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We introduce a natural definition of Riesz measures and Wishart laws associated to an Ω-positive (virtual) quadratic map, where Ω ⊂ R n is a regular open convex cone. We give a general formula for moments of the Wishart laws. Moreover, if the quadratic map has an equivariance property under the action of a linear group acting on the cone Ω transitively, then the associated Riesz measure and Wishart law are described explicitly by making use of theory of relatively invariant distributions on homogeneous cones.

§1. Introduction.

Riesz measures and distributions on convex cones form one of fundamental tools of harmonic analysis and of the theory of the wave equation, cf. [START_REF] Faraut | Analysis on symmetric cones[END_REF] in the case of symmetric cones and [START_REF] Gindikin | Analysis in homogeneous domains[END_REF], [START_REF] Ishi | Positive Riesz distributions on homogeneous cones[END_REF] for homogeneous cones. Moreover, exponential families generated by Riesz measures are composed of Wishart laws and are of great significance in random matrix theory and in statistics.

Wishart laws are probability distributions on symmetric or Hermitian matrices with very important applications in multivariate statistics. Their role in statistics is due to two reasons:

-they are probability distributions of the maximum likelihood estimator(MLE) of the covariance matrix in a multivariate normal sample ( [START_REF] Muirhead | Aspects of multivariate statistical theory[END_REF], [START_REF] Andersson | Wishart distributions on homogeneous cones[END_REF]).

-in Bayesian statistics, Wishart laws form a Diaconis-Ylvisaker family ( [START_REF] Diaconis | Conjugate priors for exponential families[END_REF]) of prior distributions for the covariance parameter in a covariance selection model ( [START_REF] Letac | Wishart distributions for decomposable graphs[END_REF]).

On the other hand, recent developments in random matrix theory of chiral Gaussian ensembles containing Wishart laws, are intense and motivated by applications in mathematical physics, cf. [START_REF] Katori | Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems[END_REF] and references therein.

These numerous modern applications of Wishart laws make it necessary to develop the theory of Wishart laws and Riesz measures on more general cones than in the classical case of the symmetric cones of real symmetric or complex Hermitian matrices. For example, in an r-dimensional Gaussian model X, if the marginal variables X i and X j are known to be conditionally independent given all the other variables, the statistical analysis of the covariance matrix of X must be done on the cone P of positive definite symmetric matrices Y with Y ij = Y ji = 0 and on its dual cone Q ( [START_REF] Letac | Wishart distributions for decomposable graphs[END_REF]). The cones P and Q are usually no longer symmetric. This led to some important papers in recent statistical and probabilistic literature about Wishart laws on more general cones: homogeneous cones ( [START_REF] Andersson | Wishart distributions on homogeneous cones[END_REF]) or cones related to graphical models ( [START_REF] Letac | Wishart distributions for decomposable graphs[END_REF]). In these papers, Wishart laws are introduced via their density functions (see Section 3.8).

In our paper we construct and study Riesz measures and Wishart laws on regular convex cones via quadratic maps. For a regular open convex cone Ω ⊂ R n and an Ω-positive quadratic map q : R m → R n , the Riesz measure associated to q is defined as the image of the Lebesgue measure dx on R m by q. Wishart laws studied in this paper are obtained from R m -valued normal random vectors X as the law of Y := q(X)/2. This is a classical natural approach to Riesz measures ( [START_REF] Faraut | Analysis on symmetric cones[END_REF]) and Wishart laws ( [START_REF] Muirhead | Aspects of multivariate statistical theory[END_REF], [START_REF] Faraut | Analysis on symmetric cones[END_REF]) and we propose to extend it to a much more general setting.

In Section 2 of the paper we explain the details of the quadratic construction of Riesz measures on regular convex cones and next we define the corresponding Wishart laws. We compute their Laplace transforms, what is the starting point to get formulas for their expectation, covariance and higher moments (Theorems 2.5 and 2.6). More general Riesz and Wishart distributions associated to virtual quadratic maps are introduced in Section 2.3. Moments formulas are generalized (Theorem 2.9). Group equivariance of Wishart laws is studied at the end of the section.

Section 3 of the article is thoroughly devoted to the case when Ω is a homogeneous cone and the quadratic map q is homogeneous. A crucial role in the analysis of these maps and of related Riesz measures and Wishart laws is played by a matrix realization of any homogeneous cone, coming from [START_REF]On symplectic representations of normal j-algebras and their application to Xu's realizations of Siegel domains[END_REF] and explained in Section 3.2.

It allows, among others, to define basic and standard quadratic maps in Sections 3.3 and 3.4. They play a role of generators for homogeneous quadratic maps q needed to construct all Riesz measures and Wishart laws on Ω. Next we apply the results of [START_REF] Ishi | Positive Riesz distributions on homogeneous cones[END_REF] on Gindikin-Riesz distributions on Ω and on the orbit decomposition of Ω, the closure of Ω. We explain the relation between Riesz measures related to homogeneous quadratic maps and the Gindikin-Riesz distributions on Ω (Theorem 3.9). In Section 3.7, we prove the Bartlett decomposition for the Wishart laws on homogeneous cones (Theorems 3.11 and 3.13).

Families of Wishart laws that we construct and study in Section 3 comprise Wishart distributions studied in papers [START_REF] Andersson | Wishart distributions on homogeneous cones[END_REF] and [START_REF] Letac | Wishart distributions for decomposable graphs[END_REF] (homogeneous case) and are significantly bigger: we describe all singular Wishart laws and many more absolutely continuous Wishart laws than in papers [START_REF] Andersson | Wishart distributions on homogeneous cones[END_REF] and [START_REF] Letac | Wishart distributions for decomposable graphs[END_REF]. For the symmetric cone case, our Wishart laws cover the ones studied in [START_REF] Hassairi | Riesz exponential families on symmetric cones[END_REF] as well. All the results of Section 2 apply to them, in particular the formulas for the moments. Acknowledgement. We thank Professors Gerard Letac and Yoshihiko Konno for discussions on the topic of the article. §2. Riesz measure and Wishart law on a convex cone.

2.1. Regular cones and quadratic maps. In this paper, an open convex cone Ω ⊂ R n is always assumed to be regular, that is, Ω ∩ (-Ω) = {0}, where Ω denotes the closure of Ω. Then the dual cone Ω

* := η ∈ (R n ) * ; y, η > 0 (∀y ∈ Ω \ {0})
is a regular open convex cone again in the dual vector space (R n ) * , and we have (Ω * ) * = Ω. An R n -valued quadratic map q : R m → R n is said to be Ω-positive if (i) q(x) ∈ Ω for all x ∈ R m , and (ii) q(x) = 0 implies x = 0. These (i) and (ii) are restated in a single condition q(x) ∈ Ω \ {0} (∀x ∈ R m \ {0}). For the quadratic map q, we define the associated linear map φ

= φ q : (R n ) * → Sym(m, R) in such a way that t xφ(η)x = q(x), η (η ∈ (R n ) * , x ∈ R m ).
Then the Ω-positivity of q is equivalent to the following property of φ:

(2.1) η ∈ Ω * ⇒ φ(η) is positive definite. Example 1.
Let Ω be the open convex cone in R 3 defined by

Ω :=    t 1   0 0 1   + t 2   1 0 1   + t 3   1 1 1   + t 4   0 1 1   ; t 1 , t 2 , t 3 , t 4 > 0    =      y 1 y 2 y 3   ∈ R 3 ; y 1 > 0, y 2 > 0, -y 1 + y 3 > 0, -y 2 + y 3 > 0    . (2.2) If we identify (R 3 ) * with R 3 by y, η := y 1 η 1 + y 2 η 2 + y 3 η 3 (y, η ∈ R 3 ), we have Ω * =    t 1   1 0 0   + t 2   0 1 0   + t 3   -1 0 1   + t 4   0 -1 1   ; t 1 , t 2 , t 3 , t 4 > 0    =      η 1 η 2 η 3   ∈ R 3 ; η 3 > 0, η 1 + η 3 > 0, η 1 + η 2 + η 3 > 0, η 2 + η 3 > 0    ,
see [START_REF]The gradient maps associated to certain non-homogeneous cones[END_REF]. Let q : R 4 → R 3 be the quadratic map given by

q(x) := (x 1 ) 2   0 0 1   + (x 2 ) 2   1 0 1   + (x 3 ) 2   1 1 1   + (x 4 ) 2   0 1 1   (x ∈ R 4 ).
Clearly, this q is Ω-positive. By a simple calculation, we have

φ(η) =     η 3 0 0 0 0 η 1 + η 3 0 0 0 0 η 1 + η 2 + η 3 0 0 0 0 η 2 + η 3     (η ∈ (R 3 ) * ).
Example 2. Let Π r be the set of positive definite real symmetric matrices of size r. Then Π r is a regular open convex cone in the vector space Sym(r, R) of real symmetric matrices. If we identify the space Sym(r, R) with its dual vector space by the inner product y, η := tr (yη) (y, η ∈ Sym(r, R)), then the dual cone Π * r coincides with Π r . We define q r,s : Mat(r, s; R) → Sym(r, R) by q r,s (x) = x t x (x ∈ Mat(r, s; R)).

Then q r,s is Π r -positive. We denote the (i, j) component of x ∈ Mat(r, s; R) by

x r(j-1)+i , so that Mat(r, s; R) is identified with R rs . Then we have for η ∈ Sym(r, R)

φ(η) =     η η . . . η     ∈ Sym(rs, R),
where η is put s times. In this case, the map φ : Sym(r, R) → Sym(rs, R) is a Jordan algebra representation, and q is exactly the quadratic map associated to the representation ([4, Chapter IV, Section 4]).

