
HAL Id: hal-00605250
https://hal.science/hal-00605250

Submitted on 1 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Selecting sequences that fold into a defined 3D
structure: A new approach for protein design based on

molecular dynamics and energetics
Giulia Morra, Chiara Baragli, Giorgio Colombo

To cite this version:
Giulia Morra, Chiara Baragli, Giorgio Colombo. Selecting sequences that fold into a defined 3D
structure: A new approach for protein design based on molecular dynamics and energetics. Biophysical
Chemistry, 2009, 146 (2-3), pp.76. �10.1016/j.bpc.2009.10.007�. �hal-00605250�

https://hal.science/hal-00605250
https://hal.archives-ouvertes.fr


�������� ��	
���
��

Selecting sequences that fold into a defined 3D structure: A new approach for
protein design based on molecular dynamics and energetics

Giulia Morra, Chiara Baragli, Giorgio Colombo

PII: S0301-4622(09)00217-8
DOI: doi: 10.1016/j.bpc.2009.10.007
Reference: BIOCHE 5310

To appear in: Biophysical Chemistry

Received date: 1 September 2009
Revised date: 7 October 2009
Accepted date: 26 October 2009

Please cite this article as: Giulia Morra, Chiara Baragli, Giorgio Colombo, Select-
ing sequences that fold into a defined 3D structure: A new approach for protein de-
sign based on molecular dynamics and energetics, Biophysical Chemistry (2009), doi:
10.1016/j.bpc.2009.10.007

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.bpc.2009.10.007
http://dx.doi.org/10.1016/j.bpc.2009.10.007


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1 

Selecting Sequences that Fold into a Defined 3D Structure: A New Approach for 

Protein Design Based on Molecular Dynamics and Energetics.  

Giulia Morra, Chiara Baragli and Giorgio Colombo* 

 

Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy 

 

*)  Corresponding Author: Giorgio Colombo, Istituto di Chimica del Riconoscimento Molecolare, 

CNR; Via Mario Bianco 9, 20131 Milano, Italy. E-mail: g.colombo@icrm.cnr.it. Tel: ++39-02-

28500031, Fax: ++39-02-28901239. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 2 

Abstract 

The problem of finding amino acid sequences able to fold into a defined three-dimensional (3D) 

structure is at the basis of successful protein design efforts.  

Herein, we present the results of the application of a novel, all-atom molecular dynamics based, energy 

decomposition approach to the selection of sequences able to fold into a given 3D conformation. First, 

the energy decomposition approach is applied to natural sequences associated to a well-defined 

structure to identify the principal energetic coupling interactions necessary to stabilize it, defining the 

specific energetic signature for the fold. Then, several different sequences are threaded on the defined 

3D structure and only those sequences whose energetic signature (pattern) is close to that of the natural 

sequence, according to a similarity criterion, are selected as able to populate the specific fold. 

Furthermore, it is possible to evaluate the fitness of a certain sequence for a fold by combining the 

information provided by the energetic signature to that contained in the contact map, which 

recapitulates the fold topology. The results show that the better fit between the energetic properties of a 

sequence and the topology corresponds to a better stabilization of the protein fold by that sequence.We 

applied this approach to a library of natural and artificial WW domain sequences, previously developed 

by the Ranganathan group, containing sequences that are experimentally known to be able and unable 

to fold into native structures. The results show that our approach can correctly identify 70% of the 

sequences known to populate the typical WW domain fold.  

 

Keywords: Protein Folding, Protein Design, Molecular Dynamics, Self-organization. 
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Introduction. 

Successful protein design relies on the correct identification of sequences that fold into defined three-

dimensional (3D) structures. This problem, also known as the “inverse protein folding” problem, can 

be tackled effectively by specifying what information in the sequence is necessary and sufficient to 

determine a certain fold.  

 

Since the seminal work of the Eisenberg group [1], considerable progress has been made the 

development of computational methods for identifying amino acid sequences compatible with a target 

structure [2-6]. Mayo and coworkers reported one of the most notable examples, namely the complete 

redesign of a zinc finger protein [5]. Using different atomistic energy functions that mimic the physical 

interactions between aminoacids, several other groups have achieved outstanding successes in 

redesigning natural folds, in the de novo construction of novel folds, or in the re-design of enzymes [7-

9].  

The basic principle in atomistic design is the optimization of a target potential function providing 

sequences with defined thermodynamic minima corresponding to the native configurations, well 

separated from alternative conformational states. Having a deep free-energy minimum for the native 

state conformation ensures the production of a sequence with high thermal stability. However, the 

native states of natural proteins reside in shallow free energy minima corresponding to partially stable 

and dynamic folds, characterized by a multiplicity of (similar) conformations.  

Starting from these concepts, Ranganathan et al. proposed a different strategy based on applying 

Statistical Coupling Analysis (SCA) to multiple sequence alignments of a protein family, to identify the 

mutual inter-residue dependencies evidenced by conserved statistical correlations between amino acid 

distributions at specific sites [10-14]. The application of this approach showed that a small set of 

residues at specific positions (in a certain protein family) coevolves among a majority which are largely 

uncoupled, and that the strongly coevolving residues are organized into spatially connected networks 

stabilizing their respective structures through packing interactions. If used in the design and selection 

of new sequences folding to a certain target-structure, this purely statistical, mechanism-free method 

should in principle produce sequences with the same marginal stabilities and biological functions as 

those of natural proteins. Ranganathan and coworkers were actually able to design artificial WW 

domains showing thermodynamic and structural properties in excellent agreement with the ones of 

their natural counterparts [11,14]. Moreover, the authors showed that the artificial sequences could 
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perform the same function as the native ones, showing class-specific recognition of proline-containing 

target peptides [11,14].  

