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KOSZUL DUALITY OF AFFINE KAC-MOODY ALGEBRAS AND
CYCLOTOMIC RATIONAL DOUBLE AFFINE HECKE
ALGEBRAS

P. SHAN, M. VARAGNOLO, E. VASSEROT

ABSTRACT. We give a proof of the parabolic/singular Koszul duality for the
category O of affine Kac-Moody algebras. The main new tool is a relation
between moment graphs and finite codimensional affine Schubert varieties.
We apply this duality to g-Schur algebras and to cyclotomic rational double
affine Hecke algebras.

CONTENTS
1. Introduction 2
2. Preliminaries 3
2.1. Categories 3
2.2. Graded rings 3
2.3. Koszul duality 4
2.4. Highest weight categories 4
2.5.  Ringel duality )
2.6. Standard Koszul duality 6
2.7. Lie algebras 7
2.8. Affine Lie algebras 7
2.9. Parabolic category O 8
2.10. Truncations 8
2.11.  The main result 10
3. Moment graphs, deformed category O and localization 10
3.1. Moment graphs 10
3.2. The moment graph of O 13
3.3. Deformed category O 17
3.4. Translation functors in O 20
3.5. Translation functors in Z 21
3.6. Localization 22
4. Proof of the main theorem 24
4.1. Regular case 24
4.2. General case 27
Appendix A. Finite codimensional affine Schubert varieties 32
A.1. Equivariant perverse sheaves on finite dimensional varieties 32
A.2. Equivariant perverse sheaves on infinite dimensional varieties 34
A.3. The Kashiwara flag manifold 35
Appendix B. Koszul duality and CRDAHA’s 37
B.1. Combinatorics 37
B.2. The CRDAHA 38
B.3. The Schur category 38
B.4. Koszul duality of the Schur category 39
Appendix C. Combinatorics 39
References 40



2 P. SHAN, M. VARAGNOLO, E. VASSEROT

1. INTRODUCTION

The purpose of this paper is to give a proof of the parabolic/singular Koszul
duality for the category O of affine Kac-Moody algebras. The main motivation for
this is the conjecture in [41] relating the parabolic affine category O and the category
O of cyclotomic rational double affine Hecke algebras (CRDAHA for short).

They are several possible approaches to Koszul duality for affine Kac-Moody
algebras. In [6], a geometric analogue of the composition of the Koszul and the
Ringel duality is given, which involves Whittaker sheaves on the affine flag variety.
Our principal motivation comes from CRDAHA'’s. For this, we need to prove Koszul
duality for the category O itself reather than for its geometric analogues.

One difficulty of the Kac-Moody case comes from the fact that, at a positive level,
the category O has no tilting module, while at a negative level it has no projective
module. One way to overcome this is to use a different category of modules than
the usual category O, as the Whittaker category in loc. cit. or a category of linear
complexes as in [31]. Since we want a version of Koszul duality which we can
apply to ¢-Schur algebras and CRDAHA’s, we use a different point of view. Under
truncation the affine, parabolic, singular category O at a non-critical level yields
a finite highest-weight category which contains both tilting and projective objects.
We prove that these highest weight categories are Koszul and are Koszul dual to
each other.

Another difficulty comes from the absence of a localization theorem (from the
category O to perverse sheaves) at the positive level. To overcome this we use
standard Koszul duality. See Section 2.6 below for details.

Our general argument is similar to the one in [5] : we use the affine analogue
of the Soergel functor introduced in [14]. Tt uses the deformed category O, which
is a highest weight category over a localization of a polynomial ring. It also uses
some category of sheaves over a moment graph. Note that the affine category O is
related to two different types of geometry. In negative level it is related to the affine
flag ind-scheme and to finite dimensional affine Schubert varieties. In positive level
it is related to Kashiwara’s affine flag manifold and to finite codimensional affine
Schubert varieties. An important new tool in our work is a relation between sheaves
over some moment graph and equivariant perverse sheaves on finite codimensional
affine Schubert varieties. This relation is of independent interest.

Next, we apply this Koszul duality to ¢-Schur algebras. The Kazhdan-Lusztig
equivalence [27] implies that the module category of the ¢-Schur algebra is equiv-
alent to a highest weight subcategory of the affine category O of GL,, at a neg-
ative level. Thus, our result implies that the g-Schur-algebra is Koszul (and also
standard Koszul), see Remark B.6!. To our knowledge, this was not proved so
far. There are different possible approachs for proving that the g-Schur algebra is
Koszul. Some are completely algebraic, see e.g., [33]. Some use analogues of the
Bezrukavnikov-Mirkovic modular localization theorem, see e.g., [34]. Our approach
has the advantage that it yields an explicit description of the Koszul dual of the
g-Schur algebra.

Finally, we also apply this duality to CRDAHA’s. More precisely, in [41] some
higher analogue of the g-Schur algebra has been introduced. It is a highest-weight
subcategory of the parabolic category O of an affine Kac-Moody algebra at a neg-
ative level. It is conjectured in loc. cit. that these higher ¢-Schur algebras are
equivalent to the category O of the CRDAHA. Our result implies that these higher
g-Schur algebras are Koszul and are Koszul dual to each other. This result should

LAfter our paper was written, we received a copy of [9] where a similar result is obtained by
different methods



KOSZUL DUALITY OF AFFINE KAC-MOODY ALGEBRAS 3

be regarded as an analogue of a conjectural Koszulity of the CRDAHA, see e.g.,
[9].

2. PRELIMINARIES

2.1. Categories. For an object M of a category C let 1;; be the identity endo-
morphism of M. Let C°P be the category opposite to C.

If C is an exact category then C°P is equip with the exact structure such that
0— M — M — M"” — 0is exact in C° if and only if 0 - M" — M — M’ — 0
is exact in C. An ezxact functor of exact categories is a functor which takes short
exact sequences to short exact sequences. A contravariant functor F : C' — C is
exact if the functor F': C' — C°P is exact.

Let C be an abelian category. Let Irr(C) be the set of isomorphism classes of
simple objects and let Proj(C) be the set of isomorphism classes of indecomposable
projective objects. For an object M of C we abbreviate Extc (M) = Extc(M, M).

Let A be a commutative, noetherian, integral domain. An A-category is an
additive category enriched over the tensor category of A-modules. A graded A-
category is an additive category enriched over the monoidal category of graded A-
modules. Unless mentioned otherwise, a functor of A-categories is always assumed
to be A-linear. A Hom-finite A-category is an A-category whose Hom spaces are
finitely generated over A.

An additive category is Krull-Schmidt if any object has a decomposition such that
each summand is indecomposable with local endomorphism ring. A full additive
subcategory of a Krull-Schmidt category is again Krull-Schmidt if and only if every
idempotent splits.

If A=k is a field a Hom-finite k-category is Krull-Schmidt if and only if every
idempotent splits. In particular a Hom-finite exact k-category is Krull-Schmidt. A
finite abelian k-category is a Hom-finite abelian k-category whose objects have a
finite length. It is equivalent to the category of finite dimensional modules over a
finite dimensional k-algebra if and only if it admits a projective generator.

2.2. Graded rings. For a ring R let Mod(R) be the category of all R-modules
and let mod(R) be the category of the finitely generated ones. We abbreviate

Irr(R) = Irr(mod(R)), Proj(R) = Proj(mod(R)).

By a graded ring R we’ll always mean a Z-graded ring. Let gmod(R) be the
category of the finitely generated graded R-modules. We abbreviate

Irr(R) = Irr(gmod(R)), Proj(R) = Proj(gmod(R)).

Given a graded R-module M and an integer j, let M{j} be the graded R-module
obtained from M by shifting the grading by 7, i.e., such that M{j}* = M**J. The
ring R is positively graded if R<° = 0 and R>? is the radical of R, e.g., a finite
dimensional graded algebra R over a field k is positively graded if R<° = 0 and R°
is semisimple as a R-module. Here R is identified with R/R>°.

Assume that k is a field and that R is a positively graded finite dimensional
k-algebra. We say that R is basic if R® isomorphic to a finite product of copies of k
as a k-algebra. Let {1,} be a complete system of primitive orthogonal idempotents
of RY. The Hilbert polynomial of R is the matrix P(R,t) with entries

P(R,t)y . =Y t'dim(1,R'1.) € N[[t]].
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2.3. Koszul duality. Let k be a field and R be a positively graded finite dimen-
sional k-algebra. The Koszul dual of R is the graded k-algebra

E(R) = EXtR(RO)v
where R is the (non graded) k-algebra underlying R. Forgetting the grading, we
get a k-algebra E(R). Assume that R is Koszul. Then E(R) is also Koszul, we
have E%(R) = R, and there is a natural contravariant equivalence of triangulated
categories
E : D’(gmod(R)) — D’(gmod(E(R)))

which takes simple graded modules to projective ones. Let {1, ; z € Irr(R°)} be a
complete system of primitive orthogonal idempotents of R°. Note that

Irr(R) = Trr(RY) = {R°1,}.

Via the canonical bijection Proj(R) ~ Irr(R), the elements 1,, z € Irr(R"), can
be viewed as a complete system of primitive orthogonal idempotents of R. The
functor E yields a bijection

¢ : Irr(R) — Proj(E(R)).

We set E(1;) = 1,goy,)- The elements F(1,), x € Irr(R), form a complete system
of primitive orthogonal idempotents of F(R). We may abbreviate 1, = E(1,).
Via the canonical bijection Proj(E(R)) ~ Irr(E(R)) the map ¢ can be viewed as a
bijection ¢ : Irr(R) — Irr(E(R)). We'll call it the natural bijection.

If R is Koszul we say that R has a Koszul grading. If R has a Koszul grading then
this grading is unique up to isomorphism of graded k-algebras, see [5, cor. 2.5.2].

Let C be a finite abelian k-category with a projective generator P. We say that
C has a Koszul grading if R = Endc(P)°P has a Koszul grading. The following
lemmas are well-known, see e.g., [5].

Lemma 2.1. Let P, R, C be as above. If R is a positively graded k-algebra then

E(R) = Extc(L), where L is the top of P.

Lemma 2.2. Let C be a finite abelian k-category with a Koszul grading. If C' is a
thick subcategory and the inclusion C' C C induces injections on extensions, then
C’ has also a Koszul grading.

2.4. Highest weight categories. Let A be a commutative, noetherian, integral
domain which is a local ring with residue field k. Let K be its fraction field. Note
that any finitely generated projective A-module is free. Let C be an A-category
equivalent to the category of finitely generated modules over a finite projective A-
algebra R. Assume that C is of highest-weight over A, see [36, def. 4.11]. The
sets A(C), V(C) of isomorphisms classes of standard and costandard objects are
uniquely defined by [36, k. 4.17, prop. 4.19]. Let C?®, CV be the full subcategories
of C consisting of the A-filtered and V-filtered objects, i.e., the objects having a
finite filtration whose successive quotients are standard, costandard respectively.
These categories are exact. Recall that the opposite of C is a highest weight
category such that A(C°P) = V(C) with the opposite order. Let Tilt(C) be the
set of isomorphism classes of indecomposable tilting objects.

For an A-module M we write kM = M ® 4 k. Write also kC = mod(kR). We
call the functor M +— kM the reduction to k. The k-category kC is a highest weight
category [36, thm. 4.15] and the reduction to k yields bijections

A(C) —» A(kC), V(C)— V(kC), Irr(C)— Lrr(kC).
We have also canonical bijections
A(C) ~ V(C) ~ Irr(C).
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We call tilting generator a tilting object which is also a tilting complez, see e.g.,
[36, sec. 4.1.5]. We call full tilting module a minimal tilting generator. We call full
projective module a minimal projective generator. We have the following analogue
of [13, prop. 2.6].

Proposition 2.3. Let KC be split semisimple.
(a) The reduction to k gives bijections

Proj(C) — Proj(kC), Tilt(C) — Tilt(kC). (2.1)
(b) There are natural bijections
Tilt(C) = Proj(C) = A(C) = V(C) = Irr(C). (2.2)

Proof. An object M € C is projective if and only if it is projective over A and kM
is projective over kR. By [11, sec. 6, ex. 16], an object M € C is indecomposable if
and only if kM is indecomposable in kC. Thus the reduction to k gives a map from
Proj(C) to Proj(kC). It takes obviously a projective generator of C to a projective
generator of kC. Thus it gives a bijection Proj(C) — Proj(kC). Finally, by [36,
prop. 4.26], the reduction to k takes a tilting generator of C to a tilting generator
of kC. So we get also a bijection Tilt(C) — Tilt(kC). This proves (a). Part (b)
follows from (a), because (b) is obviously true for a highest weight category over a
field. O

Remark 2.4. If (2.2) holds then any of the sets Tilt(C), Proj(C), A(C), V(C),
Irr(C) can be regarded as a poset for the highest weight order.

Remark 2.5. An ideal of a poset (S, <) is a subset I such that I = (J,c,{<i}. A
coideal is the complement of an ideal. For a subset I C Irr(C), let C[I] be the thick
subcategory generated by I and let C(I) be the Serre quotient C/C[Irr(C) \ I].
Assume that C is a highest weight category over a field k, and that I, J are an
ideal and a coideal of (Irr(C), <). Then CJ[I], C(J) are highest weight categories
and the inclusion C[I] C C induces injections on extensions by [10, thm. 3.9], [12,
prop. A.3.3].

2.5. Ringel duality. Let A be a commutative, noetherian, integral domain which
is a local ring with residue field k. Let C be a highest-weight category over A which
is equivalent to the category of finitely generated modules over a finite projective
A-algebra R. Let T be a tilting generator. The Ringel dual of R is the A-algebra
D(R) = Endc(T)°P, the Ringel dual of C is the category D(C) = mod(D(R)).
The category D(C) is a highest-weight category over A with

A(D(C)) = {Home(T,V); V€ V(C)} ~ A(C).
The order on A(D(C)) is the opposite of the order on A(C). We have an exact
contravariant equivalence called the tilting equivalence
D: C?» = D(C)?, M+ Homc(M,T).

It takes tilting objects to projective ones, and projective objects to tilting ones.
The algebra D?(R) is Morita equivalent to R. See [36, prop. 4.26], [12, sec. A.4].

Assume that (2.2) holds for C, D(C). Then the tilting equivalence yields bijec-
tions ¢ : Proj(C) — Tilt(D(C)) ~ Proj(D(C)). So, we get a bijection

{1z; z € Proj(R)} — {125 x € Proj(D(R))}, 1z D(1z) = lya).

Remark 2.6. The canonical map k Home (M, N) — Homyc(kM, kN) is invertible
for any R-modules M, N which are free of finite type over A [36, prop. 4.30]. Thus,
the tilting equivalence commutes with the reduction to k.
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Remark 2.7. Let C be a highest-weight category over a field k. Let I C Irr(C) be
an ideal. We may regard to ¢ as a map Irr(C) — Irr(D(C)) in the obvious way.
Then t(I) is a coideal of Irr(D(C)) and the tilting equivalence D : C* — D(C)?
factors to an equivalence C[I]® — D(C)(x(I))®. Tt induces an equivalence of
highest weight categories D(CII]) ~ D(C)(¢(1)), see e.g., [12, prop. A.4.9].