Example 3. Let Z be a subspace of Sym(r, R), and put P := Z ∩ Π r . Then P is a regular open convex cone in Z. Let Q ⊂ Z * be the dual cone of P. We shall construct a Q-positive quadratic map q Z : R r → Z * whose associated linear map Then the quadratic map q Z : R r → Z * is given by q Z (x) := π Z * (x t x) (x ∈ R r ). In fact, for x ∈ R r \ {0} and y ∈ P we have (2.3) y, q Z (x) = tr (yx t x) = t xyx > 0 because y is positive definite. Therefore we get q Z (x) ∈ Q \ {0}, so that q Z is Qpositive. Keeping the natural isomorphism (Z 

< i 2 < • • • < i k ≤ r,
and define

(2.6)

R I := { x ∈ R r ; x i = 0 if i / ∈ I } .
We denote by q I Z the restriction of q Z to the space R I ⊂ R r . Clearly q I Z : R I → Z * is Q-positive. The associated linear map φ q I Z : Z → Sym(k, R) gives a submatrix of elements y ∈ Z, that is, φ q I Z (y) = (y iαi β ), which we denote by y I .

Riesz measures and Wishart laws associated to quadratic maps.

For a regular open convex cone Ω ⊂ R n and an Ω-positive quadratic map q : R m → R n , let µ q be the image of the Lebesgue measure dx on R m by q. Namely, the measure µ q on R n is defined in such a way that (2.7)

R n f (y) µ q (dy) = R m f (q(x)) dx
for a measurable function f on R n . The Ω-positivity of q implies that the support of µ q is contained in the closure Ω of the cone Ω. By analogy to [4, Proposition VII.2.4], we call µ q the Riesz measure associated to q.

Lemma 2.1. Let φ : (R n ) * → Sym(m, R) be the linear map associated to q.

Then, for η ∈ Ω * , the Laplace transform L µq (-η) := R n e -η,y µ q (dy) of µ q equals π m/2 (det φ(η)) -1/2 .

Proof. By definition, we have L µq (-η) = R m e -t xφ(η)x dx. Since φ(η) is positive definite, the assertion follows from a formula of the Gaussian integral.

Definition 2.2. The members of the exponential family {γ q,θ } θ∈-Ω * generated by µ q are called the Wishart laws on Ω associated to q. Namely, (2.8) γ q,θ (dy) := e y,θ L µq (θ)

µ q (dy) (y ∈ R n ).
Remark 2.3. By (2.7), (2.8) and Lemma 2.1, we have for a measurable function

f on R n R n f (y)γ q,θ (dy) = π -m/2 (det φ(-θ)) 1/2 R m f (q(x))e -t xφ(-θ)x dx.
Putting Σ := φ(-θ) -1 and replacing the variable x by x/ √ 2, we rewrite the righthand side as (2π

) -m/2 (det Σ) -1/2 R m f (q(x)/2)e -t xΣ -1 x/2 dx.
Therefore, if X is an R m -valued random variable with the normal law N(0, φ(-θ) -1 ), then γ q,θ is nothing else but the law of Y := q(X)/2. In particular, the classical Wishart law as defined in [20, Definition 3.1.3] coincides with our γ q,θ in Example 2.

Proposition 2.4. Let Y be an R n -valued random variable with the Wishart law γ q,θ .

Then the Laplace transform L γ q,θ (η) = E(e Y,η ) of γ q,θ is given by

L γ q,θ (η) = det(I m + φ(-θ) -1 φ(-η)) -1/2 for η ∈ -θ -Ω * .
Proof. By definition, we have L γ q,θ (η) = L µq (θ) -1 L µq (η + θ). Thus the formula follows from Lemma 2.1 and the observation that (det φ(-θ)

) -1 det φ(-η -θ) = det φ(-θ) -1 (φ(-θ) + φ(-η)) = det(I m + φ(-θ) -1 φ(-η)).
We shall consider the mean and the covariance of the Wishart law γ q,θ . First we fix a notation for the directional derivative of a function, and recall some basic formulas. For a (vector-valued) function f on a domain U ⊂ R N , a point a ∈ U and a vector v ∈ R N , we denote by D v f (a) the directional derivative of f at a given by D v f (a) := ( d dh ) h=0 f (a + hv). Now we consider some functions and their derivatives on the domain -Π m in the vector space Sym(m, R). First we set f

(x) = log det(-x) ∈ R for x ∈ -Π m . Then we have (2.9) D v f (a) = -tr (-a) -1 v (a ∈ -Π m , v ∈ Sym(m, R)).
Next we observe the case

f (x) = (-x) -1 ∈ Sym(m, R) for x ∈ -Π m . Then (2.10) D v f (a) = (-a) -1 v (-a) -1 (a ∈ -Π m , v ∈ Sym(m, R)).
Theorem 2.5. Let Y be an R n -valued random variable with the Wishart law γ q,θ .

(i) For η ∈ (R n ) * , one has E( Y, η ) = tr φ(-θ) -1 φ(η)/2. (ii) For η, η ′ ∈ (R n ) * , one has E(( Y, η -M)( Y, η ′ -M ′ )) = tr φ(-θ) -1 φ(η)φ(-θ) -1 φ(η ′ )/2,
where M := E( Y, η ) and M ′ := E( Y, η ′ ).

Proof. Since {γ q,θ } θ∈-Ω * is the exponential family generated by µ q , it is well known ( [START_REF] Leonov | On a method of semi-invariants[END_REF]) that the mean E( Y, η ) is given by the derivative

D η log L µ (θ), while the co- variance E(( Y, η -M)( Y, η ′ -M ′ )) equals D η D η ′ log L µ (θ).
Thus the formulas follow from Lemma 2.1, (2.9) and (2.10) because φ(θ) ∈ -Π m .

Let us discuss higher moments of the Wishart law γ q,θ . The computation is reduced to the derivations of the Laplace transform

L µq (θ) = π m/2 (det φ(-θ)) -1/2 . Namely we have for η 1 , . . . , η N ∈ (R n ) * E( Y, η 1 Y, η 2 . . . Y, η N ) = D η 1 D η 2 . . . D η N L µq (θ) L µq (θ) .
On the other hand, if f (x) = det(-x) -p for x ∈ -Π m , where p is a real constant, the derivative Lemma 5]. We review the formula briefly. For an element π of the symmetric group S N , we write C(π) for the set of cycles of π. For y ∈ Π m , we denote by r π (y) the multilinear form of v 1 , . . . , v N given by

D v 1 D v 2 . . . D v N f (a) (a ∈ -Π m , v 1 , . . . , v N ∈ Sym(m, R)) is given in [8,
r π (y)(v 1 , . . . , v N ) := c∈C(π) tr j∈c yv j .
Then we have

D v 1 D v 2 . . . D v N f (a) = f (a) • π∈S N p ♯C(π) r π ((-a) -1 )(v 1 , . . . , v N ),
which is deduced from (2.9) and (2.10) by induction (see [START_REF] Graczyk | The complex Wishart distribution and the symmetric group[END_REF]). Making use of the formula, we obtain Theorem 2.6. Let Y be an R n -valued random variable with the Wishart law γ q,θ .

For

η 1 , η 2 , . . . , η N ∈ (R n ) * , one has E( Y, η 1 Y, η 2 . . . Y, η N ) = π∈S N 1 2 ♯C(π) r π (φ(-θ) -1 )(φ(η 1 ), φ(η 2 ), . . . , φ(η N )) = π∈S N 1 2 ♯C(π) c∈C(π) tr j∈c φ(-θ) -1 φ(η j ) .
2.3. Wishart laws associated to virtual quadratic maps. We shall consider virtual quadratic maps, that is a 'formal linear combination' of quadratic maps, and the associated Wishart laws. First we introduce the notion of direct sum of quadratic maps. Let q i : R m i → R n (i = 1, . . . , s) be Ω-positive quadratic maps.

Then the direct sum q

= q 1 ⊕ q 2 ⊕ • • • ⊕ q s is an R n -valued quadratic map on R m 1 ⊕ R m 2 ⊕ • • • ⊕ R ms given by q(x) := q 1 (x 1 ) + q 2 (x 2 ) + • • • + q s (x s ) x = s k=1 x i , x i ∈ R m i .
It is easy to see that q is also Ω-positive. If q 1 = q 2 = • • • = q s , then the direct sum q is denoted by q ⊕s 1 . The linear map φ : (R n ) * → Sym(m, R) (m := s i=1 m i ) associated to the direct sum q = ⊕ q i is given by

(2.11) φ(η) =     φ 1 (η) φ 2 (η) . . . φ s (η)     (η ∈ (R n ) * ).
Conversely, if a symmetric matrix φ(η) is expressed by φ 1 (η), . . . , φ s (η) as above for all η ∈ (R n ) * , then the corresponding quadratic map q is the direct sum of q 1 , . . . , q s . In Example 1, the quadratic map q : R 4 → R 3 is the direct sum of 4 quadratic maps [START_REF] Faraut | Analysis on symmetric cones[END_REF], where

q i : R ∋ x → x 2 v i ∈ R 3 (i = 1, . . . ,
v 1 :=   0 0 1   , v 2 :=   1 0 1   , v 3 :=   1 1 1   , q 4 :=   0 1 1   .
In Example 2, we see that q r,s : Mat(r, s; R) → Sym(r, R) is naturally identified with q ⊕s r,1 . In Example 3 with Z given by (2.4), we have q Z = q {1} Z ⊕ q {2,3} Z , while we do not have such a decomposition for the case (2.5).

