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Franche–Comté, 25030 Besançon Cedex, France

E-mail: omarlamrous@mail.ummto.dz

Abstract

We describe the implementation of the critical points model in a finite-difference-time-domain

code working in oblique incidence and dealing with dispersive media through the split field

method. Some tests are presented to validate our code in addition to an application devoted to

plasmon resonance of a gold nanoparticles grating.

1. Introduction

The description of permittivity of metals has been the focus

of investigations from both the theoretical and experimental

points of view due to their possible application in the nano-

optic domain [1–5]. In particular, nano-optical periodic

structures are usually composed of metal parts which present

large dispersion over the range of wavelengths of interest. In

this context, the calculation of their optical response spectra

remains difficult when these structures are illuminated at

oblique incidence which breaks the symmetry of the problem.

Consequently, in our initial study, we have extended the finite-

difference time-domain (FDTD) algorithm to work in oblique

incidence [6]. To take into account the metal dispersion,

implementation of split field method (SFM) with integration of

the metal dispersion considering the Debye, Drude and Drude–

Lorentz models has been realized [7, 8]. Recently, a new

analytical model called the critical points (CPs) model [1, 2]

has been used to describe more accurately the permittivity

of several metals [9, 10]. Its implementation in the FDTD

algorithm using the recursive convolution (RC) method, has

underlined a better description of the permittivity than the

Drude–Lorentz model, over a wider range of wavelengths [11].

However, let us note that the proposed technique has been

developed only for normal incidence case.

For this work, our aim is to extend the implementation of

the SFM with integration of the metal dispersion considering

the CP model. Thus, to the best of our knowledge, and in

contrast to [9–11], this is the first time that the CP model

dispersion has been implemented in oblique incidence.

The outline of this paper is as follows: the implementation

of the CP model developed is presented in section 2. A

summary of the SFM method already detailed in [6] is recalled

and followed by a description of the calculation procedure

of the electromagnetic field components. The simulation

results of one-(1D) and three-dimensional (3D) gold periodic

structures are illustrated in section 3. We focus the analysis on

the variation of the transmission versus the wavelengths and

the incidence angles. We also show the possibility to predict

and optimize the extinction spectra of metallic nanostructures.

The conclusion of the work is summarized in section 4.

2. Theoretical developments

It is well known that the FDTD method is a useful numerical

simulation technique for solving Maxwell’s equations.

However, as the traditional FDTD method is based on a

temporal finite-difference algorithm, the consideration of the

oblique incidence problem especially in the case of periodic

structures is not possible; this is due to wave frequency terms

appearing in the periodic conditions. In accordance with

these conditions, the problem is efficiently solved through the

replacement of the electromagnetic fields
−→
E and

−→
H by the

new variables
−→
P and

−→
Q expressed as

−→
P =

−→
E e−i(kxx+kyy), (1)

−→
Q =

−→
H e−i(kxx+kyy). (2)
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Then, in the context of the SFM method [12], intermediate

variables
−→
Pa and

−→
Qa are introduced in order to obtain new

Maxwell’s equations for which the resolution is adapted to

the Yee scheme. Therefore, the FDTD implementation is

accomplished by the following equations which relate the

intermediate variables to global ones [8]:

∂Pxa

∂t
=

1

ε

[

∂Qz

∂y
−

∂Qy

∂z

]

, (3a)

∂Pya

∂t
=

1

ε

[

∂Qx

∂z
−

∂Qz

∂x

]

, (3b)

∂Pza

∂t
=

1

ε

[

∂Qy

∂x
−

∂Qx

∂y

]

, (3c)

∂Qxa

∂t
=

1

µ

[

∂Py

∂z
−

∂Pz

∂y

]

, (3d)

∂Qya

∂t
=

1

µ

[

∂Pz

∂x
−

∂Px

∂z

]

, (3e)

∂Qza

∂t
=

1

µ

[

∂Px

∂y
−

∂Py

∂x

]

(3f)

and

Pz =
1

1 −
k2
x

εµω2 −
k2
y

εµω2

[

Pza +
kx

εω
Qya −

ky

εω
Qxa

]

, (4a)

Qz =
1

1 −
k2
x

εµω2 −
k2
y

εµω2

[

Qza +
ky

µω
Pxa −

kx

µω
Pya

]

, (4b)

Px = Pxa +
ky

εω
Qz, (4c)

Py = Pya −
kx

εω
Qz, (4d)

Qx = Qxa −
ky

µω
Pz, (4e)

Qy = Qya +
kx

µω
Pz. (4f)

Let us mention that system (4) becomes useless in the case

of normal incidence (kx = ky = 0). On the other hand, we

need to know the explicit dependence of the permittivity ε(ω)

describing the dielectric properties of the considered media.