2.6. Standard Koszul duality. Let A be a commutative, noetherian, integral
domain which is a local ring with residue field k. Assume that A is positively
graded. Let C be a highest weight category over A which is equivalent to the
category of finitely generated modules over a finite projective A-algebra R. Let R
be a positively graded A-algebra which is isomorphic to R as an A-algebra. We
call graded lift of an object M of C a R-module which is isomorphic to M as a
R-module. Recall the following lemma.

Lemma 2.8. Let M be an indecomposable R-module which is finite projective over
A and such that kM is indecomposable over kR. If M has a graded lift then this lift
is unique up to a graded R-module isomorphism and up to a shift of the grading.

Proof. f A =k a proof is given in [5, lem. 2.5.3]. For the general case it is enough
to check that Endgr(M) is a local ring. This is obvious, because, since M is finite
projective over A, an element x € Endg(M) is invertible if and only if is reduction
to k is invertible in Endgr (kM) by the Nakayama lemma. O

Assume that (2.1) holds. Objects of Irr(C) have graded lifts which are pure of
degree 0. Objects of Proj(C) have graded lifts such that the projection to their
top is homogeneous of degree 0. Objects of A(C) have graded lifts such that the
projection from their projective cover is homogeneous of degree 0. The proof is
the same as in the case where A is a field, see e.g., [29, cor. 4]. Finally, objects of
Tilt(C) have graded lifts such that the inclusion of the highest standard object is
homogeneous of degree 0. The proof is the same as in the case where A is a field,
see e.g., [29, cor. 5], using the construction of tilting modules in [36, prop. 4.26]
instead of Ringel’s construction in [35]. The gradings above are called the natural
gradings. Note that the natural grading commutes with the reduction to k.

The natural grading on the full tilting module gives a grading on D(R) which
is called again the natural grading. Let D(R) denote the A-algebra D(R) with its
natural grading. Assume that D(R) is a positively graded A-algebra. The con-
travariant functor M + Hompg(M,T) takes the natural graded indecomposable
tilting objects to the natural graded indecomposable projective ones. It takes also
the natural graded indecomposable projective objects to natural graded indecom-
posable tilting ones.

Now, let A = k. Let < be the highest weight order on {1,; z € Irr(R)}.
Following [2, thm. 1.4, 3.4], we say that R is standard Koszul provided that E(R)
is quasi-hereditary relatively to the poset ({E(1;); = € Irr(R)}, >). Following [29,
thm. 7], we say that R is balanced if it is standard Koszul and if the graded k-algebra
D(R) is positive. If R is balanced then the following holds [30, thm. 1]

e R is Koszul and standard Koszul,

e R, D(R), E(R) and DE(R) are positively graded, quasi-hereditary, Koszul
and balanced,

e DE(R) = ED(R) as graded quasi-hereditary k-algebras,

e the natural bijection ¢ : Irr(R) — Irr(E(R)) takes the highest weight order
on Irr(R) to the opposite of the highest weight order on Irr(E(R)).

Remark 2.9. Assume that C is a highest weight category over k which is balanced.
Let I C Irr(C) be an ideal. The category C[I] has a Koszul grading by Lemma 2.2
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and Remark 2.5. Let ¢ : Irr(C) — Irr(E(C)) be the natural bijection. Note that
¢(I) is a coideal of Irr(E(C)). By Lemma 2.1 and Remark 2.5 we have F(CI[I]) =

E(C)(s(1))-

2.7. Lie algebras. Let g be a simple Lie C-algebra and let G be a connected
simple group over C with Lie algebra g. Let T' C G and t C g be maximal tori,
with Lie(T)=t. Let b C g be a Borel subalgebra containing t. The elements of t, t*
are called coweights and weights respectively. Given a root a € t* let & € t denote
the corresponding coroot. Let p be half the sum of the positive roots. Let II C t*
be the set of roots, II™ C II the set of positive roots and ZII be the root lattice.
Let ® = {«;; i € I} be the set of simple roots in IIT. Let W be the Weyl group.
Let m be the dual Coxeter number of g.

2.8. Affine Lie algebras Let g be the affine Lie algebra associated with g. Recall
that g = CO® Lg, where Lg is a central extension of Lg = g® C[t,t~!] and 9 = t0,
is a derivation of Lg acting trivially on the canonical central element 1 of Lg.
Consider the Lie subalgebras
b=CoaoLbpCl, t=CoatapCl.
The elements of t, t* are called affine coweights and affine weights respectively. Let
(o : @) : t* x t — C be the canonical pairing, let II be the set of roots of g and
let IT* be the set of roots of b. We set II™ = —IT*. We'll call an element of IT an
affine root. The set of simple roots in IIT is ® = {ay;4 € {0} UT}. Let & € t be
the affine coroot associated with the real affine root a. Let d, Ag, p be the affine
weights given by
(0:0)=ANp:1)=1, (Ag:Co@t)=(0:tdC1)=0, p=p+mAg.
We'll use the identification t* = C x t* x C such that a; — (0,;,0) if @ # 0,
Ap — (0,0,1) and § — (1,0,0). An element of t*/C¢ is called a classical affine
weight. Let ¢l : t* — t*/Cd denote the obvious projection. Let (e : o) be the
non-degenerate symmetric bilinear form on t* such that
ANrag) =20 aq)/{a; s aq), (A:1)=(\:0).
Using (o : @) we identify & with an element of t* for any real affine root a. Let
W = W x ZII be the affine Weyl group and let S = {$i = Sa,; @i € B} be the set
of simple affine reflections. The group W acts on t*. For w € W, T € ZII we have
w(Ag) = Ao, w(d) =0, 7(§) =74,

TA) =A={(7:N)0, 7(Ao)=7+Ao—(T:7)5/2.
The e-action on t* is given by w e A = w(A + p) — p. This action factors to a
W-action on t*/C§. Two (classical) affine weights A, p are linked if they belong to
the same orbit of the e-action, and we write A ~ u. Let W) be the stabilizer of an
affine weight A. We say that A is regular if Wy = {1}. For e € C we set

tr={Aet’;(A\:1)=—e—m}.
From now on we assume that e is an integer # 0. Set
Fodet';(A+p:a) =0, acll)

An element of C™, resp. of CT, is called an antidominant affine weight, resp. a
dominant affine weight. We write again CT for cl(C*). For any integral affine
weight A of level —e — m we have

H(WeANC ) =1, #(WeANCH) =0, ife>0,

fWedNCH) =1, #4H(WeANC)=0 ife<0,
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see e.g., [23, lem. 2.10]. In the first case we say that A is positive, in the second one
that it is negative. For A € C* the subgroup W) of W is finite and parabolic. It is
isomorphic to the Weyl group of the root system {a € IT; (A + p : a) = 0}.

2.9. Parabolic category O. Let P be the set of proper subsets of ®. An element
of P is called a parabolic type. Fix a parabolic type v. If v is the empty set we
say that v is regular, and we write v = ¢. Let p, C g be the corresponding
parabolic subalgebra containing b. Let II, be the root system of a levi of p,, and
let I} = II™ N II, be the system of positive roots of II,. An affine weight \ is
v-dominant if (A : &) € N for all @ € II}. Let w, be the longest element in W,.
We consider the category O of the g-modules M such that

o M =@,y My with My = {m € M;zm = Ax)m, = € t},

e U(p,)m is finite dimensional for each m € M.
For a v-dominant affine weight A let V¥(X), L(A) be the parabolic Verma module
with the highest weight A and its simple top. Let O” C O" be the full subcategory
of the modules such that the highest weight of any of its simple subquotients is of
the form

A =de+220, Ae=A— (e4+m)Ao, 2zx=(A\:2p+ N\)/2e,

where A € t* is an integral weight and e # 0. We abbreviate

VY(A) =VY(Ae), LX) = L(Ae).
For ;1 € P and e > 0 we use the following notation

® 0, _ is an antidominant integral classical affine weight of level —e—m whose

stabilizer for the e-action of W is equal to Wy,
® 0,4+ = —0yu— — 2p is a dominant integral classical affine weight of level

e —m whose stabilizer for the e-action of W is again equal to W,,.

Let Oy, ; be the full subcategory of O" consisting of the modules such that the
highest weight of any of its simple subquotients is linked to o, +. Note that O}, |
is a direct summand in O” by [39, thm. 6.1].

2.10. Truncations. Fixe >0, u,v € P and w € W. Let Iﬁ“i“, 17" be the sets of
minimal and maximal length representatives of the left cosets in W W,
e Consider the poset I, - = (/**, <) with < equal to the Bruhat order <.
Let I _ = {r €1, _;xzeo0,_ is v~-dominant}. By Appendix C we have
Irr(OZﬁ) ={L(zeo,_);z€ Izﬁ},
I ={zw,; z€ (Imay=1n I;nin}.
Let YOy, _ be the category consisting of the finitely generated modules in
Oy [ _], where “I; = {z € I _;x < w}. It is a highest weight
category (for the order <) with
(YO, _) ={L(zeo,_);z "I, _},
A(MOy ) ={V"(zeo,_);x e, _}.
o Consider the poset I, + = (Il‘fi“, <) with < the opposit Bruhat order. Let
I . ={x €l,+; 00, is v-dominant}. By Appendix C we have
Irr(O}, 4 ) ={L(zeou);z €},

I ={2w,; z € (! N1},
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Let Oy, ; be the category consisting of the finitely generated objects in
et it entegort o the arder ) it
br(YOy, ) ={L(zeo,); x €I},
AMOp ) ={V"(zeou4);z e L]}

We abbreviate Oy, ;. for either * O}, | or *Oj, _. Let “P(reo0, 1) be the pro-
jective cover of L(zeo, +). If v = ¢ is regular we abbreviate *O,, + = “’Ofﬁyi, and
so on, suppressing ¢ in the notation. By Remark 2.12 we have an anti-isomorphism

of posets I",_ — IZ,JF, T Ty = w,rw,. Let x — x_ denote its inverse.

Proposition 2.10. Forw € I] _ and v =wy € I, | we have
(a) the tilting equivalence is an exact contravariant equivalence “JOZ’,% — UOZ’,—Ak
which takes VV(z @0, ) to VV(yeo, 1) with y = x4,

(b) there is a C-algebra isomorphism D(VR}, _) = "R}, , such that D(1;) = 1.

Proof. Part (b) is just a reformulation of (a). By [39, thm. 6.6] there is an exact
contravariant autoequivalence D of O*# which takes V*(\) to V¥ (—w, (A +p) —p).
Note that —w, (z o, — + p) — p = w,x ® 0, 4. Thus the proposition follows from
Remarks 2.7, 2.12. O

Remark 2.11. The highest weight category “Oj, . does not depend on the choice
of o, + and e but only on p, v, see [14, thm. 11].

Remark 2.12. (a) Appendix C gives an anti-isomorphism of posets I; - — I/ .,
r— x4y Ifwe IZSF and v = w4 this anti-isomorphism takes WIZ? onto ”I;:yi.

(b) We have an isomorphism of posets I}, . — Il ,, x = x~". Ifw € I'/ . and
v =w~! this isomorphism takes “I; . onto VI ;.

(c) We abbreviate 231! = (z4+)~" = (#~!)x. The assignment z +— 21" is an
anti-isomorphism of posets I); - — 1, 5 4

Remark 2.13. Let i be the inclusion “O}, . — “O,, 1. The left adjoint functor 7
to i takes a module to its maximal quotient which lies in “Oj. We'll call i the
parabolic inclusion functor and T the parabolic truncation functor. We have

(a) i(L(x ooy +)) = L(zeo,+) for x €™ e

(b) T(“P(zeo0y,+)) ="P(xeo,y) for x € “I} .,

(c) T(“P(zeo0y+)) =0 forz e, \" .
The same argument as in [5, thm. 3.5.3], using [18, prop. 3.41], implies that ¢ is
Injective on extensions in “O}, _. For w € I); _ and v = wy, the tilting equivalence
yields an equivalence of derived categories D*(VO¥, ) — D?(*OY _). Thus i is also
injective on extensions in YOy, | .

Remark 2.14. A simple module L(z @0, ) in O}, | has a projective cover P”(x o
Opu+), see e.g., [39]. Let P C O , be the full subcategory with set of objects
{P"(x®0, )} Consider the algebra without 1 given by

Q=P Endoy, , (P(ze0,4), P'(yeo,y))™,
z,y
where x,y run over I; . Set e=73_1,in @, where x € “I . We have
eQe = Endoy, | (@ P (ze o#1+))0p, re"l, ..

By [32, thm. 3.1], assigning to M the restriction of the functor Homov | (e, M) to
P yields an equivalence of abelian C-categories O}, , — Mod(Q). Consider the



10 P. SHAN, M. VARAGNOLO, E. VASSEROT

adjoint pair of functors (F, G) given by
F :Mod(Q) - Mod(eQe), M +— eM = Homg(Qe, M),
G : Mod(eQe) - Mod(Q), M +— Homeqe(eQ,M).

The functor F is a quotient functor, i.e., we have F o G = 1, and its kernel is
Oj, , [#w]. Therefore, I factors to an equivalence of abelian categories

“0;}, + — mod(eQe).

Since eQe is a finite dimensional algebra, the axioms of a highest weight category
are now easily verified for “O}, | .

Remark 2.15. Taking a module M € O}, , to its graded dual M* = @, (My)*
with the contragredient g-action yields a duality on O}, ; called the BGG duality.
Since the BGG duality fixes the simple modules it is easy to see that it factors to
a duality on the highest weight category Oy, ;.

2.11. The main result. Fixe, f > 0and u, v € P. We choose the integral classical
affine weights o, + and o, 4+ such that o, 4+ has level £e —m and o, + has level
+f—m. Forw € W let YTy, “Py 4 and "Ly | be the full tilting module, the
full projective module and the direct sum of all simple modules in Oy, ,. For
x € "I the projections

YLy g — L(zeo,+), Py, = YPY(x 00, +)
define idempotents in the C-algebras
“Rj+ = Extuoy ("L 1), “Rj s =Endvoy  (“F4)™
Both are denoted by the symbol 1,.

Theorem 2.16. Let w € I and v = w2l e Il’,f_. We have C-algebra isomor-
phisms "R}, . = ”Rff_’f and “’RZHF = "Rl _ such that 1, — 1, with y = z~'. The
graded C-algebras "R, | and ”Rfi_ are Koszul and are Koszul dual to each other.
The categories YOy, ., YO _ are Koszul and are Koszul dual to each other.

v,—

Remark 2.17. Indeed, we’ll prove that “’Rl’; 4 and UR’V{? are balanced. In particular,
Koszul duality commutes with Ringel duality. Note that we equipped the highest
weight categories ”O‘V"_, “Oy,  with the Bruhat and opposite Bruhat order. We

compute both the Koszul dual and the Ringel dual with respect to this order, rather
than the BGG order, as it is usually done in the literature.