Let q i : R m i → R n (i = 1, 2) be Ω-positive quadratic maps, and q the direct sum q 1 ⊕ q 2 . Then it is easy to see that the measure µ q equals the convolution µ q 1 * µ q 2 . Thus, for θ ∈ -Ω * we have L µq (θ) = L µq 1 (θ)L µq 2 (θ) and γ q,θ = γ q 1 ,θ * γ q 2 ,θ . In general, if we set q = q ⊕s 1 1

⊕ q ⊕s 2 2 ⊕ • • • ⊕ q ⊕st t
for Ω-positive quadratic maps q i : R m i → R n (i = 1, 2, . . . , t) and positive integers s 1 , s 2 , . . . , s t , then we have (2.12)

L µq (θ) = t i=1 L µ i (θ) s i (θ ∈ -Ω * ).
Now we remark that, even though s i 's are not positive integers, there may exist a positive measure µ q on Ω for which the relation (2.12) holds. In general, for real numbers s 1 , . . . , s r , we shall call a formal sum q = q ⊕s 1 1

⊕q ⊕s 2 2 ⊕• • •⊕q ⊕st t a virtual Ω-
positive quadratic map. The measure µ q satisfying (2.12) is called the Riesz measure associated to q. By the injectivity of the Laplace transform, the associated Riesz measure µ q is unique if it exists. In this case, the Wishart laws γ q,θ (θ ∈ -Ω * ) are defined again as members of the exponential family generated by µ q .

Proposition 2.7. Let q i : R m i → R n (i = 1, . . . , t) be Ω-positive quadratic maps.

Assume that there exists a measure µ q associated to the virtual quadratic map q = q ⊕s 1 1 ⊕ • • • ⊕ q ⊕st t for certain s 1 , . . . , s t ∈ R. Let Y be an R n -valued random variable with the Wishart law γ q,θ . Then the Laplace transform L γ q,θ (η) = E(e Y,η ) of the law γ q,θ is given by

L γ q,θ (η)= t i=1 L γ q i ,θ (η) s i = t i=1 det(I m i + φ i (-θ) -1 φ i (-η)) -s i /2
for η ∈ -θ -Ω * .

Proof. We have L γ q,θ (η) = L µq (θ) -1 L µq (η + θ) by definition, and the right-hand side equals

t i=1 L µ i (θ) -1 L µ i (η + θ) s i by (2.12). Since L γ q i , θ (η) = L µ i (θ) -1 L µ i (η + θ)
, we obtain the first equality. The second equality follows from Proposition 2.4.

Since we see immediately from (2.12) that

log L µq (θ) = t i=1 s i log L µ i (θ),
the virtual versions of Theorem 2.5 is given as follows:

Proposition 2.8. Under the same assumption of Proposition 2.7, one has

(i) E( Y, η ) = t i=1 s i tr φ i (-θ) -1 φ i (η)/2 for η ∈ (R n ) * , (ii) E(( Y, η -M)( Y, η ′ -M ′ )) = t i=1 s i tr φ i (-θ) -1 φ i (η)φ i (-θ) -1 φ i (η ′ )/2 for η, η ′ ∈ (R n ) * , where M := E( Y, η ) and M ′ := E( Y, η ′ ).
As for higher moments, we generalize the formula in Theorem 2.6 as follows:

Theorem 2.9. Under the same assumption of Proposition 2.7, one has

E( Y, η 1 Y, η 2 . . . Y, η N ) = π∈S N 1 2 ♯C(π) c∈C(π) t i=1 s i tr j∈c φ i (-θ) -1 φ i (η j ) . (2.13) for η 1 , η 2 , . . . , η N ∈ (R n ) * .
Theorem 2.9 easily follows from Theorem 2.6 when s 1 , . . . , s t are positive integers, that is, q is a true quadratic map. Indeed, we can consider the associated linear map φ = φ q in this case, and we have

tr j∈c φ(-θ) -1 φ(η j ) = t i=1 s i tr j∈c φ i (-θ) -1 φ i (η j )
by virtue of (2.11). To prove (2.13) for general case, it is enough to verify that the quantity E( Y, η 1 Y, η 2 . . . Y, η N ) is a polynomial of s 1 , . . . , s t . For this purpose, we make some calculations involving the semi-invariants or the cummulants (cf. [START_REF] Leonov | On a method of semi-invariants[END_REF]).

For η ∈ (R n ) * , θ ∈ -Ω * and a positive integer k, we denote by S k (θ; η) the k-th derivative of log L µq (θ) in the direction η:

S k (θ; η) = (D η ) k log L µq (θ) = d k dh k h=0 log L µq (θ + hη).
Similarly to Proposition 2.8, we get

(2.14) S k (θ; η) = (k -1)! 2 t i=1 s i tr φ i (-θ) -1 φ i (η) k .
On the other hand, since the function L µq (θ) is analytic, we have

log L µq (θ + hη) = log L µq (θ) + ∞ k=1 h k k! S k (θ; η).
Taking the exponential, we have (2.15)

L µq (θ + hη) = L µq (θ) exp ∞ k=1 h k k! S k (θ; η) = L µq (θ) ∞ ℓ=0 1 ℓ! ∞ k=1 h k k! S k (θ; η) ℓ .
Let Y be an R n -valued random variable with the Wishart distribution γ q,θ . Then we have

E( Y, η N ) = (D η ) N L µq (θ) L µq (θ) , so that (2.16) L µq (θ + hη) = L µq (θ) ∞ N =0 h N N! E( Y, η N ).
Comparing the coefficients of h N in (2.15) and (2.16), we obtain

E( Y, η N ) = N ℓ=1 1 ℓ! k 1 +k 2 +•••+k ℓ =N N! k 1 !k 2 ! • • • k ℓ ! S k 1 (θ; η)S k 2 (θ; η) . . . S k ℓ (θ; η).
Substituting (2.14) to the equality above, we obtain a formula for the higher moments.

Proposition 2.10. One has

E( Y, η N ) = N ℓ=1 1 ℓ! k 1 +k 2 +•••+k ℓ =N N! k 1 k 2 • • • k ℓ ℓ j=1 t i=1 s i 2 tr φ i (-θ) -1 φ i (η) k j .
(2.17)

The moments

E( Y, η 1 Y, η 2 • • • Y, η N ) (η 1 , . . . , η N ∈ (R n ) *
) can be obtained now by polarization, so that it is a polynomial of s 1 , . . . , s t . Hence the proof of Theorem 2.9 is completed. We note that (2.13) with

η 1 = • • • = η N = η becomes (2.17
), which means that Proposition 2.10 together with the polarization process also yields Theorem 2.9.

2.4. Group equivariance of the Wishart laws. Let G(Ω) be the linear automorphism group { g ∈ GL(n, R) ; gΩ = Ω } of Ω. For an Ω-positive quadratic map q : R m → R n and g ∈ G(Ω), the quadratic map g • q : R m → R n is again Ω-positive.

It is easy to see that the Riesz measure µ g•q is the image of µ q by g, that is,

(2.18) µ g•q (A) = µ q (g -1 A)
for a measurable set A ⊂ R n . Let us discuss the Wishart laws γ g•q,θ for θ ∈ -Ω * .

For η ∈ (R n ) * , we denote by g * η the linear form η • g ∈ (R n ) * . If η ∈ Ω * , then g * η ∈ Ω * because y, g * η = gy, η > 0 for y ∈ Ω \ {0}. We observe

(2.19) L µq (g * θ) = R m e q(x),g * θ dx = R m e g•q(x),θ dx = L µg•q (θ).
Therefore, denoting by 1 A the characteristic function of a measurable set A ⊂ R n , we have

(2.20)

γ g•q,θ (A) = 1 L µg•q (θ) R m 1 A (g • q(x))e g•q(x),θ dx = 1 L µq (g * θ) R m 1 g -1 A (q(x))e q(x),g * θ dx = γ q,g * θ (g -1 A).
We restate (2.20) as follows.

Lemma 2.11. Let g be an element of G(Ω). If a random variable Y obeys the Wishart law γ q,θ , the law of gY is γ g•q, (g -1 ) * θ .

Let q i : R m i → R n (i = 1, . . . , t) be Ω-positive quadratic maps, and q the virtual quadratic map q ⊕s 1 1 ⊕ • • • ⊕ q ⊕st t with s 1 , . . . , s t ∈ R. Then we define g • q to be the virtual quadratic map (g

• q 1 ) ⊕s 1 ⊕ • • • ⊕ (g • q t ) ⊕st .
Proposition 2.12. If the Riesz measure µ q exists, then the Riesz measure µ g•q exists and equals the image of µ q by g. Moreover γ g•q, (g -1 ) * θ is the image of γ q,θ by g.

Proof. Let µ ′ be the image of µ q by g. For θ ∈ -Ω * , we have

(2.21) L µ ′ (θ) = R n e y,θ µ ′ (dy) =
R n e gy,θ µ q (dy) = R n e y,g * θ µ q (dy) = L µq (g * θ).