In this paper, we aim to analyze the energetic determinants of the sparse architecture of residue-

residue interactions necessary to stabilize a certain fold, based on the analysis of the conformational 

dynamics and interactions in the native state of a natural protein, and to use this information for the 

selection of other, non-natural sequences able to fold to the same target 3D structure.  

This approach is based on a recently introduced Energy Decomposition Method, aimed at identifying 

the key residues (interaction hot spots) for the stabilization and folding of the protein to a defined 3D 

structure [15-19]. Previously, we showed the ability of this method to capture the essential changes 

occurring in the energetics of a protein upon single amino acid mutation [15-19]. These changes are 

mainly related to stability variations in an ensemble of single-point mutants of a certain protein [19]. 

The main obstacle in trying to define what properties of a sequence are necessary to define a certain 

fold and how structural constraints impact on the selection of a certain sequence, using atomic level 

resolution for the study of interactions, is represented by the vast complexity of the energetic 

interactions between amino acids. The Energy Decomposition Method alleviates this problem by 

providing a simplified view of stabilizing interactions, extracting the major contributions to energetic 

stability of the native structure from all-atom molecular dynamics (MD) simulations. In this method, 

for a protein of N residues, the matrix of average non-bonded interactions between pairs of residues is 

built from an MD trajectory. The energy map is then simplified through eigenvalue decomposition 

(Principal Component Analysis) [15-19].  

The eigenvector associated with the lowest eigenvalue is made of N components, each one describing 

the contribution to stabilization energy provided by the corresponding protein residue. Each of the 

components describes the contribution of the respective aminoacid to the stabilization energy of the 

protein. Analysis of the N components of the eigenvector associated with the lowest eigenvalue was 

shown to single out those residues (hot sites) behaving as strongly interacting and possible stabilizing 

centers. In general, these residues constitute a network of strongly coupled interactions typical for a 

certain fold. This vectorial representation of the sequence (sequence eigenvector, SE) may be thought 

of as the “energetic” signature of that fold [19].  

The lowest eigenvalue represents an effective coupling parameter: a variation in the first eigenvalue 

due to mutations or structural changes can be interpreted as a change (rescaling) in the strength 

(intensity) of all stabilizing interactions introduced by the mutation. A more detailed and quantitative 

description of the method is given in Materials and Methods.   
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A similar reasoning could be applied to the analysis of the structural properties. The native state 

structure, or designed target geometry, can be described in terms of the matrix of its native contacts 

(the contact matrix). This provides the essential geometrical definition of the topology of the native 

structure. It is known that the native state topology is a major determinant of the folding free-energy 

landscape of many (small) proteins. The vectorial representation of the topology of the native state is 

defined by the principal eigenvector of the native contact matrix (contact eigenvector, CE), which 

depends on the desired 3D structure [19].  

The validity of the vectorial representation of stabilization energy was previously checked in the 

context of the calculation of the relative stability of single mutants of several proteins [19], showing 

good correlations between theoretical and experimental data. The components of the first eigenvector 

define the main attractive couplings that stabilize a certain folded state. In related protein mutants that 

can still fold properly to the native structure, mutations can either modulate the coupling intensity of 

these specific interactions (reflected in the value of the eigenvalue), or modulate the height of some 

peaks in the first eigenvector, without disrupting the overall signature of the profile [19]. We could also 

show that the similarity, defined in terms of the Pearson’s correlation coefficient, between the sequence 

eigenvector (SE) of a certain sequence and the contact eigenvector (CE) of the native structure 

correlated reasonably well with the relative stability of the corresponding protein [19].  

Building on these considerations, we set out to test the possibility of this approach to discriminate, in a 

large ensemble of sequences, those that are able to fold to a desired structure vs. those that are not. We 

selected a subset of the same natural and artificial WW-domain sequences, tested by Ranganathan in 

his seminal paper on SCA, as a means for sequence selection [11].  The conformational dynamics and 

energetics of each sequence were probed by all-atom Molecular Dynamics (MD) simulations in explicit 

water at 300K. The discrimination between folding vs. non-folding sequences was based on the 

calculation of the similarity between the SE for each simulated sequence and the equivalent vector in 

the natural WW domain protein, used for reference and not included in the set of Native sequences. 

Moreover, based on previous results demonstrating that higher correlations between SE and CE 

successfully identify proteins endowed with higher structural stability, we investigated the Pearson’s 

coefficient similarity between SE’s and CE’s as a measure for discriminating productive folders from 

non-folders, independently of the previous knowledge of the SE of the native protein. This aspect may 

be relevant in the design or modification of novel folds where the main information available may be 

the geometry of the desired target, in the absence of statistically relevant information on the SE’s of 

known structural homologues. Ideally, the knowledge of the topology of the target structure can be 
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used to select the sequences with the best energetic fit to it, simply by calculating the correlation 

between CE and different SE’s, and using only the best fitting candidates in subsequent peptide-

synthesis or protein production efforts. In this work, the starting structures for the sequences that are 

not present in the PDB, were actually built starting only from the Cα trace of the WW geometry 

through a general side-chain reconstruction algorithm. The same type of exercise may be extended to 

putative novel folds or structural modifications or known proteins: one might build an alpha-carbon 

trace corresponding to any desired geometry, thread sequences upon it with the reconstruction 

algorithm and use the Energy Decomposition Based method and Topological analysis we presented 

here to screen for putative suitable sequences.  In this context, it is important to evaluate to what extent 

the similarity between CE and SE correlates with folding properties of the sequence.  