3. MOMENT GRAPHS, DEFORMED CATEGORY O AND LOCALIZATION

First, we fix some general notation. Fix e, f > 0 and p,v € P. Let V be a finite
dimensional C-vector space. Let S be the symmetric C-algebra over V', with the
grading such that V" has the degree 2. Let Sy be the localization of S at the ideal
V'S. Let k be the residue field of Sy. Note that k = C. By A we’ll always denote a
commutative, noetherian, integral domain which is a graded S-algebra with 1.

3.1. Moment graphs. Let us recall some basic fact on moment graphs. In this
section A is the localization of S with respect to some multiplicative subset.

Definition 3.1. A moment graph over V is a tuple G = (I, H,«) where (I, H) is
a graph with a set of vertices I, a set of edges H, each edge joins two vertices, and
a is a map H— P(V), h— kay,.
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Definition 3.2. An order on G is a partial order < on I such that the two vertices
joined by an edge are comparable.

Remark 3.3. We use the terminology in [21]. In [15] a moment graph is ordered.
We’ll also assume that G is finite, i.e., the sets I and H are finite.

Given an order < on G let i/, h” denote the origin and the goal of the edge h,
i.e., the two vertices joined by h with A’ < h”. Let d, be the set of edges with goal
x. Let u, be the set of edges with origin x. Let e, = d, | | us.

Definition 3.4. A graded A-sheaf over G is a tuple M = (Mg, My, pz.1) with
e a graded A-module M, for each x € I,
e a graded A-module My, for each h € H such that apMp =0,
o a graded A-module homomorphism pg p : Mg — My, for h adjacent to x.

A morphism M — N is a tuple f of graded A-module homomorphisms fo : My —
N and fr : My — Ny which are compatible with (ps 1).

For J C I we set

M(J) = {(ma)zes; Mo € Ma, prrn(mn) = prorp(mu) }.

The space of global sections of the graded A-sheaf M is the graded A-module M ().
We say that M has finite type if all M, and all M}, are finitely generated graded
A-modules. The graded A-module M(I) is finitely generated for M of finite type.
The structural algebra of G is the graded A-algebra Z,4 given by

Z4= {(am) € A% —apn € o Al

Definition 3.5. Let F 4 be the category of the graded A-sheaves of finite type over
G whose stalks are torsion free A-modules. Let Z4 be the category of the graded
Z a-modules which are finitely generated and torsion free over A.

We'll call again graded A-sheaves the objects of Z 4. The categories F 4 and Z 4
are Krull-Schmidt graded A-categories (because they are Hom-finite k-categories
and each idempotent splits). The global sections functor I' has a left adjoint £
called the localization functor [15, thm. 3.6], [21, prop. 2.14]. We say that M
is generated by global sections if the counit LI'(M) — M is an isomorphism, or,
equivalently, if M belongs to the essential image of £. This implies that the obvious
map M(G) — M, is surjective for each x. For E C H and J C I we set

Mp =P M,
heE
PILE = @ @pz,h M(J) = Mg.
zeJ heE

We abbreviate p, g = p{s),p- Given an order < on G we set
Maz = Im(ﬁ-«v,dm)a M?* = Ker(pz,em)a M[m] = Ker(pz,dm)-

We call M, the stalk of M at x, and M? its costalk at x. Note that M®, M}, M,
are graded Z4-modules such that M® C M[,) C M. Assume that M is generated
by global sections. We say that M € F 4 is flabby if Im(py 4,) = Ma, for each «,
see [21, lem. 3.3], and that it is A-filtered if it is flabby and if the graded Z4-module
M, is a free graded A-module for each z, see [15, lem. 4.8].

Definition 3.6. Let F%yﬁ be the full subcategory of F 4 consisting of A-filtered
objects. Let Zﬁ7< be the essential image of Fﬁ7< by . We may abbreviate F4 =
Fﬁ7< and Z5 = Zﬁyﬁ. They are Krull-Schmidt exact graded A-categories.
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The functors £, I' are mutually inverse equivalences of graded exact A-categories
between F4 and Z4. For M € Z 4 we set
M* = L(M)*, My = L(M)y, M,=LM),,
M=y = L(M)<z, Moy =L(M)oz, Mp=L(M)p.

Ezxample 3.7. The stalk of Z 4 at any vertex z is A.

Let M be the image of the obvious map

M — TL(M) — @Mz.
x€eJ

It is a graded (Z4) -module. By [15, lem. 4.5] we have an exact sequence in Z4
0—-M —>M-—M"—0
if and only if for each x the following sequence of A-modules is exact
0 = M{,) — My) — M[;; — 0.
Remark 3.8. The canonical functor Z4 — gmod(Z,) is exact by [16, lem. 2.12].

We say that M € Z% is projective if the functor Homg , (M, e) maps short exact

sequences to short exact sequences. We say that M € Z 4 is F-projective if

e L(M) is flabby,

e M, is a projective graded A-module for each z,

o My = My /oMy and py p, is the canonical map for each h,
IftM e Z% is F-projective then it is projective [15, prop. 5.1]. We say that M € Z%
is tilting if the contravariant functor Homg , (e, M) maps short exact sequences to
short exact sequences.

Let M* = @,(M*)", with (M*)* = gHom 4 (M, A{i}), be the graded dual of a
graded A-module M. Here gHom 4 is the Hom’s space of graded A-modules. Since
Z 4 is commutative, the graded dual of a graded Z 4-module M is a Z4-module.
Thus there is a duality D : Za — Za, M — M* which yields an exact contravariant
equivalence Zﬁ < Zﬁ?. This duality yields bijections

Proj(Z% <) — Tit(Z% ), Tilt(Z4 <) — Proj(Z4 ).

We say that G is a GKM-graph if kay,, # kay, for edges hi # ho adjacent to the
same vertex. The support of a graded A-sheaf M on G is the set

supp(M) ={z € I'; M, # 0}.

Definition 3.9. Let (G,=x) be an ordered GKM-graph. There is a unique object
Ba () in Za which is indecomposable, F-projective, supported on the coideal { =
x} and with By <(x)y = A. We call By <(x) a BM-sheaf. We may abbreviate

Ba(z) = Bax(x), Ca(z)=Cax(x)= D(Bax(z)).

Remark 3.10. The existence and unicity of BM-sheaves is proved in [15, thm. 5.2]
using the Braden-MacPherson algorithm [7, sec. 1.4]. The construction of Ba(x) is
as follows. We must define B4 (z)y, Ba(z)y and py j, for each y, h.
e We set Ba(z), =0 for y # =.
o We set Ba(z), = A.
e Let y = x and suppose we have already constructed B4 (z), and Ba(z)s
for any z, h such that y > z, k', b = z. For h € d,, let
— Ba(z)n, = Ba(z)n JanBa(z)n and pps, is the canonical map,
— Ba(®)oy = Im(p<y,q,) C Ba(2)a,,
— Ba(x), is the projective cover of the graded A-module B4 (z)ay,
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— py,n is the composition of the projective cover map Ba(z), — Ba(z)a,
with the obvious projection Ba(x)a, — Ba(x).

Definition 3.11. There is a unique object Va(x) in ?A that is isomorphic to A as
a graded A-module and on which the element (z,) of Za acts by multiplication with
zz. We call it a Verma-sheaf.

Proposition 3.12. (a) The Verma-sheaves are A-filtered and self-dual.
(b) We have Va(x)Y = Va(z)y = Va(x)y = A if x =y and 0 else.
(¢c) For M € Z 4 we have

Homy, (Va(z){i}, M) = M*{-i},

Homz, (M, Va(y){j}) = (My)*{j},
HOHlZA (VA (SC){Z}, VA (y>{]}) = 5m,y A
(d) A A-filtered graded A-sheaf M is an extension of shifted Verma-sheaves.

Remark 3.13. A A-filtered graded A-sheaf M has a filtration 0 = My C M; C
-+ C M, = M by graded Z4-submodules with [15, rk. 4.4, sec. 4.5]

@MT/MT—l — @M[y]; MT/MT—l - VA(yr){ir}, r < S = Ys < Y-
r=1 Yy

In particular, the graded A-module M is free and finitely generated. If M € Zﬁ and
if B is projective in Z%, the graded A-module Homy, (B, M) has a finite filtration
whose associated graded is

é Homyz, (B, M, /M,_,) = é Homa(B,, , A{i, }).

r=1 r=1
Remark 3.14. By Proposition 3.12, we have (M,)* = (DM)Y.

Remark 3.15. The category Z4 is graded. Forgetting the gradings we get the
A-category Z4 and the objects B4(z), Ca(z).

Remark 3.16. For a morphism of local S-algebras A — A’ we have a base change
functor e @4 A’ : Z4 — Z 4 which takes Z% to Zﬁ,. If A’ is flat as an A-module
the canonical map gives an isomorphism [21, sec. 2.7,3.15]

A'Homg,, (M, N) — Homg ,(A'M, A'N).

3.2. The moment graph of O. In this section we set V = t, w € ﬁ/\, and we
assume that A is the localization of S with respect to some multiplicative subset.

Definition 3.17. Let “G,, denote the moment graph over t whose set of vertices
is w]ff’in ={z e Iff’in ; x < w}, with an edge between x,y if and only if there is an

affine reflection s, € W such that x € sayW,,, this edge being labelled by k o

Let “’ZA’M be the structural algebra of “G, and let “’ZAM be the category of
graded *Z A,u-modules which are finitely generated and torsion free over A. Let
Va,u(x) be the Verma-sheaf in “Zy , whose stalk at x is A. Let “G, _ be the
ordered moment graph (*G,, <) with < equal to the Bruhat order. Let *G, ; be
the ordered moment graph (“G,, <) with < equal to the opposite Bruhat order.
We'll write “G,, 4+ for either *G, _ or “G, +. We use a similar notation for all
objects attached to G, +. For instance “’Zﬁ%i is the category of A-filtered graded
A-sheaves on “G,, +.

Proposition 3.18. The BM-sheaves on “G, + are A-filtered.
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Proof. The BM-sheaves on *G,, _ are A-filtered by [15, thm. 5.2]. The BM-sheaves
on “G, 4+ are also A-filtered. Indeed, note that a graded A-sheaf is A-filtered if
and only if the underlying non graded A-sheaf is A-filtered. Next, by Proposition
3.32(c) the BM-sheaves on “G,, ; are A-filtered for A = Sy. Thus the claim follows
by Remark 3.16. O

For z € W let I(x) be its lengh. By Proposition 3.18 there is a unique A-filtered
graded A-sheaf “B, ,, 1 (z) on %G, 1 which is indecomposable, projective, supported
on the ideal {3=z} and whose stalk at z is equal to A{=£l(x)}. There is also a unique
A-filtered graded A-sheaf “Ca, u,+(x) which is indecomposable, tilting, supported
on the ideal {gz} and whose costalk at x is equal to A{xI(x)}. Note that

“By g () = D("Caps ().

For a future use, we set

“Bajs = "Ba(x), “Cayus =" Caps(2).

Remark 3.19. The graded A-sheaf “Cs , +(z) is filtered by Verma-sheaves. The
first term in this filtration is the sub-object

Va(@) {(£1(2)} C "Ca ot ().

The other subquotients are of the form Va(y){j} with y < z and j € Z. The graded
A-sheaf “Ba ;, +(z) is filtered by Verma-sheaves. The top term in this filtration is
the quotient object

wBA,H,i(.T) — I_/A(x){il(ac)}
The other subquotients are of the form V(y){j} with y = z and j € Z.

Proposition 3.20. We have D(“Ba 1 () = “Ba i +(z).

Proof. If i = ¢ is regular then the claim is [16, thm. 6.1]. Assume now that y is no
longer regular. We abbreviate B, (z) = “Ba , +(z). The regular case implies that
D(By(x)) = By(x). We can assume that w € I''**. Recall that « € “I,. Then
Proposition 3.40 yields

D D(B.(@)2(y) — w,)} & D) = €D Bu(@){l(w,) —2(y)} & M,
yeW, yeEW,

where M is a direct sum of objects of the form B, (z){j} with z < z. We have also

D(B,(e)) = Bu(e). By induction we may assume that D(B,(z)) = B,(z) for all
O

z < z. Therefore, we have D(B,(z)) = B, (x).

Remark 3.21. The graded sheaves “By ,, _(z) are not self-dual.

Proposition 3.22. The category wZﬁ%i is Krull-Schmidt. A projective object is

a direct sum of objects of the form By (x){j}. A tilting object is a direct sum
of objects of the form “Ca .+ (x){j}.

Proof. The first claim is obvious by the discussion in the previous section. The
third claim follows from the second one via the duality. Now, let P be a projective
object. Fix a filtration of P by Verma-sheaves as in Remark 3.13 such that the top
Verma-sheaf in this filtration is of the form V4 ,(z){j} with  minimal in supp(P).
Thus there is an epimorphism P — Vj ,(2){j}. There is also an epimorphism
YBy e (@){i Fl(x)} — Va(@){j}. Thus “Ba,, +(z) is a direct summand in P
and the proposition follows by induction. O
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Let Pid(t) = >, P!t be Deodhar’s parabolic Kazhdan-Lusztig polynomial

“of type ¢” assomatedyvvlth the parabolic subgroup W, of W and let QL *1( ) =
> ng_ 1 t’ be Deodhar’s inverse parabolic Kazhdan-Lusztig polynomial “of type
—17. We use the notation in [24, rk. 2.1]. It is not the usual one. We abbreviate
Py, = Piﬁ and Qy» = Qdy’;l.

Proposition 3.23. We have graded A-module isomorphisms
(a) wBA,uv—ir(x)y = @@o A{l(z) — 2i}®PJ’g’ia
(0) “Ba 4 (@)l = Dizo AL2U(y) — Ux) + 205

Proof. Part (a) follows from Proposition 3.44 and [24, thm. 1.4]. Part (b) follows
from (a) and Proposition 3.20 as in [16, prop. 7.1] (where it is proved for u regular).
More precisely, we’ll abbreviate

V(z) =Vse(z), B(z)="Bau+(x), Z="Zs,.
Therefore, we have
B(x)Y C B(:c)[y] = Ker(py,a,) C B(z),.
In particular, for o, = Hh@y ay, we have
o, B(x)p, C B(x).