By (2.12) and (2.19), the last term equals

t i=1 L µ i (g * θ) s i = t i=1 L µg•q i (θ) s i . Thus we get L µ ′ (θ) = t i=1 L µg•q i (θ) s i which means µ ′ = µ g•q by (2.
12). Let γ ′ be the image of γ q,θ by g. Similarly to (2.21), we have L γ ′ (η) = L γ q,θ (g * η) for η ∈ -(g -1 ) * θ -Ω * , while L γ g•q i ,(g -1 ) * θ (η) = L γ q i ,θ (g * η) by Lemma 2.11. On the other hand, we see from Proposition 2.7 that

L γ q,θ (g * η) = t i=1 L γ q i ,θ (g * η) s i = t i=1 L γ g•q i ,(g -1 ) * θ (η) s i = L γ g•q,(g -1 ) * θ (η).
Thus we get L γ ′ (η) = L γ g•q,(g -1 ) * θ (η), so that γ ′ = γ g•q,(g -1 ) * θ by the injectivity of the Laplace transform.

Let Aut(Ω, q) be the set of pairs (g 1 , g 2 ) ∈ G(Ω)×GL(m, R) for which g 1 •q = q•g 2 . Then Aut(Ω, q) forms a Lie subgroup of GL(n, R) × GL(m, R), and we have a group homomorphism pr 1 : Aut(Ω, q) ∋ (g 1 , g 2 ) → g 1 ∈ G(Ω).

The condition (g 1 , g 2 ) ∈ Aut(Ω, q) is also equivalent to

(2.22) φ q (g * 1 η) = t g 2 φ q (η)g 2 (η ∈ (R n ) * ).
Then we obtain

(2.23) det φ q (g * 1 η) = C det φ q (η) (η ∈ (R n ) * ) with C = (det g 2 ) 2
, which means that det φ q (η) is a relatively invariant polynomial on (R n ) * under the contragredient action of pr 1 (Aut(Ω, q)). The following proposition describes a transformation rule of the family of the Wishart laws {γ q,θ } θ∈-Ω * under the group pr 1 (Aut(Ω, q)).

Proposition 2.13. For a measurable set A ⊂ R n and (g 1 , g 2 ) ∈ Aut(Ω, q), one has

(i) µ q (g -1 1 A) = µ g 1 •q (A) = | det g 2 | -1 µ q (A), (ii) γ q,g * 1 θ (A) = γ q,θ (g 1 A).
Proof. (i) Because of (2.18), we only have to show the second equality. By definition, we have

µ g 1 •q (A) = R m 1 A (g 1 • q(x)) dx = R m 1 A (q • g 2 (x)) dx Putting x ′ = g 2 x, the last term equals | det g 2 | -1 R m 1 A (q(x ′ )) dx ′ = | det g 2 | -1 µ q (A), whence (i) follows. (ii) By (2.20), we get for y ∈ R n γ q,g * 1 θ (dy) = γ g 1 •q,θ (g 1 dy) = e g 1 y,θ L µg 1 •q (θ) µ g 1 •q (g 1 dy), Since µ g 1 •q = | det g 2 | -1 µ q by (i), the last term equals e g 1 y,θ | det g 2 | -1 L µq (θ) | det g 2 | -1 µ q (g 1 dy) = γ q,θ (g 1 dy).
Hence (ii) is verified. §3. Homogeneous Case.

3.1. Homogeneous quadratic map. An Ω-positive map q : R m → R n is said to be homogeneous if, for any y, y ′ ∈ Ω, there exists (g 1 , g 2 ) ∈ Aut(Ω, q) for which g 1 y = y ′ . In other words, q is homogeneous if pr 1 (Aut(q, Ω)) acts on Ω transitively.

In this case, Ω is clearly a homogeneous cone, that is, a linear group on R n acts on the cone Ω transitively. Then the dual cone Ω * ⊂ (R n ) * is also a homogeneous cone on which the group pr 1 (Aut(q, Ω)) acts transitively by the contragredient action ( [START_REF] Vinberg | Homogeneous cones[END_REF]). We see from (2.1) and (2.22) that the quadratic map q is homogeneous if and only if the associated linear map φ q : (R n ) * → Sym(m, R) is a representation of the dual cone Ω * in the sense of Rothaus [START_REF] Rothaus | The construction of homogeneous convex cones[END_REF] (see also [START_REF]Representation of clans and homogeneous cones[END_REF]).

A typical example of a homogeneous cone is Π r ⊂ Sym(r, R). For A ∈ GL(r, R),

we denote by ρ(A) the linear map on Sym(r, R) defined by ρ(A)y := Ay t A (y ∈ Sym(r, R)). Then the group ρ(GL(r, R)) acts on Π r transitively. Moreover, the linear automorphism group G(Π r ) equals ρ(GL(r, R)). We see that the quadratic map q r,s : Mat(r, s; R) → Sym(r, R) in Example 2 is homogeneous. Indeed, we have a surjective homomorphism GL(r, R) × O(s) ∋ (A, B) → (ρ(A), τ r,s (A, B)) ∈ Aut(Π r , q r,s ), where τ r,s (A, B) is a linear map on Mat(r, s; R) given by τ r,s (A, B)x := AxB -1 (x ∈ Mat(r, s; R)). Thus we have pr 1 (Aut(q r,s , Π r )) = ρ(GL(r, R)), which acts on Π r transitively. For a subset I ⊂ {1, . . . , r}, we denote by q I the restriction of q r,1 : R r → Sym(r, R) to the space R I ⊂ R r defined in (2.6). The map q I coincides with q I Z in Example 3 with Z = Sym(r, R). Let us observe that q I is homogeneous in general. Let P I be the linear group consisting of A ∈ GL(r, R) for which AR I = R I .

For example, if r = 3, we have

P {1} =    A =   a 11 a 12 a 13 0 a 22 a 23 0 a 32 a 33   ; A ∈ GL(3, R)    , (3.1) P {2,3} =    A =   a 11 0 0 a 21 a 22 a 23 a 31 a 32 a 33   ; A ∈ GL(3, R)    . (3.2)
Since we have a homomorphism P I ∋ A → (ρ(A), A) ∈ Aut(Π r , q I ), it is enough to show that ρ(P I ) acts on Π r transitively. Put k := ♯I and take a permutation matrix w 0 ∈ S r ⊂ GL(r, R) sending R {r-k+1,...,r} onto R I . Then we have P I = w 0 P {r-k+1,...,r} w -1 0 , and

P {r-k+1,...,r} = A 1 0 A 2 A 3 ; A 1 ∈ GL(k, R), A 2 ∈ Mat(r -k + 1, k; R) A 3 ∈ GL(r -k + 1, R) .
Since P {r-k+1,...,r} contains the group of lower triangular matrices, ρ(P {r-k+1,...,r} ) acts on Π r transitively. Therefore ρ(P I ) = ρ(w 0 )ρ(P {r-k+1,...,r} )ρ(w 0 ) -1 also acts on Π r transitively, so that q I is homogeneous.

Coming back to the examples (3.1) and (3.2), we note that q = q {1} ⊕ q {2,3} is not homogeneous as Π 3 -positive quadratic map, while both q {1} and q {2,3} are. Indeed, the image of q generates the space Z ⊂ Sym(3, R) in (2.4). Thus, if (g 1 , g 2 ) ∈ Aut(Π 3 , q), then g 1 must preserve both Z and Π 3 . Let us take y ∈ Π 3 \ Z. Then g 1 does not send I 3 ∈ Π 3 to y because I 3 ∈ Z. Thus the action of pr 1 (Aut(q, Π 3 )) on Π 3 is not transitive.

On the other hand, if we regard q as a map from R {1} ⊕ R {2,3} to Z, then q is a homogeneous P-positive quadratic map, where P := Z ∩ Π r . In fact, since (ρ(A), A) ∈ Aut(q {1} , P) ∩ Aut(q {2,3} , P) for A ∈ P {1} ∩ P {2,3} , we have ρ(A) ∈ pr 1 (Aut(q, P)). Therefore pr 1 (Aut(q, P)) contains a group ρ(P {1} ∩ P {2,3} ) which acts on P transitively.

In Example 1, the quadratic map q : R 4 → R 3 is not homogeneous because Ω ⊂ R 4 in (2.2) is not a homogeneous cone ( [START_REF]The gradient maps associated to certain non-homogeneous cones[END_REF]).

Matrix realization of homogeneous cones.

In this section, we shall discuss a homogeneous cone realized as P V = Z V ∩ Π N with Z V ⊂ Sym(N, R) constructed from an appropriate system V = {V lk } of vector spaces in a specific way explained below, following [14, section 3.1]. The investigation of such cones is fundamental because all homogeneous cones are linearly equivalent to some P V due to [START_REF]On symplectic representations of normal j-algebras and their application to Xu's realizations of Siegel domains[END_REF]Theorem D].

Let us take a partition N = n 1 + n 2 + • • • + n r of a positive integer N, and consider a system of vector spaces V lk ⊂ Mat(n l , n k ; R) (1 ≤ k < l ≤ r) satisfying the following three conditions:

(V1) A ∈ V lk , B ∈ V kj ⇒ AB ∈ V lj (1 ≤ j < k < l ≤ r), (V2) A ∈ V lj , B ∈ V kj ⇒ A t B ∈ V lk (1 ≤ j < k < l ≤ r), (V3) A ∈ V lk ⇒ A t A ∈ RI n l (1 ≤ k < l ≤ r).
Let Z V be the subspace of Sym(N, R) defined by

Z V :=        y =     Y 11 t Y 21 • • • t Y r1 Y 21 Y 22 t Y r2 . . . . . . Y r1 Y r2 • • • Y rr     ; Y kk = y kk I n k , y kk ∈ R (k = 1, . . . , r) Y lk ∈ V lk (1 ≤ k < l ≤ r)        .
We set P V := Z V ∩ Π N . Then P V is a regular open convex cone in the vector space Z V . Let H N be the group of real lower triangular matrices with positive diagonals, and H V a Lie subgroup of H N defined by

H V :=        T =     T 11 T 21 T 22 . . . . . . T r1 T r2 • • • T rr     ; T kk = t kk I n k , t kk > 0 (k = 1, . . . , r) T lk ∈ V lk (1 ≤ k < l ≤ r)        . If T ∈ H V and y ∈ Z V , then ρ(T )y = T y t T belongs to Z V thanks to (V1)-(V3).
Moreover ρ(H V ) acts on the cone P V ⊂ Z V simply transitively (cf. [14, Proposition

2.1]).