For our contribution, this is done by considering the CP model.

Let us recall that this later model has been discussed in a recent

study which describes well the optical properties of metals

(gold, silver, etc) in the visible/near-uv region. ε(ω) may be

expressed as follows:

εDCP = ε∞ −
ω2

P

ω2 + iγ ω
+

p=2
∑

p=1

Gp(ω), (5)

where

Gp(ω) = Ap�p

(

eiφp

�p − ω − iŴp

+
e−iφp

�p + ω + iŴp

)

. (6)

The two first terms of equation (5) denote the standard

contribution of the Drude model where ε∞ is the high-

frequency limit dielectric constant; ωP and γ characterize

the plasma frequency and damping coefficient, respectively.

The sum in equation (5) represents the contribution of the

inter-band transitions with Ap, �p, φp and Ŵp corresponding

to the amplitude, gap energy, phase and broadening in that

order [1, 2]. For our part, we made use of the auxiliary

differential equation (ADE) method for implementing the CP

model. Consequently, we introduce the electric displacement

field (
−→
D ) expressed as

−→
D = ε0 εDCP

−→
E . (7)

In the case of the CP model,
−→
D can be written as the sum

of two electric displacement fields corresponding to the two

contributions in the permittivity expression:

−→
D =

−→
D D +

2
∑

p=1

−→
D Cp (8)

with

−→
D D = ε0

[

ε∞ −
ω2

P

ω2 + iγ ω

]

−→
E , (9a)

−→
D Cp = ε0

[

Ap �p

(

eiφp

�p − ω − iŴp

+
e−iφp

�p + ω + iŴp

)]

−→
E .

(9b)

Using these relationships, we deduce the following

decoupled equations:
(

∂2

∂t2
+ γ

∂

∂t

)

−→
DD = ε0ε∞

(

∂2

∂t2
+ γ

∂

∂t
+

ω2
P

ε∞

)

−→
E , (10a)

(

�2
p + Ŵ2

p +
∂2

∂t2
+ 2Ŵp

∂

∂t

)

−−→
DCp

= 2ε0Ap�p

(

√

Ŵ2
p + �2

p sin(θp − φp)

− sin φp

∂

∂t

)

−→
E , (10b)

where θp = arctan(�p/Ŵp).

In the case of oblique incidence, the components Pxa ,

Pya , Pza , Px , Py , Pz and Qz considered in the equations (3a)–

(3f) and (4a)–(4f) require a special treatment insofar as they

cannot be included in the FDTD algorithm due to the dispersion

relation ε(ω). For this, we use a new set of variables expressed

in a similar way to that of equation (7). We illustrate this

procedure by considering for example the x component for

which the new introduced variable is Lxa = ε0εDCP Pxa .

According to equation (3a):

∂Lxa

∂t
=

[

∂Qz

∂y
−

∂Qy

∂z

]

. (11)

The discretization of this last equation allows us to

calculate the Lxa variable as follows:

Ln+1
xa (i, j, k) = Ln

xa(i, j, k)

+
	t

	y
[Qn

z (i, j, k) − Qn
z (i, j − 1, k)]

−
	t

	z
[Qn

y(i, j, k) − Qn
y(i, j, k − 1)]. (12)
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Figure 1. Transmission coefficient versus the wavelength for a 30 nm thick gold layer surrounded by air (a) for TE ((b),(d)) and TM
polarization ((c),(e)). Comparisons between analytical and FDTD calculations are presented in (b) and (c), while the relative errors are
depicted in (d) and (e), respectively. The incident angle is fixed to 40◦.

From equations (8), (9a) and (9b), Lxa may be

expressed as

Lxa = LxaD
+

p=2
∑

p=1

LxaCp
. (13)

with

LxaD
= ε0

[

ε∞ −
ω2

P

ω2 + iγ ω

]

Pxa, (14a)

LxaCp
= ε0

[

Ap �p

(

eiφp

�p − ω − iŴp

+
e−iφp

�p + ω + iŴp

)]

Pxa.

(14b)

In this consideration, equations (10a) and (10b) become,

respectively:
(

∂2

∂t2
+ γ

∂

∂t

)

LxaD
= ε0ε∞

(

∂2

∂t2
+ γ

∂

∂t
+

ω2
P

ε∞

)

Pxa, (15a)

(

�2
p + Ŵ2

p +
∂2

∂t2
+ 2Ŵp

∂

∂t

)

LxaCp

= 2ε0Ap�p

(

√

Ŵ2
p + �2

p sin(θp − φp) − sin φp

∂

∂t

)

Pxa.

