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Abstract

The problem of finding amino acid sequences abldotd into a defined three-dimensional (3D)
structure is at the basis of successful proteirgdesfforts.

Herein, we present the results of the applicatioa wovel, all-atom molecular dynamics based, gnerg
decomposition approach to the selection of sequeablke to fold into a given 3D conformation. First,
the energy decomposition approach is applied tarahtsequences associated to a well-defined
structure to identify the principal energetic conglinteractions necessary to stabilize it, definthe
specific energetic signature for the fold. Thenjesal different sequences are threaded on theatkfin
3D structure and only those sequences whose eitesggtature (pattern) is close to that of the radtu
sequence, according to a similarity criterion, asdected as able to populate the specific fold.
Furthermore, it is possible to evaluate the fitness certain sequence for a fold by combining the
information provided by the energetic signature th@at contained in the contact map, which
recapitulates the fold topology. The results shioat the better fit between the energetic propedies
sequence and the topology corresponds to a b&dtalization of the protein fold by that sequence.W
applied this approach to a library of natural artdieial WW domain sequences, previously developed
by the Ranganathan group, containing sequencesithaxperimentally known to be able and unable
to fold into native structures. The results showat thur approach can correctly identify 70% of the
sequences known to populate the typical WW donwlah f
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Introduction.

Successful protein design relies on the corregcttifieation of sequences that fold into definedetiw
dimensional (3D) structures. This problem, alsovim@s the “inverse protein folding” problem, can
be tackled effectively by specifying what infornmatiin the sequence is necessary and sufficient to

determine a certain fold.

Since the seminal work of the Eisenberg group [dnsiderable progress has been made the
development of computational methods for identdyamino acid sequences compatible with a target
structure [2-6]. Mayo and coworkers reported onéhefmost notable examples, namely the complete
redesign of a zinc finger protein [5]. Using difat atomistic energy functions that mimic the pbaki
interactions between aminoacids, several other pgrobave achieved outstanding successes in
redesigning natural folds, in tlie novo construction of novel folds, or in the re-desigreagzymes [7-

9].

The basic principle in atomistic design is the wation of a target potential function providing
sequences with defined thermodynamic minima cooeding to the native configurations, well
separated from alternative conformational states:itty a deep free-energy minimum for the native
state conformation ensures the production of a essmpl with high thermal stability. However, the
native states of natural proteins reside in shafi@e energy minima corresponding to partially kab
and dynamic folds, characterized by a multiplia@fysimilar) conformations.

Starting from these concepts, Ranganathan et epoped a different strategy based on applying
Statistical Coupling Analysis (SCA) to multiple sece alignments of a protein family, to identlig t
mutual inter-residue dependencies evidenced byecoad statistical correlations between amino acid
distributions at specific sites [10-14]. The apation of this approach showed that a small set of
residues at specific positions (in a certain profamily) coevolves among a majority which are &yg
uncoupled, and that the strongly coevolving ressdaie organized into spatially connected networks
stabilizing their respective structures throughkipag interactions. If used in the design and s@ect

of new sequences folding to a certain target-atrectthis purely statistical, mechanism-free method
should in principle produce sequences with the saragginal stabilities and biological functions as
those of natural proteins. Ranganathan and cowsnkere actually able to design artificial WW
domains showing thermodynamic and structural pteggein excellent agreement with the ones of

their natural counterparts [11,14]. Moreover, thehars showed that the artificial sequences could



perform the same function as the native ones, sigpalass-specific recognition of proline-containing
target peptides [11,14].

In this paper, we aim to analyze the energeticrdetants of the sparse architecture of residue-
residue interactions necessary to stabilize a iceftdd, based on the analysis of the conformationa
dynamics and interactions in the native state nhtral protein, and to use this information foe th
selection of other, non-natural sequences ableltotd the same target 3D structure.

This approach is based on a recently introduceadyngecomposition Method, aimed at identifying
the key residuedriteraction hot spots) for the stabilization and folding of the protema defined 3D
structure [15-19]. Previously, we showed the apitif this method to capture the essential changes
occurring in the energetics of a protein upon &rgmnino acid mutation [15-19]. These changes are
mainly related to stability variations in an ensdéandf single-point mutants of a certain protein][19
The main obstacle in trying to define what progertof a sequence are necessary to define a certain
fold and how structural constraints impact on thledion of a certain sequence, using atomic level
resolution for the study of interactions, is reprded by the vast complexity of the energetic
interactions between amino acids. The Energy Deositipn Method alleviates this problem by
providing a simplified view of stabilizing interaghs, extracting the major contributions to enaoyet
stability of the native structure from all-atom malilar dynamics (MD) simulations. In this method,
for a protein ofN residues, the matrix of average non-bonded intierss between pairs of residues is
built from an MD trajectory. The energy map is th@mplified through eigenvalue decomposition
(Principal Component Analysis) [15-19].