Keeping (V3) in mind, we define an inner product on the vector space V lk (1 ≤ k < l ≤ r) by the equality

(3.3) A t A = (A|A)I n l = A 2 I n l (A ∈ V lk ).
For y, y ′ ∈ Z V , we set

(3.4) y, y ′ := r k=1 y kk y ′ kk + 2 1≤k<l≤r (Y lk |Y ′ lk ),
where y kk and Y lk (respectively y ′ kk and Y ′ lk ) denote the components of y (respectively y ′ ). Note that the inner product is not equal to tr yy ′ unless n

1 = • • • = n r = 1.
By this coupling, we identify the dual space Z * V with Z V . Let us observe that I N belongs to the dual cone

P * V of P V , that is, 0 < y, I N = y 11 + • • • + y rr (y ∈ P V \ {0}).
Indeed, since each y kk is a diagonal entry of the non-negative matrix y ∈ P V \ {0}, we have y kk ≥ 0. Suppose r k=1 y kk = 0. Then y 11 = • • • = y rr = 0 and tr y = r k=1 n k y kk = 0. This together with the non-negativity of y implies y = 0, which is a contradiction.

For T ∈ H V , define ρ * (T ) ∈ GL(Z V ) by y, ρ * (T )η = ρ(T )y, η (y, η ∈ Z V ). By [START_REF] Vinberg | The theory of convex homogeneous cones[END_REF], we have

P * V = { ρ * (T )I N ; T ∈ H V }. Moreover, the map H V ∋ T → ρ * (T )I N ∈ P * V is a diffeomorphism. For σ = (σ 1 , . . . , σ r ) ∈ C r , we define the one-dimensional representation χ σ : H V → C × by χ σ (T ) := (t 11 ) 2σ 1 . . . (t rr ) 2σr (T ∈ H V ). Note
that any one-dimensional representation χ of H V is of the form χ σ , so that χ is determined by the values on the subgroup A V ⊂ H V consisting of diagonal matrices.

Let us give some examples. When n 1 = n 2 = • • • = n r = 1 and V lk = R for all 1 ≤ k < l ≤ r, the conditions (V1)-(V3) are clearly satisfied, and we have Z V = Sym(r, R) and P V = Π r . For the case r = 3,

n 1 = n 2 = n 3 = 1, V 21 = {0} and V 31 = V 32 = R, the space Z V equals Z in (2.5). Let us set r = 3, n 1 = 2, n 2 = n 3 = 1, V 21 = v 0 ; v ∈ R , V 31 = 0 v ; v ∈ R ,
and V 32 = {0}. Then we have 

(3.5) Z V =           
P V = { y ∈ Z V ; y is positive definite } = y ∈ Z V ; y 11 > 0, y 11 y 22 -(y 21 ) 2 > 0, y 11 y 33 -(y 31 ) 2 > 0 ,
which is exactly the Vinberg cone [START_REF] Vinberg | The theory of convex homogeneous cones[END_REF].

Set r = 2, n 1 = m ≥ 1, n 2 = 1 and V 21 = Mat(1, m; R). Then Z V =            y 11 v 1 . . . . . . y 11 v m v 1 • • • v m y 22     ; y 11 , y 22 , v 1 , . . . , v m ∈ R        , P V = y ∈ Z V ; y 11 > 0, y 11 y 22 -(v 1 ) 2 -• • • -(v m ) 2 > 0 , (3.7) 
so that we obtain the Lorentz cone of dimension m + 2.

Basic quadratic maps. Let W i

V (i = 1, . . . , r) be the subspace of Mat(N, n i ; R) consisting of matrices x of the form

x =     0 n 1 +•••+n i-1 ,n i X ii . . . X ri     X ii = x ii I n i , x ii ∈ R X li ∈ V li (l = i + 1, . . . ,

r) .

For example, when Z V is the one in (3.5), we have

W 1 V =            x 11 0 0 x 11 x 21 0 0 x 31     ; x 11 , x 21 , x 31 ∈ R        , W 2 V =            0 0 x 22 0     ; x 22 ∈ R        , W 3 V =            0 0 0 x 33     ; x 33 ∈ R       
, while for the case that Z V is the space Z in (2.5), we have

W 1 V =      x 11 0 x 31   ; x 11 , x 31 ∈ R    , W 2 V =      0 x 22 x 32   ; x 22 , x 32 ∈ R    , W 3 V =      0 0 x 33   ; x 33 ∈ R    .
For T ∈ H V and x ∈ W i V , we see from (V1) that T x ∈ W i V , which defines a representation τ i : H V → GL(W i V ). Since W i V ⊂ Mat(N, n i ; R), we can consider the restriction q i V of the Π N -positive quadratic map q N,n i : Mat(N, n i ; R) → Sym(N, R) in Example 2 to the space W i V . Thanks to (V2) and (V3), we have

q i V (x) = x t x ∈ Z V for x ∈ W i V . Then the quadratic map q i V : W i V ∋ x → x t x ∈ Z V is P V -positive. On
can deduce (iii) recursively.

(iv) It is known ([23, Chapter 3, Section 3] and [6, Section 1]) that a homogeneous cone is described as the subset of the ambient vector space consisting of points at which all relatively invariant (appropriately normalized) functions are positive. Thus the assertion follows from (iii).

Example 4. Let P V be the Vinberg cone, that is, Z V is as in (3.5). Then we have

φ 1 V (η) =   η 11 η 21 η 31 η 21 η 22 0 η 31 0 η 33   , φ 2 V (η) = η 22 , φ 3 V (η) = η 33 for η ∈ Z V . If η = ρ * (T )I 4 for T ∈ H V , we have (t 11 ) 2 (t 22 ) 2 (t 33 ) 2 = det φ 1 V (η), (t 22 ) 2 = η 22 , (t 33 ) 2 = η 33 , so that (t 11 ) 2 = det φ 1 V (η) η 22 η 33 = η 11 - (η 21 ) 2 η 22 - (η 31 ) 2 η 33 .
On the other hand, we have by Proposition 3.1 (iv)

P * V = η ∈ Z V ; η 11 η 22 η 33 -η 33 (η 21 ) 2 -η 22 (η 31 ) 2 > 0, η 22 > 0, η 33 > 0 .
Therefore, if Z is the space in (2.5), the linear isomorphism gives a bijection from P * V onto P = Z ∩ Π 3 . The adjoint map ι * : Z * → Z * V ≡ Z V gives the matrix realization of the Vinberg cone Q as the homogeneous cone P V .

ι :Z V ∋    
3.4. Standard quadratic maps and H-orbits in P V . We call the maps q ε V (ε ∈ {0, 1} r , ε = (0, . . . , 0)) standard quadratic maps. They are of particular importance among the virtual quadratic maps q s

V = (q 1 V ) ⊕s 1 ⊕ • • • ⊕ (q r V ) ⊕sr (s = (s 1 , . . . , s r ) ∈ R r ). Let us denote by I(ε) the set { 1 ≤ i ≤ r ; ε i = 1 }. We identify q ε V with a direct sum ⊕ i∈I(ε) q i V on the space W ε V := ⊕ i∈I(ε) W i V . Recalling (3.9), we have the isomorphism W ε V ≃ ⊕ i∈I(ε) (R ⊕ ⊕ l>i V li ), which enables us to describe y = q ε V (x) ∈ Z V (x ∈ W ε
V ) as the matrix composed of the blocks

(3.10) Y lk = i≤k, i∈I(ε) X li t X ki (1 ≤ k ≤ l ≤ r),
where X ii := x ii I n i for i ∈ I(ε). 

q ε V (x) = T x t T x .
For example, if r = 3 and ε = (1, 0, 1), then an element x of

W ε V = W 1 V ⊕ W 3 V is of the form x =   X 11 X 21 X 31   ⊕   0 0 X 33   X 11 = x 11 I n 1 , X 33 = x 33 I n 3 x 11 , x 33 ∈ R, X 21 ∈ V 21 , X 31 ∈ V 31 ,
and we have

T x =   X 11 X 21 0 X 31 0 X 33   ∈ Mat(N, R).
For ε ∈ {0, 1} r , let E ε be the element of V given by

E ε :=   ε 1 I n 1 . . . ε r I nr   ,
and

O ε the H V -orbit ρ(H V )E ε ⊂ Z V through E ε .
In particular, the orbit O (0,...,0)

is the origin {0}, while O (1,...,1) = ρ(H V )I N equals the cone P V . It is shown in [START_REF] Ishi | Positive Riesz distributions on homogeneous cones[END_REF]Theorem 3.5] that the H V -orbit decomposition of the closure P V is given as