No specific new free-energy function was built for the selection. Analysis of the results showed that the 

combination of energy decomposition and topological analysis is able to correctly identify 70% of the 

sequences folding to the natural WW structure. 

 

Results 

The analysis of the foldability of different sequences presented here is based on a description of the 

complex non-bonded energy of a protein through the approximated stabilization energy Enbapp [19]. 

The simplification is achieved by means of the first (most negative) eigenvalue and first eigenvector 

obtained by decomposition and diagonalization of the energy matrix from all-atom MD simulations 

(see Methods).  

The eigenvector describes for each residue the amount of energy coupling it shares with all other 

residues in the native state of the protein. Upon mapping these couplings on the 3D structure of the 

protein, a connected network of strong interactions is revealed, involving distant residues in the 

sequence. These residues correspond to the most intense peaks. Most importantly, the first eigenvector 

reports on an organization of the energetics of the native state that is typical for a certain fold, defining 

an energetic signature for that fold. The information contained in the main energetic eigenvector 

(Sequence Eigenvector, SE) of a related set of sequences known to fold to the desired 3D structure can 

be used as a template to search for other sequences able to stabilize the same fold in native conditions, 

without limiting to single or double mutations.We applied the Energy decomposition method to the 

native YAP65 WW domain sequence whose X-ray structure is available in the Protein Data Bank 

(PDB id: 1k9r), in order to determine the energetic signature of the protein. Then, we considered four 
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sets of 8 sequences each, randomly extracted from the natural and artificial, folding and non folding, 

sequences from the four groups present in the study of Socolich et al .[11]. These are: 

- Native sequences (N): they occur naturally and do fold into the WW domain structure. 

- CC (coupled conservation) sequences: artificial sequences, created on the basis of the SCA and on the 

premise that conservation of the pattern of coupled interactions seen in natural sequences is sufficient 

to favor the folding to the desired structure [11]. Experimentally, a significant percentage of them 

proved to fold to the native structure by circular dichroism (CD) and NMR analysis. Our selected 

subset of CC sequences comprises only sequences that fold to a native WW structure under the 

considered experimental conditions in [11,14].  

- IC: artificial sequences, created from multiple sequence alignments based on the hypothesis that 

conservation is a property of one single site, independently of others. Experimentally, no folding to the 

native WW domain geometry was observed [11]. 

- Random sequences (R): they were built by randomly mutating native sequences. As expected, they do 

not fold [11]. 

 

As shown by Socolich et al. [11] conservation of amino acid composition as inferred by a multiple 

sequence alignment is not sufficient to discriminate productive folders (CC) from  non-folding 

sequences (IC).     

All sequences and their labels are reported in the Supplementary Material 

 

Correlation between sequence, energetics and folding to a given 3D structure.  

The energy decomposition method was first applied to the wild type sequence of the YAP65 WW 

domain (PDB id: 1k9r). The resulting SE profile recapitulates the information on which residues at 

which positions are most important in the stabilization of the 3D native structure. Peaks in the SE 

correspond to those residues whose pair interactions with the rest of the amino acids contribute to the 

protein stability (Figure 1). In particular, pair interactions between two peak-related residues provide a 

significant stabilizing energy to the protein. As a natural consequence, the SE reports therefore also on 

the residue-residue couplings defining the network of interactions that contribute to the folding core of 

the protein, whose participating residues are indicated by the SE regions above a defined threshold 

[20].The SE of the YAP65 WW domain (Figure 2) indicates as energetically relevant residues a subset 

comprising the segments E8-S13 and Q17-D25 (numbering as in Socolich et al. [11]). Relevant 

residues correspond to positions in the principal eigenvector characterized by a high value of the 
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component. Graphically, most relevant residues (and the values of their components) are identified by 

peaks in the eigenvector profile. These segments are known to contain strongly coevolving residues 

(such as E8, Y21, H23) responsible for ligand binding and function in WW domain. Hence, according 

to our analysis these residues also provide a stabilizing contribution to the protein.Following this first 

step, the SE’s for a set of eight natural WW domain sequences were calculated.  The peaks in the 

profile of the SE's, indicating residues participating in stabilizing pair interactions, are rather conserved 

and the distribution between values over and under the threshold reflects the wild type case.The 

Pearson’s correlation coefficient was used to define the similarity between the SE of 1k9r with each of 

the SE’s calculated for the other native sequences (N set, Figure 2)  

The results showed generally high values, in the range between 0.7 and 1 for the Pearson’s correlation 

(see Table 1), and an average value of 0.80, indicating that the specific pattern of interactions defined 

by the Sequence Eigenvector (SE) profile may actually be considered important in the discovery of the 

energetic determinants of the folding features of the protein. Next, attention was focused on the 

artificial sequences proposed and tested by Ranganathan [11]. 