The eigenvector associated with the lowest eigereved made oN components, each one describing
the contribution to stabilization energy provideg the corresponding protein residue. Each of the
components describes the contribution of the résgeaminoacid to the stabilization energy of the
protein. Analysis of th&d components of the eigenvector associated with ainedt eigenvalue was
shown to single out those residues (hot sites)\befas strongly interacting and possible staltyzi
centers. In general, these residues constituteivaorie of strongly coupled interactions typical far
certain fold. This vectorial representation of #eguence (sequence eigenvector, SE) may be thought
of as the “energetic” signature of that fold [19].

The lowest eigenvalue represents an effective aogiglarameter: a variation in the first eigenvalue
due to mutations or structural changes can beprggsd as a change (rescaling) in the strength
(intensity) of all stabilizing interactions introded by the mutation. A more detailed and quanati

description of the method is given in Materials &hethods.



A similar reasoning could be applied to the analysi the structural properties. The native state
structure, or designed target geometry, can beridescin terms of the matrix of its native contacts
(the contact matrix). This provides the essentergetrical definition of the topology of the native
structure. It is known that the native state toggles a major determinant of the folding free-eryerg
landscape of many (small) proteins. The vectoegre@sentation of the topology of the native state i
defined by the principal eigenvector of the natoantact matrix (contact eigenvector, CE), which
depends on the desired 3D structure [19].

The validity of the vectorial representation oflsliaation energy was previously checked in the
context of the calculation of the relative stakilif single mutants of several proteins [19], shuyvi
good correlations between theoretical and expetiahetata. The components of the first eigenvector
define the main attractive couplings that stabizeertain folded state. In related protein mutémas
can still fold properly to the native structure, tations can either modulate the coupling intensity
these specific interactions (reflected in the vadfieghe eigenvalue), or modulate the height of some
peaks in the first eigenvector, without disruptihg overall signature of the profile [19]. We coaldo
show that the similarity, defined in terms of treaPson’s correlation coefficient, between the saqee
eigenvector (SE) of a certain sequence and theacobmigenvector (CE) of the native structure
correlated reasonably well with the relative sigpif the corresponding protein [19].

Building on these considerations, we set out tbttes possibility of this approach to discriminatea
large ensemble of sequences, those that are afdiltto a desired structure vs. those that are\iet
selected a subset of the same natural and artit&-domain sequences, tested by Ranganathan in
his seminal paper on SCA, as a means for sequetegtion [11]. The conformational dynamics and
energetics of each sequence were probed by all-stolecular Dynamics (MD) simulations in explicit
water at 300K The discrimination between folding vs. non-foldisgquences was based on the
calculation of the similarity between the SE focleaimulated sequence and the equivalent vector in
the natural WW domain protein, used for referenoé mot included in the set of Native sequences.
Moreover, based on previous results demonstrativag higher correlations between SE and CE
successfully identify proteins endowed with higlseuctural stability, we investigated the Pearson’s
coefficient similarity between SE’s and CE’s as @asure for discriminating productive folders from
non-folders, independently of the previous knowked§the SE of the native protein. This aspect may
be relevant in the design or modification of nofatls where the main information available may be
the geometry of the desired target, in the absehatatistically relevant information on the SE'S o

known structural homologues. Ideally, the knowleddehe topology of the target structure can be
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used to select the sequences with the best eneiffgeto it, simply by calculating the correlation
between CE and different SE’s, and using only tbet Hitting candidates in subsequent peptide-
synthesis or protein production efforts. In thisrkyahe starting structures for the sequencesadtat
not present in the PDB, were actually built staytonly from the @ trace of the WW geometry
through a general side-chain reconstruction aligoritThe same type of exercise may be extended to
putative novel folds or structural modifications kavown proteins: one might build an alpha-carbon
trace corresponding to any desired geometry, theegliences upon it with the reconstruction
algorithm and use the Energy Decomposition Basethadeand Topological analysis we presented
here to screen for putative suitable sequenceshidrcontext, it is important to evaluate to whatent
the similarity between CE and SE correlates witlifm properties of the sequence.

No specific new free-energy function was built ioe selection. Analysis of the results showed tinat
combination of energy decomposition and topologar@lysis is able to correctly identify 70% of the
sequences folding to the natural WW structure.

Results

The analysis of the foldability of different sequen presented here is based on a description of the
complex non-bonded energy of a protein throughaiyeroximated stabilization ener@yp@PP [19].

The simplification is achieved by means of thetf(raost negative) eigenvalue and first eigenvector
obtained by decomposition and diagonalization ef éimergy matrix from all-atom MD simulations
(see Methods).