P V = ε∈{0,1} r O ε . Proposition 3.2. If ε = (0, . . . , 0), the image of the quadratic map q ε V equals the closure O ε of the orbit O ε . Proof. Let W ε,+ V be the subset { x ∈ W ε V ; x ii > 0 (i ∈ I(ε)) } of W ε V . For y = ρ(T )E ε = T E ε t T ∈ O ε with T ∈ H V , we take a unique x ∈ W ε,+
V for which T x equals T E ε . Then we have y = q ε V (x) by (3.12). Conversely, for any x ∈ W ε,+ V , we put T

:= T x + I -E ε ∈ H V so that q ε V (x) = T E ε t T ∈ O ε . Therefore we obtain O ε = q ε V (W ε,+ V ). On the other hand, putting W ε, * V := { x ∈ W ε V ; x ii = 0 (i ∈ I(ε)) }, we see easily that q ε V (W ε, * V ) = q ε V (W ε,+ V ). Since W ε, * V is an open dense subset of W ε V , the orbit O ε is dense in the image of the quadratic map q ε V , which is necessarily Proof. (i) If x ′ = τ ε (T )x ∈ W ε,+ V with x ∈ W ε,+ V , we have x ′ ii = t ii x ii for i ∈ I(ε). Thus (3.16) i∈I(ε) (x ′ ii ) 2u i -1 = χ u-ε/2 (T ) i∈I(ε) (x ii ) 2u i -1 .
On the other hand, we observe that

dx ′ = | det τ ε (T )|dx = i∈I(ε) det τ i (T ) dx,
and the last term equals i∈I(ε) χ m(i)/2 (T ) dx by Proposition 3.1 (i). Since

i∈I(ε) m(i) = r i=1 ε i m(i) = ε + p(ε),
we have dx ′ = χ ε/2+p(ε)/2 (T )dx, which together with (3.16) implies (i).

(ii) By definition, we have

x 2 = i∈I(ε) (x ii ) 2 + l>i X li 2 .
Thus the left-hand side of (3.15) equals

i∈I(ε) 2 Γ(u i ) ∞ 0 e -(x ii ) 2 (x ii ) 2u i -1 dx ii l>i V li e -X li 2 dX li π n li /2 .
Therefore we obtain (3.15) from li e -X li 2 dX li = π n li /2 and ∞ 0 e -(x ii ) 2 (x ii ) 2u i -1 dx ii = Γ(u i )/2. Remark 3.5. Lemma 3.4 tells us that e -x 2 M ε u (dx) is a probability measure on W ε,+

V . Actually, we see from the proof that if X u is an W ε,+ V -valued random variable with the law e -x 2 M ε u (dx), then its components are independent and satisfy √ 2X u li ∼ N(0, I n li ), and ( √ 2X u ii ) 2 ∼ χ 2 (2u i ), where χ 2 (u) denotes the chi-square law with the density 2 -u Γ(u/2) -1 e -t/2 t u-1 (t > 0). We shall see later that any Wishart law associated to a homogeneous quadratic map is the image of this measure by an appropriate quadratic map.

3.5. Gindikin-Riesz distributions. For σ = (σ 1 , . . . , σ r ) ∈ C r , we denote (σ r , . . . , σ 1 ) by σ * . Let ∆ * σ be the function on the cone P * V given by

(3.17) ∆ * σ (ρ * (T )I N ) = χ σ * (T ) (T ∈ H V ).
By Proposition 3.1 (ii) and (iii), ∆ * σ (η) can be expressed as a product of powers of the polynomials det φ i V (η). Putting

E η :=   η 1 I n 1 . . . η r I nr   ∈ Z V for η = (η 1 , . . . , η r ) ∈ R r >0 , we have (3.18) ∆ * σ (E η ) = (η 1 ) σr (η 2 ) σ r-1 . . . (η r ) σ 1 . For each σ ∈ C r , Gindikin ([6], [7]) constructed a tempered distribution R σ ∈ S ′ (Z V ) whose Laplace transform L Rσ (θ) = R σ (e y,θ
) is given by

(3.19) L Rσ (θ) = ∆ * -σ * (-θ) (θ ∈ -P * V ).
We call R σ the Gindikin-Riesz distribution on the homogeneous cone P V . The support of R σ is contained in P V , and R σ is relatively invariant under the action of ρ(H V ), that is,

(3.20) R σ (f • ρ(T )) = χ -σ (T )R σ (f ) for T ∈ H V and f ∈ S(Z V ).
Proposition 3.6. For non-zero ε ∈ {0, 1} r and u ∈ R + (ε), put σ := u + p(ε)/2. Then R σ is the image of M ε u by the standard quadratic map q ε V .

Proof. By (3.19), it is sufficient to show that

W ε,+ V e q ε V (x),θ M ε u (dx) = ∆ * -σ * (-θ)
for θ ∈ -P * V . Take T ∈ H V for which θ = -ρ * (T )I N . Then the left-hand side is

W ε,+ V e -q ε V (x),ρ * (T )I N M ε u (dx) = W ε,+ V e -q ε V (τε(T )x),I N M ε u (dx)
by (3.13), and it is equal to

χ -(u+p(ε)/2) (T ) W ε,+ V e -q ε V (x),I N M ε u (dx)
by Lemma 3.4 (i). Since q ε V (x), I N = x 2 by (3.11), we see from Lemma 3.4 (ii) that

W ε,+ V e q ε V (x),θ M ε u (dx) = χ -(u+p(ε)/2) (T ) = ∆ * -σ * (-θ). q : R 4 → Z V by q(x) := ι • q x 1 + ix 2 x 3 + ix 4
= ι (x 1 ) 2 + (x 2 ) 2 (x 1 x 3 + x 2 x 4 ) -i(x 1 x 4 -x 2 x 3 ) (x 1 x 3 + x 2 x 4 ) + i(x 1 x 4 -x 2 x 3 ) (x 3 ) 2 + (x 4 ) 2 =   (x 1 ) 2 + (x 2 ) 2 0 x 1 x 3 + x 2 x 4 0 (x 1 ) 2 + (x 2 ) 2 x 1 x 4 -x 2 x 3 x 1 x 3 + x 2 x 4 x 1 x 4 -x 2 x 3 (x 3 ) 2 + (x 4 ) 2   .

Then we have

φ q (η) =     η 1 0 η 3 η 4 0 η 1 -η 4 η 3 η 3 -η 4 η 2 0 η 4 η 3 0 η 2    
for η ∈ Z V . It is easily checked that the map φ q • ι : Herm(2, C) → Sym(4, R) is a Jordan algebra representation. For η ∈ Ω * we have

(3.26) L µq (-η) = π 2 (det φ q (η)) -1/2 = π 2 (η 1 η 2 -(η 3 ) 2 -(η 4 ) 2 ) -1
by Lemma 2.1. On the other hand, the basic quadratic maps q i V : W i V → Z V (i = 1, 2) are given by Thus we obtain

(3.27) L µ q 1 V (-η) = π 3/2 (η 2 ) -1/2 (η 1 η 2 -(η 3 ) 2 -(η 4 ) 2 ) -1/2 , L µ q 2 V (-η) = π 1/2 (η 2 ) -1/2
for η ∈ P * V . Comparing (3.26) and (3.27), we see that µ q = µ (q 1 V ) ⊕2 ⊕(q 2 V ) ⊕(-2) , whereas the quadratic map q is by no means equal to the virtual quadratic map (q 1 V ) ⊕2 ⊕ (q 2 V ) ⊕(-2) . We see also from (3.26) and (3.27) that µ q⊕(q 2 V ) ⊕2 = µ (q 1 V ) ⊕2 , whereas the two (true) quadratic maps q ⊕ (q 2 V ) ⊕2 and (q 1 V ) ⊕2 do not coincide even up to linear transforms g 0 ∈ G(Ω), as the domains of these maps are different.

Therefore two different quadratic maps may correspond to the same Riesz measure.

3.8. Density function for the non-singular case.

Since the orbit O ε = ρ(H)E ε is contained in the boundary ∂P V of the homogeneous cone P V unless ε = (1, . . . , 1), the Gindikin-Riesz distribution R σ is a singular measure for σ ∈ Ξ(ε) with ε = (1, . . . , 1) thanks to Proposition 3.6. On the other hand, if σ ∈ Ξ(1, . . . , 1), that is, σ i > p i /2 (i = 1, . . . , r),

where p i := p i (1, . . . , 1) = l>i n li , then the Gindikin-Riesz distribution is an absolutely continuous measure with respect to the Lebesgue measure, and the density function is given explicitly in [START_REF] Gindikin | Analysis in homogeneous domains[END_REF] as follows.

Noting that the group H V acts on P V simply transitively, we define the function ∆ σ : P → C × for σ = (σ 1 , . . . , σ r ) ∈ C r by ∆ σ (ρ(T )I N ) := χ σ (T ) (T ∈ H V ).

For y = ρ(T )I N = T t T ∈ P V , we can express ∆ σ (y) as a product of powers of principal minors of y (cf. [4, p. 122]). Define d = (d 1 , . . . , d r ) ∈ Z r /2 by d k := 1 + ( l>k n lk + i<k n ki )/2. Then ∆ -d (y)dy gives a G(P V )-invariant measure on P ([6, Proposition 2.2]). Take σ ∈ Ξ(1, . . . , 1). We see from [6, Theorem 2.1] that the integral Γ P V (σ) := P V e -y,I N ∆ σ-d (y) dy converges and equals π (dim Z V -r)/2 r i=1 Γ(σ i -p i /2). By [6, Proposition 2.3], we see that (3.28) R σ (dy) = ∆ σ-d (y) Γ P V (s) dy (y ∈ P V ).