First, the CC group was analyzed, following the same procedure as for native sequences: for each of 

the eight CC sequences SE was calculated and its similarity to SE of 1k9r was measured by Pearson’s 

coefficient.  For this set, the SE profiles still retain the modulation of the wild type (Figure 3), however 

they show some increased variability in the peak intensities. Pearson’s coefficients’ values are lower 

than for the Native set, but still in general good agreement with the values computed for native 

sequences (between 0,6 and 1; Table 1, with an average of 0.72). Finally the same analysis was 

performed on IC and Random sequences. The IC set comprises sequences that are not folding to the 

native state in spite of the native-like amino acid composition site by site, resulting from simple 

sequence alignment analysis.  The SE profiles are as noisy as in the CC case, hence these sequences do 

not seem to be distinguishable from the folding ones. However, when looking at the Pearson’s 

coefficients, they turn out to be consistently lower, with an average of 0.65.  For random sequences, 

which are expected to produce totally uncorrelated SE’s, Pearson’s coefficient values of for IC and 

Random sequences are very low values (Table 1) with an average of 0.45. 

These results show that the SE is actually capable of capturing the significant energetic features for the 

fold. In general, higher correlations are found between the energy couplings of the native sequence and 

those of proteins known to fold to the typical WW domain structure. In contrast, random sequences and 

also the sequences missing important coupling interactions  in spite of high sequence similarities (the 

IC set) are characterized by a much lower correlation suggesting that the energetic signature captured 
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by the SE is able to discriminate between the folding propensities of different sequences. The method 

based on the similarity with the reference WT protein correctly identifies native sequences and to a 

significant extent also the sequences belonging to the CC set, thus indicating that information on pair-

correlations is included in the SE. The different behavior of CC and IC sequences suggests that the 

foldability of a sequence appears to be encoded in more subtle sequence properties than the residue 

composition and single site distribution. In order to check whether the differences in the correlations 

between SE’s of CC and IC and the SE of the Wild Type (WT) does not trivially result from a sequence 

similarity, we re-evaluated specifically for each sequence in our dataset the alignment score with the 

WT sequence [21] (Table 1). While Native sequences generally show high alignment scores with the 

WT, the CC and IC sequences have comparable similarities and cannot be distinguished from one 

another based on sequence features only. Moreover, the correlation between the results of the two 

methods was evaluated: the Pearson’s coefficients between the SE’s of IC and CC peptides with WT-

SE were plotted against the respective sequence alignment scores, yielding a linear correlation 

coefficient of 0.17, excluding random sequences from the calculation (two-sided p-value=0.406).  

 

Interestingly, the discrimination between folders and non-folders cannot be obtained by looking at 

standard global properties of the structure like RMSD (data not shown).  Within 5ns of MD trajectory, 

no significant unfolding or global structural rearrangements are possible even for a small protein like 

the WW domain. Interestingly, neither the total interaction energy, that is provided for each structure 

by the force field parameters, nor the approximate stabilization energy calculated by the Energy 

Decomposition Method (as already proved in [19]), are able to distinguish between folders and non-

folders.  

Still, the distribution of stabilizing interactions as it is described in the SE turns out to be a well defined 

measure for specific sequence properties such as the ability to select favorable native contacts 

providing stability and cooperativity to structure formation, hence determining the sequence foldability.   

 

Correlation between energetics and topological properties of the target 3D structure. In order to add 

the topological information on the fold to our analysis, the contact matrix for the WW domain was 

calculated, and subsequently subjected to eigenvalue and eigenvector analysis. The eigenvector 

associated to the highest positive eigenvalue (principal eigenvalue) was considered to be representative 

of fold topology, and is generally referred to as the Contact Eigenvector (CE). In analogy to SE, CE 
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indicates which residues constitute the essential determinants of the domain architecture [22]: in 

general, CE singles out residues that have a high number of contacts with other residues (Figure 4). 

In a previous study [19], we demonstrated that the degree of correlation between the SE and CE is a 

measure of the fitness of a certain sequence to a certain fold. A suitable sequence for a certain fold 

places the strongly interacting residues (hot spots) where they can stabilize the structure. An example is 

the buried core of the protein where several residues must be tightly packed to develop energetic 

interactions responsible for correct folding.  As a consequence, the SE of a folding sequence should be 

similar to the CE of the fold. Importantly, by applying this concept, it was possible to rank the 

differences in stability of a diverse set of mutants of a series of proteins with remarkably different 

folds. The comparison between SE and CE allows to shed light on the degree of compatibility between 

a specific sequence, which provides characteristic energetic interactions, and the 3D structure that is 

being evaluated. Here, we attempt to evaluate to what extent the similarity between CE and SE 

correlates with folding properties of the sequence. 

In this context, CE was calculated for the crystal structure of 1k9r as a representative of the WW fold. 

Subsequently the Pearson’s coefficients between the SE profiles of the native sequences from the pdb 

and the CE were measured: as expected, the results show great similarity (with an average of 0.87; 

Table 1). Slightly lower values were obtained for CC sequences (average 0.82). However, also 

Pearson’s correlations between IC sequences SE’s and WW domain CE gave similar results to those of 

the N sequences (0.88). Finally, the similarities between the SE’s and the native CE for random 

sequences display in general minimal values (0.65).  