The graded S-module B(z),, is free and B(z), = B(x), /oy B(x), for h € u, because
B(z) is F-projective. Thus we have

B(2)” € au, B(x),,
because ap, is prime to ap, in S if hy # ha. We claim that
B(z)! = o, B(x)- (3.1)
Let b € B(z)Y. Write b = ay,, b’ with b’ € B(x)y. If py 5 (b') # 0 with h € d;, then
py.n(b) = o, pyn(b') # 0,

because the a,,-torsion submodule of B(z)y, is zero. Indeed, we have B(z), =
B(x)p /oanB(x)ps, the S-module B(x)y is free, and «y is prime to o,,. This
implies the claim (3.1). In particular, we have

B(x)) = B(x)"{2i(y)}
because fu, = I(y). Hence, by Remark 3.14 and Proposition 3.20 we have a graded
S-module isomorphism

(B(x)y)"{2U(y)} = B(x)"{2l(y)} = B(x)yy.

Definition 3.24. We define the graded k-algebra
wAWF = kEndeSo,u (wBSoﬁu?)op =k End”Zso,u (wésoyuyi)'

Let “A,, 1 be the k-algebra underlying “’fl#,i. Let 1, be the idempotent of “J/Lhi
associated with the direct summand “Bg, ;,+(x) of “Bsy,u,+-

Proposition 3.25. The graded k-algebra “J/Lhi is basic. Its Hilbert polynomial is
P("Ay t)ew = Y PII(t72) P (¢72) ) HED=210),

y<a,r!

(wA :n o = Z Qu,—l t_2 g;;l(t—2)t21(y)—l(z)—l(m )

y=>x,x’
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If u = ¢ then the following matriz equation holds
P("Ag _,t) P("Ay 1, —t) =1,

where v = w™' and the sets of indices of the matrices in the left and right factors
are identified through the map x — L.

Proof. By Remark 3.13, for each x, 2’ there is a finite filtration of the graded So-
module Homuz , (“Bsy 4 (2"),“Bsy .+ () whose associated graded is

= @ GBHoms0 (wBSO7M7+($/)y, S’O){Ql(y) —(z) + 2@'}@13;,’;,1-

y =0
D D Sol20(y) — (x) — Ua') + 20 + 2} PV P,
Yy 4,1’ >20

Thus we have a graded k-vector space isomorphism
LA, 1e = @ @ k2Uy) — I(x) — 1(x) +2i + 20} v P
y<z,z’ 1,8 20
where y, z, 2’ run over I, . Therefore, we have
P(“Ap i t)ea = Z Pra(t— 2 puaq (t™2) @)+ —20()
y<z,z'

In other words, the following matrix equation holds
P(w‘zlu +51) = PH,+(t)T Pu+(), Put(t)ya = Pﬁf(t_2) tl(l)_l(y)a z,y € Lyt
Note that P*%. = 0if i(y) — I(z) + 2¢ > 0 and that if {(y) — I(z) + 2 = 0 then

Y,
P*9. = ( unless y = x. Thus we have

Y,x,t
P("Ap 4,z € 0pz + tN[[t]].

Hence the graded k-algebra wfl,h_k is basic. The matrix equation

P(Au 1) = Qu () Qu- ()" Qi (D) = Qlty (472 1!y e,y

is proved in Proposition A.5. Hence 1”/71#7, is also basic. Next, we have, see e.g.,
[24, (2.39)]

Z (1)l == Qua( )p;;/(t) =0p, xaye'l,y, a=-1q.
Ly’
Further, if u = ¢ is regular then we have also P, .(t) = P}%{(t) and Q. ,(t) =
Qd(t). So we have the matrix equation
Qp,— () Py 1 (=t) = Py 4 (=) Qo (1) = 1

Therefore, we have

P(“Ag_ t)P("Ag 4, —t) = Qg,—(t) Qp,— (1) Py (—t)" Py 4 (—t) =1.

The matrix equation in the proposition follows easily, using the fact that P, , =
nyl,mfl and Q%ZJ = Qm—lﬁy—l. [l

Remark 3.26. The Hilbert polynomial P(i"A#Hr,t) can also be computed in the
same way as the Hilbert polynomial P("A, _,t) in Proposition A.5. The proof
above is of independent interest.

Remark 3.27. Forgetting the gradings we define in the same way “Ba , +(x),
“Bau+, “Capt(x), “Cap+, and Vi, (2).
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Remark 3.28. For V = t*, let wgl be the moment graph over V' whose set of
vertices is I, 4, with an edge between z, y if and only if there is an affine reflection
sq such that x € soyW,,, this edge being labelled by kc. Let S be the symmetric
k-algebra over V and let A be a commutative, noetherian, integral domain which
is a graded S-algebra with 1. We define “Z} ,, “ZY ,, “Ba u+(x)", “Ca y+(2)",
etc., in the obvious way. Next, set “Z) = k“’Zg/y#. Let “Z) be the category of the
finite dimensional graded le\{—modules. We define

"By (@) = k'Bg, (), "Cji(z) = k"Cy, o (x).

Remark 3.29. The results in this section have obvious analogues in finite type.
Then, we may omit the truncation and Proposition 3.23, Corollary A.4 yield

B . Mg
Bay+(@)y = @ A{l(z) — 22}®Py,z,1
i>0
n,—1

Bap,—(x)y{l(wo)} = @A{l(wox) — 21’}@Qr,y,i,

i>0
where wy is the longuest element in the Weyl group W. Indeed, we have
W Ba 4 (worwy) = Bap,— (x){l(wowy)},
where w : G, - — G, 4+ is the ordered moment graph isomorphism induced by

the bijections I, y — I, 4, * — wozw, and t — t, h — wy(h). Note that [24,
prop. 2.4,2.6] and Kazhdan-Lusztig’s inversion formula give

Q= P, worw,
3.3. Deformed category O. In this section we set V' =t and we assume that A
is a local Sy-algebra. Let w € W. For \ € t* let Ay be the (t, A)-bimodule which is
free of rank one over A and such that x € t acts by multiplication by the image of
the element \(x) 4+ = by the canonical map Sy — A. The deformed Verma module
with highest weight A is the (g, A)-bimodule given by

Va(A) = U(g) ®up) Ax-

We’ll write r - m for the action of an element » € A on an element m € M. The
category O 4, + consists of (g, A)-bimodules M such that

o M =@, My with My ={m € M; xm = (A\(x) +2)-m, z € t},
e U(b) (A-m) is finitely generated over A for each m € M,
o the highest weight of any simple subquotient is linked to o, +.

The morphisms are the (g, A)-bimodule homomorphisms. We are interested by the
following categories :

® YOy, — is the thick subcategory of O 4, — of the finitely generated mod-
ules such that the highest weight of any simple subquotient is of the form
A=zeo,_withz<xwandzxecl,_.

e YOy, 4+ is the category of the finitely generated objects in the Serre quo-
tient of Oy4 4+ by the thick subcategory of the modules such that the
highest weight of any simple subquotient is of the form A\ = z e 0, + with
xz % wand z € I, +. We use the same notation for a module in O4,, 4 and
a module in the quotient category “O 4, 4.

Proposition 3.30. (a) The category *O 4, + is a highest weight category over A.
The standard objects are the deformed Verma modules Va(x @0, +) with x € I, 4.

(b) For w € I | the tilting equivalence gives a duality D : " Oa 1+ — "Oa 5
where v = w+.
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Proof. First, we consider the category “O4,,, —. The deformed Verma modules are
split, i.e., their endomorphism ring is A. Further, the A-category “O 4, — is Hom
finite. Thus we must check that “O4 , _ has a projective generator and that the
projective modules are A-filtered. Both statements follow from [13, thm. 2.7].

Next, we consider the category “Oy4 , +. Once again it is enough to check
that “O4, .+ has a projective generator and that the projective modules are A-
filtered. By [13, thm. 2.7], a simple module L(x @0, ;) in O4 , + has a projective
cover Py(x @0, .1). Note that the deformed category O in loc. cit. is indeed a
subcategory of O 4, 4+ containing all finitely generated modules. Since P4(zeo, )
is finitely generated, the functor Homo, , , (Pa(z 0, 1), ) commutes with direct
limits. Thus, since any module in O 4 , ¢ is the direct limit of its finitely generated
submodules, the module P4 (z®o0, 1) is again projective in O 4, +. Now, the same
argument as in Remark 2.14 using [32, thm. 3.1] shows that the functor

Homo, , , (@ Pa(reo0,4), o), <
xT

factors to an equivalence of abelian A-categories

“O4u+ — mod(R), R=Endo,,, (@ Po(z e 0M7+))0p,

where R is a finite projective A-algebra. Using this, the axioms of a highest weight
category over A are easily verified for YO, , 4, using, e.g., [36, thm. 4.15]. This
finishes the proof of (a).

The tilting equivalence D is constructed in the more general context of highest
weight categories over a ring in [36], see Section 2.5 for details. To prove (b) it is
enough to check that D(*O4,,,+) = “O4,,,—. This follows from [14, sec. 2.6] and
the characterization of tilting objects in a highest weight category over a ring in
[36, lem. 4.21, def. 4.25]. O

Recall that wOﬁ%i is the full subcategory of *O 4 ,, + of the A-filtered modules.
Let “Py(x @0, +) be the projective cover of V4 (z @0, +). Set

“Ta(zeou+)=D("Pa(zeo,s)).

It is a tilting object. For a morphism of local Sp-algebras A — A’ we have an exact
base change functor YOy .+ — “Oar v, M= AAM =M @4 A

Proposition 3.31. (a) For x € “I,, + we have
kaA(:L' L] 0#1:‘:) = wP(:L' L] Oﬂﬁi), kwTA(:L' L] 0#1:‘:) = wT(:C L] Oﬂﬁi).

b) Projective objects in " O% are finite direct sums of “Pa(\)’s, tilting objects
A,p,+
are finite direct sums of “Ta(\)’s.
(c) Base change takes projectives to projectives and tiltings to tiltings. The
obvious map A’ Hom(M, N) — Hom(A' M, A’N) is invertible for M, N € wOﬁ%i.

Proof. The proposition follows from Proposition 3.30 and from the general theory
of a highest weight category over a ring. For instance, the last claim in (¢) follows
from the proof of [36, prop. 4.30]. See also [13, thm. 2.7, prop. 2.4]. O

Proposition 3.32. There is a functorV : “’O%%i — W74, such that
(a) V is exact (for the exact structure on mod(*Za ,)),
(b) V commutes with base change,

(c) if A= Sy and x € “I'™ then we have
-VoD=DoV,
- V is an equivalence of exact categories wO%%i —
- V("Ps, (2 ®0y,%)) = "Bso,u, (%),

A
wZAyuyi’
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- V("Tsy(x @ 04,1)) = "Csp . +(2),
- V(Vsy(z @ 0p,+)) = Vig,ux(),
(d) if A=k then V is fully-faithful on projectives in wOﬁ+.

Proof. A functor V on Oﬁﬁ 4.+ is defined in [14]. It is exact for the exact structure
on “Z 4, induced by the embedding “Z 4 ,, C mod(“Z4,,,) and by the usual exact
structure on the right hand side, see [14, prop. 2]. Further, the functor V commutes
with base change and with the tilting equivalence, see [14, prop. 2, sec. before
rem. 6]. Here we define V on wOﬁ%_ as the composition of V and of the embedding
w0%7#77 C O4,pu,—, and we define V on wO%%Jr as the composition of V and D.
This proves (a),(b) and the first claim of (¢). The second claim of (¢) follows
from [15, thm. 7.1]. Note that we use here the non-standard exact structure on
“Z% .+ see [15, sec. 7.1] and Remark 3.8. The third claim of (¢) follows from [15,
prop. 7.2]. The last one follows from the proof of [14, prop. 2, sec. before rem. 6].

Finally, the fourth claim of (¢) follows from the second one. Part (d) follows from
[40, thm. 3.9]. O

Corollary 3.33. We have a k-algebra isomorphism “R,+ — “A, + such that
Ly 1 ifx €Ly, and 1, > 1y, if x € I, .
Proof. Propositions 3.31, 3.32(c) yield
wRMi = End“’ou,i (wPMi)Op

= kEnd“’OsO,u,j: (wPSmmi)op

= kEnduz, , (“Bsg )"

="4,+.

O

Remark 3.34. The highest weight category wOﬁ%i over A does not depend on the
choice of o, + and e but only on p, v, see [14, thm. 11].

Remark 3.35. We set “Z,, = k“Zsg, , and “B,, 1 = k“Bg, .+, compare Remark
3.28. By Proposition 3.32(c) we have
Enduz, ("B, ) = Enduo, . (“Ppy)™

— k/’ E)Hdw()soww+ (’LUPSO7M7+)OP

=k Endeso,u (wBSo,uHr)op
= A+
Hence we have also a graded k-algebra isomorphism

Endwzu ('UJBMHF)OP = wf_llh_;,_.

This isomorphism can also be recovered from the results in Section 3.6.

Remark 3.36. By Corollary A.6 and Proposition 3.32(c) we have
Endwgz, (V(“P,,-))? = Enduz, (B, - )P
="A,_
=k Endwoso,u,— (wpsoﬁﬂﬁ)op
= Endvo, (“P,,-)".

This implies that for A = k the functor V is fully-faithful on projectives in wOﬁ _.
This is an analogue of Proposition 3.32(d) for negative level.



20 P. SHAN, M. VARAGNOLO, E. VASSEROT

3.4. Translation functors in O. In this section we set V = t and we assume
that A is a local Sp-algebra. Assume that e # d + m and that o, _, 0y — have the
level —e —m, —d — m respectively. Then o, + — 04 + is an integral affine weight of
level +(e — d). It is positive if +(e — d) > —m and negative else, see Section 2.8.

Proposition 3.37. Let z € I}, w € 2W,, and £(e—d) > —m. We have k-linear
functors
Tou: OA e wOA gt Lo woﬁ,u,i - Zoﬁ,qﬁ,i (3.2)
such that the following hold
(a) Ty, Ty are exact,
(b) Ty, Tpp are bi-adjoint if A= Sy or k,
(c) Ty, Tpp commute with base change.

Proof. The functors T ,,, T}, ¢ on Oﬁ,qﬁ,i’ Oﬁ%i are constructed in [13]. Since z €
7%, by [14, thm. 4(2)] the functors T} ,, T),,4 preserve the subcategories 20ﬁ1¢17,
woﬁ’“’7. F(;r the same reason the functors Ty ,, 1), 4 factor to the categories
“0% g0 O% v =

Proposition 3.38. Let A=k, z € [[}™, w € zW, and +(e —d) > —m. We have
a k-linear functor
T¢# Od):t — O,u:l: (33)

such that (3.2), (3.3) coincide on ZO@jE and the following hold

(a) Ty, has a left adjoint functor T), 4,

(b) Ty, is exact and takes projectives to projectives,

(¢) Tyu, Tp,e preserve the parabolic category O and commute with i, T,

(4) o (*P" (2 0 0,.2)) = "P* (1, # 04.4) for @ € .,

(e) T¢ uw(L(zw, @04 +)) = L(x®o, +) for x € 7, +,

(f) Tou(L(zw, ®04,+)) =0 iff © € "Ly 1+ \ "l 1,

(9) Ty u( Ly, +) = YLy -

Proof. The definition of the translation functor Ty, : Og+ — O, + in (3.3) is
well-known, see e.g., [23], and, by construction, its restriction to A-filtered objects
coincides with (3.2) if A = k. It satisfies the identities (e), (f) by [23, prop. 3.8].
Thus, since z € I, the functor Ty, factors to a functor as in (3.3), which
satisfies again (e), (f). The existence of the left adjoint functor T}, 4 follows from
the following general fact, see e.g., [37, lem. 2.8],

Claim 3.39. Let A, B be noetherian k-algebras and T : mod(A) — mod(B) be a
right exact k-linear functor which commutes with direct sums. Then T has a right
adjoint.

