν,∓}.

Finally, part (d) is standard, see e.g., [8, sec. 2.7]. �

Remark C.2. Therefore, we have

Iµν,+ = {xwν ; x ∈ (Imin
µ )−1 ∩ Imax

ν }, Iµν,− = {xwν ; x ∈ (Imax
µ )−1 ∩ Imin

ν }.

Set Imin
µ,ν = (Imin

µ )−1 ∩ Imin
ν and Imax

µ,ν = (Imax
µ )−1 ∩ Imax

ν . The following inclusions
hold, see e.g., [8, sec. 2.7],

Iµν,+ ⊂ Imin
µ,ν , Iµν,− ⊂ Imax

µ,ν .
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