Taken together, this body of results suggests that the measure of similarity of the SE of a certain 

sequence to that of the native sequence may effectively discriminate between sequences that are either 

able or unable to fold to a target structure. Moreover, they suggest that while a high degree of similarity 

between CE of the target structure and the SE’s of different sequences is necessary for a sequence to 

fold, it is not a sufficient criterion to determine whether a sequence can actually populate that specific 

fold. According to this result, the large majority of non-random sequences in our dataset satisfy this 

criterion, hence they are compatible with the native structure in terms of  "topological" requirements, 

such as the number of contacts formed (residue size and hydrophobicity) at each single site. This is 

reflected in the linear correlation coefficient between SE-CE similarities and sequence similarities, 

which results equal to 0.50, in contrast to the 0.17 calculate above (two sided p-value 0.009).  
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Combining energetic and topological information to select viable sequences for a defined 3D fold. 

Finally, the information on the correlations between the SE’s of different sequences and that of the 

natural sequence folding to the WW domain 3-stranded geometry (1k9r) was combined with the 

information on the correlations between the SE’s of different sequences and the CE recapitulating the 

properties of the WW-domain fold. The two quantities were plotted in a graph (Figure 5). The folding 

sequences (native and CC) define an ensemble mainly located in the right-upper part of the graph, 

separated from nonfolding sequences (IC and random). The limit of 0.7 for Pearson’s coefficient on 

both axes, defines an area that contains mostly folding sequences: 11 out of 16 folding sequences 

(69%) are in this part of the graph, and 13 out of 16 nonfolding sequences (81%) are out of it.  Hence, 

by setting the acceptance threshold to 0.7 we obtain 5 false negatives and only 3 false positives.  

Among the false negatives, only one native sequence is not recognized (N7), possibly because of a very 

high peak (due to the strong relative contribution at position 23) which slightly alters the overall 

relative distribution of peaks (as an effect of normalization). By introducing a more restrictive 

threshold, such as 0.8, the number of false positives drops to zero, whereas the number of false 

negatives increases by two units.  

The combined analysis of considering both the energetics of the sequences and the topological features 

of the fold proves the possibility to discriminate between folding and non-folding sequences, with 

nearly 70% accuracy and a limited computational cost. In this procedure, we used the SE of 1k9r as a 

reference, representative for the determinant residue-residue coupling interactions necessary to fold 

into the WW domain structure. Although the chosen WWdomain was selected randomly among all 

structures present in the Protein Data Bank, it might introduce some bias in the classification of 

folding/nonfolding sequences, which is based on the similarity to its SE.  

 

Therefore, in order to be independent of previous knowledge, a final test was performed without any 

previous assumption on the similarities with a certain reference sequence. In this line of thought, for 

each sequence, the correlation between its SE and SE’s of all other sequences were measured by 

Pearson’s coefficient. The resulting values were clustered by means of a cluster analysis. This 

procedure highlights the presence of a distinct, dominant cluster containing sequences that are similar 

to one another in terms of SE’s. Strikingly, most of the sequences in this cluster were proved 

experimentally to fold to the required WW-domain geometry. In detail: 13 out of 17 folding sequences, 

including the wild type, (76%) belong to this cluster and 10 out of 16 non-folding sequences (63%) do 

not.  However, the number of false positives also increases to 7, and includes only IC sequences.These 
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results confirm that folding sequences show similar energetic features, so they can be clustered together 

and distinguished from non-folding sequences; moreover, SE captures with good approximation the 

most significant energetic characteristics of each sequence. Therefore, the energy decomposition 

method can be a useful tool to investigate whether a sequence is likely to fold on a required structure. 

In this context, the CE-SE similarity criterion should be considered only as a necessary, but not 

sufficient, condition for a sequence to fold into a required geometry.  

 

Discussion and Conclusion. 

In this paper we applied a Molecular Dynamics based strategy to predict, given a protein fold and a set 

of sequences with very similar chemical features (composition, single site distribution etc), which ones 

are able to fold to the given structure and which ones are not, based on the hypothesis that foldability 

requires cooperativity and therefore correlation among different sites. The analysis was based on purely 

physico-chemical and structural properties; hence no previous knowledge of the folding abilities of 

sequences was used.  The procedure entails the evaluation of the Sequence Eigenvector (SE) of each 

sequence on the target fold by means of the Energy Decomposition Method developed in our group 

[15-19]. The Energy Decomposition Method was applied to a set of 32 WW domain sequences, 

including 8 native sequences (N) and two groups of 8 designed sequences, one obeying both site 

conservation statistics and a set of selected residue-residue correlations (CC) and the other satisfying 

only single site conservation (IC). 8 random sequences were also considered for comparison. The 

similarity between each sequence’s SE and the template SE from native WW domain protein 1k9r was 

shown to correlate with the folding capability of the sequence under examination. Around 70% of the 

effectively folding sequences has a Pearson’s correlation coefficient of at least 0.70 with the template, 

whereas not folding sequences reach lower values. A threshold of 0.70 for the Pearson’s correlation 

coefficient could therefore be used to classify between folders and non-folders to the WW domain.  We 

also tested a classification criterion based on the comparison of a sequence’s SE to the structure CE, 

recapitulating the structural properties of the fold. The similarity of the sequence’s SE and the WW 

domain structure CE is not a sufficient criterion to distinguish between folding and not folding 

sequences, since it yields equivalent scores for N, CC and IC sequences. Apparently, the similarity to a 

structure’s CE guarantees the correct placement of hydrophobic and polar residues in the highly buried 