This implies that the functor Ty , in (3.3) has a right adjoint. Composing this
right adjoint with the BGG duality we get a left adjoint, see Remark 2.15. Hence,
claim (a) is proved. Part (b) follows from Proposition 3.37. Claim (c) is obvious,
and (d) is a consequence of (e), (f). To prove (g), note that (e) implies that
Tyu(*Ly,+) = “Ly,x. Thus (c) gives Ty, (*LY ) C Ly, . Further, for x € I |
part (e) yields

L(zwy 004,+) C Ty Ty pl(zwy 04+) = Ty pL(z @0y 2). (3.4)
Thus, by adjunction, for each = € *I); ; we have a surjective map
Ty pL(zw, 0 0p,+) = L(z @0y ).

Now, since the right hand side of (3.4) is in “ O} , by (c), the left hand side is also
in *OY .. Thus, we have a surjective map Ty, ,(°LY 1) — “Lj, .. O
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3.5. Translation functors in Z. In this section we set V' = t and we assume that
A is the localization of Sy with respect to some multiplicative subset. Fix z € [7**.
An element of ?Z 4,6 1s a tuple (az) of elements of A with « < z. The assignment
y - (az) = (agy) defines a left W,-action on *Z4 . For w € 2W,, the map

“Zau— Zag, (az)— (agy) with azy=a,, z€ wILnin, yeWw,
identifies “Z 4, with the set of W,-invariant elements in “Z4 4. Let
Op s “Zag — “Zay, Oug:"Zayu— "Zag
be the restriction and induction functors with respect to the inclusion
“Zau C*Zagp
Forgetting the gradings we define in the same way the functors 0, ¢ and 0y .

Proposition 3.40. For z € I}** the following hold
(a) 0,11, 0,6 commute with base change,
(b)) VoTy, =0s,0VandVoTl,,=0,50V, B B
(c) Op.u and b, ¢ are ezxact functors *Z% bt “JZ% + and“’Zﬁ%i — ZZﬁ@dE,

(d) (O, 0,105 0,421 (wpi)}) s a triple of adjoint functors
(e) 04, 0D = Doby,, and 0, 50D = D09u¢o{2l(wu)}

(f) for x € “I'™™, there is a sum M of “Ba 1 (t){j}’s with t < x such that
9¢M( BA¢+ zwy)) @ BA,M-i- ) {l(wy) —2l(y)} & M,
yeWw,
(g) for x € “I'™ we have
Op6("Bap.~ (7)) = "Bag - (x),
Ou.6(“Ba,u+ () = "Bag,+ (xwu){=1(wu) }-

Proof. Part (a) is obvious. Part (b) is proved in [14, thm. 9]. For (c) it is enough
to check that 0y ,,, 0,,.4 preserve Zzﬁ,qﬁ,i’ wZﬁ%i and are exact. This follows from
claim (b) and Propositions 3.32(c), 3.37(a). Part (d) is proved as in [16, prop. 5.2].
More precisely, since z € I)*** there are graded “Z 4 ,-module isomorphisms

Zagy @ “Zau{—21(y)}, (3.5)
yeW,,
ZZA1¢{21(w#)} >~ HOIanA’H (ZZAﬁd),wZA”u). (3.6)
The second one yields an isomorphism of functors
ZZA’(b{QZ(w”)} ®wZA7M. = HOIanAVM (ZZA7¢’ wZAaH) ®“’ZA,M *
Homuz, (*Za4, ®).

12

Therefore (0,4, 0,1, 0,1,6{20(w,,)}) is a triple of adjoint of functors. Part (e) follows
from (d). Indeed, since 0, ,(M) = M as a graded A-module, we have 04, 0 D =
D o0y, Then, part (d) implies that 6, y0 D = Dof,, 40 {QZ(wH }. Now, we prove
(f). We abbreviate By,(z) = “Bay 1 (x), By(x) = *Bag4(x), Zy = “Za, and
Zy =*Za,5. We have Bd,(:zztt}u)ggvg/M = Zp 2w, {l(zw,)}, see Remark 3.45. Thus, by
[16, prop. 5.3] and (3.5) we have also

Op.u(By(zw,))e = By(wwy)ew, = ) Afl(zw,) — 2(y)}
yeW,

as a graded A-module. This proves the claim, because for t € I;ni“ we have

t L& = 04 ,(By(wwy))r = 04, (Bg(zwy)w, ) = 0,
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and because 0y, ,(By(zw,)) is a direct sum of objects of the form B, (z){j} since

the right adjoint of 4, is exact. Finally, we prove (g). By Propositions 3.32(c),
3.38(d) and part (b) we have

Opo(“Bau+(x)) = "Bag+(wwy),  0u6("Bay— () = Bag—(x).
To identify the gradings, note that by [16, prop. 5.3], we have
01,6 ("Bt (2))aw,, = “Zgaw, @uz, , “Baut (@)
="Zyaw, (£ (2)},
because “Z,, , = A and “By ,, +(z), = A{£l(z)}. Therefore, we have

éu@(wBA,uHr(x))zwu = A{l(x)} éﬂ@(wBAyuﬁ(z))m = A{-l(x)},
because (ZZ¢,mWM)y = A for all y € zW,,. O

Remark 3.41. The isomorphisms (3.5), (3.6) are only proved for W, = 2 in [16,
lem. 5.1]. The general case is similar and is left to the reader.

Remark 3.42. For z € I, w € zW, and e + m > d the functor T}, 4 : “O, + —
20,4 is faithful on projectives. By Propositions 3.40(b), 3.32(d) it is enough to
check that 6, 4 is faithful on the projective objects in “Z, ;. This is obvious,
because the unit 1 — 6, 4 0 04, is a direct summand by definition of 0, ¢, 04 .-

Remark 3.43. If A =k then the functors 0, 4, (%_7 1 and their non graded analogues
are defined in the following way. Recall that “Z, = k"Zsg, , and that “Z, is the
category of the finite dimensional graded “Z,-modules. Then, we define

éd),,u : ZZ¢ — wZ#, é,u,d) : “’Z# — ZZ¢

to be the restriction and induction functors with respect to the inclusion wz uw C ZZ¢.
These functors 6, 4, 04, are exact, for the obvious exact structure on gmod(*Z,).

3.6. Localization. In this section we set V' = t*. Let P, be the “parabolic sub-
group” of G(k((t))) with Lie algebra p,. Write B = P,. Let T C B be the torus
associated with t. .

Let X’ = G(k((t)))/P, be the partial (affine) flag ind-scheme. For w € W let
X, C X' be the corresponding finite dimensional affine Schubert variety. To avoid
confusions we may write X, = X’ and Xy = Xu. The group T acts on X,,, with
the first copy of k* acting by rotating the loop and the last one acting trivially.
The varieties X,, form an inductive system of complex projective varieties with
closed embeddings and X' is represented by the ind-scheme ind,, X,,. Let Db()_(w)
be the bounded derived category of constructible sheaves of k-vector spaces on X,,
which are locally constant along the B-orbits. Let P(X,,) be the full subcategory
of perverse sheaves. Recall that X, has dimension I(w) for w € I;™.

For x € I, + we have X, € X, if and only if = € “Iy+. Let wIC(X,) be
the intersection cohomology complex in P(X,,) associated with X,. Let IH(X,)
(resp. THr(X,)) be the (resp. T-equivariant) intersection cohomology of X,. See
Section A.1 for details.

Proposition 3.44. We have -
(a) Hr(Xy) = "Z§,, and H(X,) = "“Z, as graded k-algebras,
(b) IHr(X,) = “Bg , . () as a graded “Zg ,-module,
(¢) IH(X,) ="“B) () as a graded “Z)/-module.

Proof. Part (a) follows from [20], parts (b) and (¢) from [7, thm. 1.5, 1.6, 1.8]. O
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Remark 3.45. By Proposition 3.44, the graded ZZ¢7IWu—module ZBA1¢1+(zw#)1W#
with z € I;"" is the equivariant intersect}on cohomology of th? variety Uy ew, Xo.ay-
Since this variety is smooth, we have B4 ¢y (zwy)ew, = *Zgp 2w, {l(zw,)}.

Proposition 3.46. Letw € I, y andv = w_l, sov e I{‘;ﬁ. There is an equiva-
lence of abelian categories ® : "OY _ — P(X,) such that °L(y e o4 ) — “IC(X,)
fory el andx = yi '

Proof. Note that w = v_lwu and that x = y‘lwu. Further, the assignment y —
yields a bijection ”Ig,_ — "I, + by Remark 2.12. Next, apply [4, thm. 7.15, 7.16],
[18, thm. 2.2] and [26]. O

Recall the category “JZX from Remark 3.28. By Proposition 3.44, composing ®
and the cohomology, for w € I, + and v = wo! = wuw_1 € Igﬁ, we get a functor

Y e Y wrgV
H : O¢17—> Z#.

Proposition 3.47. Let w € I, and y,t € "I} . Setv = w,w™", = y;' and
s = tjrl. We have
(a) H("L(y @ 04,-)) = "B,/ | (x),
(b) Extoon ("L(y ®0p,—),"L(t @04, _)) = kHomuzy (ng7M7+(:c), ng,H’+(s)),
(c) For z=v"t and L € Irr(VOY ) we have an isomorphism of *Z ] -modules

0,,6H(L) ~ Hi(L).
Proof. Part (a) follows from Propositions 3.44, 3.46. Next, Proposition 3.46 gives
Extuogﬁ (UL(y 00y _),"L(t e 0¢7_)) = Extpe(x,) (wIC(Xm), w]C(XS)).
Further, by Propositions A.1 and 3.44 we have

EXtDbT(Xw) (wICT (Xz), wICT(XS)) = HOmwzgw (ng«/,H,+(z>, wB\S/7M7+(S)) ,

Extp (g, ("IC(X.), "IC(X,)) = kExtpe ) (“I0T(X.), kK*ICr(X5)).

This proves (b). Finally, we prove (c¢). Note that 6,4 is well-defined, because
z € I aind W = ZW,. _By Proposition 3.44, taking the cohomology gives a
functor P(X,, ) — mod(*Z)), £ = H(E). Since z € I;**, the obvious projection
p: Xp. = X, is a smooth map. For £ in P(X,,,,) we may regard H(E) and
H(p*E) as modules over “Z and “Zy by Proposition 3.44. There is a natural
morphism H(E) — 04 ,H(p*E). By adjunction, this yields a morphism of functors
6,,,40H — Hod. This is an isomorphism, by Proposition 3.40(g) via base change. O
Corollary 3.48. Letw € I, and v = w='. We have a graded k-algebra isomor-

phism ”Rgﬁ — WA, 4 such that 1, — 1, with x =y '

Proof. The choice of a W -invariant pairing on t yields an isomorphism
k Endeé” (ng7u7+)0p = wAH,J’_.

Thus the corollary follows from Proposition 3.47. O
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4. PROOF OF THE MAIN THEOREM

4.1. Regular case. Fix d,e > 0 and u € P. Let o, _, 04, have the level —e —m
and —d —m. Let w € I, y and z = ww,, v = wuw_l, u = w~!. Note that

zel,_, ve I{‘;ﬁ, u € IgHr

Proposition 4.1. We have a k-algebra isomorphism “R, y = ”Rgﬁ such that
1y = 1y forx € “I, 4 and y = x_ “lin ”I” . We have a k-algebra isomorphism
YRy = R“ _ such that 1, — 1, for x € wI +. The graded k-algebras “R,, 1 and
”Rg,_, are Koszul. Further WRMJF = (”Rg_) and 1, = E(1,) forx € VI, 4.

Proof. Corollaries 3.33, 3.48 yield k-algebra isomorphisms
wR# + = wAu + = URZ,_
which identify 1, € UR“ _ with 1, € YR, 4.

Now, we clalm that the k- algebra UR“ has a Koszul grading. By Lemma 2.2
and Remark 2.13, it is enough to check that "R — has a Koszul grading. This
follows from the matrix equation in Proposition 3.25 and from [5, thm. 2.11.1],
because "Ry, = YAy _ as k-algebras by Corollary 3.33.

Equip ”Rgﬁ with the Koszul grading above. Then Lemma 2.1 implies that
E(”Rgﬁ) = ”Rgﬁ. Thus ”Rgﬁ is Koszul. Since “R,, ; = ”Rgﬁ, this implies that
YRy, + has a Koszul grading. Thus Lemma 2.1 gives E(“R, 1) = YR, +. Hence
“R,, + is Koszul. Finally, we have k-algebra isomorphisms

”Rgﬁ = E(”Rgﬁ) = E(“R,+) = "R +.
They identify the idempotent 1, € "R}, _ with the idempotent 1, € YRyt - O

Remark 4.2. The Koszul grading on ”RQ_ can also be obtained using mixed per-
verse sheaves on the ind-scheme X’ as in [5, thm. 4.5.4], [1]. Our argument via
moment graphs is elementary. Note that there is no analogue, in our situation, of
[5, lem. 3.9.2], because "Ry — is not Koszul self-dual. Note also that there is no
analogue of the localization functor ® in Proposition 3.46 for positive levels.

For the next proposition we use standard Koszul duality technics. To do so, we
need the following result.

Lemma 4.3. The quasi-hereditary k-algebra “R,, 1 is balanced.
Now we can prove the second main result of this section.

Proposition 4.4. We have a k-algebra isomorphism ZRM_ = “Rgfﬁr such that

lp =1y forx € 7, _ and y = z__i_l m “Ig+ We have a k-algebra isomorphism

Ry,- = “Rl | such that 1, 1y for x € 2l . The graded k-algebras "R, and

Ry~ are Koszul. Further *R, — = E("Rj ) and 1, = E(1y) for x € *I,, —

Proof. By Proposition 2.10 we have D(*R, 1) = “R,, —. Thus “R,, _ has a Koszul

grading by Lemma 4.3. Next, Lemma 2.1 implies that *R,, ~ = E(*R,, —) is Koszul.