(15b)
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Figure 2. Transmission coefficient versus the angle of incidence for a 30 nm thick gold layer surrounded by air for TM (a) and TE
polarization (b). Comparisons between analytical and FDTD calculations with the relative errors are presented. The wavelength is fixed to
600 nm.

Finally, the partial derivatives of these last equations allow

one to express the update equations:

P n+1
xa =

1

χD

αD
+

∑p=2

p=1

(

χp

αp

)

×

[

Ln+1
xa +

βD

αD

Ln−1
xaD

+
4

αD

Ln
xaD

−
δD

αD

P n−1
xa −

4ε0ε∞

αD

P n
xa

+

p=2
∑

p=1

(

βp

αp

Ln−1
xaCp

−
4

αp

Ln
xaCp

)

+

p=2
∑

p=1

(

δp

αp

)

P n−1
xa

]

,

(16a)

Ln+1
xaD

=
1

αD

[−βD Ln−1
xaD

− 4 Ln
xaD

+ χD P n−1
xa + δD P n−1

xa + 4 ε0 ε∞ P n
xa], (16b)

Ln+1
xaCp

=
1

αp

[−βp Ln−1
xaCp

+ 4Ln
xaCp

+ χpP n+1
xa + δpP n−1

xa ] (16c)

with

αD = −2 − γ 	t,

βD = −2 + γ 	t,

χD = ε0 ε∞[−2 − γ 	t − (ωp	t)2/ε∞],

δD = ε0 ε∞[−2 + γ 	t − (ωp 	t)2/ε∞],

αp = [�2
p + Ŵ2

p]	t2 + 2 Ŵp 	t + 2,

βp = [�2
p + Ŵ2

p]	t2 − 2 Ŵp 	t + 2,

χp = 2Ap�p ε0

[

	t2
√

�2
p + Ŵ2

p sin(θp − φp) − 	t sin φp

]

,

δp = 2Ap�pε0

[

	t2
√

�2
p + Ŵ2

p sin(θp − φp) + 	t sin φp

]

.

Let us quote that the other components Pya , Pza , Px , Py ,

Pz and Qz are calculated by following the same procedure.

3. Numerical results: validation and application

In this section, we present the computational results in order to

validate and check the accuracy of our SFM-FDTD simulation

Glass

ITO

∆x

∆
y

dy

dx

y

φ

kinc

φ z

Figure 3. Geometry of the 3D structure studied for our calculations:
dx = 210 nm, dy = 110 nm, �X = 325 nm and �Y = 310 nm. The
gold nanoparticle has a height of h = 45 nm.

code. Let us mention that the parameters of the CP model

are the same in [9] which present good agreement with the

experimental data reported in [5]. In addition, to solve the

boundary conditions in the z direction the PML technique has

been included according to [6, 8].

Figure 1(a) shows the geometry of the considered 1D

structure which consists of the gold layer of 30 nm thickness

surrounded by air. Figures 1(b) and (c) illustrate both

the FDTD and analytical transmission variation through this

structure in TE and TM polarizations, respectively. The results

presented here were obtained in the wavelength interval 400–

1000 nm and for θ = 40◦. The comparison between our FDTD

results and those obtained by analytical calculations shows

qualitatively the same behaviour. In both cases of polarization,

the relative error calculated as (|TFDTD − Tanalytical|)/Tanalytical

does not exceed 0.12% (see figures 1(d) and (e)).

Consequently, good agreement between the two methods is

achieved.

Figure 2 illustrates the transmission of the TE and TM

polarizations versus the incidence angle at 600 nm wavelength.

The results presented here were obtained in the angle incidence
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Figure 4. Optical extinction spectra versus incidence angle: experiment results of sample B in [14] (a) and FDTD results (b) with TE
polarization (parallel to Y ).

interval such as 0 � θ � 70◦ in accordance with the

computing and stability criterion [6, 8, 13]. Let us note that

for θ > 70◦, the time step decreases so much that the

computing time becomes very huge. Moreover, since the nano-

optical experiments are frequently conducted for θ < 60◦, the

considered interval is sufficient to validate the accuracy of our

algorithm. As shown in figure 2, the theoretical curves fit our

calculation results as well as for TE and TM polarizations. We

observe that the relative error is less than 0.25% and 1.5% in

the TM and TE polarization, respectively. At θ < 60◦, we

observe a decrease in relative error under 0.1% denoting the

validity and the accuracy of our code.