and exposed sites, respectively. The natural occurring frequency of a given type of residue with 

specific chemical properties at a given site (such as polar or non polar amino acids) corresponds to the 

conservation statistics obtained in the multiple sequence alignment.  The natural single site distribution, 
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where site correlations are neglected, is the information used the to build the artificial IC sequences, 

which hence satisfy the required constraints in terms of local burial as the N and CC sequences do. This 

observation correlates with the experimental finding pointed out by Ranganathan [11], that IC 

sequences are generally soluble, which is not the case for the majority of R sequences. This fact could 

indicate that the hydrophobic collapse resulting in protein solubility is accounted for by the correct 

hydrophobic-polar pattern along the chain, while the unique shape of the native fold requires a network 

of specific cooperative interactions, also involving distant sites, somehow not present in the IC 

sequences and whose absence is not detected when comparing their SE to the protein’s CE.  

This is confirmed by the statistically significant correlation we found between sequence similarity and 

SE-CE similarity. The SE-CE similarity evaluates the basic agreement of a candidate sequence with a 

target structure. In light of the results shown here, the SE-CE similarity should be considered only as a 

necessary, but not sufficient, condition for a sequence to fit to a certain topology. Equivalent 

information could be obtained by comparing the sequence to a multiple alignment of natural sequences 

folding to the given structure. In this respect, our approach offers the advantage of requiring in 

principle only the structure of the natural template protein, or information on the topology of a design-

target structure recapitulated by the CE. In a typical design application the exact native structure is not 

available. In this context, we speculate that at the present stage the SE-CE correlation of our method 

might be used as mainly as a preliminary screen for sequences that can be efficiently threaded on the 

structure.  

While the CE-SE comparison can identify sequences having a single site distribution that fit the 

requirements of the structure, the specific energy-related details of the cooperative interactions seem to 

be captured by the comparison of each sequence’s SE with the template WT-SE, which in fact proves 

able to discriminate between CC and IC sequences. Moreover, the set of native sequences obtains the 

highest average similarity score with the template. The natural sequences (N) are likely to have evolved 

a more complex cooperativity not entirely described by the correlation data used to design the CC set, 

which nevertheless were shown to be essential and also sufficient for the domain to fold.  

 

SE reflects the energetic properties of the native state. In a previous paper, we could show that the 

approximate stabilization energy recapitulated by the SE can be used as an effective approximation of 

the enthalpic part of the folding free energy.  This was applied for estimating the stability difference 

between two sequences differing for only one mutation on a total of about 60 residues. In that case, in 

light of the small perturbation, it was reasonable to assume that the energetic properties of the unfolded 
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state are essentially identical for the two sequences, allowing a good approximation of the folding 

enthalpy [19]. This hypothesis may not hold here, considering sequences differing at many positions. 

The number of perturbations may actually alter the distribution of conformations and interactions 

defining the unfolded states for each of the sequences.  

Given the impossibility to fully characterize the unfolded states for many different sequences, a more 

accurate calculation of the free energy differences between sequences could be obtained with free 

energy perturbation methods and thermodynamic cycles connecting different mutants. However, free 

energy perturbations require long equilibration times at intermediate values of the Hamiltonian 

coupling parameters and result in time-consuming efforts. Moreover, limitations due to the accuracy of 

the force field parameters and sampling issue may impact on the final outcome of the calculations. 

These are out of the scope of this paper.  

 

The present analysis and data set is based on a randomly and arbitrarily chosen template, namely the 

native YAP65 WW domain 1k9r, whose specific properties might introduce some bias in the sequence 

classification. With the aim of removing this bias, we attempted the clustering strategy outlined at the 

end of the Results section, considering the similarity between all sequence pairs and not only with 

respect to the template sequence and then clustering the data into two sets, in order to distinguish 

between folders and non folders.  The performance of the classification method improves slightly, but 

the template structure still might have some influence on the results. In the future, one may think of 

optimizing the selection of the template structure, for instance by means of a clustering procedure on 

the PDB data entries. Such a procedure might be suitable for inverse protein folding applications, 

where the target structure is known and new sequences can be selected or optimized by means of the 

present classification scheme. The acceptance threshold of 0.80 set for the SE, WT-SE correlation 

proves able to discriminate between folders and non-folders in the case of WW domain, a small protein 

for which very similar sequences are analyzed. In spite of the significant similarities among the 

sequences in the data set, both the less and the more restrictive thresholds of 0.70 and 0.80 chosen, 

allow the discrimination of productive folders from non-folding sequences based only on a 

mathematical and numerical descriptor. This constitutes a valid prerequisite to the general applicability 

to different systems.  

The method proves suitable for applications in the field of protein design, limited at the moment to the 

pre-selection of sequences that may fit to a certain fold, and consequently as a sequence classification 

tool. In this initial work, we made use of information regarding the template structure, while in a fully 
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ab initio protein design application, the exact native structure of the protein may not be available and 

this may limit the performances of our method. It is important to recognize that further theoretical 

developments coupled with experimental characterization of designed sequences are required in this 

context. From the theoretical point of view, for instance, one may benefit from efforts to characterize 

the unfolded states that would give a better description of the free energy components involved in the 

stabilization of native states. Alternatively, one could use simulation approaches allowing wider 

sampling to properly weight the statistical relevance of different conformations. All these efforts 

require parallel advances in the performances of MD algorithms and in the development of hardware. 