Thus [30, thm. 1] and Propositions 2.10, 4.1 yield a k-algebra isomorphism

Ry~ = E(°R,,-) = DED(*R,,~) = DE(*R,, ;) = D(*R, 1) = D(*"Rj _) = "R}, |

such that 1, — 1,. Next, by [30, thm. 1] and the isomorphisms above, “ng  has

a Koszul grading and is balanced. Hence E(“Rj ,) = “RY L

2.1. So we have

‘R = E(“RY_)=DED(“R} ) = DE(°R}_) = D(*R__) = D(“R,1) = “Ry,.
O

is Koszul by Lemma
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Proof of Lemma 4.3. We equip the quasi-hereditary k-algebra “R,, ; with the Koszul
grading “R) _, see Proposition 4.1. The Koszul dual E("Rf ) = “R,, 1 is quasi-
hereditary, because it is isomorphic to URQ_ as a k-algebra. Since it is also Koszul,
this implies that the graded k-algebra ”Rg_ is standard Koszul, see Section 2.6.
Therefore, by [29, thm. 6], we must prove that the grading on D(”Rgﬁ) is positive.
As k-algebras we have

D(URZ,_) = D(wRH7+) = EndwR“,+(wT#1+)Op.
As graded k-algebras we have
D(Ungi) = EndwRuy+(wTH,+)0p.
Here “T), + is the ”Rgﬁ-module equal to “T), 4 as a “R, {-module, with the natural
grading. By Corollary 3.48 we have a graded k-algebra isomorphism
URgﬁf = wzzllh_i_.

We claim that there is also a graded k-algebra isomorphism

D(”Rgﬁ) ="A,_. (4.1)
This implies the lemma because Zfl,h_ is positively graded by Proposition 3.25. To

prove the claim, observe first that Propositions 2.10, 3.31, 3.32(c) yield a k-algebra
isomorphism

D(“R, +)="R,
= Endzo%i (ZPH,_)OP
=k Endzoso,u,f (ZPSO,H,—)OP
=kEnd:-og, , , *Tsgpu+)
= k Endzzso’u (ZCSU7H7+)
= Ay,

So we just have to identify the gradings in (4.1). Set
wASmmﬁ' = End“’Zso,u (wBSmm-i-)op’
wASmlh-i' = End“’Zso,u (wBSmlh-i-)op-

By Proposition 3.32(c) we have

YOsy,u,+ = mod(“As, i, +)-

Consider the graded Sy-category

woSO,,Uqu = ngd(wASU,HHr)'

Let w0§07#7+ be the full subcategory of “Os, ...+ of the modules taken to “’O?U%Jr

by the canonical functor *Og, .+ — “Os,.u+. Consider the following square

w A wrgA
0507%4‘ v ZSO,H,-‘F

T

wMA v wrg A
OSo,uHr > ZSOHLLH*'

The vertical arrows are the obvious ones and V is the functor given by
V(M) = wBSo,,U,;l* ®wASo,u,+ M
The square (4.2) is commutative. Indeed, view wOL%O%Jr as a subcategory of

wOSo,uHr = mOd(wASo,uHr)'
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Under this identification the module “Pg, , + is taken to “Ag, ,.+. Now, V is a
right exact functor which takes “Ag, ,,,+ to “Bs,,u,+. Thus, under the identification
above, for each M in wOL%O%Jr we have

V(M) = wBSWyJr ®uAgy s M.

This means precisely that the square (4.2) is commutative. Note that V is fully
faithful on “Og, 0.+ Pecause V is fully faithful on vOg, .+ by Proposition 3.32(c).
Next, by Corollary A.6 we have a graded k-algebra isomorphism

ZAM7_ = :El’ldwzM ( CN7+)'
Hence we must prove that there is a graded k-algebra isomorphism
E)HdwRMY+ (wTu,J’_) = E)HdwzM (wéu,+) .

By Remark 3.35 it is enough to check that V(¥ _u,+) = vaM7+. To do so, we consider
the deformed tilting module *Ts, .+ in “Og, u+. It admits a natural grading.
Equipped with this grading “T’s,,,,+ can be regarded as a graded YAg, u,+-module

T u+, OF, equivalently, an object in “Og, 1. Since the construction of the
natural grading commutes with the reduction to the field k, we have
v 7u,+ = kwTSo,uHr
and since V commutes with base change, it is enough to check that

v(wTSU,HHr) = wCVSU,,uHr' (43)

By Proposition 3.32(c) we just have to identify the gradings in (4.3).

Now, recall that “Ts,(z ®0,, ) is filtered by deformed Verma modules and that
the subquotients of this filtration are either Vs, (ze0,, 1) or of the form Vs, (yeo, +)
with y > x. Let Vg, (z®0, +) be the natural grading on Vs, (zeo,, +). The inclusion

VSU (:L' i O#Hr) c wTSo (SC i O#Hr)

is homogeneous of degree 0 by definition of the natural gradings. Next, by Remark
3.19 the graded Sp-sheaf “Cg, u,+ () is filtered by Verma-sheaves, and this filtration
yields an inclusion

Vso (@){l(x)} C “Csp .+ ().
Therefore, since the grading of an indecomposable object is unique up to a grading
shift, to prove (4.3) it is enough to check that

V(Vsy (z @ 0p4)) = Vs, (2){l(2)}-
Since V(Vs,(z ® 0,,1)) = Vs, (x) by Proposition 3.32(c), we just have to check the
gradings, once again. But, by definition, we have
wpso(l' (] ONF‘") = wASo,u,-{-lza

for some idempotent 1, which is homogeneous of degree 0. Thus, by definition of
V, we have

V(WPSO (SC b O#Hr)) - wBSO,,uHr('r)'
Further, by Remark 3.19 the graded Sp-sheaf “Bg, , +(z) is filtered by Verma-
sheaves, and this filtration yields a surjection

"By u+(x) = Vs, (2){l(2)}.
Since the surjection
Y Pgy(z 00, +) — Vs, (x®0, 1)
is also homogeneous of degree 0 by definition of the natural gradings, we get our

claim, proving the lemma. (I

Corollary 4.5. We have an isomorphism of graded k-algebras URZ,Jr =7A, -
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Proof. By [30, thm. 1] and the proof of Lemma 4.3 the graded k-algebra
D(”Rgﬁ) ="A,_

is Koszul. By Proposition 4.4 we have that “Rg 4 is Koszul and is isomorphic to

“R,,,— as a k-algebra. Further ”Rgﬁ = "R, + as a k-algebraand D(“R,, ;) = *R,, -
Thus we have a k-algebra isomorphism

R, = D(“R, ) ="A

Hy=s
which lifts to a graded k-algebra isomorphism “Rgﬁ + = Z[lu,_ by unicity of the
Koszul grading. ([

4.2. General case. We can now complete the proof of Theorem 2.16. We first
prove a series of preliminary lemmas. Fix d,e, f > 0, u,v € P and w € W. Choose
integral weights o, _, 0,,—, 04, — of level —e —m, —f —m and —d — m.

Lemma 4.6. For w € w]ﬁ7+ the functor T yields a surjective k-algebra homomor-
phism 74, : "Ry, + — "R}, The kernel of Ty, 15 the two-sided ideal generated by
the zdempotents 1, with x E L+ \"I} 4, and we have 7y, (1;) = 15 forx € “I} |

Proof. By Remark 2.13 the functor 7 takes the full projective module of *O,, 1 to
the full projective module of “ Oy, | . For any M the unit M — i7(M) is surjective.
Hence for P projective we have a surjective map

Homwo, . (P, M) = Homwo, , (P, i7(M)) = Homwoy  (7(P),7(M)).

Thus 7 yields a surjective k-algebra homomorphism 74, : "Ry + — “R; . Let
I C YR, + be the 2-sided ideal generated by the idempotents 1., x € “I, 4, such
that 74,(1z) = 0. By Remark 2.13(c) the latter are precisely the idempotents
1, with z € “I,, + \ "I}, .. We have a k-algebra isomorphism “R,, /I ~ "R} |,
because Oy, , is the thick subcategory of “O,, 1 generated by the simple modules
killed by I. It is easy to see that, under this isomorphism, 74, is the canonical map
YR+ — "R, + /1. The last claim in the lemma follows from Remark 2.13(b). O

Now, let v € I, — and w = w,v “Lsowe I” . Recall that YO, _ = mod ("R, _)
and YOy _ = mod(UR¢ ). We equip the k algebras YR, _ and "Ry _ with the
Koszul gradings “R{ o+ and YRy ., see Proposition 4.4. Let L,, Ly be the natural
graded lifts of L,, L¢ in the graded categories

0, _ = gmod(wR¢ ) YOy = gmod(“Ry ).

Lemma 4.7. Forv € I, _ and d +m > f there is an exact graded functor T¢ v
such that the square (4.4) is commutative and Ty, (L) = L,

"0y~ .~ "0,,

l l (4.4
Ty
YOy, — "0, —
Proof. First, note that the functor Ty, : YOy _ — "0, _ is well-defined, because
d+m > f and v € I™*. By Remark 3.36 we have
Y0, - =mod(’A,—), “Og_ =mod("Ay ).

The functors V on ”OA7 and ”OA_ are right exact, and under the identifications
above we have V(“A4,, _) ="B, _ and V(YAg,—) = "Bg,—. Thus we have respectively

V(M) ="B,,_ @ua, M, V(M)="Bs_ @u, M.
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Next, by Corollary 4.5 we have graded k-algebra isomorphisms
WRY  —vA,_. Ry, ="A,_.
Therefore, we have the commutative square

QS vz,

T

v
UOﬁ_ _— UZM,
and the commutative square

Y03 2,

]

UO@_ i) UZ¢,_,

where we have set respectively

V(M) = UB,/,— ®UAV,— M) V(M) = UB¢1_ ®v*’a¢,* M.

Compare (4.2). Let ”()gm_j C ”()i_ be the full subcategory of the projective
objects. We define ”Offﬁj, ”ij’ffj and ”ng(ij in a similar way. The functor V is fully
faithful on ”ngj and ”ng(ij, because V is fully faithful on projectives by Remark

UZPTOJ

3.36. Therefore, we can identify ”ngfj, ”Ogrij with some full subcategories "Zp,
vzg“jj of *Z, _, "Zs . By Proposition 3.38(b) the functor T}, gives an exact
functor “Ogm_j — “ngﬁj. Similarly 6y, gives an exact functor ”erij — ”ZEffj,
see Remark 3.43. Therefore 0, gives an exact functor Tj,, : ”Ozrij — vOp
via V. Tt coincides with T}, when forgetting the grading, by Proposition 3.40(b).
Using the same argument as in [3, p. 147] via the homotopy category of projective
modules, it gives an exact functor Ty, : Oy, _ — "O,, _ which coincides with 7§ ,
when forgetting the grading. Thus, the square (4.4) is commutative.

Now, we concentrate on the equality Ty (L) = L,. By Proposition 3.38(¢e) and

(4.4), for x € ™I, _ there is an integer j such that
Ty (L(zw, @04 _)) = L(zeo, _){j}.

We must check that j = 0. Recall that “P(x e0,, _) is the module “P(x e 0, ) with
its natural grading. Since T, 4 is left adjoint to T ,, it is enough to check that

Ty7¢(vp(ac 00,_)) = YP(zw, e Oy, ).

Now, observe that 6, o V is isomorphic to V o Ty, on ”Ogr(ij. Therefore, it is
enough to check that

0,.6(“By,— (zw,)) = "By — (zw,).
This follows from Proposition 3.40(g) by base change. O

Remark 4.8. Let T, 4 be the left adjoint of the functor T},. The existence of T, 4
follows from general facts as in the proof of Proposition 3.38. By definition of T}, 4
and the unicity of the left adjoint, the square (4.7) below is commutative (up to an
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isomorphism of functors)

l e l (4.7)

Lemma 4.9. Forv € I,_ and d +m > f the functor Ty, : “Oy - — O,
induces a surjective graded k-algebra homomorphism ”Rg ”R“ . The kernel of
Ty, contains the two-sided ideal generated by {1,;z € I} , ¢ L,7+}, and for
T € ”I”ﬁ N1, .+ we have zw, € ”I’f_ and Ty, (15) = 1y, -

Proof. First, note that, since v € I'®™ and d +m > f, the functor Ty, : Oy —
Y0, — is well-defined and it takes ”O” _into ”O” by Proposition 3.38(c). Com-
posing it with its left adjoint functor Tl, s we get the functor © = T,40Ty.. To
unburden the notation we abbreviate Ly = ”L“ _and L, = ”L“ . By Proposition
3.38(g) we have Ty ,(Lg) = L,. Thus Ty, mduces a graded k- algebra homomor-
phism ”Rg,_ — "Rl _. To prove its surjectivity we must prove that the counit
© — 1 yields a surjective map

EXtuOg’ (L¢) — EXtuOu (@(L¢), L¢).

The parabolic inclusion ¥ Og _ C YOy, is injective on extensions by Remark 2.13.
So we must prove that the counit yields a surjective map
EXt”O,ﬁ,, (L¢) — EXtUO(ﬁ’, (@(L¢),L¢). (48)

Now, set © = T, 4 0 Ty, where T, 4, Ty, are as in Lemma 4.7 and Remark 4.8.
For each 7 we have

Extio, (O(Lg), Ly) = @Em% (6(Ly), Lylj])-

Thus we must prove that for each j the counit 1 : © — 1 yields a surjective map
Extig, (L, Lolj]) = Extig, (6(Ls), Lolj]). (4.9)

By Lemma 4.7 we have Ty, (Ly) = L,. Further, the gradings on YO, _ and YO, _
are Koszul by Proposition 4.4. Thus the right hand side of (4.9), which is equal to
Extig, (Lu, Lu[j]), is zero unless i = j. Now, let
low = max{d; ©(Ls)" # 0}.
Recall that YOy = gmod(“Ry +), and that the grading on “Ry 4 is positive.
Thus ©(Ly)'*" is a quotient module of ©(Ly) which is killed by the radical of
“Rg +, 1.e., we have
B(Ls)'*" C top(6(Ls)).
Next, we claim that for any simple module L such that T} (L) # 0, the map n(L)

factors to an isomorphism top(©(L)) — L. Indeed, n(L) is surjective because it is
non zero, and for any simple quotient ©(L) — L’ we have

0 # Hom.g, (©(L), L") = Homug, (T, (L), Ty, (L")).
By Proposition 3.38(e), (f) this implies that
0 # Ty (L) = Ty (L).

Therefore, we have L :7D. This proves the claim. Applying this claim to any
simple direct summand L C Ly such that Ty, (L) # 0, we get that top(O(Lg)) =
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Imn(Lg). In particular top(©(Lg)) is pure of degree zero. This implies that low =
0. Therefore, the kernel of (L) lives in degrees > 0. Hence the surjectivity of (4.9)
for ¢ = j follows from the long exact sequence of Ext’s groups and the vanishing

Exti()dbﬁ (Kern(Lg), Ly[i]) =0

by Koszulity of the grading of YO, _. This proves the first part of the lemma.