The eigenvector describes for each residue the mmmiuenergy coupling it shares with all other
residues in the native state of the protein. Up@ppmg these couplings on the 3D structure of the
protein, a connected network of strong interactihgevealed, involving distant residues in the
sequence. These residues correspond to the messapeaks. Most importantly, the first eigenvector
reports on an organization of the energetics ohtitese state that is typical for a certain foldfiding

an energetic signature for that fold. The informaticontained in the main energetic eigenvector
(Sequence Eigenvector, SE) of a related set ofesexgs known to fold to the desired 3D structure can
be used as a template to search for other sequahte#o stabilize the same fold in native condsio
without limiting to single or double mutations.Weppdied the Energy decomposition method to the
native YAP65 WW domain sequence whose X-ray strects available in the Protein Data Bank

(PDB id: 1k9r), in order to determine the energstgnature of the protein. Then, we considered four



sets of 8 sequences each, randomly extracted tnienmdtural and artificial, folding and non folding,
sequences from the four groups present in the sitipcolichet al .[11]. These are:

- Native sequences (N): they occur naturally andbttbinto the WW domain structure.

- CC (coupled conservation) sequences: artifi@gugnces, created on the basis of the SCA andeon th
premise thatonservation of the pattern of coupled interactions seen in natural sequences is sufficient
to favor the folding to the desired structure [1Ekperimentally, a significant percentage of them
proved to fold to the native structure by circuthchroism (CD) and NMR analysis. Our selected
subset of CC sequences comprises only sequencegoltiato a native WW structure under the
considered experimental conditions in [11,14].

- IC: artificial sequences, created from multipeggence alignments based on the hypothesis that
conservation is a property ohe single site, independently of others. Experimentally, no folglto the
native WW domain geometry was observed [11].

- Random sequences (R): they were built by randomltating native sequences. As expected, they do
not fold [11].

As shown by Socolich et al. [11] conservation ofireanacid composition as inferred by a multiple
sequence alignment is not sufficient to discrimeng@roductive folders (CC) from non-folding
sequences (IC).

All sequences and their labels are reported irStingplementary Material

Correlation between sequence, energetics and folding to a given 3D structure.

The energy decomposition method was first appledhe wild type sequence of the YAP65 WW
domain (PDB id: 1k9r). The resulting SE profile apitulates the information on which residues at
which positions are most important in the stabilaa of the 3D native structure. Peaks in the SE
correspond to those residues whose pair interactiotn the rest of the amino acids contribute ® th
protein stability (Figure 1). In particular, pameractions between two peak-related residues ghecsi
significant stabilizing energy to the protein. Asatural consequence, the SE reports thereforeoalso
the residue-residue couplings defining the netwadriateractions that contribute to the folding coife

the protein, whose participating residues are mtédd by the SE regions above a defined threshold
[20].The SE of the YAP65 WW domain (Figure 2) iraties as energetically relevant residues a subset
comprising the segments E8-S13 and Q17-D25 (numdpems in Socolich et al. [11]). Relevant
residues correspond to positions in the principgérevector characterized by a high value of the
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component. Graphically, most relevant residues (aedvalues of their components) are identified by
peaks in the eigenvector profile. These segmemtk@aown to contain strongly coevolving residues
(such as ES8, Y21, H23) responsible for ligand bigdand function in WW domain. Hence, according
to our analysis these residues also provide aligiali contribution to the proteiRollowing this first
step, the SE’s for a set of eight natural WW donsequences were calculated. The peaks in the
profile of the SE's, indicating residues participgtin stabilizing pair interactions, are rathenserved

and the distribution between values over and unberthreshold reflects the wild type case.The
Pearson’s correlation coefficient was used to @efire similarity between the SE of 1k9r with eath o
the SE’s calculated for the other native seque(ideset, Figure 2)

The results showed generally high values, in tngeeetween 0.7 and 1 for the Pearson’s correlation
(see Table 1), and an average value of 0.80, indg#hat the specific pattern of interactions dedl

by the Sequence Eigenvector (SE) profile may algtii@ considered important in the discovery of the
energetic determinants of the folding features hed protein. Next, attention was focused on the
artificial sequences proposed and tested by Ratigam§l1].

First, the CC group was analyzed, following the sgmocedure as for native sequences: for each of
the eight CC sequences SE was calculated andntkusty to SE of 1k9r was measured by Pearson’s
coefficient. For this set, the SE profiles stdtain the modulation of the wild type (Figure 3wever
they show some increased variability in the pea&nsities. Pearson’s coefficients’ values are lower
than for the Native set, but still in general goagreement with the values computed for native
sequences (between 0,6 and 1; Table 1, with arageeof 0.72). Finally the same analysis was
performed on IC and Random sequences. The IC sepreses sequences that are not folding to the
native state in spite of the native-like amino acmmposition site by site, resulting from simple
sequence alignment analysis. The SE profiles areosy as in the CC case, hence these sequences do
not seem to be distinguishable from the folding sondowever, when looking at the Pearson’s
coefficients, they turn out to be consistently loywsith an average of 0.65. For random sequences,
which are expected to produce totally uncorrelé&ds, Pearson’s coefficient values of for IC and
Random sequences are very low values (Table 1)amitlverage of 0.45.