Owing to (3.24) and (3.28), we conclude the following proposition.

Proposition 3.14. Let q s V = (q 1 V ) ⊕s 1 ⊕ • • • ⊕ (q r V ) ⊕sr be the virtual quadratic map such that σ = r i=1 s i m(i)/2 belongs to Ξ(1, . . . , 1), that is, σ i > p i /2 (i = 1, . . . , r). Then one has (3.29) γ q s V ,θ (dy) = e y,θ ∆ * σ * (-θ)∆ σ-d (y) Γ P V (s) dy (y ∈ P V ).

Note that the formula (3.29) served as a definition of a Wishart law in [START_REF] Andersson | Wishart distributions on homogeneous cones[END_REF].

Example 6. Let Z V be the space defined in (3.5). If y = ρ(T )I N = T t T ∈ P V with T ∈ H V , then we see easily that 

y

  Throughout the paper and from its very beginning all our concepts are illustrated on important examples, including a non-homogeneous cone (Example 1 Section 2), symmetric cones of positive definite real symmetric matrices Π r (Example 2 Section 2), 4-dimensional Lorentz cone(Example 5 Section 3), and non-symmetric but homogeneous Vinberg cone and its dual(Example 3 Section 2).

φ

  Z : Z → Sym(r, R) equals the inclusion map. Let us define the surjective linear map π Z * : Sym(r, R) → Z * by y, π Z * (S) := tr yS (y ∈ Z, S ∈ Sym(r, R)).

y 11 0 y 21 0 0 y 11 0 y 31 y 21 0 y 22 0 0 y 31 0 y 33

 33 11 , y 22 , y 33 , y 21 , y 31 ∈ R

η 11 0 η 21 0 0 η 11 0 η 31 η 21 0 η 22 33 0 η 31 0 η 22 η 21 η 31 η 21 η 11 

 2211 

  For the case l = k, we have Y kk = y kk I n k and (3.11)y kk = i≤k, i∈I(ε) X ki 2 thanks to (3.3), where we putX ii := |x ii |. For each x ∈ W ε V , let T x ∈ Mat(N,R) be a lower triangular matrix whose (k, i)-block component is X ki for k > i with i ∈ I(ε), and other components are zero. Then we have(3.12) 

x 1 x 4 x 1 2 1 η 3 η 4 η 3 η 2 0 η 4 0 η 2  , φ 2 V

 1222 x 3 x 1 x 4 (x 3 ) 2 + (x 4 ) (η) = η 2 .

  = {i 1 , i 2 , . . . , i k } be a subset of {1, . . . , r} with 1 ≤ i 1

	Let I						
	≃ Z in mind, we see from (2.3) that φ Z (y) = y (y ∈ Z). Soon later, we shall consider the cases    y 11 0   0 
	(2.4)	Z :=			0 y 22 y 32 0 y 32 y 33	 ∈ Sym(3, R) ; y 11 , y 22 , y 32 , y 33 ∈ R	
	and						
			 	 y 11 0 y 31		 
	(2.5)	Z :=		 y 31 y 32 y 33 0 y 22 y 32	 ∈ Sym(3, R) ; y 11 , y 21 , y 31 , y 22 , y 33 ∈ R	
	as concrete examples. Actually, in the latter case (2.5), the cones Q and P are called the Vinberg cone and the dual Vinberg cone respectively, which are the lowest dimen-
	sional non-symmetric homogeneous cones ([23]). We shall see another realization of
	the Vinberg cone Q in (3.6) and the last paragraph of Section 3.3.

* ) *

  11 = (t 11 ) 2 , y 11 y 22 -(y 21 ) 2 = (t 11 ) 2 (t 22 ) 2 , y 11 y 33 -(y 31 ) 2 = (t 11 ) 2 (t 33 ) 2 ,
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the other hand, we observe (3.8)

which yields the group homomorphism H V ∋ T → (ρ(T ), τ i (T )) ∈ Aut(P V , q i V ). It follows that the quadratic map q i V is homogeneous. We call q 1 V , . . . , q r V basic quadratic maps for P V . Recalling the inner product on V lk given by (3.3), we define an inner product on the space W i

V via the natural isomorphism (3.9)

Taking an orthonormal basis of W i V with respect to the inner product, we identify i) , where m(i) := dim W i V . Then we consider the linear map φ i V : Z V ≡ Z * V → Sym(m(i), R) associated to the quadratic map q i V . Note that, if we write n li for dim V li , we have m(i) = 1 + l>i n li . Proposition 3.1. (i) One has

where m(i) = (0, • • • , 0, 1, n i+1,i , . . . , n ri ) ∈ Z r .

(ii) For η = ρ(T ) * I N ∈ P * V with T ∈ H V , one has

In particular, (t rr ) 2 = det φ r V (η). (iii) For 1 ≤ i < r, there exist integers c i+1,i , . . . , c ri such that

(iv) One has P * V = { η ∈ Z V ; det φ i V (η) > 0 (i = 1, . . . , r) }.

Proof. (i) Since H V ∋ T → det τ i (T ) ∈ C × is a one-dimensional representation, it is sufficient to check the equality for diagonal matrices T ∈ A V . In this case, the isomorphism (3.9) gives the eigenspace decomposition of τ i (T ), where R and V li correspond to the eigenvalues t ii and t ll respectively. Therefore we have det

ri , whence we closed. Indeed, introducing the projective imbedding ι V of a vector space V by

In the proof of Proposition 3.2, we see that the quadratic map q ε V gives a surjective map from W ε,+ V onto O ε . The map is also one-to-one thanks to [START_REF] Ishi | Positive Riesz distributions on homogeneous cones[END_REF]Lemma 3.3 (ii)], while the map

Actually, a large part of the content of this section is presented in language of normal j-algebra in [START_REF] Ishi | Positive Riesz distributions on homogeneous cones[END_REF]Sections 3 and 4].

We define the representation τ ε :

Then we have by (3.8)

given by

(ii) One has

We set

If ε = (0, . . . , 0) and σ ∈ Ξ(ε), then R σ is a positive measure on the orbit O ε by Proposition 3.6. For the case ε = (0, . . . , 0), we have Ξ(0, . . . , 0) = {(0, . . . , 0)} and R (0,...,0) is the Dirac measure at the origin {0}. It is proven in [START_REF] Ishi | Positive Riesz distributions on homogeneous cones[END_REF] that they exhaust all the cases that R σ is a positive measure. 

The parameter set Ξ is also described as

3.6. Riesz measures and Gindikin-Riesz distributions. Let us investigate a relation of the Riesz measures µ q associated to homogeneous P V -positive quadratic maps q and the Gindikin-Riesz distributions on P V .

Proposition 3.8. For i = 1, . . . , r, one has µ q i V = π m(i)/2 R m(i) . Proof. ¿From Lemma 2.1 and Proposition 3.1 (ii), we have

Assume that there exists the Riesz measure µ q s V associated to a virtual quadratic map q s

. By (2.12) and (3.21), we have for θ

We put

Then the equality above can be rewritten as

where |σ| := σ 1 +• • •+σ r . Thus µ q s V equals π |σ| R σ , so that σ belongs to Ξ(ε) for some ε ∈ {0, 1} r owing to Theorem 3.7. The converse argument is also valid. Therefore we obtain Theorem 3.9. For a virtual quadratic map q s

⊕sr , there exists the associated Riesz measure µ q s V if and only if σ := r i=1 s i m(i)/2 belongs to Ξ. In this case µ q s V = π |σ| R σ , and there exist ε ∈ {0, 1} r and u ∈ R + (ε) for which

Let q : R m → Z V be any homogeneous P V -positive quadratic map. As is noted in Section 3.1, the group pr 1 (Aut(P V , q)) acts on the cone P V transitively. Assume first that pr 1 (Aut(P V , q)) contains ρ(H V ). Then the polynomial det φ q (η) is relatively invariant under the action of ρ(H V ) by (2.23). Namely, for each T ∈ H V , there exists

, where C := det φ q (I N ). By (3.18), we have

which gives a practical way to determine m i . Indeed, we see from this formula that m i are non-negative integers. Comparing the degrees of both sides, we obtain m = m 1 + • • • + m r . Similarly to Proposition 3.8, we have

Let us consider the virtual quadratic map q ⊕s . The associated Riesz measure exists if and only if sm/2 ∈ Ξ, and in this case

As for the general case, we have the following result.

Proposition 3.10. Let q : R m → Z V be a homogeneous P V -positive quadratic map. Then there exist g 0 ∈ G(P V ), m ∈ Z r , and C > 0 for which

The Riesz measure µ q ⊕s associated to the virtual quadratic map q ⊕s exists if and only if sm/2 ∈ Ξ. In this case, µ q ⊕s equals the image of C -s/2 π sm/2 R sm/2 by g 0 .