The 3D study deals with surface-enhanced Raman

scattering through a metallic grating made in gold. The

considered bi-periodic structure was experimentally studied

by Félidj et al [14]. The structure consists on arrays of gold

nanoparticles on top of a 30 nm indium-tin-oxide (ITO) coated

glass substrate. The nanoparticles (sample B of [14]) are of

prolate form (diameter dx = 210 nm, dy = 110 nm and height

h = 45 nm). They are arranged in rectangular array with x

grating period (parallel to X) set to �X = 325 nm and y grating

period (parallel to Y ) set to �Y = 310 nm. Figure 4(a) shows

the optical extinction spectra experimentally obtained for

different incidence angles with incident plane waves linearly

polarized along the Y direction, i.e. TE polarization [14]. In

order to compare our results with these experimental spectra,

we define an FDTD similar structure of prolate particles of gold

deposited on a 30 nm thick layer of ITO on the top of a glass

substrate (see figure 3). The incident medium is the vacuum

(n1 = 1) and the light transmission (the diffracted zero-order)

is determined in the glass (n2 = 1.53). The ITO refractive

index is fixed to n = 2. The transmission is calculated for

different values of the incidence angle θ and then the extinction

spectra plotted versus the wavelength. Figure 4(b) shows our

simulation spectra for 0 < θ < 70◦ with a step of 5◦. One

can note good agreement with those experimentally illustrated

in [14]. A plasmon resonance is detected at 605 nm and,

with regard to the experimental results (λSP = 620 nm), the

relative error is around 2%. When considering the hardness

to approach the experimental conditions, this relative error

could be considered as fair to validate our code. As predicted

by theory [15, 16], figures 4(a) and (b) also show a plasmon

resonance slight shift to the red upon appearance of the first

grating order. In Lamprecht et al [17], this red-shift appears

when the grating constant approaches the plasmon resonance

wavelength. Upon a critical incident angle θC, the first grating

order starts to radiate as shown by our simulation results. This

critical angle is given by

θC = arcsin

[

1

n1

(

λSP

�X

− n2

)]

. (17)

In our calculations (for λSP = 605 nm), we obtain θC ≈ 20◦

slightly different from experimental results (θC ≈ 22◦) because

of the difference between the two resonance wavelengths. At

θ = 40◦, the extinction spectrum shows two peaks which

occur at 605 and 706 nm (see figure 4(b)). Maps of electric

field amplitude calculated in the XY , XZ and YZ planes for

these resonance wavelengths are illustrated in figures 5 and

figure 6. Let us mention that the XY plane is carried out into

ITO layer for 10 nm under the gold nanostructure. As one

can note it, there is significant change in the field repartition

when comparing figures 5 and 6. For λ = 605 nm, the

plasmon resonance depicted is due to the collective oscillations

of electrons in the gold. This mode corresponds to the

plasmon resonance of an isolated particle and it is illustrated

by localization of the electric field only around each particle.

On the other hand, for λ = 706 nm, the corresponding peak

could be attributed to the grating induced mode because the

radiated light field is strongly coupled to the plasmon fields

of neighbouring particles leading to a mixed light plasmon

mode of the whole array. This is illustrated in figure 6 where
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Figure 5. Electric field amplitude maps at incidence angle θ = 40◦ for the first peak λ = 605 nm (a) in XY plane (into ITO layer for 10 nm
under the gold nanostructure) (b), XZ (c) and YZ (d) median planes.

a modification of the electric distribution around each particle

with privileged containment of light along the Y polarization

axis is observed.

4. Conclusion

To summarize, a SFM-FDTD algorithm for studying the

interaction of light with an artificial periodic metallic

nanostructures at oblique incidence is implemented. The

present approach includes two coupled parts: the first

called the SFM method which uses ingenious intermediate

variables in order to solve Maxwell’s equations. The

second called the CP model enables calculations of the

metal dispersion. We have shown that our code is able to

give useful results concerning the optical response spectra

and cartography field of nanostructures at oblique incidence.

Finally, this original method allows performing, optimizing

surface-enhanced Raman scattering for nano-optical devices

as well as pointing out some recommendations for further

nano-optic experiments. Let us mention that our code

permits a systematic simulation study on the influence of the

particles shape, the grating constant and the particles dielectric

environment on the extinction spectra of metal nanoparticles

arrays. Consequently, it is hoped that the present theoretical

simulations will stimulate new experiments.
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