These results show that the SE is actually capaflidapturing the significant energetic featurestha
fold. In general, higher correlations are foundazsn the energy couplings of the native sequende an
those of proteins known to fold to the typical W\dhahin structure. In contrast, random sequences and
also the sequences missing important couplingaotems in spite of high sequence similaritie® (th

IC set) are characterized by a much lower cor@tasuggesting that the energetic signature captured
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by the SE is able to discriminate between the fgjdiropensities of different sequences. The method
based on the similarity with the reference WT pgrotorrectly identifies native sequences and to a
significant extent also the sequences belongingadCC set, thus indicating that information orrpai
correlations is included in the SE. The differeehévior of CC and IC sequences suggests that the
foldability of a sequence appears to be encodemidre subtle sequence properties than the residue
composition and single site distribution. In ordercheck whether the differences in the correlation
between SE’s of CC and IC and the SE of the WildeT@WT) does not trivially result from a sequence
similarity, we re-evaluated specifically for eaddaence in our dataset the alignment score with the
WT sequence [21] (Table 1). While Native sequergmerally show high alignment scores with the
WT, the CC and IC sequences have comparable sitieiéaand cannot be distinguished from one
another based on sequence features only. Morethercorrelation between the results of the two
methods was evaluated: the Pearson’s coefficiestisden the SE’s of IC and CC peptides with WT-
SE were plotted against the respective sequengmnadint scores, yielding a linear correlation

coefficient of 0.17, excluding random sequencesiftioe calculation (two-sided p-value=0.406).

Interestingly, the discrimination between foldersd anon-folders cannot be obtained by looking at
standard global properties of the structure likeS®Wdata not shown). Within 5ns of MD trajectory,
no significant unfolding or global structural remgements are possible even for a small prote lik
the WW domain. Interestingly, neither the totaknaiction energy, that is provided for each structur
by the force field parameters, nor the approximgtgbilization energy calculated by the Energy
Decomposition Method (as already proved in [19%& able to distinguish between folders and non-
folders.

Still, the distribution of stabilizing interactioms it is described in the SE turns out to be & defined
measure for specific sequence properties such esaltility to select favorable native contacts

providing stability and cooperativity to structdoemation, hence determining the sequence foldsbili

Correlation between energetics and topological properties of the target 3D structure. In order to add

the topological information on the fold to our arsié, the contact matrix for the WW domain was
calculated, and subsequently subjected to eigeavahd eigenvector analysis. The eigenvector
associated to the highest positive eigenvalue ¢jpah eigenvalue) was considered to be represeatati

of fold topology, and is generally referred to he Contact Eigenvector (CE). In analogy to SE, CE



indicates which residues constitute the essengdrchinants of the domain architecture [22]: in
general, CE singles out residues that have a higtber of contacts with other residues (Figure 4).

In a previous study [19], we demonstrated thatdégree of correlation between the SE and CE is a
measure of the fitness of a certain sequence ftertailc fold. A suitable sequence for a certain fold
places the strongly interacting residues (hot gpattere they can stabilize the structure. An exangpl

the buried core of the protein where several residonust be tightly packed to develop energetic
interactions responsible for correct folding. Asamsequence, the SE of a folding sequence sheuld b
similar to the CE of the fold. Importantly, by apiplg this concept, it was possible to rank the
differences in stability of a diverse set of musant a series of proteins with remarkably different
folds. The comparison between SE and CE allow$éd $ight on the degree of compatibility between
a specific sequence, which provides characterésigrgetic interactions, and the 3D structure that i
being evaluated. Here, we attempt to evaluate tatvextent the similarity between CE and SE
correlates with folding properties of the sequence.

In this context, CE was calculated for the crystalicture of 1k9r as a representative of the WWl.fol
Subsequently the Pearson’s coefficients betweerlsEherofiles of the native sequences from the pdb
and the CE were measured: as expected, the rehatg great similarity (with an average of 0.87;
Table 1). Slightly lower values were obtained fo€ Gequences (average 0.82). However, also
Pearson’s correlations between IC sequences SE'$\&i domain CE gave similar results to those of
the N sequences (0.88). Finally, the similaritiesween the SE’s and the native CE for random
sequences display in general minimal values (0.65).

Taken together, this body of results suggests ttiatmeasure of similarity of the SE of a certain
sequence to that of the native sequence may efédgiiliscriminate between sequences that are either
able or unable to fold to a target structure. Maszpthey suggest that while a high degree of sintyl
between CE of the target structure and the SEuiftdrent sequences is necessary for a sequence to
fold, it is not a sufficient criterion to determimenether a sequence can actually populate thatf&pec
fold. According to this result, the large majoriy non-random sequences in our dataset satisfy this
criterion, hence they are compatible with the reastructure in terms of "topological” requirements
such as the number of contacts formed (residueasidehydrophobicity) at each single site. This is
reflected in the linear correlation coefficient Ween SE-CE similarities and sequence similarities,
which results equal to 0.5 contrast to the 0.17 calculate above (two spledlue 0.009).
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Combining energetic and topological information to select viable sequences for a defined 3D fold.