Proof. We note that pr 1 (Aut(P V , q)) acts on the cone P V transitively, and that the identity component of pr 1 (Aut(P V , q)) equals the identity component of an algebraic group (cf. [START_REF]Representation of clans and homogeneous cones[END_REF]Theorem 2]). It follows that an Iwasawa subgroup (maximal connected split solvable subgroup) H of pr 1 (Aut(P V , q)) acts on P V simply transitively ([23, Chapter 1]). Since H is also an Iwasawa subgroup of G(P V ), it is conjugate to another Iwasawa subgroup ρ(H V ) ⊂ G(P V ). Namely, there exists g 0 ∈ G(P V ) for which g -1 0 Hg 0 = ρ(H V ). Let q ′ be the P-positive quadratic map g -1 0 • q : R m → Z V . We have

0 pr 1 (Aut(P V , q))g 0 ⊃g -1 0 Hg 0 = ρ(H V ). Thus we can apply the argument preceding Proposition 3.10 for q ′ , so that we have

Since q ⊕s = g 0 • (q ′ ) ⊕s , we get the last statement from Proposition 2.12. Proposition 3.10 states that the Riesz measure µ q associated to a homogeneous q is equal to some Gindikin-Riesz distribution up to a linear transform on G(P V ). On the other hand, Theorem 3.9 tells us that if a Gindikin-Riesz distribution is a positive measure, then it equals a Riesz measure associated to the virtual sum q s V = (q 1 V ) ⊕s 1 ⊕• • •⊕(q r V ) ⊕sr of basic quadratic maps up to a constant multiple. For example, let us recall the homogeneous Π r -positive quadratic map q I : R I → Sym(r, R) with I ⊂ {1, . . . , r} and the permutation matrix w 0 ∈ S r ⊂ GL(r, R) in Section 3.1. Putting g 0 := ρ(w 0 ), we have q I = g 0 • q {r-k+1,...,r} (k := ♯I), while q {r-k+1,...,r} is exactly the basic quadratic map q r-k+1 V for Z V = Sym(r, R). Therefore, the Riesz measure µ (q I ) ⊕s exists if and only if (0, . . . , 0, s/2, . . . , s/2

In this case, µ (q I ) ⊕s equals the image of π s/2 R (0,...,0,s/2,...,s/2) = µ (q r-k+1 V ) ⊕s by g 0 .

Let q 1 : R m 1 → Z V and q 2 : R m 2 → Z V be two homogeneous P V -positive quadratic maps. As we have seen in Section 3.1, the direct sum q 1 ⊕ q 2 is not necessarily homogeneous. Let us assume that the group pr 1 (Aut(P V , q 1 )) ∩ pr 1 (Aut(P V , q 2 )) acts on P V transitively. In this case, we see easily that q 1 ⊕ q 2 is homogeneous. As in Proposition 3.10, we can take g 0 ∈ G(P V ) for which g 0 ρ(H V )g -1 0 ⊂ pr 1 (Aut(P V , q 1 ))∩ pr 1 (Aut(P V , q 2 )). Then we have det φ q 1 ((g -1 0

. Now we consider a virtual quadratic map q = q ⊕s 1 1 ⊕ q ⊕s 2 2 . We see that the associated Riesz measure µ q exists if and only if s 1 m ′ + s 2 m ′′ /2 ∈ Ξ, and in this case, µ q is the image

by g 0 . Obviously, the same argument is valid for general quadratic maps q = q ⊕s 1 1

3.7. Bartlett decomposition of the Wishart laws. Let q : R m → Z V be a homogeneous P V -positive quadratic map. Then the Wishart law γ q,θ (θ ∈ -P * V ) is the image of the normal law N(0, φ(-θ) -1 ) on the vector space R m by the quadratic map q/2, see Remark 2.3.

However, this description of the Wishart law does not permit us to determine its support in general. In this section, we shall give another construction of the Wishart random matrices , which is a generalization of the Bartlett decomposition ( [START_REF] Bartlett | On the theory of statistical regression[END_REF], [START_REF] Muirhead | Aspects of multivariate statistical theory[END_REF]Theorem 3.2.14]) and has the advantage of controlling the support of the underlying Wishart law. Moreover, the result is valid for virtual quadratic maps.

First we consider the virtual quadratic map q s V = (q 1 V ) ⊕s 1 ⊕ • • • ⊕ (q r V ) ⊕sr whose associated Riesz measure µ q s V exists. Then σ = r i=1 s i m(i)/2 belongs to Ξ and we have µ q s V = π |σ| R σ by Theorem 3.9. Moreover, we have θ). Therefore we obtain from (2.8) that

We remark that distributions of this type are considered in [START_REF] Hassairi | Riesz exponential families on symmetric cones[END_REF] for the case when P V is a symmetric cone. Assume that γ q s V ,θ is not the Dirac measure. Then σ = (0, . . . , 0), so that we can take a non-zero ε ∈ {0, 1} r and u ∈ R + (ε) for which σ = u + p(ε)/2. Recall the standard quadratic map q ε V :

V is identified with a lower triangular matrix T x for which q ε V (x) = T x t T x . Thus, the W ε,+ V -valued random variable X u in the following theorem can be regarded as a triangular random matrix, similarly to the Bartlett decomposition of the classical Wishart distribution. Theorem 3.11. Let σ = u + p(ε)/2 and X u be an W ε,+ V -valued random variable whose components are independent and satisfy (X u ii ) 2 ∼ χ 2 (2u i ) and X u li ∼ N(0, I n li )

Proof. For a measurable function f on Z V , we see from (3.24) and Proposition 3.6 that

, by the change of variable of x by x/ √ 2, we rewrite the last term as

Keeping the Remark 3.5 in mind, we see that the law of the random variable X u is e -x 2 /2 M ε u (dx/2). Hence (i) holds. To show (ii), it suffices to check that γ q s V ,θ is the image of γ q s V ,-I N by ρ(T ) -1 . Since γ q s V ,-I N (dy) = e -y,I N R σ (dy), we have γ q s V ,-I N (ρ(T ) dy) = e -ρ(T )y,I N R σ (ρ(T ) dy) = e y,θ χ σ (T )R σ (dy) by (3.20). Therefore (3.24) together with (3.17) leads us to the assertion (ii). Now we consider the Wishart distribution γ q ⊕s ,θ , where q is a general homogeneous P V -positive quadratic map. First we show a refinement of the first part of Proposition 3.10. Lemma 3.12. Let q : R m → Z V be a homogeneous P V -positive quadratic map, and θ an element of -P * V . Then there exist g 0 ∈ G(P V ), m ∈ Z r and C > 0 for which (3.25) det φ q ((g

Proof. It is shown in the proof of Proposition 3.10 that there exists a 0 ∈ G(P V ) for which a 0 ρ(H V )a -1 0 ⊂ pr 1 (Aut(P V , q)). Since -a * 0 θ ∈ P * V , we take T 0 ∈ H V for which ρ * (T 0 )I N = -a * 0 θ. Put g 0 := a 0 ρ(T 0 ) -1 ∈ G(P V ). Then g 0 ρ(H V )g -1 0 ⊂ pr 1 (Aut(P V , q)) and g * 0 θ = ρ * (T 0 ) -1 a * 0 θ = -I N . Similarly to Proposition 3.10, we see that g 0 together with an appropriate m and C > 0 satisfies the required properties.

Assume that there exists the Riesz measure µ q ⊕s associated to a virtual quadratic map q ⊕s , and that µ q ⊕s is not the Dirac measure. Then we can take non-zero ε ∈ {0, 1} r and u ∈ R + (ε) such that sm/2 = u + p(ε)/2 as in Theorem 3.9. Using these data together with g 0 in Lemma 3.12, we obtain the Bartlett decomposition of the Wishart distribution γ q ⊕s ,θ . Theorem 3.13. Let sm/2 = u+p(ε)/2 and X u be the W ε,+ V -valued random variable in Theorem 3.11. Then the Wishart law γ q ⊕s ,θ is the law of Y = g 0 • q ε V (X u )/2.

Proof. Put q ′ := g -1 0 • q ⊕s . As is seen in the proof of Proposition 3.10, the Riesz measure µ (q ′ ) ⊕s equals C -s/2 π sm/2 R sm/2 . Thus, similarly to the proof of Theorem 3.11 (i), we see that γ (q ′ ) ⊕s ,-I N (dy) = e -y,I N R sm/2 (dy), and that γ (q ′ ) ⊕s ,-I N is the law of Y = q ε V (X u )/2. Since q ⊕s = g 0 • (q ′ ) ⊕s , Theorem 3.13 follows from Proposition 2.12.

We have seen that Riesz measures and Wishart laws associated to a homogeneous quadratic map are obtained (up to linear transforms as in Proposition 3.10 and Theorem 3.13) as the ones associated to a virtual quadratic map q s

V ) ⊕sr , that is, a virtual sum of basic quadratic maps. However, it does not mean that every homogeneous quadratic map is equal to a direct sum of basic quadratic maps. The structure of homogeneous quadratic maps is more rich than the maps generated by basic quadratic maps. Let us study the following example. Since ρ(GL(2, C)) acts on Ω transitively, the quadratic map q is homogeneous. Keeping the natural isomorphism C 2 ≃ R 4 in mind, we define the quadratic map so that ∆ σ (y) = (t 11 ) 2σ to the virtual quadratic map (q 1 V ) ⊕s , where q 1 V : W 1 V → Z V is the basic quadratic map. Since m(1) = (1, 1, 1), we observe that sm(1)/2 ∈ Ξ if and only if s ∈ {0, 1} ∪ (1, +∞). If s = 0, the associated Wishart law is the Dirac measure. If s = 1, the associated Wishart law γ q 1 V , θ (θ ∈ -P * V ) is described as the image of the normal law N(0, φ 1 V (-θ) -1 ) on W 1 V ≡ R 3 by the quadratic map q 1 V /2, where φ 1 V (-θ) is given in Example 4 after Proposition 3.