Next, note that 137 = {zw, ; Elgﬁﬂluﬂr} by Appendix C, that Ty , (144, ) =
0 for = ¢ I, _ by Proposition 3.38(f), and that zw, € I, 4 if and only if x € I,, _.
This proves the second claim of the lemma. Finally, the last claim of the lemma
follows from Proposition 3.38(e). O
Lemma 4.10. Letw € I); | andv = w2l sove Iﬁ_. Assume that d+m > f and
e+m > d. There is a k-algebra homomorphism p,,, such that the square (4.10) is
commutative and py ., (1z) = 1y for x € *I} | and y = zt

wy,w
Ryt

ng a

4.1

lrw T,Ml (4.10)

wpV Puv  ypp
RH,+ Ru,—'

Proof. Note that v = w,w ™ 'w,, that w,w € I N1, .+ by Appendix C, and that
YRy . = "Ry . Now, let m,, :_w”’JRH,Jr — ”Rfi_ be the composition of Ty,
and the isomorphism “*“R,, , = ”Rg _ in Proposition 4.1. We must construct a
k-algebra isomorphism p,,, such that 7, , = p,, 0 7s,. Let v € “»*I, . Then
wux_l I= ”Igf. By Lemmas 4.6, 4.9 we have

Truw(lz) #0 — T¢7V(1w,bm*1) # 0
= wyr e Igﬁ N1, +,

To(lz) #0 <= w el ..

Next, by Appendix C, we have
wuz_l S Ig,_ NI, < zw, € Iger N1, _
= w€l,,.
Hence, we have 74,(1;) = 0 if and only if 7, ,(1;) = 0. Thus Ker(ry,) C
Ker(m,,,), because the left hand side is generated by the 1,’s killed by 75, and
the right hand side contains the 1,’s killed by T ,. This proves the existence of
a k-algebra homomorphism p,, ,, such that the diagram above commutes and such
that p,.,(1:) = 1,1 for x € “I7 . The map p,, is surjective by Lemma 4.9.
) W I, >

Now, we prove that p,, is also injective. The functor 7 yields a graded k-algebra
homomorphism UR’V{? — "R, _ by Remark 2.13. Consider the diagram

w,,wRu,_i_ T URZ,— ﬁ leli_
iTM l J{ (4.11)
1 = Tsv 5
ZRd)r‘r UR¢77 ﬁvRV*a

where z = v~ = w,ww,. Note that z € I}/ _ C I’ and that v € I}, _ C I},
Since d4+m > f and e+m > d, we define Ty, and Ty ,, as in (3.3). Let T}, 4 be the
left adjoint of Ty ,,, see Proposition 3.38(a). The right square in (4.11) commutes,
because Ty ,, and 7 commute.

Lemma 4.11. The left square in (4.11) is commutative.
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Now, applying the factorization above both to 7, , and to m, ¢ we get a diagram

wyw wpv VDM
B+ —> "By ——= "R, -

lTw | lTw l (4.12)

Ry — 0 w0y TR,

By Lemma 4.11 the outer rectangle in (4.12) is commutative. The left square in
(4.12) is commutative, because T}, 4 commutes with 7. Thus, since 7, ,, is surjective,
the right square in (4.12) is also commutative. Therefore, since the middle vertical
map (4.12) is injective by Remark 3.42, the injectivity of p,, follows from the
injectivity of pg ,,. Now, note that py , is invertible. Indeed, it is surjective by the
discussion above and dim(“Ry ) = dim(“R,,_) by Proposition 4.4.

Now, to prove the last claim in Lemma 4.10 it suffices to observe that the square
of maps in (4.10) gives the following diagram for any x in *I ot

1I 4.1 1

—1
W

Pu,v 1
wyz " w,

see Proposition 4.1 and Lemmas 4.6, 4.9, and that x_ = w,zw,. (I

Proof of Lemma 4.11. We must prove that the isomorphisms “**“R,, ; = ”Rg _and
YRy . = "Ry _ in Proposition 4.1 yield a commutative square

w,,wRMA_ — URZ,—
lTw il (4.13)
ZR¢7+ 4.1 ’URd)’f.

By Proposition 3.38(d), the module T}, 4("*"P, +) is a direct summand in *Py . By
Proposition 3.40(g) and Remark 3.43, the sheaf 8, 4("'B,,.+) is a direct summand of
“Bg. 4. Further, by Corollary 3.33, Remarks 3.35, 3.43 and Propositions 3.40(b), (g),
we have a commutative diagram

wy,w
R+

lTw eml (4.14)

ZR¢7+ $ Endzzd) (ZB¢7+)OP.

Endw, wg, (wV wB;L,Jr )Op

Next, by Proposition 3.47 and Corollary 3.48, we have a commutative diagram

Endwuwzu (w"wBH,J’_)Op T &, —

lew ll (4.15)

EndzZ¢ (ZB¢7+)OP % UR(%? .
Finally, the isomorphism in Proposition 4.1 is the composition of H and V. O

Proof of Theorem 2.16. First, note that, since the highest weight categories O}, _,
”O’li_ do not depend on e, f by Remark 2.11, we can assume that there is a positive
integer d such that d + m > f and e + m > d. Thus the hypothesis of Lemma
4.10 is satisfied. Now, by Propositions 4.1, 4.4 the k-algebra “R, 1+ has a Koszul

grading. Thus, by Lemma 2.2 and Remark 2.13, the k-algebra “R}, | has also a
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Koszul grading. By Lemma 2.1 we have E(*R}, ) = “JRZ’i as graded k-algebras.

Therefore the graded k-algebra “JRZ is Koszul. Now, by Lemma 4.10 we have
E(’UJRV ) _ wRZ L= URH

as k-algebras. Thus, by unicity of the Koszul grading we have E (“’R” ) = UR“

as graded k-algebras. Note that the involutivity of the Koszul duahty 1mphes that

we have also E(“RY, _) = "Rl | as graded k-algebras, and “Rl, _ = "Rl | as k-

algebras. O

APPENDIX A. FINITE CODIMENSIONAL AFFINE SCHUBERT VARIETIES

A.1. Equivariant perverse sheaves on finite dimensional varieties. By a
scheme we always mean a scheme over k. Let T be a torus. A T-scheme is a scheme
with an algebraic T-action. Fix a contractible T-space F'T with a topologically free
T-action. For a T-variety X set X7 = X xp ET. There are obvious projections

p: XXxET - X, q:XxET — Xr.

Let D%(X) be the T-equivariant bounded derived category. It is the full sub-
category of the bounded derived category D®(X7) of sheaves of k-vector spaces

on X7 that contains all sheaves F with an isomorphism ¢*F ~ p*Fx for some
Fx € D*(X). The cohomology of F € D4.(X) is the graded S-module

H(F) = @ Hompy () (kx, Fli]).-

i€z
Here S is identified with Hr(point). Note that for £, F € D4(X) we have
Extps x) (&, F) = H(RHom(E, F)), (A1)

where RHom/(&, F) is regarded as an object in D*(X7). If Y C X is a T-equivariant
embedding, let IC7(Y) be the minimal extension of ky [dim Y]. Tt is a perverse sheaf
on X supported on the zariski closure Y in X. Let IHr(Y) be the equivariant
intersection cohomology of Y and let Hp(Y') be its equivariant cohomology. We
have THr(Y) = H(ICr(Y)) and Hr(Y) = H(ky). Forgetting the T-action we
define IC(Y) and TH(Y) in the same way. Now, let X be a quasi-projective T-
variety. We say that X is good if the following holds

e X has a Whitney stratification X = | |, X, by T-stable subvarieties,

e X, = A'®) with a linear T-action,

e there are integers Ng,y,i = 0 such that

= @k L) = )~ 201" (A.2)

where j, is the 1nclu510n X, C X. Equ1vaule1r1tly7 we have

iy IC(X @ ke, [l — I(x) + 2| e, (A.3)

We call the third property the parity vanishing.

Proposition A.1. If X is a good T-variety then

(a) dimEthDb(X)(IC()_(m),IC(Xy)) = . pq N,z plly,z,q Where 2,p,q runs over
the set of triples such that 21(z) — l(y) — l(x) + 2p + 2q = i,

(b) Extps(x)(1C(X, ) IC(Xy)) =k Extpy x) (10 (X,), IC’T )

(C) EXtD%(X)( ( ICT(X )) HOInHT(X)(IHT( ) (X ))

(d) Extps(x) (IC(X,), IC(Xy)) = Hompyx)(TH(X,), TH(X,)),
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(e) IH(X,) vanishes in degrees # l(z) modulo 2 and TH(X,) = kI Hr(X,).

Proof. Part (a) is [5, thm. 3.4.1]. We sketch briefly the proof for the comfort of the
reader. Let j, be the inclusion of X, =||,_;,) Xz into X. For F € D®(X) there
is a spectral sequence

EPT = HPT(j F) = HPTI(F).
Therefore, if F = ’R’Hom(IC(XI), IC(Xy)), we get a spectral sequence

EPY = @HPJ“JRHom(j:IC(XZ), L IC(X,)) = Extg;‘gx)(m()‘(m), IC(Xy)),

where z runs over the set of elements with I(z) = p. By (A.2), (A.3) the spectral
sequence degenerates at F7, and we get

dim Extiy, ) (IC(X,), IC(Xy)) = > M 2 ply 2 g,
#,p.q
where z,p, q are as above. Now, we prove (b). For F € D% (X) there is a spectral
sequence [20, sec. 5.5]
EP? = SP @ HI(Fx) = HPTI(F).
Therefore, if F = R’Hom(ICT(XI), 1Cr (Xy)), we get a spectral sequence

B} = §7 @ Bxth, ) (IC(X,), IC(X,)) = Bxthyt \ (I07(X,), I07(X,)).

Now Extps(x)(IC(X,), [C(X,)) vanishes in degrees # I(x)+I(y) modulo 2 by (a).
Since S vanishes in odd degrees the spectral sequence degenerates at Fo. Thus

S ®EXtDb(X)(IC(XI),IC(Xy)) = EXtDz%(X)(ICT(Xz),ICT(Xy>>.

Part (c) is proved as part (d) below. Compare [17, thm. 5.9]. Part (d) is proved
as in [19, sec. 1]. See also [6, sec. 3.3]. Since our setting is slightly different we
sketch briefly the main arguments. Fix a partial order on the set of strata such

that X, = X¢, = [_|y<m Xy. Consider the obvious inclusion

% J
X<z >X§z<—XI.

Let F; = jzle’(Xz) and Fo = jzmICT(Xy), where j, is the inclusion X, C X.
For any y < z and a = 1,2 we have

GoFa =@ kx,lda — 2000, i Fo = @ kx, [20(y) — do + 2¢)P Peve, (A4)
P q
for some integers d, and dg,, ;. Consider the diagram of graded k-vector spaces

Extpe(x_,)(@* F1, it Fa) —— Homy-(x_, ) (H(i* Fy), H('F))

l ‘

EXtDb(Xgm)(fl,‘FQ) HOHlH*(ng)(H(.Fl),H(.FQ))

| ;

EXtDb(XI)(j*]'—l,j*]:Q) — HOmH*(XI)(H(j*]:l), H(]*fg))

We'll prove that the middle map is invertible by induction on x. The short exact
sequence on the left is exact by (A.4), see e.g., [17, lem. 5.3]. For the same reason
the lower map is invertible. The complexes i*F; and i'F, on X, satisfy again
(A.4) for any stratum X, C X<,. Thus, by induction, we may assume that the
upper map is invertible. Then, to prove that the middle map is invertible it is
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enough to check that a is injective and that Im(a) = Ker(b). Now, by (A.4) we
have exact sequences

0 — H(ivi'Fo) — H(F2) = H(juj*Fa) = 0
0— H(jj*F1) = H(F1) = H(i.i"F1) — 0,

see e.g., [17, lem. 5.3]. Finally, let ¢ € Ker(b). Then Im(¢) lies in H(i.i'F2). The
cohomology with compact support H.(X,) fits into an exact sequence

0— H.(X,;) » HX<,) > HX<y) = 0.

Let w € H.(X,) be the fundamental class. We have wo¢ = 0 because w H (i,i' Fa) =
0. Thus we have also ¢ o w = 0, i.e., the map ¢ is zero on H (jij*F1) = wH (F1).
So ¢ lies in Im(a). Finally, we prove (e). By parity vanishing the spectral sequence

EPT = HPY(iLIC(X,)) = THPT(X,)

degenerates. This yields the first claim. The second one follows from the first one,
because the spectral sequence below degenerates

EPY = P @ [HY(X,) = [HPT1(X,).

A.2. Equivariant perverse sheaves on infinite dimensional varieties. Let
X be an essentially smooth T-scheme, in the sense of [25, sec. 1.6]. Let Dp(X) be
the T-equivariant derived category on X. See [25, sec. 2] for a discussion on the
derived category of constructible complexes on X (for the analytic topology) and on
perverse sheaves on X. We use the same terminology as in loc. cit. We formulate our
results in the T-equivariant setting. The equivariant version of the constructions
in [25] is left to the reader. If XY are essentially smooth and ¥V — X is a T-
equivariant embedding of finite presentation, let IC7(Y) be the minimal extension
of ky[— codimY] on Y. It is a perverse sheaf on X supported on the zariski closure
Y in X. Note that the convention for perverse sheaves we use in this section differs
from the usual convention for perverse sheaves on finite-dimensional varieties (as
in Section A.1 for instance). Usually ky[dimY] is perverse for a smooth finite-
dimensional variety Y. Here ky [— codim Y] is perverse. For F € Dy (X) we define
the graded S-module

H(F) = @D Homp,x) (kx, Fli]). (A.5)

i€Z
For Y as above we abbreviate
THr(Y)=H(ICr(Y)), Hr(Y)=H(ky).

We call Hr(Y') the equivariant cohomology of Y. Now, assume that X is the limit
of a projective system of smooth schemes

X = lim X, (A.6)

n
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as in [25, sec. 1.3]. Let p,, : X — X, be the projection and set Y,, = p,,(Y'). Assume
that Y,, is locally closed in X,,. Since ky = p} ky, we have an obvious map

Hr (Yn) = @ HomDT(Xn) (an  ky, [Z])

=

— @ Homp,.(x) (phkx.,. , phky, [i])
i€Z

— P Homp, (x) (kx, ky[i])
i€z

It yields an isomorphism
HT(Y) = lim HT(Yn)
—n

It is clear from (A.5) that Hp(F) is a Hr(X)-module. For a morphism f: Z — X
of essentially smooth T-schemes there is a functor f* : Dp(X) — Dr(Z), see [25,
sec. 3.7). If f is the inclusion of a T-stable subscheme we write F; = i*F and

IH(Y)z = HICH(Y) ).