Finally, the information on the correlations betwdbe SE’s of different sequences and that of the
natural sequence folding to the WW domain 3-strdndeometry (1k9r) was combined with the
information on the correlations between the SE’sliierent sequences and the CE recapitulating the
properties of the WW-domain fold. The two quansitigere plotted in a graph (Figure 5). The folding
sequences (native and CC) define an ensemble miaicdyed in the right-upper part of the graph,
separated from nonfolding sequences (IC and rand®h® limit of 0.7 for Pearson’s coefficient on
both axes, defines an area that contains mosttiniglsequences: 11 out of 16 folding sequences
(69%) are in this part of the graph, and 13 out®honfolding sequences (81%) are out of it. Hence
by setting the acceptance threshold to 0.7 we liafalse negatives and only 3 false positives.
Among the false negatives, only one native sequenget recognized (N7), possibly because of a very
high peak (due to the strong relative contributainposition 23) which slightly alters the overall
relative distribution of peaks (as an effect of malization). By introducing a more restrictive
threshold, such as 0.8, the number of false pestidrops to zero, whereas the number of false
negatives increases by two units.

The combined analysis of considering both the estergof the sequences and the topological features
of the fold proves the possibility to discrimindtetween folding and non-folding sequences, with
nearly 70% accuracy and a limited computationat.doshis procedure, we used the SE of 1k9r as a
reference, representative for the determinant wesidsidue coupling interactions necessary to fold
into the WW domain structurdlthough the chosen WWdomain was selected randamigng all
structures present in the Protein Data Bank, ithiigtroduce some bias in the classification of

folding/nonfolding sequences, which is based orstimlarity to its SE.

Therefore, in order to be independent of previonsvKedge, a final test was performed without any
previous assumption on the similarities with a @ierreference sequence. In this line of thought, fo

each sequence, the correlation between its SE &l & all other sequences were measured by
Pearson’s coefficient. The resulting values wenestered by means of a cluster analysis. This
procedure highlights the presence of a distinatidant cluster containing sequences that are simila
to one another in terms of SE’s. Strikingly, mos$ttlee sequences in this cluster were proved
experimentally to fold to the required WW-domairogeetry. In detail: 13 out of 17 folding sequences,

including the wild type, (76%) belong to this cleisand 10 out of 16 non-folding sequences (63%) do

not. However, the number of false positives atgmdases to 7, and includes only IC sequences.These
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results confirm that folding sequences show singfergetic features, so they can be clusteredheget
and distinguished from non-folding sequences; magoSE captures with good approximation the
most significant energetic characteristics of eaelguence. Therefore, the energy decomposition
method can be a useful tool to investigate whedheequence is likely to fold on a required struetur
In this context, the CE-SE similarity criterion sie be considered only as a necessary, but not

sufficient, condition for a sequence to fold intceguired geometry.

Discussion and Conclusion.

In this paper we applied a Molecular Dynamics baseategy to predict, given a protein fold and ta se
of sequences with very similar chemical featuresn(gosition, single site distribution etc), whichesn
are able to fold to the given structure and whiokare not, based on the hypothesis that folthabili
requires cooperativity and therefore correlatioroaghdifferent sites. The analysis was based onlyure
physico-chemical and structural properties; hencerevious knowledge of the folding abilities of
sequences was used. The procedure entails theageal of the Sequence Eigenvector (SE) of each
sequence on the target fold by means of the Enespomposition Method developed in our group
[15-19]. The Energy Decomposition Method was applie a set of 32 WW domain sequences,
including 8 native sequences (N) and two groups$ afesigned sequences, one obeying both site
conservation statistics and a set of selected uesigsidue correlations (CC) and the other satigfyi
only single site conservation (IC). 8 random segasnwere also considered for comparison. The
similarity between each sequence’s SE and the sm@E from native WW domain protein 1k9r was
shown to correlate with the folding capability betsequence under examination. Around 70% of the
effectively folding sequences has a Pearson’s ledioa coefficient of at least 0.70 with the tentpla
whereas not folding sequences reach lower valuethréshold of 0.70 for the Pearson’s correlation
coefficient could therefore be used to classifyusen folders and non-folders to the WW domain. We
also tested a classification criterion based oncttraparison of a sequence’s SE to the structure CE,
recapitulating the structural properties of thedforhe similarity of the sequence’s SE and the WW
domain structure CE is not a sufficient criteriam distinguish between folding and not folding
sequences, since it yields equivalent scores f&@Gland IC sequences. Apparently, the similarity to
structure’s CE guarantees the correct placemehydrophobic and polar residues in the highly buried
and exposed sites, respectively. The natural ooguifrequency of a given type of residue with
specific chemical properties at a given site (saslpolar or non polar amino acids) correspondbeo t
conservation statistics obtained in the multiplgussce alignment. The natural single site distidio
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where site correlations are neglected, is the mé&dion used the to build the artificial IC sequence
which hence satisfy the required constraints imgeof local burial as the N and CC sequences dis. Th
observation correlates with the experimental figdipointed out by Ranganathan [11], that IC
sequences are generally soluble, which is not @ise or the majority of R sequences. This factaoul
indicate that the hydrophobic collapse resultingointein solubility is accounted for by the correct
hydrophobic-polar pattern along the chain, while timique shape of the native fold requires a nétwor
of specific cooperative interactions, also invotyidistant sites, somehow not present in the IC
sequences and whose absence is not detected wingarog their SE to the protein’s CE.