Recent reports on these subjects hold great promise with regards to the possibility to apply the methods 

described here on a much larger scale and with much better sampling. [23-26]  

 

Finally, the applications presented here require relatively short MD simulations. The choice of 5-ns 

long MD simulations was actually an arbitrary one, which we considered a good compromise between 

computational efficiency and sufficient relaxation of the structures, allowing the simulation of 32 

different sequences at the all-atom level of resolution. In our experience, the Molecular Dynamics 

simulations spanning a short time range like 5ns, while not ensuring the complete convergence to the 

equilibrium structure, represent a viable compromise to reach a sufficient relaxation of the side chain 

and local backbone conformations, yielding a well-defined pattern of non-bonded pair interactions, 

with a limited computational effort. Therefore, the limited size of the required Molecular Dynamics 

trajectories (5 ns) as well as the speed up offered by the use of implicit solvent models in the 

calculation makes this approach compatible with a large scale application, such as multiple sequences 

screening, at least in the case of small to medium size molecules.  
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Materials and methods. 

Socolich et al. [11] studied and experimentally tested the fold of many alternative sequences of the 

WW domain, using 1H-NMR tests and thermal denaturation. We have applied our method to a subset 

of these sequences in order to test its capability in discriminating the folding sequences. The sequences 

can be divided into 4 groups, they are labeled as in Socolich et al (N for Native sequences, CC for 

Coupled conservation, IC for Independent conservation and R for Random) [11], and reported in Table 

1 and Supplementary Material.  

We selected 8 sequences within each group, with the only requirements that the CC seqeuences would 

fold to a native WW domain under the experimental conditions, and that they did not contain gaps with 

respect to the template sequences, to avoid discrepancies when mounting the sequence onto the 

template structure. 

These sequences were associated to the structure of a YAP65 WW domain, PDB id: 1k9r (NMR 

structure), extracted from the protein data bank. The template sequence corresponds to residues 8-40 of 

the original protein, in the following numbered from 1 to 33 in agreement with the numbering in 

Socolich et al [11]. 

We used Reconstruction program described in [27] to thread the sequences on 1k9r fold: this program 

conserves only the alpha-carbon trace in 1k9r structure and adds the side chains of the residues of the 

sequence. Then, it determines the coordinates of the side chain atoms, using a library of rotamers. This 

library contains empirical data, extracted from 100 NMR structures (chosen from PDB select). Finally, 

the structures were minimized in order to avoid non-realistic contacts or positions of the residues. 

For each structure, after a 1000 steps minimization via the Steepest Descent algorithm, 5-ns MDs NVT 

simulation in a octahedral water box with explicit solvent and periodic boundary conditions are run 

using the GROMACS package (version 3.2.1), [28] with the GROMOS96 43Al force field [29].  

The simple point charge model SPC is applied, to model water molecules [30]. All bond lengths are 

constrained by means of the LINCS algorithm [31]. Electrostatic interactions are treated via PME 

implementation of the Ewald summation method. Temperature is set to 300 K and controlled by 

Berendsen thermostat [32]. The timestep is set to 2 fs.We neutralized the N- and C- terminals, since 

charged terminals form a saline bond that decreases the mobility of the protein, resulting in a less 

representative sampling of conformational space.  

Energy Decomposition Method. 

The energy decomposition method is based on the calculation of an interaction matrix Mij  on a 

representative protein structure derived from an MD trajectory [15-19]. The matrix contains the 
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interaction energies between residue pairs, comprising all the nonbonded interresidue atomic energy 

components (namely, van der Waals and electrostatic couplings between all atoms of two residues). 

Solvent effects such as electrostatic shielding and pair non polar terms are are implicitly taken into 

account by means of the generalized Born approximation (GBSA). In the following we provide a 

detailed explanation of the method, which was already presented previously in [15,19]. 

The square matrix Mij of non-bonded interactions between all residues i and j in the protein can be 

diagonalized and re-expressed in terms of eigenvalues and eigenvectors, in the form: 

 

∑
=

=
N

k

k
j

k
ikij wwM

1

λ   (1) 

where N is the number of amino acids in the protein, kλ is an eigenvalue, and 
k

iw  is the i-th component 

of the associated normalized eigenvector. 1λ is defined as the most negative and the following 

eigenvalues are labelled in increasing order. In the following we refer to the first eigenvector as the 

eigenvector corresponding to the eigenvalue 1λ .  The total non-bonded energy Enb is defined as: 
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, the sum over i,j of Mij  is dominated by 

the contribution due to the first eigenvalue and eigenvector, such that the total non bonded energy can 

be approximated by: 
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The hot spots, or the residues giving a more relevant contribution to the stabilization energy, are 

defined as those sites whose component is higher than a threshold value t which is calculated as the 

value corresponding to a normalized vector whose components provide all the same contribution for 

each site (flat eigenvector). These hot spot values correspond to the “peaks” in the graphical 

representation of the eigenvector as a function of the sequence. This corresponds to a case in which 

each residue contributes with the same weight to structural stability. In this approximation the threshold 

value depends only on the number N of residues in the protein and is calculated as: 
N

wi

11 =  for each 

i [15-19]. 
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We analyzed the MD trajectory, via a cluster analysis with the GROMOS method with 0,2 nm cutoff. 