A.3. The Kashiwara flag manifold. Let P, be the “parabolic subgroup” cor-
responding to the Lie algebra p,. Let X = X,, = G/P, be the Kashiwara partial
flag manifold associated with g and p,, see [22]. Here G is the schematic analogue
of G(k((t))) defined in [22], which has a locally free right action of the group-
k-scheme P, and a locally free left action of the group-k-scheme B~, the “Borel
subgroup” opposit to B. Recall that X is an essentially smooth, not quasi-compact,
T-scheme, which is covered by T-stable quasi-compact open subsets isomorphic to
A> = Speck[z; k € N]. Let ex = P, /P, be the origin of X. For x € I, ; we set
X*=B zx =B zP,/P,, zx =uzex.

Note that X7 is a locally closed T-stable subscheme of X of codimension {(x) which
is isomorphic to A*>°. Consider the T-stable subschemes

Xr=x>"=||xv, Xs=|]xv, Xx<"=|]|Xx"

y>e y<w y<z

We call X« a finite-codimensional affine Schubert variety. We call X% an admis-
sible open set. If € is an admissible open set, there are canonical isomorphisms

[Cr(XF)a = ICH(XFNQ), THH(XF)q = THr(XTN Q).

We can view ) as the limit of a projective system of smooth schemes ({2,,) as in
[25, lem. 4.4.3]. So, the projection p,, : & — Q,, is a good quotient by a congruence
subgroup B, of B~. Let n be large enough. Then

ICT(F nQ) = pZICT(X67n)
with X§ = Pn(X® N Q) by [25, sec. 2.6]. Thus we have a map

IHr (X ) = EB Homp, (q,) (ka,, ICr (X3 ,,)li])
€L
— @ HOmDT(Q) (kg,p:lICT (X&n) [Z])
€L
— IHT (ﬁ n Q)
which yields an isomorphism

THr (X7 09) =lim THr (X3 ,).
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For @ = X<% and # < w we abbreviate X[*®] = Xz 0 X<% and x=* =
pn (X, Since p, is a good quotient by B and since X® is B -stable, we
have an algebraic stratification

<w x
xXsv=| | Xz,
rw

. . . x,w
where X7 is an affine space whose Zarisky closure is X,[, !

Lemma A.2. (a) The T-variety XY is smooth and good.

(b) 1t is covered by T-stable open affine subsets with an attractive fized point.
The fized points subset is naturally identified with I,

(c) There is a finite number of one-dimensional orbits. The closure of each of
them is smooth. Two fized points are joined by a one-dimensional orbit if and only
if the corresponding points in I, 4 are joined by an edge in “G,.

Proof. The T-variety XS is smooth by [25], because X S is smooth and p,, is a
B, -torsor for n large enough. We claim that it is also quasi-projective. Let X
be the stack of G-bundles on P'. We may assume that P, is maximal parabolic.
Then, by the Drinfeld-Simpson theorem, a k-point of X is the same as a k-point of
X with a trivialization of its pullback to Spec(k[[t]]). Here ¢ is regarded as a local
coordinate at co € P! and we identify B~ with the Iwahori subgroup in G(k[[t]]).
We may choose B;, to be the kernel of the restriction

G(k[[H]]) = G(k[t]/t").

Then, a k-point of X,, = X/B,, is the same as a k-point of X, with a trivialization
of its pullback to Spec(k[t]/t™). We'll prove that there is an increasing system of
open subsets U,, C Xy such that for each m and for n > 0 the fiber product
X, X x, Unm, is representable by a quasi-projective variety. This implies our claim.

Choosing a faithful representation G C SL, we can assume that G = SL,. So
a k-point of X is the same as a rank r vector bundle on P! of degree 0. For an
integer m > 0 let U, (k) be the set of V in Xo(k) with H1 (P, V@ O(m)) = 0 which
are generated by global sections. It is the set of k-points of an open substack U,
of Xy. Note that Uy, C Uy 41 and Xo = J,,, Un. Now, the set YV, (k) of pairs (V,b)
where V' € U,,,(k) and b is a basis of HO(P1,V ® O(m)) is the set of k-points of a
quasi-projective variety V,, by the Grothendieck theory of Quot-schemes. Further,
there is a canonical G'L,(;,41)-action on Yy, such that the morphism Y, — U,
(V,b) = V is a GLy(p+1)-bundle. Now, for n > 0 the fiber product X,, x x, Uy, is
representable by a quasi-projective variety, see e.g., [42, thm. 5.0.14].

Next, note that X% is recovered by the open subsets

VeZ=p(V®), z<w.
Each of them contains a unique fixed point under the T-action and finitely many

one-dimensional orbits.
Finally, the parity vanishing holds : since IC(X %) = p* I C(Xr[f’w]) we have

10X xp = D hxa [HW)[I) — ) - 2] 950

by [24, thm. 1.3]. The change in the degrees with respect to Section A.1 is due to
the change of convention for perverse sheaves mentioned above. (I

Now we set V' = t* and we consider the moment graph “G".

Proposition A.3. We have

(a) Hp(XSY) =“Zyg , and H(XSY) =“Z) as graded k-algebras,

(b) IHp(X=v]) = “BY,, _(x) as a graded “Zs ,-module,
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(c) TH(X[*w]) = “B) _(x) as a graded “Z) -module.
Proof. Assuming n to be large enough we may assume that

Hp(XSY) = Hp(XSY), THp(XPY) = THp (X)), ete.

n

By Lemma A.2 the S-module Hy(XS$%) is free. Thus we can apply the localization
theorem [20, thm. 6.3], which proves (a). Now, we concentrate on (b). The graded

k-module IH(XLZ’UJ]) vanishes in odd degree by Proposition A.1 and Lemma A.2.

Thus, applying [7] to X we get a graded v Zs, ,~-module isomorphism
[H3(XP") = "By, _ ().

Part (c) follows from (b), Proposition A.1 and Lemma A.2. O

Corollary A.4. We have a graded S-module isomorphism
UBY, _(x), = @D S{-l(z) — 20}
i>0

Proof. Apply Proposition A.3 and [24, thm. 1.3(i)]. O

Proposition A.5. For each x,y < w we have
() Y iept' dimk Exth, (vcw) (IO (X)), IC (XW1) = 37 Qu(t)2,2Qu(t)y -
(b) Extp . (x<w) (10T (X)), ICr (X Wv])) = Homp, (x<w) (I Hp (X =), THp (X W),
(¢) Extp(x<w) (IC(X v, 1C(X W) = Hompyy<wy (TH (X =00), TH(Xw1)),
(d) Extpx<w)(IC(X =), IC(X W) = kExtp,, (x<w) (ICr (X =), ICH (X W),

Proof. Apply Proposition A.1 and Lemma A.2.. O

Corollary A.6. We have a graded k-algebra isomorphism
w A wR op
A = Fndugy (“BY ).
Proof. Apply Propositions A.3, A.5. O

APPENDIX B. K0szuL DUALITY AND CRDAHA'’s

B.1. Combinatorics. Fix e,¢,m > 0 and set g = sl(m) and G = SL(m). Let
b, t be the Borel subalgebra of upper triangular matrices and the maximal torus of
diagonal matrices. Let (¢;) be the canonical basis of C™. For any subset X C C™
and any d € C we set X(d) = {(z1,...,2m) € X; >, @ = d}. We identify t* =
Cm/C1™, +=C™(0) and W = &,, in the obvious way. Put

p:(—l,—2,...,—m), Qp =€ — €41, 1€ [l,m).

For v € N(m), let p, C g be the parabolic subalgebra with the block diagonal
Levi subalgebra the trace free elements in gl(v1) @ --- @ gl(v¢). The group W, is
generated by the simple affine reflections s; with ¢ # vy, 1 +vs, . ...

Let P(n) be the set of partitions of n. Write |A\| = n and let I(\) be the length
of \. Let P(¢,n) be the set of {-partitions of n, i.e., the set of l-tuples A = (\p)
of partitions with >° |Ap| = n. Finally, let P(v,n) = {X € P({,n); 1(\p) < 13}
There is an inclusion

P(v,n) CN™ X (M0 1O 027t 0y gre =), (B.1)

A node in a tuple A € N™ is a pair of positive integers (x,y) with z < m and

y < Ag. For m € Z™ we call (x,y) an (i,7)-node modulo e if y —x + 7, =i+ 1
modulo e. Let n;(A, 7, e) be the number of (i, 7)-nodes modulo e in A.
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B.2. The CRDAHA. Fix integers e,¢,m > 0. Let I' C C* be the group of the
{-th roots of 1. Fix v € Z*(m). We set

h=-1/e, hy,=vpy1/e—vp/e, peZ/lL.

For n > 0 we write I';, = &, x I'". Let H”(n) be the CRDAHA of T',, with
parameters h and (h,) and let O”(n) be its category O. It is a highest weight
category with, see [38, sec. 3.3, 3.6], [41, sec. 3.6],

A(0"(n)) ={AA); A e P(6,;n)}.
Write AY(A) = A(A). Let SY(\) be the top of AZ(\). We have the block decompo-
sition
0" (n) = P 0L (n), (B.2)
"
where p runs over the set of integral weights of sl(e). These blocks are determined
by the following combinatorial rule. For A € P({,n) a (i,v)-node in A is a triple

(x,y,p) with z,y > 0 and y < (Ap)g such that y — z + v, = i modulo e. Let n?(\)
be the number of (i,v)-nodes modulo e in A\. Now, we have

£ e—1
AY(N) € O(n) <= A =n, Zwl,p —p= Z(n;’()\) —ng(A\) ;. (B.3)

The right hand side should be regarded as an equality of integral weights, i.e., the
symbols wy,wa, ..., we—1 and ay, a2, ..., ®.—1 are the fundamental weights and the
simple roots of sl(e) and 4 is a e-tuple modulo Z 1¢. See [38, lem. 5.16] for details.

An integral weight of sl(e) can be represented by an element of Z¢(m) if and
only if it lies in w,, + eZIl. Thus, since v € Z’(m), the integral weights y which
occur in (B.2) or (B.3) can all be represented by e-tuples in Z¢(m). We re-write
the block decomposition in the following way. For a € N we set

¢
0,.=0,Mn), n= <a6+ > wy, —p ﬁe>.
p=1
Then we have
14 e—1
AY(N) € Op . <= ng(A) = a, Zwup —p= Z(nz”()\) —a) . (B.4)
p=1 i=1

We are interested by the following conjecture [9, conj. 6].

Conjecture B.1. The blocks O, , and O, are Koszul and are Koszul dual to
each other.

B.3. The Schur category. Fix e,/,m > 0 and v € N*(m). Set
pr=1,nn—1,...,Lg,va—1,...,0p,...1).
For a v-dominant integral weight A of sl(m) we abbreviate
A=Aetp"—p, VI =VI(X),  L{(A) = LX)

Let S¥(n) be the thick subcategory of O¥ consisting of the finite length g-modules
of level —e — m whose constituents belong to the set {LY(\); A € P(v,n)}. The
following is proved in [41].

Proposition B.2. The category S”(n) is a highest weight category with
A(87(n)) ={VZ(N); A € P(v,n)}.

We have also the following conjecture [41, conj. 8.8].
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Conjecture B.3. There is a quotient functor O¥(n) — S¥(n) taking SY(\) to
LY(N) if A € P(v,n) and to 0 else. If P(v,n) = P(n) this functor is an equivalence
of highest weight categories.

B.4. Koszul duality of the Schur category. Fix ¢,/,m > 0 and v € N¢(m).
Let S}, (n) be the thick subcategory of S¥(n) containing the modules L{(A) such
that Sy (A) € Oy (n). By (??) and Lemma B.5(a) below, the affine weights A{ such
that LY(\) € Sj,(n) belong to a single linkage class. More precisely, let A} (n) the
set of v-dominant integral weights A € N of s[(m) such that
y4 e—1
|Al = n, Zwl,p —p= Z —ng(N) a;. (B.5)
p=1 i=1
The set A}, (n) should be regarded as a set of weights of sl(m), i.e., each A should
be identified with its class modulo Z 1™. Then, we have
S5 (n) = $”(n) N OL(n).
where OZ(n) is the thick subcategory of O consisting of the finite length modules
whose constituents belong to the set {LY()); A € A} (n)}. Finally, set

= {AeALng(\) =a), AY= U A(n), (B.6)

and define Oy, , and S} , in the obvious way. The followmg result can be regarded,
in view of Conjecture B 3 as an analogue of Conjecture B.1.

Theorem B.4. The category S, , has a Koszul grading. Further, the Koszul dual
of S¥ . coincides with the ngel dual of Si

Proof. Follows from Theorem 2.16 and Remark 2.9, because, for any A € A¥

H,a

m,a
stabilizer of \Y in W for the e-action is W,, by the following lemma. For A € N™
we write

mi = ni(p”, —p,e€),
ki(A) = ni(A+ p”, —p,€),
k(A) = (ko(A) = k1(A), k1(A) = k2(N), - ke1(A) = ko(A) +m).
Lemma B.5. For A\, u € N™(n) the following hold

(@) ki(X) = mi +ni(A),

(b) o ~ u¥ if and only if k;(X\) = k;(u) for each i € Z/eZ,

(c) the stabilizer of AL in W for the e-action is isomorphic to Wiy and, if
ko(A) =m and X, € C™, then this stabilizer is equal to Wy (y).
O

Remark B.6. Consider the particular case £ = 1. Then, by [27], the category S™(n)
is equivalent to the module category of the g-Schur algebra. Therefore our theorem
implies that the g-Schur algebra is Koszul, compare [9]. We get also an explicit
description of its Koszul dual in term of affine Lie algebras.

APPENDIX C. COMBINATORICS

Recall that I, = Lni“, I,,,— = I and that

I _={rel,_;xeo,_ is v-dominant},

I”Jrf{zGI#Jr,xooqu is v-dominant}.
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Lemma C.1. We have
(a)zell, = a7'ecl,y,
brely, <= a'el,_,
() If s NIz ={ow,; vl },
(d)x el = wyaw, €1} .

Proof. To prove (a) note that, since oy + is dominant regular, we have
I, ={ze€ Wize 0¢,+ is p-dominant}
={zxeW; (gt +p:21(a)) >0, Va e I}
={zeW; :Ifl(H;j) c It}
={reW;ztel, .}

The proof of (b) is similar and is left to the reader. Now we prove part (c). More
precisely, choose positive integers d, f such that =(f —d) > —m. Then the transla-
tion functor Ty, : Oy + — 0, + in (3.3) is well-defined for any z € I}***. Thus,
by Proposition 3.38(e), (f), (¢9), we have

Iy ={v;ow, €l ,v€l,1}
={2w,; z € I{‘;’i, xe€l, £}
Finally, part (d) is standard, see e.g., [8, sec. 2.7]. O

Remark C.2. Therefore, we have
I, ={zw, ; z € (I;”i“)_1 Ny, I ={rw, ; x € (I;”ax)_1 N [miny,
min __ min\—1 min max __ max\—1 max : : :
Set [P0 = (L")~ NI and PP = (1)~ N L*. The following inclusions
hold, see e.g., [8, sec. 2.7],

13 min 1% max
IRl LU G il
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