This is confirmed by the statistically significasudrrelation we found between sequence similarity an
SE-CE similarity. The SE-CE similarity evaluates thasic agreement of a candidate sequence with a
target structure. In light of the results shownehéne SE-CE similarity should be considered oslya
necessary, but not sufficient, condition for a ssge to fit to a certain topology. Equivalent
information could be obtained by comparing the sege to a multiple alignment of natural sequences
folding to the given structure. In this respecty @pproach offers the advantage of requiring in
principle only the structure of the natural temelptotein, or information on the topology of a desi
target structure recapitulated by the CE. In adsfpdesign application the exact native structareat
available. In this context, we speculate that atphesent stage the SE-CE correlation of our method
might be used as mainly as a preliminary screerséguences that can be efficiently threaded on the
structure.

While the CE-SE comparison can identify sequenaagnly a single site distribution that fit the
requirements of the structure, the specific eneedgted details of the cooperative interactionsrsee

be captured by the comparison of each sequenceigitiEhe template WT-SE, which in fact proves
able to discriminate between CC and IC sequenceseder, the set of native sequences obtains the
highest average similarity score with the templ&tee natural sequences (N) are likely to have ealv

a more complex cooperativity not entirely describgdhe correlation data used to design the CC set,
which nevertheless were shown to be essential landsafficient for the domain to fold.

SE reflects the energetic properties of the nasiate. In a previous paper, we could show that the
approximate stabilization energy recapitulated® $E can be used as an effective approximation of
the enthalpic part of the folding free energy. sThias applied for estimating the stability diffezen
between two sequences differing for only one motatn a total of about 60 residues. In that case, i

light of the small perturbation, it was reasonablassume that the energetic properties of theldedo
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state are essentially identical for the two segesnallowing a good approximation of the folding
enthalpy [19]. This hypothesis may not hold hemnsidering sequences differing at many positions.
The number of perturbations may actually alter dngtribution of conformations and interactions
defining the unfolded states for each of the segen

Given the impossibility to fully characterize thafolded states for many different sequences, a more
accurate calculation of the free energy differenicesveen sequences could be obtained with free
energy perturbation methods and thermodynamic syob@necting different mutants. However, free
energy perturbations require long equilibration etimat intermediate values of the Hamiltonian
coupling parameters and result in time-consumifgrist Moreover, limitations due to the accuracy of
the force field parameters and sampling issue m@act on the final outcome of the calculations.

These are out of the scope of this paper.

The present analysis and data set is based ordaméyand arbitrarily chosen template, namely the
native YAP65 WW domain 1k9r, whose specific progsrimight introduce some bias in the sequence
classification. With the aim of removing this biag attempted the clustering strategy outlinedhat t
end of the Results section, considering the simyldretween all sequence pairs and not only with
respect to the template sequence and then clugtdren data into two sets, in order to distinguish
between folders and non folders. The performari¢Benclassification method improves slightly, but
the template structure still might have some inflzeson the results. In the future, one may think of
optimizing the selection of the template structdiog,instance by means of a clustering procedure on
the PDB data entries. Such a procedure might brldeifor inverse protein folding applications,
where the target structure is known and new se@seoan be selected or optimized by means of the
present classification scheme. The acceptancehivice®f 0.80 set for the SE, WT-SE correlation
proves able to discriminate between folders andfolafers in the case of WW domain, a small protein
for which very similar sequences are analyzed. ditesof the significant similarities among the
sequences in the data set, both the less and the nestrictive thresholds of 0.70 and 0.80 chosen,
allow the discrimination of productive folders fromon-folding sequences based only on a
mathematical and numerical descriptor. This comstit a valid prerequisite to the general appliagbil

to different systems.

The method proves suitable for applications infiblel of protein design, limited at the moment e t
pre-selection of sequences that may fit to a aefftald, and consequently as a sequence classificati
tool. In this initial work, we made use of inforrat regarding the template structure, while in dyfu
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ab initio protein design application, the exactiveastructure of the protein may not be availabid a
this may limit the performances of our method.sltimportant to recognize that further theoretical
developments coupled with experimental charactéozeof designed sequences are required in this
context. From the theoretical point of view, fost@nce, one may benefit from efforts to charaateriz
the unfolded states that would give a better dpson of the free energy components involved in the
stabilization of native states. Alternatively, ooeuld use simulation approaches allowing wider
sampling to properly weight the statistical relesarof different conformations. All these efforts
require parallel advances in the performances of atforithms and in the development of hardware.
Recent reports on these subjects hold great promiieeegards to the possibility to apply the metbo

described here on a much larger scale and with rbettbr sampling. [23-26]

Finally, the applications presented here requitatively short MD simulations. The choice of 5-ns
long MD simulations was actually an arbitrary omwhjch we considered a good compromise between
computational efficiency and sufficient relaxatioh the structures, allowing the simulation of 32
different sequences at the all-atom level of resmbu In our experience, the Molecular Dynamics
simulations spanning a short time range like 5rtajeanot ensuring the complete convergence to the
equilibrium structure, represent a viable comprencs reach a sufficient relaxation of the side ghai
and local backbone conformations, yielding a welfiited pattern of non-bonded pair interactions,
with a limited computational effort. Therefore, theited size of the required Molecular Dynamics
trajectories (5 ns) as well as the speed up offéredhe use of implicit solvent models in the
calculation makes this approach compatible witargd scale application, such as multiple sequences

screening, at least in the case of small to mediumize molecules.
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Materials and methods.