We verified that the most frequented cluster was significantly more populated than the others, not to 

neglect significant structural deviations captured from other clusters. The Energy Decomposition 

method was applied on the representative structure of this cluster.  

The energy pair decomposition is obtained with the MM-PBSA adapting the algorithm implemented in 

AMBER8 using the GB approximation (GB model of Onufriev et al. [33]). The pairwise energy 

contributions are calculated as sum of gas phase interactions, solvation free energy with GB and 

hydrophobic term obtained with the LCPO method [34]. The contact map Cij of a structure is a matrix 

that describes which residues are in contact in the starting conformation and is defined by looking at 

Cα atom pairs. 

If the distance between any two Cα atoms is below a cutoff value, the corresponding matrix entry is set 

to l, otherwise it is set to 0. The distance cutoff is set to 0.65 nm. For the sake of homogeneity with the 

energy matrix, also contacts between nearest neighbors i,j+1 are included. Therefore: 





>
≤

=
5.60

5.61

ij

ij

ij r

r
C  

Upon diagonalization of the matrix Cij, we obtain a set of eigenvalues and eigenvectors. The principal 

eigenvector, corresponding to the most positive eigenvalue, has all components ci of equal sign, which 

is also true for the first eigenvector of matrix Mij. 

The similarities among energy patterns and between contact map and energy patterns are calculated 

using the Pearson's correlation coefficient: 

 

 

 

 

 

To evaluate patterns similarities we also performed a cluster analysis with Matlab 7 release 14. In order 

to compute the distances among patterns, we used the function PDIST, method CORRELATION: 

given an m-by-n data matrix X, which is treated as m (1-by-n) row vectors x1, x2, ..., xm, the various 

distances between the vector xr and xs are defined as follows: 
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d rs = 1 −
x r − x r( ) x s − x s( )′

x r − x r( ) x r − x r( )′ 
  

 
  

1
2

x s − x s( ) x s − x s( )′ 
  

 
  

1
2

 

We then clustered the patterns with the LINKAGE function (default method), which creates a 

hierarchical cluster tree. 
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Figure captions: 

Figure 1. a) Structure of the YAP 65 WW domain (Pdb entry 1k9r). The terminal segment depicted in 

green was not considered in the calculation. The protein regions corresponding to significant 

contributions to stability (SE components over threshold) are depicted as blue lines. b) Same as a) 

showing the peaks of the SE, residues E7 M8 A9 R17 Y18 F19 L20 with VdW spheres 

 

Figure 2. Top, SE profile of the 8 native sequences mounted on the template structure. Bottom, SE   

profile of the WT template sequence. 
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Figure 3. Top, SE profile of the 8 Random sequences, Middle: SE profile of the 8 IC sequences, 

Bottom: SE profile of the 8 CC sequences.  

 

Figure 4. CE profile calculated over residues 8-40 of the experimental structure 1k9r. 

 

Figure 5. Pearson correlation coefficients of each sequence’s SE with respect to the template SE (x 

axis) plotted versus the Pearson correlation coefficients of each sequence’s SE with respect to the CE 

of the X ray template structure. 

 

Caption for Table: 

Similarity values between the Sequence Eigenvector of the Native structure of YAP65 WW domain. 

PDB id: 1k9r and each of the sequences tested in this paper. The similarity measure is based on the 

calculation of the Pearson’s Coefficient. The sequences are reported in the Supp. Mat. 

 

Supplementary Material. 

The Supp. Mat. File reports the list and the alignment of the sequences analyzed.  

 

TABLE 1. Similarity values between the Sequence Eigenvector of the Native structure of YAP65 WW 
domain. PDB id: 1k9r and each of the sequences tested in this paper. The similarity measure is based 
on the calculation of the Pearson’s Coefficient. The sequences are reported in the Supp. Mat. 
 

Sequence Pearson’s coeff SE-

wtSE 

Clustalw alignment score   

Wt 

Pearson coeff. SE-CE 

Wt 1 - 0.744945 

N6 0.815371 39 0.913731 

N7 0.553304 51 0.825885 

N8 0.90147 51 0.799291 

N11 0.821357 45 0.831807 

N22 0.724998 24 0.89256 

N28 0.883323 57 0.896717 
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N33 0.834896 42 0.914411 

N40 0.708581 42 0.907512 

Average N 0.78 43.88 0.87 

CC8 0.708989 45 0.901651 

CC13 0.794943 18 0.722429 

CC14 0.794792 48 0.878284 

CC18 0.62209 27 0.767779 

CC22 0.669008 24 0.700183 

CC24 0.645391 51 0.879911 

CC43 0.558861 48 0.837438 

CC45 0.934383 39 0.854095 

Average CC 0.72 37.5 0.82 

IC1 0.68257 42 0.931625 

IC5 0.613809 36 0.805095 

IC10 0.671559 36 0.909656 

IC16 0.59906 27 0.808594 

IC23 0.627277 30 0.884833 

IC25 0.597115 45 0.86078 

IC35 0.688846 48 0.925319 

IC41 0.742172 41 0.878261 

Average IC 0.65 39 0.88 

R2 0.308312 6 0.774204 

R5 0.405056 9 0.569796 

R6 0.706564 9 0.894776 

R8 0.595654 6 0.559788 

R10 0.096114 12 0.530359 

R13 0.71476 21 0.781025 

R16 0.421356 9 0.512525 
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R19 0.390216 6 0.576323 

Average R 0.45 9.75 0.65 
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