Socolich et al. [11] studied and experimentallytedsthe fold of many alternative sequences of the
WW domain, using 1H-NMR tests and thermal denaitbmatWe have applied our method to a subset
of these sequences in order to test its capammlitiscriminating the folding sequences. The segeasn
can be divided into 4 groups, they are labelednaSdacolich et al (N for Native sequences, CC for
Coupled conservation, IC for Independent conseraadind R for Random) [11], and reported in Table
1 and Supplementary Material.

We selected 8 sequences within each group, witlotherequirements that the CC segeuences would
fold to a native WW domain under the experimentalditions, and that they did not contain gaps with
respect to the template sequences, to avoid deeoggs when mounting the sequence onto the
template structure.

These sequences were associated to the structuaeYéP65 WW domain, PDB id: 1k9r (NMR
structure), extracted from the protein data barie ®mplate sequence corresponds to residues B-40 o
the original protein, in the following numbered Mfiol to 33 in agreement with the numbering in
Socolich et al [11].

We used Reconstruction program described in [2Thtead the sequences on 1k9r fold: this program
conserves only the alpha-carbon trace in 1k9r stra@and adds the side chains of the residueseof th
sequence. Then, it determines the coordinateseofitte chain atoms, using a library of rotamerss Th
library contains empirical data, extracted from NIMR structures (chosen from PDB select). Finally,
the structures were minimized in order to avoid-neglistic contacts or positions of the residues.

For each structure, after a 1000 steps minimizatiarthe Steepest Descent algorithm, 5-ns MDs NVT
simulation in a octahedral water box with explietlvent and periodic boundary conditions are run
using the GROMACS package (version 3.2.1), [28hulite GROMOS96 43Al force field [29].

The simple point charge model SPC is applied, tadehavater molecules [30]. All bond lengths are
constrained by means of the LINCS algorithm [31edEostatic interactions are treated via PME
implementation of the Ewald summation method. Teawrmoee is set to 300 K and controlled by
Berendsen thermostat [32]. The timestep is set f\®e neutralized the N- and C- terminals, since
charged terminal$orm a saline bond that decreases the mobilityhef protein, resulting in a less
representativeampling of conformational space.

Energy Decomposition Method.

The energy decomposition method is based on thaileéibn of an interaction matriMij on a

representative protein structure derived from an M&ectory [15-19]. The matrix contains the
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interaction energies between residue pairs, compriall the nonbonded interresidue atomic energy
components (namely, van der Waals and electrostatiplings between all atoms of two residues).
Solvent effects such as electrostatic shielding j@aid non polar terms are are implicitly taken into
account by means of the generalized Born approamaiGBSA). In the following we provide a
detailed explanation of the method, which was alygaresented previously in [15,19].

The square matris; of non-bonded interactions between all residuasdj in the protein can be

diagonalized and re-expressed in terms of eigersadnd eigenvectors, in the form:

where N is the number of amino acids in the proi/is an eigenvalue, arWik is the i-th component

of the associated normalized eigenveci/iis defined as the most negative and the following

eigenvalues are labelled in increasing order. snftilowing we refer to the first eigenvector ag th

eigenvector corresponding to the eigenvi/iie The total non-bonded enerBy, is defined as:
N N N
ZM = ZAK i W :ZAKWK (2)

=1 k=1

k=1
whereW, = > w W . If AW, is larger thanA W, for k #1, the sum ovei,j of M; is dominated by

ij=1

Mz

H

the contribution due to the first eigenvalue argesvector, such that the total non bonded energy ca
be approximated by:

N

Ep = E™ :Alzwilwli =AW 3)

ij=1
The hot spots, or the residues giving a more rakeeantribution to the stabilization energy, are
defined as those sites whose component is higlaer @ahthreshold valuewhich is calculated as the
value corresponding to a normalized vector whosapaments provide all the same contribution for
each site (flat eigenvector). These hot spot valcesespond to the “peaks” in the graphical
representation of the eigenvector as a functiothefsequence. This corresponds to a case in which

each residue contributes with the same weightrtwiral stability. In this approximation the thnetd

value depends only on the numibeof residues in the protein and is calculatedvqf's: L for each

JN

i [15-19].
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We analyzed the MD trajectory, via a cluster analygth the GROMOS method with 0,2 nm cutoff.
We verified that the most frequented cluster wasitcantly more populated than the others, not to
neglect significant structural deviations captuffegin other clusters. The Energy Decomposition
method was applied on the representative structutt@s cluster.

The energy pair decomposition is obtained withNiM-PBSA adapting the algorithm implemented in
AMBERS using the GB approximation (GB model of OmeN et al. [33]). The pairwise energy
contributions are calculated as sum of gas phagautions, solvation free energy with GB and
hydrophobic term obtained with the LCPO method [34je contact mafij of a structure is a matrix
that describes which residues are in contact instaging conformation and is defined by looking at
Ca atom pairs.

If the distance between any twar@toms is below a cutoff value, the correspondiagrixentry is set

to |, otherwise it is set to 0. The distance cuteffet to 0.65 nm. For the sake of homogeneitk tie

energy matrix, also contacts between nearest neighpt+ 1 are included. Therefore:

_ {1 r, < 65
710 r,>65
Upon diagonalization of the matrtxij, we obtain a set of eigenvalues and eigenvectorspiiheipal
eigenvector, corresponding to the most positive eigemydlas all componentg of equal sign, which
is also true for the first eigenvector of maﬂklbﬁ.

The similarities among energy patterns and betweeracontap and energy patterns are calculated

using the Pearson's correlation coefficient:

2.(c-<c>)(w-<w>)

\AZ (ici— <c >)2JZ(Wi— <w >)2J

r(c,w) =

To evaluate patterns similarities we also performed a clusédysas with Matlab 7 release 14 order
to compute the distances among patterns, we used tbgofurPDIST, method CORRELATION:

given anm-by-n data matrixx, which is treated as (1-by-n) row vectorsxy, X2, ..., Xm, the various

distances between the veckprandxg are defined as follows:
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We then clustered the patterns with the LINKAGE functioefddlt method), which creates a
hierarchical cluster tree.
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Figure captions:
Figure 1.a) Structure of the YAP 65 WW domain (Pdb entry 1k9he Terminal segment depicted in

green was not considered in the calculation. The protegions corresponding to significant

contributions to stability (SE components over threshotd)depicted as blue lines. b) Same as a)
showing the peaks of the SE, residues E7 M8 A9 R17 Y8820 with VdW spheres

Figure 2. Top, SE profile of the 8 native sequences mounted onethelate structure. Bottom, SE

profile of the WT template sequence.
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Figure 3. Top, SE profile of the 8 Random sequences, Middle: &ffile of the 8 IC sequences,
Bottom: SE profile of the 8 CC sequences.

Figure 4. CE profile calculated over residues 8-40 of the experiaiastructure 1kOr.

Figure 5. Pearson correlation coefficients of each sequende’svith respect to the template SE (x
axis) plotted versus the Pearson correlation coefficieneaci sequence’s SE with respect to the CE
of the X ray template structure.

Caption for Table:

Similarity values between the Sequence Eigenvector oN#ie structure of YAP65 WW domain.
PDB id: 1k9r and each of the sequences tested in ther.p@pe similarity measure is based on the
calculation of the Pearson’s Coefficient. The sequence®poeted in the Supp. Mat.

Supplementary Material.
The Supp. Mat. File reports the list and the aligmiof the sequences analyzed.

TABLE 1. Similarity values between the Sequence Eigenvector of theeNstructure of YAP65 WW
domain. PDB id: 1k9r and each of the sequences testiisipaper. The similarity measure is based
on the calculation of the Pearson’s Coefficient. The seqeareereported in the Supp. Mat.

Sequence Pearson’s coeff SE- | Clustalw alignment score Pearson coeff. SE-CE
WtSE Wit

Wt 1 - 0.744945

N6 0.815371 39 0.913731
N7 0.553304 51 0.825885
N8 0.90147 51 0.799291
N11 0.821357 45 0.831807
N22 0.724998 24 0.89256
N28 0.883323 57 0.896717
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N33 0.834896 42 0.914411
N40 0.708581 42 0.907512
Average N 0.78 43.88 0.87
CC8 0.708989 45 0.901651
CC13 0.794943 18 0.722429
CC14 0.794792 48 0.878284
CC1s 0.62209 27 0.767779
CC22 0.669008 24 0.700183
Cc24 0.645391 51 0.879911
CC43 0.558861 48 0.837438
CC45 0.934383 39 0.854095
Average CC 0.72 37.5 0.82
IC1 0.68257 42 0.931625
IC5 0.613809 36 0.805095
IC10 0.671559 36 0.909656
IC16 0.59906 27 0.808594
IC23 0.627277 30 0.884833
IC25 0.597115 45 0.86078
IC35 0.688846 48 0.925319
IC41 0.742172 41 0.878261
Average IC 0.65 39 0.88
R2 0.308312 6 0.774204
R5 0.405056 9 0.569796
R6 0.706564 9 0.894776
R8 0.595654 6 0.559788
R10 0.096114 12 0.530359
R13 0.71476 21 0.781025
R16 0.421356 9 0.512525
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Figure 3
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Figure 4
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Figure 5
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